1
|
Nagato Y, Yamashita S, Ohashi A, Furukawa H, Takai K, Tomita K, Tomikawa C. Mechanism of tRNA recognition by heterotetrameric glycyl-tRNA synthetase from lactic acid bacteria. J Biochem 2023; 174:291-303. [PMID: 37261968 PMCID: PMC10464925 DOI: 10.1093/jb/mvad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
Glycyl-tRNA synthetases (GlyRSs) have different oligomeric structures depending on the organisms. While a dimeric α2 GlyRS species is present in archaea, eukaryotes and some eubacteria, a heterotetrameric α2β2 GlyRS species is found in most eubacteria. Here, we present the crystal structure of heterotetrameric α2β2 GlyRS, consisting of the full-length α and β subunits, from Lactobacillus plantarum (LpGlyRS), gram-positive lactic bacteria. The α2β2LpGlyRS adopts the same X-shaped structure as the recently reported Escherichia coli α2β2 GlyRS. A tRNA docking model onto LpGlyRS suggests that the α and β subunits of LpGlyRS together recognize the L-shaped tRNA structure. The α and β subunits of LpGlyRS together interact with the 3'-end and the acceptor region of tRNAGly, and the C-terminal domain of the β subunit interacts with the anticodon region of tRNAGly. The biochemical analysis using tRNA variants showed that in addition to the previously defined determinants G1C72 and C2G71 base pairs, C35, C36 and U73 in eubacterial tRNAGly, the identification of bases at positions 4 and 69 in tRNAGly is required for efficient glycylation by LpGlyRS. In this case, the combination of a purine base at Position 4 and a pyrimidine base at Position 69 in tRNAGly is preferred.
Collapse
Affiliation(s)
- Yasuha Nagato
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Azusa Ohashi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Haruyuki Furukawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Kazuyuki Takai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
2
|
Qin X, Deng X, Chen L, Xie W. Crystal Structure of the Wild-Type Human GlyRS Bound with tRNA(Gly) in a Productive Conformation. J Mol Biol 2016; 428:3603-14. [PMID: 27261259 DOI: 10.1016/j.jmb.2016.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Aminoacyl-tRNA synthetases are essential components of the protein translational machinery in all living species, among which the human glycyl-tRNA synthetase (hGlyRS) is of great research interest because of its unique species-specific aminoacylation properties and noncanonical roles in the Charcot-Marie-Tooth neurological disease. However, the molecular mechanisms of how the enzyme carries out its classical and alternative functions are not well understood. Here, we report a complex structure of the wild-type hGlyRS bound with tRNA(Gly) at 2.95Å. In the complex, the flexible Whep-TRS domain is visible in one of the subunits of the enzyme dimer, and the tRNA molecule is also completely resolved. At the active site, a glycyl-AMP molecule is synthesized and is waiting for the transfer of the glycyl moiety to occur. This cocrystal structure provides us with new details about the recognition mechanism in the intermediate stage during glycylation, which was not well elucidated in the previous crystal structures where the inhibitor AMPPNP was used for crystallization. More importantly, the structural and biochemical work conducted in the current and previous studies allows us to build a model of the full-length hGlyRS in complex with tRNA(Gly), which greatly helps us to understand the roles that insertions and the Whep-TRS domain play in the tRNA-binding process. Finally, through structure comparison with other class II aminoacyl-tRNA synthetases bound with their tRNA substrates, we found some commonalities of the aminoacylation mechanism between these enzymes.
Collapse
Affiliation(s)
- Xiangjing Qin
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People's Republic of China; Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle Road, University City, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiangyu Deng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People's Republic of China; Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle Road, University City, Guangzhou, Guangdong 510006, People's Republic of China
| | - Lei Chen
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People's Republic of China; Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle Road, University City, Guangzhou, Guangdong 510006, People's Republic of China
| | - Wei Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, People's Republic of China; Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle Road, University City, Guangzhou, Guangdong 510006, People's Republic of China.
| |
Collapse
|
3
|
Deng X, Qin X, Chen L, Jia Q, Zhang Y, Zhang Z, Lei D, Ren G, Zhou Z, Wang Z, Li Q, Xie W. Large Conformational Changes of Insertion 3 in Human Glycyl-tRNA Synthetase (hGlyRS) during Catalysis. J Biol Chem 2016; 291:5740-5752. [PMID: 26797133 PMCID: PMC4786711 DOI: 10.1074/jbc.m115.679126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
Glycyl-tRNA synthetase (GlyRS) is the enzyme that covalently links glycine to cognate tRNA for translation. It is of great research interest because of its nonconserved quaternary structures, unique species-specific aminoacylation properties, and noncanonical functions in neurological diseases, but none of these is fully understood. We report two crystal structures of human GlyRS variants, in the free form and in complex with tRNA(Gly) respectively, and reveal new aspects of the glycylation mechanism. We discover that insertion 3 differs considerably in conformation in catalysis and that it acts like a "switch" and fully opens to allow tRNA to bind in a cross-subunit fashion. The flexibility of the protein is supported by molecular dynamics simulation, as well as enzymatic activity assays. The biophysical and biochemical studies suggest that human GlyRS may utilize its flexibility for both the traditional function (regulate tRNA binding) and alternative functions (roles in diseases).
Collapse
Affiliation(s)
- Xiangyu Deng
- From the State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China,; the Center for Cellular and Structural Biology and
| | - Xiangjing Qin
- the South China Sea Institute, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China
| | - Lei Chen
- From the State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China,; the Center for Cellular and Structural Biology and
| | - Qian Jia
- From the State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China,; the Center for Cellular and Structural Biology and
| | - Yonghui Zhang
- the Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China, and
| | - Zhiyong Zhang
- the Hefei National Laboratory for Physical Science at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China, and
| | - Dongsheng Lei
- the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Gang Ren
- the Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Zhihong Zhou
- From the State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China,; the Center for Cellular and Structural Biology and
| | - Zhong Wang
- the Center for Cellular and Structural Biology and; the School of Pharmaceutical Sciences, Sun Yat-Sen University, University City, Guangzhou, Guangdong 510006, China
| | - Qing Li
- the Center for Cellular and Structural Biology and; the School of Pharmaceutical Sciences, Sun Yat-Sen University, University City, Guangzhou, Guangdong 510006, China
| | - Wei Xie
- From the State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China,; the Center for Cellular and Structural Biology and.
| |
Collapse
|
4
|
Qin X, Hao Z, Tian Q, Zhang Z, Zhou C, Xie W. Cocrystal structures of glycyl-tRNA synthetase in complex with tRNA suggest multiple conformational states in glycylation. J Biol Chem 2014; 289:20359-69. [PMID: 24898252 PMCID: PMC4106348 DOI: 10.1074/jbc.m114.557249] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/31/2014] [Indexed: 12/16/2022] Open
Abstract
Aminoacyl-tRNA synthetases are an ancient enzyme family that specifically charges tRNA molecules with cognate amino acids for protein synthesis. Glycyl-tRNA synthetase (GlyRS) is one of the most intriguing aminoacyl-tRNA synthetases due to its divergent quaternary structure and abnormal charging properties. In the past decade, mutations of human GlyRS (hGlyRS) were also found to be associated with Charcot-Marie-Tooth disease. However, the mechanisms of traditional and alternative functions of hGlyRS are poorly understood due to a lack of studies at the molecular basis. In this study we report crystal structures of wild type and mutant hGlyRS in complex with tRNA and with small substrates and describe the molecular details of enzymatic recognition of the key tRNA identity elements in the acceptor stem and the anticodon loop. The cocrystal structures suggest that insertions 1 and 3 work together with the active site in a cooperative manner to facilitate efficient substrate binding. Both the enzyme and tRNA molecules undergo significant conformational changes during glycylation. A working model of multiple conformations for hGlyRS catalysis is proposed based on the crystallographic and biochemical studies. This study provides insights into the catalytic pathway of hGlyRS and may also contribute to our understanding of Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Xiangjing Qin
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| | - Zhitai Hao
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| | - Qingnan Tian
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| | - Zhemin Zhang
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| | - Chun Zhou
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065
| | - Wei Xie
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou 510275, China, Center for Cellular and Structural Biology, The Sun Yat-Sen University, 132 E. Circle, University City, Guangzhou 510006, China, and
| |
Collapse
|
5
|
Dignam JD, Guo J, Griffith WP, Garbett NC, Holloway A, Mueser T. Allosteric interaction of nucleotides and tRNA(ala) with E. coli alanyl-tRNA synthetase. Biochemistry 2011; 50:9886-900. [PMID: 21985608 DOI: 10.1021/bi2012004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alanyl-tRNA synthetase, a dimeric class 2 aminoacyl-tRNA synthetase, activates glycine and serine at significant rates. An editing activity hydrolyzes Gly-tRNA(ala) and Ser-tRNA(ala) to ensure fidelity of aminoacylation. Analytical ultracentrifugation demonstrates that the enzyme is predominately a dimer in solution. ATP binding to full length enzyme (ARS875) and to an N-terminal construct (ARS461) is endothermic (ΔH = 3-4 kcal mol(-1)) with stoichiometries of 1:1 for ARS461 and 2:1 for full-length dimer. Binding of aminoacyl-adenylate analogues, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine (ASAd) and 5'-O-[N-(L-glycinyl)sulfamoyl]adenosine (GSAd), are exothermic; ASAd exhibits a large negative heat capacity change (ΔC(p) = 0.48 kcal mol(-1) K(-1)). Modification of alanyl-tRNA synthetase with periodate-oxidized tRNA(ala) (otRNA(ala)) generates multiple, covalent, enzyme-tRNA(ala) products. The distribution of these products is altered by ATP, ATP and alanine, and aminoacyl-adenylate analogues (ASAd and GSAd). Alanyl-tRNA synthetase was modified with otRNA(ala), and tRNA-peptides from tryptic digests were purified by ion exchange chromatography. Six peptides linked through a cyclic dehydromoropholino structure at the 3'-end of tRNA(ala) were sequenced by mass spectrometry. One site lies in the N-terminal adenylate synthesis domain (residue 74), two lie in the opening to the editing site (residues 526 and 585), and three (residues 637, 639, and 648) lie on the back side of the editing domain. At least one additional modification site was inferred from analysis of modification of ARS461. The location of the sites modified by otRNA(ala) suggests that there are multiple modes of interaction of tRNA(ala) with the enzyme, whose distribution is influenced by occupation of the ATP binding site.
Collapse
Affiliation(s)
- John David Dignam
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio 43614, United States.
| | | | | | | | | | | |
Collapse
|
6
|
Achilli F, Bros-Facer V, Williams HP, Banks GT, AlQatari M, Chia R, Tucci V, Groves M, Nickols CD, Seburn KL, Kendall R, Cader MZ, Talbot K, van Minnen J, Burgess RW, Brandner S, Martin JE, Koltzenburg M, Greensmith L, Nolan PM, Fisher EMC. An ENU-induced mutation in mouse glycyl-tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot-Marie-Tooth type 2D peripheral neuropathy. Dis Model Mech 2009; 2:359-73. [PMID: 19470612 DOI: 10.1242/dmm.002527] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system in humans, described clinically as Charcot-Marie-Tooth type 2D or distal spinal muscular atrophy type V. Here, we characterise a new mouse mutant, Gars(C201R), with a point mutation that leads to a non-conservative substitution within GARS. Heterozygous mice with a C3H genetic background have loss of grip strength, decreased motor flexibility and disruption of fine motor control; this relatively mild phenotype is more severe on a C57BL/6 background. Homozygous mutants have a highly deleterious set of features, including movement difficulties and death before weaning. Heterozygous animals have a reduction in axon diameter in peripheral nerves, slowing of nerve conduction and an alteration in the recovery cycle of myelinated axons, as well as innervation defects. An assessment of GARS levels showed increased protein in 15-day-old mice compared with controls; however, this increase was not observed in 3-month-old animals, indicating that GARS function may be more crucial in younger animals. We found that enzyme activity was not reduced detectably in heterozygotes at any age, but was diminished greatly in homozygous mice compared with controls; thus, homozygous animals may suffer from a partial loss of function. The Gars(C201R) mutation described here is a contribution to our understanding of the mechanism by which mutations in tRNA synthetases, which are fundamentally important, ubiquitously expressed enzymes, cause axonopathy in specific sets of neurons.
Collapse
Affiliation(s)
- Francesca Achilli
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Dignam JD, Nada S, Chaires JB. Thermodynamic characterization of the binding of nucleotides to glycyl-tRNA synthetase. Biochemistry 2003; 42:5333-40. [PMID: 12731874 DOI: 10.1021/bi030031h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of adenine nucleotides with glycyl-tRNA synthetase was examined by several experimental approaches. ATP and nonsubstrate ATP analogues render glycyl-tRNA synthetase more resistant to digestion by a number of proteases (thrombin, Arg-C, and chymotrypsin) at concentrations that correlate with their Michaelis constants or inhibition constants, consistent with their exerting an effect by binding at the ATP site. Glycine had little effect alone but potentiated the effect of ATP in increasing the resistance to thrombin digestion, consistent with the formation of an enzyme-bound adenylate. No protection from thrombin digestion was afforded by tRNA(gly). Binding constants were determined by isothermal titration calorimetry at 25 degrees C for ATP (2.5 x 10(5) M(-1)), AMPPNP (3.7 x 10(5) M(-1)), and AMPPCP (2.2 x 10(6) M(-1)). The nucleotides had similar values for DeltaH (-71 kJ mol(-1)), with values for TDeltaS that accounted for the differences in the binding constants. Near-ultraviolet CD spectra of the enzyme-nucleotide complexes indicate that the nucleotides are bound in the anti configuration. A glycyl-adenylate analogue, glycine sulfamoyl adenosine (GSAd), bound with a large value for DeltaH (-187 kJ mol(-1)), which was balanced by a large TDeltaS term to give a binding constant (3.7 x 10(6) M(-1)) only slightly larger than that of AMPPCP. Glycine binding to the enzyme could not be detected calorimetrically, and its presence did not change the thermodynamic parameters for binding of AMPPCP. AMPPNP and AMPPCP were not substrates for glycyl-tRNA synthetase. Analysis of the temperature dependence of ATP binding indicated that the heat capacity change is small, whereas the binding of GSAd is accompanied by a large negative heat capacity change (-2.6 kJ K(-1) mol(-1)). Titrations performed in buffers with different ionization enthalpies indicate that the large value for DeltaH for the adenylate analogue does not arise from a coupled protonation event. Differential scanning calorimetry indicated that glycyl-tRNA synthetase is stabilized by nucleotides. Unfolding of the protein is irreversible, and thermodynamic parameters for unfolding could therefore not be determined. The results are consistent with a significant conformational transition in glycyl-tRNA synthetase coupled to the binding of GSAd.
Collapse
Affiliation(s)
- John David Dignam
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, Ohio 43614-5804, USA.
| | | | | |
Collapse
|
8
|
Abstract
Unfolding of Bombyx mori glycyl-tRNA synthetase was examined by multiple spectroscopic techniques. Tryptophan fluorescence of wild type enzyme and an N-terminally truncated form (N55) increased at low concentrations of urea or guanidine-HCl followed by a reduction in intensity at intermediate denaturant concentrations; a transition at higher denaturant was detected as decreased fluorescence intensity and a red-shifted emission. Solute quenching of fluorescence indicated that tryptophans become progressively solvent-exposed during unfolding. Wild type enzyme had stronger negative CD bands between 220 and 230 nm than the mutant, indicative of greater alpha-helical content. Urea or guanidine-HCl caused a reduction in ellipticity at 222 nm at low denaturant concentration with the wild type enzyme, a transition that is absent in the mutant; both enzymes exhibited a cooperative transition at higher denaturant concentrations. Both enzymes dissociate to monomers in 1.5 m urea. Unfolding of wild type enzyme is described by a multistate unfolding and a parallel two state unfolding; the two-state component is absent in the mutant. Changes in spectral properties associated with unfolding were largely reversible after dilution to low denaturant. Unfolding of glycyl-tRNA synthetase is complex with a native state, a native-like monomer, partially unfolded states, and the unfolded state.
Collapse
Affiliation(s)
- J D Dignam
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Block Health Science Building, Toledo, Ohio 43614-5804, USA
| | | | | |
Collapse
|
9
|
Turner RJ, Lovato M, Schimmel P. One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J Biol Chem 2000; 275:27681-8. [PMID: 10874035 DOI: 10.1074/jbc.m003416200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, two genes (GRS1 and GRS2) encode glycyl-tRNA synthetase (GlyRS1 and GlyRS2, respectively). 59% of the sequence of GlyRS2 is identical to that of GlyRS1. Others have proposed that GRS1 and GRS2 encode the cytoplasmic and mitochondrial enzymes, respectively. In this work, we show that GRS1 encodes both functions, whereas GRS2 is dispensable. In addition, both cytoplasmic and mitochondrial phenotypes of the knockout allele of GRS1 in S. cerevisiae are complemented by the expression of the only known gene for glycyl-tRNA synthetase in Schizosaccharomyces pombe. Thus, a single gene for glycyl-tRNA synthetase likely encodes both cytoplasmic and mitochondrial activities in most or all yeast. Phylogenetic analysis shows that GlyRS2 is a predecessor of all yeast GlyRS homologues. Thus, GRS1 appears to be the result of a duplication of GRS2, which itself is pseudogene-like.
Collapse
Affiliation(s)
- R J Turner
- Skaggs Institute for Chemical Biology and Departments of Molecular Biology and Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
10
|
Abstract
The aminoacyl-tRNA synthetases are an ancient group of enzymes that catalyze the covalent attachment of an amino acid to its cognate transfer RNA. The question of specificity, that is, how each synthetase selects the correct individual or isoacceptor set of tRNAs for each amino acid, has been referred to as the second genetic code. A wealth of structural, biochemical, and genetic data on this subject has accumulated over the past 40 years. Although there are now crystal structures of sixteen of the twenty synthetases from various species, there are only a few high resolution structures of synthetases complexed with cognate tRNAs. Here we review briefly the structural information available for synthetases, and focus on the structural features of tRNA that may be used for recognition. Finally, we explore in detail the insights into specific recognition gained from classical and atomic group mutagenesis experiments performed with tRNAs, tRNA fragments, and small RNAs mimicking portions of tRNAs.
Collapse
Affiliation(s)
- P J Beuning
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
11
|
Becker HF, Grosjean H, Fourrey JL. Chemical Synthesis of 4-Thiouridine-Containing Substrate Analogues of tRNA:Pseudouridine-55 Synthase: Photocross-Linking Studies. ACTA ACUST UNITED AC 1998. [DOI: 10.1080/07328319808004327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Mazauric MH, Reinbolt J, Lorber B, Ebel C, Keith G, Giegé R, Kern D. An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:814-26. [PMID: 8944770 DOI: 10.1111/j.1432-1033.1996.00814.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycyl-tRNA synthetase (Gly-tRNA synthetase) from Thermus thermophilus was purified to homogeneity and with high yield using a five-step purification procedure in amounts sufficient to solve its crystallographic structure [Logan, D.T., Mazauric, M.-H., Kern, D. & Moras, D. (1995) EMBO J. 14, 4156-4167]. Molecular-mass determinations of the native and denatured protein indicate an oligomeric structure of the alpha 2 type consistent with that found for eukaryotic Gly-tRNA synthetases (yeast and Bombyx mori), but different from that of Gly-tRNA synthetases from mesophilic prokaryotes (Escherichia coli and Bacillus brevis) which are alpha 2 beta 2 tetramers. N-terminal sequencing of the polypeptide chain reveals significant identity, reaching 50% with those of the eukaryotic enzymes (B. mori, Homo sapiens, yeast and Caenorhabditis elegans) but no significant identity was found with both alpha and beta chains of the prokaryotic enzymes (E. coli, Haemophilus influenzae and Coxiella burnetii) albeit the enzyme is deprived of the N-terminal extension characterizing eukaryotic synthetases. Thus, the thermophilic Gly-tRNA synthetase combines strong structural homologies of eukaryotic Gly-tRNA synthetases with a feature of prokaryotic synthetases. Heat-stability measurements show that this synthetase keeps its ATP-PPi exchange and aminoacylation activities up to 70 degrees C. Glycyladenylate strongly protects the enzyme against thermal inactivation at higher temperatures. Unexpectedly, tRNA(Gly) does not induce protection. Cross-aminoacylations reveal that the thermophilic Gly-tRNA synthetase charges heterologous E. coli tRNA(gly(GCC)) and tRNA(Gly(GCC)) and yeast tRNA(Gly(GCC)) as efficiently as T. thermophilus tRNA(Gly). All these aminoacylation reactions are characterized by similar activation energies as deduced from Arrhenius plots. Therefore, contrary to the E. coli and H. sapiens Gly-tRNA synthetases, the prokaryotic thermophilic enzyme does not possess a strict species specificity. The results are discussed in the context of the three-dimensional structure of the synthetase and in the view of the particular evolution of the glycinylation systems.
Collapse
Affiliation(s)
- M H Mazauric
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Shiba K, Ripmaster T, Suzuki N, Nichols R, Plotz P, Noda T, Schimmel P. Human alanyl-tRNA synthetase: conservation in evolution of catalytic core and microhelix recognition. Biochemistry 1995; 34:10340-9. [PMID: 7654687 DOI: 10.1021/bi00033a004] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The class II Escherichia coli and human alanyl-tRNA synthetases cross-acylate their respective tRNAs and require, for aminoacylation, an acceptor helix G3:U70 base pair that is conserved in evolution. We report here the primary structure and expression in the yeast Pichia of an active human alanyl-tRNA synthetase. The N-terminal 498 amino acids of the 968-residue polypeptide have substantial (41%) identity with the E. coli protein. A closely related region encompasses the class-defining domain of the E. coli enzyme and includes the part needed for recognition of the acceptor helix. As a result, previously reported mutagenesis, modeling, domain organization, and biochemical characterization on the E. coli protein appear valid as a template for the human protein. In particular, we show that both the E. coli enzyme and the human enzyme purified from Pichia aminoacylate 9-base pair RNA duplexes whose sequences are based on the acceptor stems of either E. coli or human alanine tRNAs. In contrast, the sequences of the two enzymes completely diverge in an internal portion of the C-terminal half that is essential for tetramer formation by the E. coli enzyme, but that is dispensable for microhelix aminoacylation. This divergence correlates with the expressed human enzyme behaving as a monomer. Thus, the region of close sequence similarity may be a consequence of strong selective pressure to conserve the acceptor helix G3:U70 base pair as an RNA signal for alanine.
Collapse
Affiliation(s)
- K Shiba
- Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo
| | | | | | | | | | | | | |
Collapse
|
14
|
Ge Q, Trieu E, Targoff I. Primary structure and functional expression of human Glycyl-tRNA synthetase, an autoantigen in myositis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61975-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Shiba K, Schimmel P, Motegi H, Noda T. Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43986-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
16
|
Ting S, Dignam J. Post-transcriptional regulation of glutamyl-prolyl-tRNA synthetase in rat salivary gland. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37066-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Nada S, Chang P, Dignam J. Primary structure of the gene for glycyl-tRNA synthetase from Bombyx mori. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53008-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Ting S, Bogner P, Dignam J. Isolation of prolyl-tRNA synthetase as a free form and as a form associated with glutamyl-tRNA synthetase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37099-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
Dignam JD, Dignam SS, Brumley LL. Alanyl-tRNA synthetase from Escherichia coli, Bombyx mori and Ratus ratus. Existence of common structural features. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 198:201-10. [PMID: 2040280 DOI: 10.1111/j.1432-1033.1991.tb16002.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alanyl-tRNA synthetase from Escherichia coli, Bombyx mori and rat were examined with respect to the following functional and structural properties: the effect of substrates on sensitivity to proteolysis, secondary structure as determined by circular dichroism, amino acid composition and, in the case of the rat and insect enzymes, partial amino acid sequence determination on a 60-kDa C-terminal tryptic fragment. Digestion of the enzyme from all three sources with trypsin resulted in significant decline in aminoacyl-tRNA synthetase activity with little effect on pyrophosphate-exchange activity. In each case the presence of alanine and ATP together, but not separately, reduced the rate of digestion by trypsin; the largest effect was observed with the enzyme from rat liver. Trypsin digestion generated fragments of 47 kDa and 40 kDa with all three enzymes, but detection of significant quantities of the 47-kDa fragment from the rat enzyme required the presence of ATP and alanine. Trypsin digestion produced a fragment of 60 kDa with all three enzymes, but detection of significant quantities of this fragment with the bacterial enzyme required the presence of ATP and alanine. Limited sequence analysis of the 60-kDa fragment from the insect and rat enzymes indicated that trypsin cleaved both proteins at the same site to generate this species. Similar effects of substrates were observed when the enzymes were digested with chymotrypsin suggesting that the effects of substrates on protease sensitivity were not unique to trypsin. Circular dichroism spectra obtained for the three enzymes were qualitatively and quantitatively similar. There is some similarity in amino acid composition between the rat and insect enzymes.
Collapse
Affiliation(s)
- J D Dignam
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo 43699-0008
| | | | | |
Collapse
|
20
|
Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 40:95-142. [PMID: 2031086 DOI: 10.1016/s0079-6603(08)60840-5] [Citation(s) in RCA: 200] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M Mirande
- Laboratoire d'Enzymologie, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Chang PK, Dignam JD. Primary structure of alanyl-tRNA synthetase and the regulation of its mRNA levels in Bombyx mori. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45301-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
22
|
|
23
|
Viswanathan S, Dignam SS, Dignam JD. Control of the levels of alanyl-, glycyl-, and seryl-tRNA synthetases in the silkgland of Bombyx mori. Dev Biol 1988; 129:350-7. [PMID: 3417042 DOI: 10.1016/0012-1606(88)90382-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have examined the levels of glycyl-, alanyl-, and seryl-tRNA synthetases and the levels of their corresponding translatable mRNAs in the posterior and middle silkglands of the silkworm, Bombyx mori. Analysis of Western blots reveals that the change in the abundance of these enzymes during the fifth instar in crude extracts derived from posterior and middle silkgland correlates with changes in enzymatic activity; most of the change in activity for seryl- and alanyl-tRNA synthetases can be accounted for by the corresponding change in enzyme concentration, while the apparent specific activity of glycyl-tRNA synthetase appears to be elevated in the posterior silkgland. Accompanying the changes in enzyme activity and enzyme concentration are changes in the levels of the corresponding mRNAs as determined by immunoprecipitation of in vitro translation products. The levels of all three enzymes are 10 to 20 times higher in the posterior and middle silkglands than in ovarian tissue. A form of alanyl-tRNA synthetase with a slightly higher apparent molecular weight is detected in the posterior silkgland early in the fifth instar and in ovarian tissue.
Collapse
Affiliation(s)
- S Viswanathan
- Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216-4505
| | | | | |
Collapse
|
24
|
Viswanathan S, Dignam JD. Seryl-tRNA synthetase from Bombyx mori. Purification and properties. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)57425-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Sallafranque ML, Garret M, Benedetto JP, Fournier M, Labouesse B, Bonnet J. Tryptophanyl-tRNA synthetase is a major soluble protein species in bovine pancreas. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 882:192-9. [PMID: 3518805 DOI: 10.1016/0304-4165(86)90155-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Besides their central role in protein synthesis, aminoacyl-tRNA synthetases have been found or thought to be involved in other processes. We present here a study showing that tryptophanyl-tRNA synthetase has a surprising tissular distribution. Indeed, immunochemical determinations showed that in several bovine organs such as liver, kidney and heart, tryptophanyl-tRNA synthetase constitutes, as expected, about 0.02% of soluble proteins. In spleen, brain cortex, stomach, cerebellum or duodenum, this amount is about 10-times higher, and in pancreas it is 100-fold. There is no correlation between these amounts and the RNA content of the organs. Moreover, the concentration of another aminoacyl-tRNA synthetase (methionyl-tRNA synthetase) is higher in liver than in pancreas, while the amount of tRNATrp is not higher in pancreas than in liver as compared to other tRNAs. Among several interpretations, it is possible that tryptophanyl-tRNA synthetase is involved in a function other than tRNA aminoacylation. This unknown function would be specific to the differentiated organs, since fetal cerebellum and fetal pancreas contain the same amount of tryptophanyl-tRNA synthetase as adult liver.
Collapse
|
26
|
Regan L, Dignam JD, Schimmel P. A bacterial and silkworm aminoacyl-tRNA synthetase have a common epitope which maps to the catalytic domain of each. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57204-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|