1
|
Ghasemi SH, Ahmadian MT, Assempour A, Ahmadi Tafti SH. Comparative study on efficacy of thrombolytic protocols: Dual therapy against standard tPA regimen. Biophys J 2025:S0006-3495(25)00240-1. [PMID: 40247616 DOI: 10.1016/j.bpj.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/07/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025] Open
Abstract
When a blood clot occludes cerebral arteries and causes a stroke, a common cause of global death, thrombolytic therapy steps in as a highly effective treatment to restore the blood flow by dissolving the clot. Thrombolytic therapy is the use of plasminogen activators, including tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA), either separately or in combination. In this study, a mathematical model of thrombolysis has been developed for nonuniform fibrin clots, which have varying density levels nearer and farther from the cell surface. The non-Newtonian nature of blood flow and the viscoelasticity of vessel walls are considered. The dynamic of the pulsatile flow is described using the mass and momentum conservation laws with the Carreau viscosity model, and the generalized Maxwell model is used for the vessel wall. The transport of drugs and fibrinolytic factors involved in the dissolution process induced by convection and diffusion is considered. The developed model can predict the clot lysis pattern in combined drug therapies and can be used to optimize the drug dosage required for treatment. The model is used to evaluate the safety of dual thrombolytic therapy with tPA bolus and uPA continuous infusion in three different doses and then compared with the FDA-approved regimen and experimental studies. Results show that although dual thrombolytic therapy is safe and does not increase the risk of bleeding, it is not more effective than the FDA-approved regimen in faster clot dissolution and restoration of blood flow.
Collapse
Affiliation(s)
| | | | - Ahmad Assempour
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | | |
Collapse
|
2
|
Polyphosphate colocalizes with factor XII on platelet-bound fibrin and augments its plasminogen activator activity. Blood 2016; 128:2834-2845. [PMID: 27694320 DOI: 10.1182/blood-2015-10-673285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 09/25/2016] [Indexed: 12/21/2022] Open
Abstract
Activated factor XII (FXIIa) has plasminogen activator capacity but its relative contribution to fibrinolysis is considered marginal compared with urokinase and tissue plasminogen activator. Polyphosphate (polyP) is released from activated platelets and mediates FXII activation. Here, we investigate the contribution of polyP to the plasminogen activator function of αFXIIa. We show that both polyP70, of the chain length found in platelets (60-100 mer), and platelet-derived polyP significantly augment the plasminogen activation capacity of αFXIIa. PolyP70 stimulated the autoactivation of FXII and subsequent plasminogen activation, indicating that once activated, αFXIIa remains bound to polyP70 Indeed, complex formation between polyP70 and αFXIIa provides protection against autodegradation. Plasminogen activation by βFXIIa was minimal and not enhanced by polyP70, highlighting the importance of the anion binding site. PolyP70 did not modulate plasmin activity but stimulated activation of Glu and Lys forms of plasminogen by αFXIIa. Accordingly, polyP70 was found to bind to FXII, αFXIIa, and plasminogen, but not βFXIIa. Fibrin and polyP70 acted synergistically to enhance αFXIIa-mediated plasminogen activation. The plasminogen activator activity of the αFXIIa-polyP70 complex was modulated by C1 inhibitor and histidine-rich glycoprotein, but not plasminogen activator inhibitors 1 and 2. Platelet polyP and FXII were found to colocalize on the activated platelet membrane in a fibrin-dependent manner and decorated fibrin strands extending from platelet aggregates. We show that in the presence of platelet polyP and the downstream substrate fibrin, αFXIIa is a highly efficient and favorable plasminogen activator. Our data are the first to document a profibrinolytic function of platelet polyP.
Collapse
|
3
|
Venkatraman L, Chia SM, Narmada B, White J, Bhowmick S, Forbes Dewey C, So P, Tucker-Kellogg L, Yu H. Plasmin triggers a switch-like decrease in thrombospondin-dependent activation of TGF-β1. Biophys J 2012; 103:1060-8. [PMID: 23009856 PMCID: PMC3433618 DOI: 10.1016/j.bpj.2012.06.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 06/24/2012] [Accepted: 06/28/2012] [Indexed: 01/13/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is a potent regulator of extracellular matrix production, wound healing, differentiation, and immune response, and is implicated in the progression of fibrotic diseases and cancer. Extracellular activation of TGF-β1 from its latent form provides spatiotemporal control over TGF-β1 signaling, but the current understanding of TGF-β1 activation does not emphasize cross talk between activators. Plasmin (PLS) and thrombospondin-1 (TSP1) have been studied individually as activators of TGF-β1, and in this work we used a systems-level approach with mathematical modeling and in vitro experiments to study the interplay between PLS and TSP1 in TGF-β1 activation. Simulations and steady-state analysis predicted a switch-like bistable transition between two levels of active TGF-β1, with an inverse correlation between PLS and TSP1. In particular, the model predicted that increasing PLS breaks a TSP1-TGF-β1 positive feedback loop and causes an unexpected net decrease in TGF-β1 activation. To test these predictions in vitro, we treated rat hepatocytes and hepatic stellate cells with PLS, which caused proteolytic cleavage of TSP1 and decreased activation of TGF-β1. The TGF-β1 activation levels showed a cooperative dose response, and a test of hysteresis in the cocultured cells validated that TGF-β1 activation is bistable. We conclude that switch-like behavior arises from natural competition between two distinct modes of TGF-β1 activation: a TSP1-mediated mode of high activation and a PLS-mediated mode of low activation. This switch suggests an explanation for the unexpected effects of the plasminogen activation system on TGF-β1 in fibrotic diseases in vivo, as well as novel prognostic and therapeutic approaches for diseases with TGF-β dysregulation.
Collapse
Affiliation(s)
- Lakshmi Venkatraman
- Singapore-MIT Alliance, Computational Systems Biology Programme, Singapore
- School of Computer Engineering, Nanyang Technological University, Singapore
| | - Ser-Mien Chia
- Singapore-MIT Alliance, Computational Systems Biology Programme, Singapore
| | | | - Jacob K. White
- Singapore-MIT Alliance, Computational Systems Biology Programme, Singapore
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Sourav S. Bhowmick
- Singapore-MIT Alliance, Computational Systems Biology Programme, Singapore
- School of Computer Engineering, Nanyang Technological University, Singapore
| | - C. Forbes Dewey
- Singapore-MIT Alliance, Computational Systems Biology Programme, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Peter T. So
- Singapore-MIT Alliance, Computational Systems Biology Programme, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lisa Tucker-Kellogg
- Singapore-MIT Alliance, Computational Systems Biology Programme, Singapore
- Mechanobiology Institute, Temasek Laboratories, National University of Singapore, Singapore
| | - Hanry Yu
- Singapore-MIT Alliance, Computational Systems Biology Programme, Singapore
- NUS Graduate School for Integrative Sciences, Singapore
- Department of Physiology, Temasek Laboratories, National University of Singapore, Singapore
- Mechanobiology Institute, Temasek Laboratories, National University of Singapore, Singapore
- Institute of Bioengineering and Nanotechnology, ASTAR, Singapore
| |
Collapse
|
4
|
Venkatraman L, Li H, Dewey CF, White JK, Bhowmick SS, Yu H, Tucker-Kellogg L. Steady states and dynamics of urokinase-mediated plasmin activation in silico and in vitro. Biophys J 2012; 101:1825-34. [PMID: 22004735 DOI: 10.1016/j.bpj.2011.08.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 11/28/2022] Open
Abstract
Plasmin (PLS) and urokinase-type plasminogen activator (UPA) are ubiquitous proteases that regulate the extracellular environment. Although they are secreted in inactive forms, they can activate each other through proteolytic cleavage. This mutual interplay creates the potential for complex dynamics, which we investigated using mathematical modeling and in vitro experiments. We constructed ordinary differential equations to model the conversion of precursor plasminogen into active PLS, and precursor urokinase (scUPA) into active urokinase (tcUPA). Although neither PLS nor UPA exhibits allosteric cooperativity, modeling showed that cooperativity occurred at the system level because of substrate competition. Computational simulations and bifurcation analysis predicted that the system would be bistable over a range of parameters for cooperativity and positive feedback. Cell-free experiments with recombinant proteins tested key predictions of the model. PLS activation in response to scUPA stimulus was found to be cooperative in vitro. Finally, bistability was demonstrated in vitro by the presence of two significantly different steady-state levels of PLS activation for the same levels of stimulus. We conclude that ultrasensitive, bistable activation of UPA-PLS is possible in the presence of substrate competition. An ultrasensitive threshold for activation of PLS and UPA would have ramifications for normal and disease processes, including angiogenesis, metastasis, wound healing, and fibrosis.
Collapse
|
5
|
Joshi KK, Nanda JS, Kumar P, Sahni G. Substrate kringle-mediated catalysis by the streptokinase-plasmin activator complex: Critical contribution of kringle-4 revealed by the mutagenesis approaches. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:326-33. [DOI: 10.1016/j.bbapap.2011.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 09/18/2011] [Accepted: 10/19/2011] [Indexed: 10/16/2022]
|
6
|
Magalhães V, Veiga-Malta I, Almeida MR, Baptista M, Ribeiro A, Trieu-Cuot P, Ferreira P. Interaction with human plasminogen system turns on proteolytic activity in Streptococcus agalactiae and enhances its virulence in a mouse model. Microbes Infect 2007; 9:1276-84. [PMID: 17890121 DOI: 10.1016/j.micinf.2007.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 04/24/2007] [Accepted: 06/01/2007] [Indexed: 11/24/2022]
Abstract
Interactions of several microbial pathogens with the plasminogen system increase their invasive potential. In this study, we show that Streptococcus agalactiae binds human plasminogen which can be subsequently activated to plasmin, thus generating a proteolytic bacterium. S. agalactiae binds plasminogen via the direct pathway, using plasminogen receptors, and via the indirect pathway through fibrinogen receptors. The glyceraldehyde-3-phosphate dehydrogenase is one of the S. agalactiae proteins that bind plasminogen. Presence of exogenous activators such as uPA and tPA are required to activate bound plasminogen. Results from competitive inhibition assays indicate that binding is partially mediated through the lysine binding sites of plasminogen. Following plasminogen binding and activation, S. agalactiae is able to degrade in vitro fibronectin, one of the host extracellular matrix proteins. Moreover, incubation of S. agalactiae with either plasminogen alone, or plasminogen plus fibrinogen, in the presence of tPA enhanced its virulence in C57BL/6 mice, suggesting that acquisition of plasmin-like activity by the bacteria increase their invasiveness.
Collapse
Affiliation(s)
- Vanessa Magalhães
- ICBAS- Instituto de Ciências Biomédicas de Abel Salazar, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
7
|
Inoue KI, Takano H, Shimada A, Yanagisawa R, Sakurai M, Yoshino S, Sato H, Yoshikawa T. Urinary trypsin inhibitor protects against systemic inflammation induced by lipopolysaccharide. Mol Pharmacol 2005; 67:673-80. [PMID: 15576631 DOI: 10.1124/mol.104.005967] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urinary trypsin inhibitor (UTI), a serine protease inhibitor, has been widely used as a drug for patients with acute inflammatory disorders such as disseminated intravascular coagulation, shock, and pancreatitis in Japan. Recent studies have demonstrated that serine protease inhibitors may play an anti-inflammatory role beyond merely an inhibitory action on neutrophil elastase at the site of inflammation at least in vitro. To clarify the direct contributions of UTI to inflammatory condition in vivo, we analyzed its roles in experimental systemic inflammatory response induced by intraperitoneal administration of lipopolysaccharide (LPS) using UTI deficient (-/-) mice and corresponding wild-type (WT) mice. After LPS (1 mg/kg) challenge, UTI (-/-) mice revealed a significant elevation of plasma fibrinogen and fibrinogen/fibrin degradation products and a decrease in white blood cell counts compared with WT mice. LPS treatment induced more severe neutrophilic inflammation in the lung and the kidney obtained from UTI (-/-) mice than in those from WT mice, which was confirmed by histological examination. The protein levels of proinflammatory mediators, such as macrophage chemoattractant protein (MCP)-1 in the lungs, MCP-1 and keratinocyte chemoattractant (KC) in the kidneys, and interleukin-1beta, macrophage inflammatory protein-2, MCP-1, and KC in the liver, were significantly greater in UTI (-/-) mice than in WT mice after LPS challenge. Our results suggest that UTI protects against systemic inflammatory response and subsequent organ injury induced by bacterial endotoxin, at least partly through the inhibition of the enhanced expression of proinflammatory cytokines and chemokines.
Collapse
Affiliation(s)
- Ken-Ichiro Inoue
- Inhalation Toxicology and Pathophysiology Research Team, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Staton CA, Brown NJ, Lewis CE. The role of fibrinogen and related fragments in tumour angiogenesis and metastasis. Expert Opin Biol Ther 2004; 3:1105-20. [PMID: 14519075 DOI: 10.1517/14712598.3.7.1105] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Angiogenesis, the development of new blood vessels from existing vasculature, involves the migration, proliferation and differentiation of endothelial cells and is crucial for the growth and mestastasis of tumours. A specific association between cancer and the haemostatic system has long been recognised. Haemostatic mechanisms regulate blood flow by controlling platelet adhesion and fibrin deposition, and a number of haemostatic proteins have been shown to regulate angiogenesis, either directly, by interacting with endothelial cells themselves, or indirectly, by interacting with other regulators of angiogenesis. The polypeptide fibrinogen is the central protein in the haemostasis pathway and is found deposited in the majority of human and experimental animal tumours. In this review, the evidence for the ability of fibrinogen and various protein/peptide fragment derivatives to modulate angiogenic mechanisms in vitro and to affect tumour growth and metastasis in vivo is discussed.
Collapse
Affiliation(s)
- Carolyn A Staton
- Tumour Targeting Group, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | | | | |
Collapse
|
9
|
Swaisgood CM, Schmitt D, Eaton D, Plow EF. In vivo regulation of plasminogen function by plasma carboxypeptidase B. J Clin Invest 2002. [DOI: 10.1172/jci0215082] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Sun Z, Chen YH, Wang P, Zhang J, Gurewich V, Zhang P, Liu JN. The blockage of the high-affinity lysine binding sites of plasminogen by EACA significantly inhibits prourokinase-induced plasminogen activation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1596:182-92. [PMID: 12007600 DOI: 10.1016/s0167-4838(02)00233-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Prourokinase-induced plasminogen activation is complex and involves three distinct reactions: (1) plasminogen activation by the intrinsic activity of prourokinase; (2) prourokinase activation by plasmin; (3) plasminogen activation by urokinase. To further understand some of the mechanisms involved, the effects of epsilon-aminocaproic acid (EACA), a lysine analogue, on these reactions were studied. At a low range of concentrations (10-50 microM), EACA significantly inhibited prourokinase-induced (Glu-/Lys-) plasminogen activation, prourokinase activation by Lys-plasmin, and (Glu-/Lys-) plasminogen activation by urokinase. However, no inhibition of plasminogen activation by Ala158-prourokinase (a plasmin-resistant mutant) occurred. Therefore, the overall inhibition of EACA on prourokinase-induced plasminogen activation was mainly due to inhibition of reactions 2 and 3, by blocking the high-affinity lysine binding interaction between plasmin and prourokinase, as well as between plasminogen and urokinase. These findings were consistent with kinetic studies which suggested that binding of kringle 1-4 of plasmin to the N-terminal region of prourokinase significantly promotes prourokinase activation, and that binding of kringle 1-4 of plasminogen to the C-terminal lysine158 of urokinase significantly promotes plasminogen activation. In conclusion, EACA was found to inhibit, rather than promote, prourokinase-induced plasminogen activation due to its blocking of the high-affinity lysine binding sites on plasmin(ogen).
Collapse
Affiliation(s)
- Ziyong Sun
- Institute of Molecular Medicine, Nanjing University, 210093, Nanjing, PR China
| | | | | | | | | | | | | |
Collapse
|
11
|
Sun Z, Zhang PX, Wang P, Gurewich V, Shen HY, Liu JN. Amino-terminal fragment of urokinase-type plasminogen activator inhibits its plasminogen activation. Thromb Res 2002; 106:105-11. [PMID: 12182908 DOI: 10.1016/s0049-3848(02)00091-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amino terminal fragment (ATF, Ser(1)-Lys(135)) of urokinase-type plasminogen activator (uPA) containing an epidermal growth factor-like (EGF) and kringle domain is critically involved in some important functions of uPA, such as receptor binding and chemotactic activity. In this report, the effect of ATF on single-chain uPA (sc-uPA) induced plasminogen activation was investigated. It was shown that sc-uPA-induced activation of Glu-plasminogen or Lys-plasminogen was significantly inhibited in the presence of ATF. In addition, sc-uPA activation to two-chain uPA (tc-uPA) by Lys-plasmin and plasminogen activation to plasmin by tc-uPA were both found to be inhibited by ATF. The inhibition of these activations was significantly attenuated but not diminished when ATF was pretreated with immobilized carboxypeptidase B (CPB), indicating that the C-terminal Lys(135) as well as internal Lys/Arg residue binding was involved in the mechanism. Kinetic analysis showed that sc-uPA activation by Lys-plasmin competitively inhibited by ATF and CPB pretreated ATF (CPB-ATF) with an inhibitory constant (K(i)) of 3.8+/-0.31 and 12.4 +/- 1.8 microM, respectively. In contrast to sc-uPA-induced Glu- or Lys-plasminogen activation, sc-uPA-induced mini-plasminogen activation, sc-uPA activation by mini-plasmin and mini-plasminogen activation by tc-uPA were not affected by ATF. These findings suggested that the inhibitory effects of ATF on sc-uPA activation by Lys-plasmin and Glu- or Lys-plasminogen activation by tc-uPA were related to the binding of ATF (by its C-terminal Lys(135) and internal Lys/Arg residue) with the kringle 1-4 of plasmin and plasminogen, respectively.
Collapse
Affiliation(s)
- Ziyong Sun
- Institute of Molecular Medicine, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Lee KN, Jackson KW, McKee PA. Effect of a synthetic carboxy-terminal peptide of alpha(2)-antiplasmin on urokinase-induced fibrinolysis. Thromb Res 2002; 105:263-70. [PMID: 11927133 DOI: 10.1016/s0049-3848(02)00030-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
alpha(2)-Antiplasmin (alpha(2)AP) interferes with the binding of plasminogen to fibrin because lysine residues in its carboxy-terminal region compete with those in fibrin, presumably the same way that free lysine or epsilon-aminocaproic acid (EACA) inhibits plasminogen binding to fibrin. While this overall process causes an inhibition of fibrinolysis, the converse was observed with a 26-residue synthetic peptide (AP26) corresponding to the carboxy-terminal region of alpha(2)AP. The AP26 peptide, in fact, accelerated urokinase-induced lysis of (1) fully crosslinked fibrin with complete gamma-dimer and alpha-polymer formation; (2) partially crosslinked fibrin that had undergone only gamma-dimerization; and (3) noncrosslinked fibrin. The AP26 peptide also inhibited factor XIIIa-catalyzed crosslinking of fibrin alpha-chains, and this also accelerated lysis of fibrin. EACA had no effect. In the presence of noncrosslinked fibrin, AP26 promoted plasminogen activation by urokinase and fibrinolysis. EACA only slightly increased the rate of plasminogen activation, and as expected, it inhibited fibrinolysis. Since AP26 peptide enhanced the lysis of partially crosslinked and noncrosslinked fibrin, our results indicate that inhibition of factor XIIIa-catalyzed alpha-polymer formation by AP26, although associated with accelerated fibrinolysis, is not the primary mechanism. Instead, our data support the conclusion that AP26 enhances the conversion of plasminogen to plasmin approximately 5-fold, probably by inducing a conformational change in plasminogen structure just as occurs with low concentrations of lysine or EACA. At higher concentrations, however, AP26 apparently does not approach the avidity or affinity of lysine or EACA for the kringle structures of plasminogen or plasmin so that their binding to fibrin is blocked. Whether AP26 alone, or as part of another molecule, could have potential for enhancing thrombolysis will require further study.
Collapse
Affiliation(s)
- Kyung N Lee
- William K. Warren Medical Research Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City 73190, USA.
| | | | | |
Collapse
|
13
|
Wootton DM, Popel AS, Rita Alevriadou B. An experimental and theoretical study on the dissolution of mural fibrin clots by tissue-type plasminogen activator. Biotechnol Bioeng 2002. [DOI: 10.1002/bit.10127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Rabbani SA, Mazar AP. The Role of the Plasminogen Activation System in Angiogenesis and Metastasis. Surg Oncol Clin N Am 2001. [DOI: 10.1016/s1055-3207(18)30072-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
|
16
|
Fatah-Ardalani K, Wallén P, Petersen LC, Blombäck M. More porous fibrin gel structure obtained by interaction with Lys-plasminogen than with Glu-plasminogen. Blood Coagul Fibrinolysis 2000; 11:335-42. [PMID: 10847420 DOI: 10.1097/00001721-200006000-00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of Glu1- and Lys78-plasminogen on the assembly and structure of fibrin gels was studied in purified fibrinogen-thrombin system and in plasminogen-free plasma, using turbidity, liquid permeation and three-dimensional (3D) confocal laser microscopy methods. In the purified fibrinogen system using the turbidity method, the final optical density of the fibrin gels increased with increasing concentrations of Lys-plasminogen. The fiber mass/length ratio mu increased with increasing concentrations of both Glu1- and Lys78-plasminogen, the effect of Lys78-plasminogen being much stronger. The permeability coefficient (Ks) analyzed with the permeation method revealed that fibrin gels formed in the presence of Lys78-plasminogen were more permeable (porous) than the control gels. The effect on the gel structure was inhibited by the fibrinolytic inhibitor epsilon-aminocaproic acid. The same results were obtained in plasma milieu for both mu and Ks as in the purified system, i.e. the gels became more porous with increasing concentrations of Lys78-plasminogen. 3D microscopy pictures of the gels verified the findings.
Collapse
Affiliation(s)
- K Fatah-Ardalani
- Department of Laboratory Medicine/Coagulation Research, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|
17
|
Bock PE, Day DE, Verhamme IM, Bernardo MM, Olson ST, Shore JD. Analogs of human plasminogen that are labeled with fluorescence probes at the catalytic site of the zymogen. Preparation, characterization, and interaction with streptokinase. J Biol Chem 1996; 271:1072-80. [PMID: 8557633 DOI: 10.1074/jbc.271.2.1072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fluorescent analogs of the proteinase zymogen, plasminogen (Pg), which are specifically inactivated and labeled at the catalytic site have been prepared and characterized as probes of the mechanisms of Pg activation. The active site induced non-proteolytically in Pg by streptokinase (SK) was inactivated stoichiometrically with the thioester peptide chloromethyl ketone. N alpha-[(acetylthio)acetyl]-(D-Phe)-Phe-Arg-CH2Cl; the thiol group generated subsequently on the incorporated inhibitor with NH2OH was quantitatively labeled with the fluorescence probe, 2-((4'-iodoacetamido)anilino)naphthalene-6-sulfonic acid; and the labeled Pg was separated from SK. Cleavage of labeled [Glu]Pg1 by urokinase-type plasminogen activator (uPA) was accompanied by a fluorescence enhancement (delta Fmax/Fo) of 2.0, and formation of 1% plasmin (Pm) activity. Comparison of labeled and native [Glu]Pg1 as uPA substrates showed that activation of labeled [Glu]Pg1 generated [Glu]Pm1 as the major product, while native [Glu]Pg1 was activated at a faster rate and produced [Lys]Pm1 because of concurrent proteolysis by plasmin. When a mixture of labeled and native Pg was activated, to include plasmin-feedback reactions, the zymogens were activated at equivalent rates. The lack of potential proteolytic activity of the Pg derivatives allowed their interactions with SK to be studied under equilibrium binding conditions. SK bound to labeled [Glu]Pg1, and [Lys]Pg1 with dissociation constants of 590 +/- 110 and 110 and 11 +/- 7 nM, and fluorescence enhancements of 3.1 +/- 0.1 and 1.6 +/- 0.1, respectively. Characterization of the interaction of SK with native [Glu]Pg1 by the use of labeled [Glu]Pg1 as a probe indicated a approximately 6-fold higher affinity of SK for the native Pg zymogen compared to the labeled Pg analog. Saturating levels of epsilon-aminocaproic acid reduced the affinity of SK for labeled [Glu]Pg1 by approximately 2-fold and lowered the fluorescence enhancement to 1.8 +/- 0.1, whereas the affinity of SK for labeled [Lys]Pg1 was reduced by approximately 98-fold with little effect on the enhancement. These results demonstrate that occupation of lysine binding sites modulates the affinity of SK for Pg and the changes in the environment of the catalytic site associated with SK-induced conformational activation. Together, these studies show that the labeled Pg derivatives behave as analogs of native Pg which report functionally significant changes in the environment of the catalytic site of the zymogen.
Collapse
Affiliation(s)
- P E Bock
- Department of Pathology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
BACKGROUND Binding of plasminogen to partially degraded fibrin is an important step in fibrinolysis, influencing its rate and fibrin specificity. Little is known about the spatial distribution of plasminogen and of plasminogen-binding sites inside thrombi during lysis. In the present study, we investigated this problem, which is important for a better understanding of the local regulation of fibrinolysis and the rate-limiting factors of therapeutic thrombolysis. METHODS AND RESULTS An experimental system was used that allowed continuous visualization and quantification by fluorescence microscopy of the spatial distribution of fluorescein-labeled plasminogen inside and outside model thrombi. Strong superficial accumulation of plasminogen was observed during lysis of a plasma clot induced by tissue-type or urokinase-type plasminogen activators in the surrounding plasma. A distinctly visible plasminogen-accumulating shell moved continuously with the reducing surface of the clot. The accumulation decreased in conditions of exhaustive activation of plasminogen in the outer plasma. It was found in a purified system that a thin superficial layer (approximately 50 microns wide) of a plasmin-treated fibrin clot exposes about 2.5 plasminogen-binding sites per fibrin monomer with a Kd of 2.2 mumol/L. At a physiological concentration of plasminogen (1.5 mumol/L) in the outer medium, plasminogen was concentrated about 10-fold in this layer. The binding was dose-dependently inhibited by epsilon-aminocaproic acid. CONCLUSIONS We conclude that the generation of potent surface-associated plasminogen-binding sites during thrombolysis results in a strikingly high plasminogen concentration at the dynamically changing surface of a lysing clot. The necessity of a continuous plasminogen supply from the plasma supports the use of fibrin-specific and plasminogen-sparing agents for thrombolytic therapy.
Collapse
|
19
|
McCance SG, Castellino FJ. Contributions of individual kringle domains toward maintenance of the chloride-induced tight conformation of human glutamic acid-1 plasminogen. Biochemistry 1995; 34:9581-6. [PMID: 7626628 DOI: 10.1021/bi00029a035] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The roles of each of the three omega-amino acid-binding kringles (K) of Glu1-Pg, viz., [K1Pg], [K4Pg], and [K5Pg], in engendering the Cl(-)-induced alteration to its tight (T) conformation and in effecting the epsilon-aminocaproic acid (EACA)-mediated change to the relaxed (R) protein conformation have been investigated by mutagenesis strategies wherein the omega-amino acid ligand-binding energies in the individual kringles in recombinant (r)-Glu1-Pg were greatly reduced. This was accomplished in the most conservative manner possible by altering a critical Asp residue in each relevant kringle to Asn. The particular mutations chosen were r-[D139N]Glu1-Pg, r-[D413N]Glu1-Pg, and r-[D518N]Glu1-Pg, in which a conserved Asp residue at a homologous sequence position in each of the three kringle domains is eliminated. These changes also lead to a great reduction of the EACA-binding strength of [K1Pg], [K4Pg], and [K5Pg], respectively. The s0(20,w) of wild-type (wt) r-Glu1-Pg in the presence of levels of Cl(-)-sufficient to fully occupy its binding sites on this protein was 5.9 S, a value reduced to 4.9 S as a result of addition of saturating concentrations of EACA to the Cl-/Glu1-Pg complex. Neither Cl- nor EACA substantially altered the s0(20,w) value of 5.2 S for r-[D139N]Glu1-Pg (4.8 S) or r-[D413N]Glu1-Pg (4.5 S). On the other hand, the s0(20,w) value of 5.2 S for r-[D518N]Glu1-Pg at saturating levels of Cl- is slightly reduced to 4.8 S upon addition of binding maximal concentrations of EACA.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S G McCance
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
20
|
Misselwitz R, Welfle K, Welfle H. Conformations and stabilities of human Glu1- and Lys78-plasminogen and of the fragments mini- and microplasminogen, analysed by circular dichroism and differential scanning calorimetry. Int J Biol Macromol 1994; 16:187-94. [PMID: 7848966 DOI: 10.1016/0141-8130(94)90050-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The conformations and stabilities of two forms of human plasminogen, Glu1-plasminogen (Glu1-HPg, Glu1-Asn791) and Lys78-plasminogen (Lys78-HPg, Lys78-Asn791), and two enzymatically derived plasminogen fragments, miniplasminogen (mini-HPg, Val443-Asn791) and microplasminogen (micro-HPg, Lys531-Asn791) were analysed by circular dichroism and differential scanning calorimetry. The two plasminogen forms differ by the lack of 77 N-terminal amino acids in Lys78-HPg in comparison to Glu1-HPg. Mini-HPg is composed of kringle 5 and the protease domain of HPg whereas micro-HPg is built from the protease domain of HPg and a stretch of about 15 amino acids from kringle 5. Differential scanning calorimetric measurements of Glu1-HPg and Lys78-HPg reveal seven thermal transitions for both plasminogen forms. The results obtained for Lys78-HPg largely agree with recently published data (Novokhatny, V. V., Kudinov, S. A. and Privalov, P. L. J. Mol. Biol. 1984, 179, 215). Three thermal transitions corresponding to kringle 5 and to two subdomains of the C-terminal protease region were identified for mini-HPg. In micro-HPg, the two thermal transitions of the protease region were found but one of the protease subdomains was modified and its stability was much higher than in any of the other studied proteins. According to the microcalorimetric data obtained for mini-HPg and micro-HPg, transitions 5 and 6 of Glu1-HPg and Lys78-HPg were reassigned to kringle 5 and to a subdomain of the protease region, respectively, in contrast to literature data.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Misselwitz
- Institute of Biochemistry, Medical Faculty (Charité), Humboldt University Berlin, Germany
| | | | | |
Collapse
|
21
|
Hoover GJ, Menhart N, Martin A, Warder S, Castellino FJ. Amino acids of the recombinant kringle 1 domain of human plasminogen that stabilize its interaction with omega-amino acids. Biochemistry 1993; 32:10936-43. [PMID: 8218159 DOI: 10.1021/bi00092a002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A series of strategically designed recombinant (r) mutants of the kringle 1 region of human plasminogen ([K1HPg]) have been constructed and the resulting gene products employed to reveal the identities of the residues that contribute to stabilization of the binding of omega-amino acid ligands to this domain. On the basis of determinations of the binding constants of the ligands, 6-aminohexanoic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic acid, to a variety of these mutants, we find that the anionic site of the polypeptide responsible for stabilization of the amino group of the ligands consists of both D54 and D56 and the cationic site of the polypeptide that interacts with the carboxylate group of the ligand is composed solely of R70. The main hydrophobic interactions that stabilize binding of these ligands, likely by interactions with the ligand hydrophobic regions, are principally due to W61, Y63, and Y71. The results obtained are consistent with conclusions that could be made from analysis of the X-ray crystal structure of r-[K1HPg] and from previous studies from this laboratory regarding the binding of ligands of this type to the kringle 2 region of tissue-type plasminogen activator ([K2tPA]). It thus appears as though a common ligand binding site has evolved in different kringles with ligand specificity differences between r-[K2tPA] and r-[K1HPg] perhaps explainable by the different nature of the cationic sites on these polypeptides that are involved in coordination to the ligand carboxylate groups.
Collapse
Affiliation(s)
- G J Hoover
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana 46556
| | | | | | | | | |
Collapse
|
22
|
Fredenburgh J, Nesheim M. Lys-plasminogen is a significant intermediate in the activation of Glu-plasminogen during fibrinolysis in vitro. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35729-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Marcotte P, Henkin J, Credo R, Badylak S. A-chain isozymes of recombinant and natural urokinases: Preparation, characterization, and their biochemical and fibrinolytic properties. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0268-9499(92)90063-n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Cooley BC, Hanel DP, Gould JS, Li X, Smith JW. Antithrombotic benefit of subendothelium-bound urokinase: an experimental study. J Hand Surg Am 1992; 17:235-44. [PMID: 1564269 DOI: 10.1016/0363-5023(92)90398-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To improve the outcome of extremity replantation, microsurgeons have administered systemic antithrombotic agents (e.g., heparin, aspirin, dextran). To obviate the risks associated with systemic anticoagulation, we have investigated the use of topically applied urokinase for its binding capacity to arterial subendothelium and for its ability to prevent subsequent thrombosis. An arterial model of thrombosis associated with intimal deendothelialization was developed. Donor rat carotid arteries were everted and mechanically deendothelialized with a scalpel blade. The vessels were next subjected to one of several treatments, which included 30-minute incubation with urokinase, heparin, or vehicle (lactated Ringer's solution). The vessels were then washed, reinverted to normal orientation, sectioned into 5 mm lengths, and grafted into the femoral arteries of recipient rats. Two-hour patency rates were 25% for controls (n = 20), 10% for heparin-treated vessels (n = 10), and 55% for urokinase-treated vessels (n = 20); this last was significantly greater than the other two groups. In vitro investigations revealed that urokinase has a high capacity for binding to subendothelium, with a release half-life of approximately 20 minutes. Surface-bound urokinase was found to have proteolytic activity similar to that of urokinase in solution. These results indicate that urokinase may be a more beneficial irrigating solution additive than heparin for repair of traumatized vessels.
Collapse
Affiliation(s)
- B C Cooley
- Department of Orthopaedic Surgery, Medical College of Wisconsin, Milwaukee 53226
| | | | | | | | | |
Collapse
|
25
|
Lenich C, Pannell R, Gurewich V. The effect of the carboxy-terminal lysine of urokinase on the catalysis of plasminogen activation. Thromb Res 1991; 64:69-80. [PMID: 1776140 DOI: 10.1016/0049-3848(91)90206-c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
When single-chain pro-UK is activated by plasmin or kallikrein, the Lys158-Ile159 bond is cleaved, leaving a C-terminal lysine on the A-chain (Lys-UK). Two-chain, high molecular weight urokinase (UK) purified from urine, however, has been shown to contain a phenylalanine residue as the C-terminal of the A-chain (Phe-UK). Since C-terminal lysine residues have a strong binding affinity for plasminogen that may promote its activation, we undertook kinetic studies comparing plasminogen activation by Lys- and Phe-UK. A two-stage method was employed in order to minimize factors known to interfere with plasminogen activation and plasmin determination. The Lys-UK was prepared by plasmin activation of pro-UK purified from human fetal kidney cell culture medium. The Phe-UK was prepared by carboxypeptidase B (CpB) treatment of Lys-UK. Removal of the C-terminal lysine of Lys-UK by CpB produced small but significant increases in the Michaelis constants for the activation of both Glu- and Lys-plasminogen. The apparent Michaelis constants for Glu-plasminogen activation by Lys- and Phe-UK were 3.7 microM +/- .36 microM and 5.9 microM +/- .70 microM, respectively and the Michaelis constants for Lys-plasminogen activation by Lys- and Phe-UK were 5.4 microM +/- .72 microM and 15.2 microM +/- 1.4 microM, respectively. The catalytic efficiency (kcat/Km) of Lys-UK was approximately 2-fold greater than that of Phe-UK for the activation of either Glu- or Lys-plasminogen. When the fibrinolytic activities of Lys- and Phe-UK were compared in a plasma milieu no significant differences were detected. In conclusion, the findings indicate that the C terminal lysine on the A-chain of UK significantly promotes the catalysis of plasminogen in a purified system. However, the higher catalytic efficiency of Lys-UK was not found to induce significant acceleration of clot lysis at pharmacological concentrations in plasma.
Collapse
Affiliation(s)
- C Lenich
- Vascular Research Laboratory, New England Deaconess Hospital, Boston, MA
| | | | | |
Collapse
|
26
|
Henkin J, Dudlak D, Beebe DP, Sennello L. igh sialic acid content slows prourokinase turnover in rabbits. Thromb Res 1991; 63:215-25. [PMID: 1771627 DOI: 10.1016/0049-3848(91)90285-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The clearance of natural and recombinant prourokinase (proUK) from the blood of rabbits was studied by means of a double-isotope method which allowed the differential removal of two distinct proUK species to be monitored when simultaneously administered to an individual animal. In initial experiments, proUK expressed in different cell lines contained between 0 and 2.5 molecules of sialic acid per molecule of protein. A slight trend toward slower clearance of proUK with higher sialic acid content was observed but rate differences were not statistically significant. Recombinant proUK produced in CHO cells grown in flow reactors, contained unusually high levels of sialic acid in excess of 3 moles/mole protein. Controlled exposure to immobilized neuraminidase was used to remove sialic acid from this protein in defined amounts. The clearance of the parent material was biphasic with average alpha and beta half-lives of 1.7 min and 16.7 min respectively. The AUC of the parent material was only slightly lowered upon removal of 30% of the original sialic acid. Species with 60% or 90% removal of sialate were much more rapidly cleared from the circulation respectively yielding AUCs equal to 56% and 41% of that observed with the parent material. Thus proUK containing 2.5-3.5 sialic acid molecules per molecule of protein turned over significantly more slowly in rabbits than did less sialylated proUK. The clearance rate was relatively insensitive to sialic acid content between 0 and 1.5 sialic acid residues per proUK molecule.
Collapse
Affiliation(s)
- J Henkin
- Abbott Laboratories, Abbott Park, IL 60064
| | | | | | | |
Collapse
|
27
|
Abstract
The rate of plasmin denaturation was in the order of Lys-plasmin greater than miniplasmin greater than microplasmin. Fibrinogen degradation products (FDP) dose dependently increased the denaturation rate of Lys-plasmin and mini-plasmin with a maximal rate constant at the FDP/plasmin ratio of about 0.5. The denaturation rate constant of microplasmin was not affected. FDP increased the rate of plasmin denaturation was in parallel with its effect on the interaction among kringle domains. Without FDP only trace amounts of plasminogen dimer could be detected by cross-linking with bis-(sulfo-succinimidyl)-suberate followed by SDS gel electrophoresis. In the low concentration of FDP significant amounts of oligomers of Glu-, mini-plasminogens, kringle 1-3 and kringle 1-5 were observed. High concentration of FDP, however, decreased plasminogen oligomer.
Collapse
Affiliation(s)
- G Y Shi
- Biochemistry Department, Medical College, National Cheng-Kung University, Tainan, Taiwan, Republic of China
| | | | | |
Collapse
|
28
|
Edelberg J, Pizzo S. Lipoprotein (a): The link between impaired fibrinolysis and atherosclerosis. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/0268-9499(91)90015-v] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Conformation of one- and two-chain high molecular weight urokinase analyzed by small-angle neutron scattering and vacuum ultraviolet circular dichroism. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)92834-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Blombäck B. Fibrinogen and fibrin formation and its role in fibrinolysis. BIOTECHNOLOGY (READING, MASS.) 1991; 19:225-79. [PMID: 1723911 DOI: 10.1016/b978-0-7506-9120-8.50016-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Wu HL, Chang BI, Wu DH, Chang LC, Gong CC, Lou KL, Shi GY. Interaction of plasminogen and fibrin in plasminogen activation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45422-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Thermodynamic properties of the binding of alpha-, omega-amino acids to the isolated kringle 4 region of human plasminogen as determined by high sensitivity titration calorimetry. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39387-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Homandberg GA, Wai T. Comparison of affinities of urokinase and tissue plasminogen activator for fibrin clots. Thromb Res 1989; 55:493-501. [PMID: 2510355 DOI: 10.1016/0049-3848(89)90057-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Affinities of low molecular weight two-chain urokinase (UK) and tissue plasminogen activator (t-PA) for fibrin clots were investigated by using clot lysis rates to estimate an affinity (Kd) between activator and fibrin clots. Lysis rates were obtained using a simple spectrophotometric based clot lysis assay which is described here. Fibrin clots, containing residual plasminogen, were suspended in a 1 ml cuvette and the increase in absorbance at 280 nm due to release of soluble fibrin peptides measured over a 150 to 250 minute time period. Lysis rates were obtained from plots of time squared vs absorbance change. Plots of activator concentration vs reciprocal rates yielded regression coefficients of 0.999 and Kd values of nM for the affinity of both activators for fibrin clots. Although both activators are known to differ in affinity for fibrin, they nonetheless had similar affinities and lysis rates for the insoluble fibrin clots. This assay also suggested possible synergism; rates over twice that expected by an additive effect were observed when the two activators were mixed at 0.3 to 7.6 nM each.
Collapse
Affiliation(s)
- G A Homandberg
- Department of Biochemistry, Rush-Presbyterian-St Luke's Med Ctr, Chicago, IL 60612-3864
| | | |
Collapse
|
34
|
de Serrano VS, Urano T, Gaffney PJ, Castellino FJ. Influence of various structural domains of fibrinogen and fibrin on the potentiation of plasminogen activation by recombinant tissue plasminogen activator. JOURNAL OF PROTEIN CHEMISTRY 1989; 8:61-77. [PMID: 2527513 DOI: 10.1007/bf01025079] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fibrinogen, fibrin, and related fragments have varying stimulatory effects on the initial rate of the activation of human plasminogen ([ Glu1]Pg) by recombinant tissue plasminogen activator (rt-PA). A detailed analysis of this enhancement was undertaken using various purified and complexed forms of the known domains of fibrin(ogen) with a view to gaining additional knowledge regarding the substructures of fibrinogen and fibrin that are important for their stimulatory capacities. Both arvin-mediated fibrin, as well as fibrinogen fragments generated as a result of its cleavage with CNBr, stimulate the activation in a biphasic manner, most likely as a result of changes in the promoter molecule accompanying the denaturation processes that are normally employed to either solubilize or generate these particular promoters. Using purified fibrinogen and fibrin fragments, it was found that fragment E, which binds to [Glu1]Pg, does not enhance the activation reaction, while fragment D1 has a potentiating effect. This suggests that the binding of [Glu1]Pg to fibrin(ogen) alone is not, in itself, sufficient for stimulation of activation to occur, but that the rt-PA-fibrin(ogen) interaction is fundamental to this same process. All purified and mixtures of fragments containing the fragment D domain (e.g., D2E, X-oligomer, fragment X) stimulate the reaction to a greater degree than fibrinogen and fragment D1. It is concluded that the fibrinogen D domain is a sine qua non for the enhancement reaction, while structures containing the E domain had a symbiotic effect on enhancement.
Collapse
Affiliation(s)
- V S de Serrano
- Department of Chemistry, University of Notre Dame, Indiana 46556
| | | | | | | |
Collapse
|
35
|
Lee PP, Wohl RC, Boreisha IG, Robbins KC. Kinetic analysis of covalent hybrid plasminogen activators: effect of CNBr-degraded fibrinogen on kinetic parameters of Glu1-plasminogen activation. Biochemistry 1988; 27:7506-13. [PMID: 2974723 DOI: 10.1021/bi00419a049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The kinetic parameters of three activator species of Glu1-plasminogen (Glu1-Plg) were compared in their reaction at pH 7.4 and 37 degrees C, in the presence and absence of CNBr-digested fibrinogen (CNBr-Fg). The urokinase- (u-PA-) derived covalent hybrid activator PlnA-u-PAB had an apparent Michaelis constant (Kplg) of 7.44 microM, a catalytic rate constant (kplg) of 51.1 min-1, and a second-order rate constant (kplg/Kplg) of 6.87 microM-1 min-1. The tissue plasminogen activator (t-PA) derived covalent hybrid activator PlnA-t-PAB was characterized by a Kplg of 3.33 microM, a kplg of 1.03 min-1, and a kplg/Kplg of 0.309 microM-1 min-1. The kplg/Kplg values for the parent u-PA and t-PA activators were 6- and 16-fold higher than the respective hybrids, mainly due to an approximately 10-fold increase in the apparent Kplg for the hybrids. In the presence of CNBr-Fg, the increase of the kplg/Kplg values for u-PA and its hybrid was 1.1-fold, but for t-PA and its hybrid, the increases were 7- and 12-fold, respectively. In both the absence and presence of CNBr-Fg, activator t-PAB had an apparent Kplg of 19.1 and 27.6 microM and a kplg of 2.9 and 5.0 min-1, respectively. The increase in the kplg/Kplg value with CNBr-Fg was 1.2-fold. The streptokinase- (SK-) derived activators Glu1-plasmin.SK (Glu1-Pln.SK), Val442-Pln.SK, and Val561-Pln.SK had apparent Kplg values of 0.458, 0.268, and 0.121 microM and kplg values of 20.0, 126.0, and 63.3 min-1, respectively. In the presence of CNBr-Fg, the first two activators showed an approximately 1.4-fold increase and the last showed a 1.4-fold decrease in their kplg/Kplg values. The catalytic efficiency (kplg/Kplg) of the various activator species fell in the decreasing order SK greater than u-PA greater than t-PA, in either the presence or absence of CNBr-Fg. CNBr-Fg enhanced significantly the activities of only two activators, t-PA and PlnA-t-PAB.
Collapse
Affiliation(s)
- P P Lee
- Department of Medicine, University of Chicago Medical Center/Michael Reese Hospital and Medical Center, Pritzker School of Medicine, University of Chicago, Illinois 60616
| | | | | | | |
Collapse
|
36
|
Abstract
Denaturation of human plasmin in solutions of various pH levels was studied. The denaturation and loss of catalytic activity of plasmin in solutions of between pH 3.5 and 10.5 is a second-order kinetics. In alkaline solutions of pH levels greater than 11.5, plasmin undergoes a first-order denaturation. The second-order denaturation of plasmin is mainly due to the autolytic reactions between plasmin molecules. Two autolytic processes of human plasmin in aqueous solution were observed. In a slightly acidic solution (pH 6.5) the light (B) chain was found to be cleaved faster than the heavy (A) chain of plasmin. On the other hand, the heavy (A) chain was cleaved in an alkaline solution of pH near 11.0. A cleaved heavy (A) chain of molecular weight 58,000 was observed. Both the heavy (A) chain and the light (B) chain were found to be cleaved at pH levels between 6.5 and 11.0. The loss of the esterase activity of plasmin samples in the autolytic process is in parallel with the decline of intact light (B) chain. The autolytic cleavage of the heavy (A) chain led to the formation of a new type of catalytically active plasmin.
Collapse
Affiliation(s)
- G Y Shi
- Department of Biochemistry, College of Medicine, National Cheng-Kung University, Tainan, Taiwan, R.O.C
| | | |
Collapse
|
37
|
Lottenberg R, Sjak-Shie N, Fazleabas AT, Roberts RM. Aprotinin inhibits urokinase but not tissue-type plasminogen activator. Thromb Res 1988; 49:549-56. [PMID: 2455360 DOI: 10.1016/0049-3848(88)90252-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protease inhibitor, aprotinin, has been examined for its ability to inhibit urokinase and tissue-type plasminogen activators at pH 7.4 in assays utilizing pyroGlu-Gly-Arg-p-nitroanilide and H-D-Ile-Pro-Arg-p-nitroanilide as substrates, respectively. Aprotinin inhibited both two-chain low molecular weight urokinase and the high molecular weight form of the enzyme in a competitive manner with a similar Ki (27 microM). There was no observable inhibition of tissue-type plasminogen activators at aprotinin concentrations up to 500 microM. These findings suggest that sensitivity to inhibition by aprotinin could be used to distinguish tissue-type and urokinase-type plasminogen activators.
Collapse
Affiliation(s)
- R Lottenberg
- Department of Medicine, University of Florida College of Medicine, Gainesville 32610
| | | | | | | |
Collapse
|
38
|
Will H. Plasminogen Activators: Molecular Properties, Biological Cell Function and Clinical Application. ACTA ACUST UNITED AC 1988. [DOI: 10.1007/978-3-642-73461-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
39
|
Abstract
The structure and physical properties of human fibrinogen and fibrin are reviewed along with methods for the detection of products of their metabolism. Interactions of human fibrinogen with thrombin, factor XIII, plasminogen, glycoprotein IIb/IIIa, and other proteins are related to their relevance to thrombosis and hemostasis. To the extent information is available, the structural determinants of these interactions are delineated, and kinetic and thermodynamic parameters associated with the interactions are listed. Individual steps in the reaction pathway for the conversion of fibrinogen to cross-linked fibrin are characterized. The altered hemostatic properties of mutational variants of fibrinogen are related to their altered structure. The structures of the genes coding for the polypeptide chains of fibrinogen are discussed along with the current state of knowledge of the control and regulation of fibrinogen synthesis. Fibrinogen catabolism and fibrinolysis are also reviewed.
Collapse
Affiliation(s)
- J A Shafer
- Department of Biological Chemistry, University of Michigan, Ann Arbor
| | | |
Collapse
|
40
|
Watahiki Y, Takada Y, Takada A. Kinetic analyses of the activation of Glu-plasminogen by urokinase in the presence of fibrin, fibrinogen or its degradation products. Thromb Res 1987; 46:9-18. [PMID: 3590117 DOI: 10.1016/0049-3848(87)90202-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kinetics of the activation of Glu-plasminogen (Glu-plg) and Lys-plasminogen (Lys-plg) by urokinase (UK) were studied in purified systems. The activation of plasminogen by UK in the purified systems followed Michaelis-Menten kinetics with a Michaelis constant (Km) of 1.45 microM and a catalytic rate constant (kcat) of 0.93/sec for Glu-plg as compared to 0.25 microM (Km) and 0.82/sec (kcat) for Lys-plg. In the presence of fibrin and fibrinogen or its plasmin degradation products (fragment D and fragment E), Km for Glu-plg hardly changed, whereas kcat for Glu-plg increased. Effect on increase in kcat was in the order of fibrin greater than fibrinogen greater than D greater than E. Fibrin, fibrinogen, D and E did not influence the activation of Lys-plg by UK. These results indicate that Glu-plg bound to fibrin, fibrinogen, D or E becomes easily activatable by UK. The activation of Lys-plg, however, is not influenced in the presence of fibrin, fibrinogen, D or E.
Collapse
|
41
|
Takada A, Shizume K, Cho M, Takada Y. Differences in the activation rates of plasminogen by tissue plasminogen activator and urokinase. Thromb Res 1987; 45:371-81. [PMID: 2437668 DOI: 10.1016/0049-3848(87)90226-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activation of a native form of plasminogen (Glu-plg) by tissue plasminogen activator(t-PA) was enhanced when the plasma was clotted by the addition of thrombin or thrombin plus Ca++. Cross-linking of fibrin in the clotted plasma did not inhibit the fibrin-associated enhancement of the activation of plasminogen by t-PA. When fibrinolysis induced by t-PA in the clotted plasma was measured using enzyme immunoassay, lysis of non cross-linked fibrin in the clotted plasma was faster than lysis of cross-linked fibrin, however such decrease in the extent of fibrinolysis was observed in cross-linked fibrin even in the absence of alpha 2antiplasmin (alpha 2AP) in a purified system. When Glu- or Lys-plg (modified plg) was activated by t-PA, the presence of fibrin enhanced significantly the extent of activation of both Glu- and Lys-plg, but the activation of Glu-plg by urokinase (UK) was enhanced in the presence of fibrin. The activation of Lys-plg by UK was rather inhibited in the presence of fibrin.
Collapse
|
42
|
Knudsen BS, Silverstein RL, Leung LL, Harpel PC, Nachman RL. Binding of plasminogen to extracellular matrix. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67452-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Suenson E, Petersen LC. Fibrin and plasminogen structures essential to stimulation of plasmin formation by tissue-type plasminogen activator. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 870:510-9. [PMID: 2938632 DOI: 10.1016/0167-4838(86)90260-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plasminogen activation catalysed by tissue-type plasminogen activator (t-PA) has been examined in the course of concomitant fibrin formation and degradation. Plasmin generation has been measured by the spectrophotometric method of Petersen et al. (Biochem. J. 225 (1985) 149-158), modified so as to allow for light scattering caused by polymerized fibrin. Glu1-, Lys77- and Val442-plasminogen are activated in the presence of fibrinogen, des A- and des AB-fibrin and the rate of plasmin formation is found to be greatly enhanced by both des A- and des AB-fibrin polymer. Plasmin formation from Glu1- and Lys77-plasminogen yields a sigmoidal curve, whereas a linear increase is obtained with Val442-plasminogen. The rate of plasmin formation from Glu1- and Lys77-plasminogen declines in parallel with decreasing turbidity of the fibrin polymer effector. In order to study the effect of polymerization, this has been inhibited by the synthetic polymerization site analogue Gly-Pro-Arg-Pro, by fibrinogen fragment D1 or by prior methylene blue-dependent photooxidation of the fibrinogen used. Inhibition of polymerization by Gly-Pro-Arg-Pro reduces plasmin generation to the low rate observed in the presence of fibrinogen. Antipolymerization with fragment D1 or photooxidation has the same effect on Glu1-plasminogen activation, but only partially reduces and delays the stimulatory effect on Lys77- and Val442-plasminogen activation. The results suggest that protofibril formation (and probably also gelation) of fibrin following fibrinopeptide release is essential to its stimulatory effect. The gradual increase and subsequent decline in the rate of plasmin formation from Glu1- or Lys77-plasminogen during fibrinolysis may be explained by sequential exposure, modification and destruction of different t-PA and plasminogen binding sites in fibrin polymer.
Collapse
|
44
|
Regulation of the streptokinase-mediated activation of human plasminogen by fibrinogen and chloride ions. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57212-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Abstract
The fibrinolytic system comprises a proenzyme, plasminogen, which can be activated to the active enzyme plasmin, that will degrade fibrin by different types of plasminogen activators. Inhibition of fibrinolysis may occur at the level of plasmin or at the level of the activators. Fibrinolysis in human blood seems to be regulated by specific molecular interactions between these components. In plasma, normally no systemic plasminogen activation occurs. When fibrin is formed, small amounts of plasminogen activator and plasminogen adsorb to the fibrin, and plasmin is generated in situ. The formed plasmin, which remains transiently complexed to fibrin, is only slowly inactivated by alpha 2-antiplasmin, while plasmin, which is released from digested fibrin, is rapidly and irreversibly neutralized. The fibrinolytic process, thus, seems to be triggered by and confined to fibrin. Thrombus formation may occur as the result of insufficient activation of the fibrinolytic system and (or) the presence of excess inhibitors, while excessive activation and/or deficiency of inhibitors might cause excessive plasmin formation and a bleeding tendency. Evidence obtained in animal models suggests that tissue-type plasminogen activator, obtained by recombinant DNA technology, may constitute a specific clot-selective thrombolytic agent with higher specific activity and fewer side effects than those currently in use.
Collapse
|
46
|
Abstract
Fibrinogen is a thrombin-coagulable glycoprotein occurring in the blood of vertebrates. The primary structure of the alpha, beta, and gamma polypeptide chains of human fibrinogen is known from amino acid and nucleic acid sequencing. The intact molecule has a trinodular, dimeric structure and is functionally bivalent. Thrombin cleaves short peptides from the amino termini of the alpha and beta chains exposing polymerization sites that are responsible for the formation of fibrin fibers and appearance of a clot. The major physiological function of fibrinogen is the formation of fibrin that binds together platelets and some plasma proteins in a hemostatic plug. In pathological situations, the network entraps large numbers of erythrocytes and leukocytes forming a thrombus that may occlude a blood vessel. Fibrinogen and fibrin are multifunctional proteins. Fibrinogen is indispensable for platelet aggregation; it also binds to several plasma proteins, however, the biological function of this interaction is not completely understood. Fibrin is an essential matrix for regulation of fibrinolysis and for facilitation of cell attachment in wound healing.
Collapse
|
47
|
Abstract
Considerable interest in plasminogen activators as human thrombolytic drugs has stimulated rapid biotechnologic progresses. These enzymes have been classified in two immunochemically distinct groups: "urokinase-like" activators or u-PA which do not interact with fibrin and "tissue activator-like" activators or t-PA which interact with fibrin. Plasminogen activators are widely distributed in normal and malignant tissues and they are implicated in various physiological and pathological processes. They maintain the functional integrity of the vascular system and their presence may be of importance in tissue remodeling and cell migration. Urokinase and streptokinase are used in human thrombolytic therapy. However, the properties displayed by t-PA suggest that this enzyme may be a superior fibrinolytic agent. The primary structures of urokinase and t-PA are known; both enzymes have been synthesized by DNA technology. In order to produce t-PA in large quantities by gene cloning, intensive studies are conducted by pharmaceutical industries. Clinical trials using t-PA for dissolving thrombi in coronary heart disease, strokes and pulmonary embolism are in progress. This review presents the molecular and structural properties of plasminogen activators, as well as related physiological, pathological and therapeutic aspects.
Collapse
|
48
|
Bányai L, Patthy L. Proximity of the catalytic region and the kringle 2 domain in the closed conformer of plasminogen. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 832:224-7. [PMID: 4063378 DOI: 10.1016/0167-4838(85)90336-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction of a single intramolecular cross-link with 1,5-difluoro-2,4-dinitrobenzene into Glu-plasminogen freezes the molecule in its closed conformational state (Bányai, L. and Patthy, L. (1984) J. Biol. Chem. 259, 6466-6471). Here we show that the cross-link connects Lys-203 of the kringle 2 domain and Tyr-671 of the catalytic domain, indicating that these regions are in close proximity in the closed conformer of Glu-plasminogen. Comparison of the parameters of the urokinase-catalysed activation of native and cross-linked Glu-plasminogen species indicates that cross-linking of kringle 2 and the catalytic region interferes with the productive binding of urokinase to plasminogen.
Collapse
|
49
|
Plasminogen activation and regulation of pericellular proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 823:35-65. [PMID: 2413894 DOI: 10.1016/0304-419x(85)90014-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Bok RA, Mangel WF. Quantitative characterization of the binding of plasminogen to intact fibrin clots, lysine-sepharose, and fibrin cleaved by plasmin. Biochemistry 1985; 24:3279-86. [PMID: 3161540 DOI: 10.1021/bi00334a031] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The binding of human Glu- and Lys-plasminogens to intact fibrin clots, to lysine-Sepharose, and to fibrin cleaved by plasmin was quantitatively characterized. On intact fibrin clots, there was one strong binding site for Glu-plasminogen with a dissociation constant, Kd, of 25 microM and one strong binding site for Lys-plasminogen with a Kd of 7.9 microM. In both cases, the number of plasminogen binding sites per fibrin monomer was 1. Also, a much weaker binding site for Glu-plasminogen was observed with a Kd of about 350 microM. Limited digestion of fibrin by plasmin created additional binding sites for plasminogen with Kd values similar to the binding of plasminogen to lysine-Sepharose. This was predictable given the observations that plasminogen binds to lysine-Sepharose and can be eluted with epsilon-aminocaproic acid [Deutsch, D.G., & Mertz, E.T. (1970) Science (Washington, D.C.) 170, 1095-1096] and that plasmin preferentially cleaves fibrin at the carboxy side of lysyl residues [Weinstein, M.J., & Doolittle, R.F. (1972) Biochim. Biophys. Acta 258, 577-590], because the structures of the lysyl moiety in lysine-Sepharose and of epsilon-aminocaproic acid are identical with the structure of a COOH-terminal lysyl residue created by plasmin cleavage of fibrin. The Kd for the binding of Glu-plasminogen to lysine-Sepharose was 43 microM and for fibrin partially cleaved by plasmin 48 microM. The Kd for the binding of Lys-plasminogen to lysine-Sepharose was 30 microM. With fibrin partially cleaved by plasmin, there were two types of binding sites for Lys-plasminogen, one with a Kd of 7.6 microM and the other with a Kd of 44 microM.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|