1
|
Martínez H, Santos M, Pedraza L, Testera AM. Advanced Technologies for Large Scale Supply of Marine Drugs. Mar Drugs 2025; 23:69. [PMID: 39997193 PMCID: PMC11857447 DOI: 10.3390/md23020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From a structural point of view and with few exceptions, MNPs of pharmaceutical importance derive from the so-called secondary metabolism of marine organisms. When production strategies rely on marine macroorganisms, harvesting or culturing coupled with extraction procedures frequently remain the only alternative to producing these compounds on an industrial scale. Their supply can often be implemented with laboratory scale cultures for bacterial, fungal, or microalgal sources. However, a diverse approach, combining traditional methods with modern synthetic biology and biosynthesis strategies, must be considered for invertebrate MNPs, as they are usually naturally accumulated in only very small quantities. This review offers a comprehensive examination of various production strategies for MNPs, addressing the challenges related to supply, synthesis, and scalability. It also underscores recent biotechnological advancements that are likely to transform the current industrial-scale manufacturing methods for pharmaceuticals derived from marine sources.
Collapse
Affiliation(s)
- Henar Martínez
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Computational Chemistry Group, Department of Physical Chemistry and Inorganic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain
| | - Mercedes Santos
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Lucía Pedraza
- Department of Organic Chemistry, Science Faculty, University of Valladolid (UVa), Paseo de Belén 7, 47011 Valladolid, Spain;
| | - Ana M. Testera
- Department of Organic Chemistry, School of Engineering (EII), University of Valladolid (UVa), Dr. Mergelina, 47002 Valladolid, Spain; (H.M.); (M.S.)
- G.I.R. Bioforge, University of Valladolid (UVa), CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
2
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
3
|
Valdez BC, Yuan B, Murray D, Ramdial JL, Nieto Y, Popat U, Tang X, Andersson BS. Synergistic cytotoxicity of fludarabine, clofarabine, busulfan, vorinostat and olaparib in AML cells. Front Oncol 2023; 13:1287444. [PMID: 38074694 PMCID: PMC10701888 DOI: 10.3389/fonc.2023.1287444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/08/2023] [Indexed: 02/12/2024] Open
Abstract
Combinations of nucleoside analog(s) and DNA alkylating agent(s) are used for cancer treatment as components of pre-transplant regimens used in hematopoietic stem cell transplantation. Their efficacies are enhanced by combining drugs with different mechanisms of action, which also allows a reduction in the individual drug dosages and thus potentially in toxicity to the patient. We hypothesized that addition of SAHA and olaparib, an HDAC- and a PARP-inhibitor, respectively, to the established combination of fludarabine, clofarabine and busulfan would enhance AML cell cytotoxicity. Exposure of the AML cell lines KBM3/Bu2506, MV4-11, MOLM14 and OCI-AML3 to the 5-drug combination resulted in synergistic cytotoxicity with combination indexes < 1. Increased protein acetylation and decreased poly(ADP-ribosyl)ation were observed, as expected. Activation of apoptosis was suggested by cleavage of Caspase 3 and PARP1, DNA fragmentation, increased reactive oxygen species, and decreased mitochondrial membrane potential. The reduction in poly(ADP-ribosyl)ation was independent of caspase activation. Several proteins involved in DNA damage response and repair were downregulated, which may be contributing factors for the observed synergism. The increased phosphorylation of DNAPKcs suggests inhibition of its kinase activity and diminution of its role in DNA repair. A similar synergism was observed in patient-derived cell samples. These findings will be important in designing clinical trials using these drug combinations as pre-transplant conditioning regimens for AML patients.
Collapse
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bin Yuan
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David Murray
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Leon Ramdial
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yago Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaowen Tang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Suzhou, China
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Schleser SW, Krytovych O, Ziegelmeier T, Groß E, Kasparkova J, Brabec V, Weber T, Schobert R, Mueller T. Palladium and Platinum Complexes of the Antimetabolite Fludarabine with Vastly Enhanced Selectivity for Tumour over Non-Malignant Cells. Molecules 2023; 28:5173. [PMID: 37446835 DOI: 10.3390/molecules28135173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The purine derivative fludarabine is part of frontline therapy for chronic lymphocytic leukaemia (CLL). It has shown positive effects on solid tumours such as melanoma, breast, and colon carcinoma in clinical phase I studies. As the treatment of CLL cells with combinations of fludarabine and metal complexes of antitumoural natural products, e.g., illudin M ferrocene, has led to synergistically enhanced apoptosis, in this research study different complexes of fludarabine itself. Four complexes bearing a trans-[Br(PPh3)2]Pt/Pd fragment attached to atom C-8 via formal η1-sigma or η2-carbene bonds were synthesised in two or three steps without protecting polar groups on the arabinose or adenine. The platinum complexes were more cytotoxic than their palladium analogues, with low single-digit micromolar IC50 values against cells of various solid tumour entities, including cisplatin-resistant ones and certain B-cell lymphoma and CLL, presumably due to the ten-fold higher cellular uptake of the platinum complexes. However, the palladium complexes interacted more readily with isolated Calf thymus DNA. Interestingly, the platinum complexes showed vastly greater selectivity for cancer over non-malignant cells when compared with fludarabine.
Collapse
Affiliation(s)
- Sebastian W Schleser
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Oleksandr Krytovych
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Tim Ziegelmeier
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Elisabeth Groß
- University Clinic for Internal Medicine IV, Hematology/Oncology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Jana Kasparkova
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Viktor Brabec
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Thomas Weber
- University Clinic for Internal Medicine IV, Hematology/Oncology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Thomas Mueller
- University Clinic for Internal Medicine IV, Hematology/Oncology, Medical Faculty, Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle, Germany
| |
Collapse
|
5
|
Marine Natural Products in Clinical Use. Mar Drugs 2022; 20:md20080528. [PMID: 36005531 PMCID: PMC9410185 DOI: 10.3390/md20080528] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
Marine natural products are potent and promising sources of drugs among other natural products of plant, animal, and microbial origin. To date, 20 drugs from marine sources are in clinical use. Most approved marine compounds are antineoplastic, but some are also used for chronic neuropathic pain, for heparin overdosage, as haptens and vaccine carriers, and for omega-3 fatty-acid supplementation in the diet. Marine drugs have diverse structural characteristics and mechanisms of action. A considerable increase in the number of marine drugs approved for clinical use has occurred in the past few decades, which may be attributed to increasing research on marine compounds in laboratories across the world. In the present manuscript, we comprehensively studied all marine drugs that have been successfully used in the clinic. Researchers and clinicians are hopeful to discover many more drugs, as a large number of marine natural compounds are being investigated in preclinical and clinical studies.
Collapse
|
6
|
Tsuji S, Stephens CJ, Bortolussi G, Zhang F, Baj G, Jang H, de Alencastro G, Muro AF, Pekrun K, Kay MA. Fludarabine increases nuclease-free AAV- and CRISPR/Cas9-mediated homologous recombination in mice. Nat Biotechnol 2022; 40:1285-1294. [PMID: 35393561 PMCID: PMC11648996 DOI: 10.1038/s41587-022-01240-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
Homologous recombination (HR)-based gene therapy using adeno-associated viruses (AAV-HR) without nucleases has several advantages over classic gene therapy, especially the potential for permanent transgene expression. However, the low efficiency of AAV-HR remains a major limitation. Here, we tested a series of small-molecule compounds and found that ribonucleotide reductase (RNR) inhibitors substantially enhance AAV-HR efficiency in mouse and human liver cell lines approximately threefold. Short-term administration of the RNR inhibitor fludarabine increased the in vivo efficiency of both non-nuclease- and CRISPR/Cas9-mediated AAV-HR two- to sevenfold in the murine liver, without causing overt toxicity. Fludarabine administration induced transient DNA damage signaling in both proliferating and quiescent hepatocytes. Notably, the majority of AAV-HR events occurred in non-proliferating hepatocytes in both fludarabine-treated and control mice, suggesting that the induction of transient DNA repair signaling in non-dividing hepatocytes was responsible for enhancing AAV-HR efficiency in mice. These results suggest that use of a clinically approved RNR inhibitor can potentiate AAV-HR-based genome-editing therapeutics.
Collapse
Affiliation(s)
- Shinnosuke Tsuji
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Calvin J Stephens
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Feijie Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Gabriele Baj
- Light Microscopy Imaging Center, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Hagoon Jang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Katja Pekrun
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
A Drug Repurposing Screen Identifies Fludarabine Phosphate as a Potential Therapeutic Agent for N-MYC Overexpressing Neuroendocrine Prostate Cancers. Cells 2022; 11:cells11142246. [PMID: 35883689 PMCID: PMC9317991 DOI: 10.3390/cells11142246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/07/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a highly aggressive form of prostate tumors. NEPC results from trans-differentiated castration-resistant prostate cancer (CRPC) with increasing evidence indicating that the incidence of NEPC often results from the adaptive response to androgen deprivation therapy. Recent studies have shown that a subset of NEPC exhibits overexpression of the MYCN oncogene along with the loss of tumor suppressing TP53 and RB1 activities. N-MYC is structurally disordered with no binding pockets available on its surface and so far, no clinically approved drug is available. We adopted a drug-repurposing strategy, screened ~1800 drug molecules, and identified fludarabine phosphate to preferentially inhibit the proliferation of N-MYC overexpressing NEPC cells by inducing reactive oxygen species (ROS). We also show that fludarabine phosphate affects N-MYC protein levels and N-MYC transcriptional targets in NEPC cells. Moreover, enhanced ROS production destabilizes N-MYC protein by inhibiting AKT signaling and is responsible for the reduced survival of NEPC cells and tumors. Our results indicate that increasing ROS production by the administration of fludarabine phosphate may represent an effective treatment option for patients with N-MYC overexpressing NEPC tumors.
Collapse
|
8
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
9
|
Zhao J, Liu Q, Yi D, Li Q, Guo S, Ma L, Zhang Y, Dong D, Guo F, Liu Z, Wei T, Li X, Cen S. 5-Iodotubercidin inhibits SARS-CoV-2 RNA synthesis. Antiviral Res 2022; 198:105254. [PMID: 35101534 PMCID: PMC8800165 DOI: 10.1016/j.antiviral.2022.105254] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a newly emerged infectious disease caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid global emergence of SARS-CoV-2 highlights the importance and urgency for potential drugs to control the pandemic. The functional importance of RNA-dependent RNA polymerase (RdRp) in the viral life cycle, combined with structural conservation and absence of closely related homologs in humans, makes it an attractive target for designing antiviral drugs. Nucleos(t)ide analogs (NAs) are still the most promising broad-spectrum class of viral RdRp inhibitors. In this study, using our previously developed cell-based SARS-CoV-2 RdRp report system, we screened 134 compounds in the Selleckchemicals NAs library. Four candidate compounds, Fludarabine Phosphate, Fludarabine, 6-Thio-20-Deoxyguanosine (6-Thio-dG), and 5-Iodotubercidin, exhibit remarkable potency in inhibiting SARS-CoV-2 RdRp. Among these four compounds, 5-Iodotubercidin exhibited the strongest inhibition upon SARS-CoV-2 RdRp, and was resistant to viral exoribonuclease activity, thus presenting the best antiviral activity against coronavirus from a different genus. Further study showed that the RdRp inhibitory activity of 5-Iodotubercidin is closely related to its capacity to inhibit adenosine kinase (ADK).
Collapse
|
10
|
Nishii R, Mizuno T, Rehling D, Smith C, Clark BL, Zhao X, Brown SA, Smart B, Moriyama T, Yamada Y, Ichinohe T, Onizuka M, Atsuta Y, Yang L, Yang W, Thomas PG, Stenmark P, Kato M, Yang JJ. NUDT15 polymorphism influences the metabolism and therapeutic effects of acyclovir and ganciclovir. Nat Commun 2021; 12:4181. [PMID: 34234136 PMCID: PMC8263746 DOI: 10.1038/s41467-021-24509-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/14/2021] [Indexed: 02/05/2023] Open
Abstract
Nucleobase and nucleoside analogs (NNA) are widely used as anti-viral and anti-cancer agents, and NNA phosphorylation is essential for the activity of this class of drugs. Recently, diphosphatase NUDT15 was linked to thiopurine metabolism with NUDT15 polymorphism associated with drug toxicity in patients. Profiling NNA drugs, we identify acyclovir (ACV) and ganciclovir (GCV) as two new NNAs metabolized by NUDT15. NUDT15 hydrolyzes ACV and GCV triphosphate metabolites, reducing their effects against cytomegalovirus (CMV) in vitro. Loss of NUDT15 potentiates cytotoxicity of ACV and GCV in host cells. In hematopoietic stem cell transplant patients, the risk of CMV viremia following ACV prophylaxis is associated with NUDT15 genotype (P = 0.015). Donor NUDT15 deficiency is linked to graft failure in patients receiving CMV-seropositive stem cells (P = 0.047). In conclusion, NUDT15 is an important metabolizing enzyme for ACV and GCV, and NUDT15 variation contributes to inter-patient variability in their therapeutic effects.
Collapse
Affiliation(s)
- Rina Nishii
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Takanori Mizuno
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Daniel Rehling
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden
| | - Colton Smith
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandi L Clark
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xujie Zhao
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott A Brown
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brandon Smart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Takaya Moriyama
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuji Yamada
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Tatsuo Ichinohe
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | | | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Aichi, Japan
| | - Lei Yang
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Stockholm, Sweden. .,Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Motohiro Kato
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan.
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA. .,Hematological Malignancies Program, Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
11
|
Hirabayashi S, Uozumi R, Kondo T, Arai Y, Kawata T, Uchida N, Marumo A, Ikegame K, Fukuda T, Eto T, Tanaka M, Wake A, Kanda J, Kimura T, Tabuchi K, Ichinohe T, Atsuta Y, Yanada M, Yano S. Personalized prediction of overall survival in patients with AML in non-complete remission undergoing allo-HCT. Cancer Med 2021; 10:4250-4268. [PMID: 34132501 PMCID: PMC8267144 DOI: 10.1002/cam4.3920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Allogenic hematopoietic stem cell transplantation (allo‐HCT) is the standard treatment for acute myeloid leukemia (AML) in non‐complete remission (non‐CR); however, the prognosis is inconsistent. This study aimed to develop and validate nomograms and a web application to predict the overall survival (OS) of patients with non‐CR AML undergoing allo‐HCT (cord blood transplantation [CBT], bone marrow transplantation [BMT], and peripheral blood stem cell transplantation [PBSCT]). Data from 3052 patients were analyzed to construct and validate the prognostic models. The common significant prognostic factors among patients undergoing allo‐HCT were age, performance status, percentage of peripheral blasts, cytogenetic risk, chemotherapy response, and number of transplantations. The conditioning regimen was a significant prognostic factor only in patients undergoing CBT. Compared with cyclophosphamide/total body irradiation, a conditioning regimen of ≥3 drugs, including fludarabine, with CBT exhibited the lowest hazard ratio for mortality (0.384; 95% CI, 0.266–0.554; p < 0.0001). A conditioning regimen of ≥3 drugs with CBT also showed the best leukemia‐free survival among all conditioning regimens. Based on the results of the multivariable analysis, we developed prognostic models showing adequate calibration and discrimination (the c‐indices for CBT, BMT, and PBSCT were 0.648, 0.600, and 0.658, respectively). Our prognostic models can help in assessing individual risks and designing future clinical studies. Furthermore, our study indicates the effectiveness of multi‐drug conditioning regimens in patients undergoing CBT.
Collapse
Affiliation(s)
- Shigeki Hirabayashi
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuji Uozumi
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadakazu Kondo
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuyuki Arai
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, Kyoto, Japan
| | - Takahito Kawata
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Hematology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Naoyuki Uchida
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Atsushi Marumo
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Kazuhiro Ikegame
- Division of Hematology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Masatsugu Tanaka
- Department of Hematology, Kanagawa Cancer Center, Yokohama, Japan
| | - Atsushi Wake
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations, Toranomon Hospital Kajigaya, Kawasaki, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takafumi Kimura
- Preparation Department, Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | - Ken Tabuchi
- Department of Pediatrics, Tokyo Metropolitan Cancer and Infectious Disease Center, Komagome Hospital, Tokyo, Japan.,Tokyo Cancer Registry, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Tokyo, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagoya, Japan.,Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamitsu Yanada
- Department of Hematology and Cell Therapy, Aichi Cancer Center, Nagoya, Japan
| | - Shingo Yano
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Ariav Y, Ch'ng JH, Christofk HR, Ron-Harel N, Erez A. Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. SCIENCE ADVANCES 2021; 7:eabg6165. [PMID: 34138729 PMCID: PMC8133749 DOI: 10.1126/sciadv.abg6165] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/29/2021] [Indexed: 05/11/2023]
Abstract
Virus-infected cells and cancers share metabolic commonalities that stem from their insatiable need to replicate while evading the host immune system. These similarities include hijacking signaling mechanisms that induce metabolic rewiring in the host to up-regulate nucleotide metabolism and, in parallel, suppress the immune response. In both cancer and viral infections, the host immune cells and, specifically, lymphocytes augment nucleotide synthesis to support their own proliferation and effector functions. Consequently, established treatment modalities targeting nucleotide metabolism against cancers and virally infected cells may result in restricted immune response. Encouragingly, following the introduction of immunotherapy against cancers, multiple studies improved our understanding for improving antigen presentation to the immune system. We propose here that understanding the immune consequences of targeting nucleotide metabolism against cancers may be harnessed to optimize therapy against viral infections.
Collapse
Affiliation(s)
- Yarden Ariav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - James H Ch'ng
- Department of Pediatrics, Division of Hematology/Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Noga Ron-Harel
- Department of Biology, Technion, Israel Institute of Technology, Haifa, Israel.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Barreca M, Spanò V, Montalbano A, Cueto M, Díaz Marrero AR, Deniz I, Erdoğan A, Lukić Bilela L, Moulin C, Taffin-de-Givenchy E, Spriano F, Perale G, Mehiri M, Rotter A, P. Thomas O, Barraja P, Gaudêncio SP, Bertoni F. Marine Anticancer Agents: An Overview with a Particular Focus on Their Chemical Classes. Mar Drugs 2020; 18:md18120619. [PMID: 33291602 PMCID: PMC7761941 DOI: 10.3390/md18120619] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
The marine environment is a rich source of biologically active molecules for the treatment of human diseases, especially cancer. The adaptation to unique environmental conditions led marine organisms to evolve different pathways than their terrestrial counterparts, thus producing unique chemicals with a broad diversity and complexity. So far, more than 36,000 compounds have been isolated from marine micro- and macro-organisms including but not limited to fungi, bacteria, microalgae, macroalgae, sponges, corals, mollusks and tunicates, with hundreds of new marine natural products (MNPs) being discovered every year. Marine-based pharmaceuticals have started to impact modern pharmacology and different anti-cancer drugs derived from marine compounds have been approved for clinical use, such as: cytarabine, vidarabine, nelarabine (prodrug of ara-G), fludarabine phosphate (pro-drug of ara-A), trabectedin, eribulin mesylate, brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, plitidepsin, and lurbinectedin. This review focuses on the bioactive molecules derived from the marine environment with anticancer activity, discussing their families, origin, structural features and therapeutic use.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500 Bellinzona, Switzerland;
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), La Laguna, 38206 Tenerife, Spain;
| | - Ana R. Díaz Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), La Laguna, 38200 Tenerife, Spain;
| | - Irem Deniz
- Department of Bioengineering, Faculty of Engineering, Manisa Celal Bayar University, 45119 Manisa, Turkey;
| | - Ayşegül Erdoğan
- Research Center for Testing and Analysis (EGE MATAL), Ege University Application, 35100 İzmir, Turkey;
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Corentin Moulin
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (C.M.); (E.T.-d.-G.); (M.M.)
| | - Elisabeth Taffin-de-Givenchy
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (C.M.); (E.T.-d.-G.); (M.M.)
| | - Filippo Spriano
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500 Bellinzona, Switzerland;
| | - Giuseppe Perale
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland;
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, 1200 Vienna, Austria
| | - Mohamed Mehiri
- Marine Natural Products Team, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, CNRS, 06108 Nice, France; (C.M.); (E.T.-d.-G.); (M.M.)
| | - Ana Rotter
- Marine Biology Station Piran, National Institute of Biology, 1000 Ljubljana, Slovenia;
| | - Olivier P. Thomas
- Marine Biodiscovery Laboratory, School of Chemistry and Ryan Institute, National University of Ireland, Galway (NUI Galway), H91TK33 Galway, Ireland;
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy; (M.B.); (V.S.); (A.M.); (P.B.)
| | - Susana P. Gaudêncio
- UCIBIO—Applied Biomolecular Sciences Unit, Department of Chemistry, Blue Biotechnology & Biomedicine Lab, Faculty of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
- Correspondence: (S.P.G.); (F.B.); Tel.: +351-21-2948300 (S.P.G.); +41-91-8200367 (F.B.)
| | - Francesco Bertoni
- Faculty of Biomedical Sciences, Institute of Oncology Research, USI, 6500 Bellinzona, Switzerland;
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
- Correspondence: (S.P.G.); (F.B.); Tel.: +351-21-2948300 (S.P.G.); +41-91-8200367 (F.B.)
| |
Collapse
|
14
|
Yang S, Luo D, Li N, Li C, Tang S, Huang Z. New Mechanism of Gemcitabine and Its Phosphates: DNA Polymerization Disruption via 3'-5' Exonuclease Inhibition. Biochemistry 2020; 59:4344-4352. [PMID: 33147009 DOI: 10.1021/acs.biochem.0c00543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gemcitabine (dFdC), a modified deoxycytidine (dC) widely used in tumor treatment, is a prodrug that is phosphorylated to generate mono-, di-, and triphosphates. The triphosphate (dFdCTP) is incorporated into DNA to terminate DNA synthesis in cancer. Some incorporated dFdC nucleotides can be partially removed by the 3'-5' exonuclease activity, namely its editing function, and the others escape the editing. However, whether there is an active mechanism for dFdC to escape the editing remains unclear. We have first discovered that unlike dFdC, its mono-, di-, and triphosphates can inhibit the 3'-5' exonuclease of DNA polymerase I, suppress editing, and allow the active escaping mechanism, whereas its polymerase activity is not remarkably affected. As such, these phosphates can prevent the removal of the incorporated dFdC residue, thereby actively blocking DNA extension and synthesis. The inhibition efficiency of these phosphates follows the increased order of the mono-, di-, and triphosphates of gemcitabine (dFdC < dFdCMP < dFdCDP < dFdCTP). In addition, after the deletion of the 3'-5' exonuclease of cellular DNA polymerase I, the Escherichia coli mutant is more sensitive to dFdCTP than is wild-type E. coli. Our new discovery of the ability of these dFdC phosphates to inhibit exonuclease activity suggests a novel anticancer mechanism of gemcitabine and its phosphate derivatives.
Collapse
Affiliation(s)
- Shuzhang Yang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Danyan Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.,Szostak-CDHT Institute for Large Nucleic Acids, Chengdu, Sichuan 610041, P. R. China
| | - Na Li
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Chuncheng Li
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Shuo Tang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P. R. China.,Szostak-CDHT Institute for Large Nucleic Acids, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
15
|
Holzer S, Rzechorzek NJ, Short IR, Jenkyn-Bedford M, Pellegrini L, Kilkenny ML. Structural Basis for Inhibition of Human Primase by Arabinofuranosyl Nucleoside Analogues Fludarabine and Vidarabine. ACS Chem Biol 2019; 14:1904-1912. [PMID: 31479243 PMCID: PMC6757278 DOI: 10.1021/acschembio.9b00367] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022]
Abstract
Nucleoside analogues are widely used in clinical practice as chemotherapy drugs. Arabinose nucleoside derivatives such as fludarabine are effective in the treatment of patients with acute and chronic leukemias and non-Hodgkin's lymphomas. Although nucleoside analogues are generally known to function by inhibiting DNA synthesis in rapidly proliferating cells, the identity of their in vivo targets and mechanism of action are often not known in molecular detail. Here we provide a structural basis for arabinose nucleotide-mediated inhibition of human primase, the DNA-dependent RNA polymerase responsible for initiation of DNA synthesis in DNA replication. Our data suggest ways in which the chemical structure of fludarabine could be modified to improve its specificity and affinity toward primase, possibly leading to less toxic and more effective therapeutic agents.
Collapse
Affiliation(s)
- Sandro Holzer
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Neil J. Rzechorzek
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Isobel R. Short
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Michael Jenkyn-Bedford
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Luca Pellegrini
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Mairi L. Kilkenny
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| |
Collapse
|
16
|
Mirza AZ. Advancement in the development of heterocyclic nucleosides for the treatment of cancer - A review. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:836-857. [PMID: 31135268 DOI: 10.1080/15257770.2019.1615623] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer diseases are widely recognised as an important medical problem and killing millions of people in a year. Chemotherapeutic drugs are successful against cancer in many cases and different compounds, including the analogues of natural substances, may be used for anticancer agents. Nucleoside analogues also have become a necessity for the treatment of cancer diseases. Nucleoside, nucleotide and base analogues have been utilised for decades for the treatment of viral pathogens, neoplasms and in anticancer chemotherapy. This review focuses on the different types of nucleosides and their potential role as anticancer agents. It also discusses the nucleoside analogues approved by FDA and in process of approval. The effect of the substitution on the nucleoside analogues and their pharmacological role is also discussed in the review. Owing to the advances in computational chemistry, it concludes with the future advancement and possible outcome of the nucleoside analogues. Also, it depicts the development of heterocyclic nucleoside analogues, explores the QSAR of the synthesised compounds and discusses the 3 D QSAR pharmacophore modelling in order to examine their potential anti-cancer activities.
Collapse
Affiliation(s)
- Agha Zeeshan Mirza
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University , Makkah , Saudi Arabia.,Research Laboratories Centre, Faculty of Applied Sciences, Umm Al-Qura University , Makkah , Saudi Arabia
| |
Collapse
|
17
|
Misko TA, Liu YT, Harris ME, Oleinick NL, Pink J, Lee HY, Dealwis CG. Structure-guided design of anti-cancer ribonucleotide reductase inhibitors. J Enzyme Inhib Med Chem 2019; 34:438-450. [PMID: 30734609 PMCID: PMC6328008 DOI: 10.1080/14756366.2018.1545226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ribonucleotide reductase (RR) catalyses the rate-limiting step of dNTP synthesis, establishing it as an important cancer target. While RR is traditionally inhibited by nucleoside-based antimetabolites, we recently discovered a naphthyl salicyl acyl hydrazone-based inhibitor (NSAH) that binds reversibly to the catalytic site (C-site). Here we report the synthesis and in vitro evaluation of 13 distinct compounds (TP1-13) with improved binding to hRR over NSAH (TP8), with lower KD’s and more predicted residue interactions. Moreover, TP6 displayed the greatest growth inhibiting effect in the Panc1 pancreatic cancer cell line with an IC50 of 0.393 µM. This represents more than a 2-fold improvement over NSAH, making TP6 the most potent compound against pancreatic cancer emerging from the hydrazone inhibitors. NSAH was optimised by the addition of cyclic and polar groups replacing the naphthyl moiety, which occupies the phosphate-binding pocket in the C-site, establishing a new direction in inhibitor design.
Collapse
Affiliation(s)
- Tessianna A Misko
- a Department of Pharmacology, School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Yi-Ting Liu
- b School of Pharmacy, College of Pharmacy , Taipei Medical University , Taipei , Taiwan
| | - Michael E Harris
- c Department of Chemistry , University of Florida , Gainesville , FL , United States
| | - Nancy L Oleinick
- d Department of Radiation Oncology, School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - John Pink
- e Case Comprehensive Cancer Center, School of Medicine , Case Western Reserve University , Cleveland , OH , USA
| | - Hsueh-Yun Lee
- b School of Pharmacy, College of Pharmacy , Taipei Medical University , Taipei , Taiwan.,f Ph.D Program in Biotechnology Research and Development, College of Pharmacy , Taipei Medical University , Taipei , Taiwan
| | - Chris G Dealwis
- a Department of Pharmacology, School of Medicine , Case Western Reserve University , Cleveland , OH , USA.,g Department of Chemistry, Center for Proteomics , Case Western Reserve University , Cleveland , OH , USA
| |
Collapse
|
18
|
Tsesmetzis N, Paulin CBJ, Rudd SG, Herold N. Nucleobase and Nucleoside Analogues: Resistance and Re-Sensitisation at the Level of Pharmacokinetics, Pharmacodynamics and Metabolism. Cancers (Basel) 2018; 10:cancers10070240. [PMID: 30041457 PMCID: PMC6071274 DOI: 10.3390/cancers10070240] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Antimetabolites, in particular nucleobase and nucleoside analogues, are cytotoxic drugs that, starting from the small field of paediatric oncology, in combination with other chemotherapeutics, have revolutionised clinical oncology and transformed cancer into a curable disease. However, even though combination chemotherapy, together with radiation, surgery and immunotherapy, can nowadays cure almost all types of cancer, we still fail to achieve this for a substantial proportion of patients. The understanding of differences in metabolism, pharmacokinetics, pharmacodynamics, and tumour biology between patients that can be cured and patients that cannot, builds the scientific basis for rational therapy improvements. Here, we summarise current knowledge of how tumour-specific and patient-specific factors can dictate resistance to nucleobase/nucleoside analogues, and which strategies of re-sensitisation exist. We revisit well-established hurdles to treatment efficacy, like the blood-brain barrier and reduced deoxycytidine kinase activity, but will also discuss the role of novel resistance factors, such as SAMHD1. A comprehensive appreciation of the complex mechanisms that underpin the failure of chemotherapy will hopefully inform future strategies of personalised medicine.
Collapse
Affiliation(s)
- Nikolaos Tsesmetzis
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Cynthia B J Paulin
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Sean G Rudd
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden.
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
- Paediatric Oncology, Theme of Children's and Women's Health, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
| |
Collapse
|
19
|
Berdis AJ. Inhibiting DNA Polymerases as a Therapeutic Intervention against Cancer. Front Mol Biosci 2017; 4:78. [PMID: 29201867 PMCID: PMC5696574 DOI: 10.3389/fmolb.2017.00078] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Inhibiting DNA synthesis is an important therapeutic strategy that is widely used to treat a number of hyperproliferative diseases including viral infections, autoimmune disorders, and cancer. This chapter describes two major categories of therapeutic agents used to inhibit DNA synthesis. The first category includes purine and pyrmidine nucleoside analogs that directly inhibit DNA polymerase activity. The second category includes DNA damaging agents including cisplatin and chlorambucil that modify the composition and structure of the nucleic acid substrate to indirectly inhibit DNA synthesis. Special emphasis is placed on describing the molecular mechanisms of these inhibitory effects against chromosomal and mitochondrial DNA polymerases. Discussions are also provided on the mechanisms associated with resistance to these therapeutic agents. A primary focus is toward understanding the roles of specialized DNA polymerases that by-pass DNA lesions produced by DNA damaging agents. Finally, a section is provided that describes emerging areas in developing new therapeutic strategies targeting specialized DNA polymerases.
Collapse
Affiliation(s)
- Anthony J Berdis
- Department of Chemistry, Cleveland State University, Cleveland, OH, United States.,Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Cleveland, OH, United States
| |
Collapse
|
20
|
Caimi PF, Cooper BW, William BM, Dowlati A, Barr PM, Fu P, Pink J, Xu Y, Lazarus HM, de Lima M, Gerson SL. Phase I clinical trial of the base excision repair inhibitor methoxyamine in combination with fludarabine for patients with advanced hematologic malignancies. Oncotarget 2017; 8:79864-79875. [PMID: 29108368 PMCID: PMC5668101 DOI: 10.18632/oncotarget.20094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
PURPOSE We determined the safety, pharmacokinetics, pharmacodynamics and recommended phase II dose of the base excision repair blocker methoxyamine combined with fludarabine. MATERIALS AND METHODS This was a phase I study with intravenous fludarabine (25 mg/m2, days 1-5), and methoxyamine (15 mg/m2-120 mg/m2, once). A maximum of six cycles were given. Adult patients with relapsed/refractory hematologic malignancies, excluding acute myeloid leukemia, were eligible. RESULTS Twenty patients were treated; diagnoses included CLL/SLL (n = 10), follicular lymphoma (n = 3), DLBCL (n = 3), mantle cell lymphoma (n = 1), anaplastic large cell lymphoma (n = 1) and plasma cell myeloma (n = 2). No DLTs were observed and dose escalation reached the maximum planned dose. Hematologic toxicity was frequent; most common grade 3-4 toxicities were lymphopenia (70%), neutropenia (60%), leukopenia (50%) and anemia (40%). Four patients achieved a partial remission and 8 achieved stable disease. The drug combination resulted in increased DNA damage measured with the Comet assay. CONCLUSIONS Methoxyamine combined with fludarabine was safe and well tolerated. Hematologic toxicity was comparable to single agent fludarabine. Activity appears to correlate with increased levels of DNA damage. Further studies will examine use of this combination of as part conditioning regimens of stem cell transplant and use of methoxyamine as fludarabine dose-sparing agent.
Collapse
Affiliation(s)
- Paolo F. Caimi
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Brenda W. Cooper
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Basem M. William
- Division of Hematology. The Ohio State University Medical School, Columbus, Ohio, USA
| | - Afshin Dowlati
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Paul M. Barr
- Division of Hematology and Oncology, Department of Medicine, University of Rochester, Rochester, New York, USA
| | - Pingfu Fu
- Department of Biostatistics, Case Western Reserve University, Cleveland, Ohio, USA
| | - John Pink
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Yan Xu
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Hillard M. Lazarus
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Marcos de Lima
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Stanton L. Gerson
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Division of Hematology and Oncology, Department of Medicine, University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Mannargudi MB, Deb S. Clinical pharmacology and clinical trials of ribonucleotide reductase inhibitors: is it a viable cancer therapy? J Cancer Res Clin Oncol 2017; 143:1499-1529. [PMID: 28624910 DOI: 10.1007/s00432-017-2457-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/09/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Ribonucleotide reductase (RR) enzymes (RR1 and RR2) play an important role in the reduction of ribonucleotides to deoxyribonucleotides which is involved in DNA replication and repair. Augmented RR activity has been ascribed to uncontrolled cell growth and tumorigenic transformation. METHODS This review mainly focuses on several biological and chemical RR inhibitors (e.g., siRNA, GTI-2040, GTI-2501, triapine, gemcitabine, and clofarabine) that have been evaluated in clinical trials with promising anticancer activity from 1960's till 2016. A summary on whether their monotherapy or combination is still effective for further use is discussed. RESULTS Among the RR2 inhibitors evaluated, GTI-2040, siRNA, gallium nitrate and didox were more efficacious as a monotherapy, whereas triapine was found to be more efficacious as combination agent. Hydroxyurea is currently used more in combination therapy, even though it is efficacious as a monotherapy. Gallium nitrate showed mixed results in combination therapy, while the combination activity of didox is yet to be evaluated. RR1 inhibitors that have long been used in chemotherapy such as gemcitabine, cladribine, fludarabine and clofarabine are currently used mostly as a combination therapy, but are equally efficacious as a monotherapy, except tezacitabine which did not progress beyond phase I trials. CONCLUSIONS Based on the results of clinical trials, we conclude that RR inhibitors are viable treatment options, either as a monotherapy or as a combination in cancer chemotherapy. With the recent advances made in cancer biology, further development of RR inhibitors with improved efficacy and reduced toxicity is possible for treatment of variety of cancers.
Collapse
Affiliation(s)
- Mukundan Baskar Mannargudi
- Clinical Pharmacology Program, Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Subrata Deb
- Department of Biopharmaceutical Sciences, Roosevelt University College of Pharmacy, 1400 N. Roosevelt Blvd., Schaumburg, IL, 60173, USA.
| |
Collapse
|
22
|
9-(2'-Deoxy-2'-Fluoro-β-d-Arabinofuranosyl) Adenine Is a Potent Antitrypanosomal Adenosine Analogue That Circumvents Transport-Related Drug Resistance. Antimicrob Agents Chemother 2017; 61:AAC.02719-16. [PMID: 28373184 PMCID: PMC5444181 DOI: 10.1128/aac.02719-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/27/2017] [Indexed: 01/25/2023] Open
Abstract
Current chemotherapy against African sleeping sickness, a disease caused by the protozoan parasite Trypanosoma brucei, is limited by toxicity, inefficacy, and drug resistance. Nucleoside analogues have been successfully used to cure T. brucei-infected mice, but they have the limitation of mainly being taken up by the P2 nucleoside transporter, which, when mutated, is a common cause of multidrug resistance in T. brucei We report here that adenine arabinoside (Ara-A) and the newly tested drug 9-(2'-deoxy-2'-fluoro-β-d-arabinofuranosyl) adenine (FANA-A) are instead taken up by the P1 nucleoside transporter, which is not associated with drug resistance. Like Ara-A, FANA-A was found to be resistant to cleavage by methylthioadenosine phosphorylase, an enzyme that protects T. brucei against the antitrypanosomal effects of deoxyadenosine. Another important factor behind the selectivity of nucleoside analogues is how well they are phosphorylated within the cell. We found that the T. brucei adenosine kinase had a higher catalytic efficiency with FANA-A than the mammalian enzyme, and T. brucei cells treated with FANA-A accumulated high levels of FANA-A triphosphate, which even surpassed the level of ATP and led to cell cycle arrest, inhibition of DNA synthesis, and the accumulation of DNA breaks. FANA-A inhibited nucleic acid biosynthesis and parasite proliferation with 50% effective concentrations (EC50s) in the low nanomolar range, whereas mammalian cell proliferation was inhibited in the micromolar range. Both Ara-A and FANA-A, in combination with deoxycoformycin, cured T. brucei-infected mice, but FANA-A did so at a dose 100 times lower than that of Ara-A.
Collapse
|
23
|
Gorzkiewicz M, Klajnert-Maculewicz B. Dendrimers as nanocarriers for nucleoside analogues. Eur J Pharm Biopharm 2017; 114:43-56. [DOI: 10.1016/j.ejpb.2016.12.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/02/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
|
24
|
Determination and quantification of intracellular fludarabine triphosphate, cladribine triphosphate and clofarabine triphosphate by LC-MS/MS in human cancer cells. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1053:101-110. [PMID: 28415014 DOI: 10.1016/j.jchromb.2017.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/02/2017] [Accepted: 03/22/2017] [Indexed: 11/21/2022]
Abstract
Purine nucleoside analogues are widely used in the treatment of haematological malignancies, and their biological activity is dependent on the intracellular accumulation of their triphosphorylated metabolites. In this context, we developed and validated a liquid chromatography tandem mass spectrometry (LC-MS/MS) method to study the formation of 5'-triphosphorylated derivatives of cladribine, fludarabine, clofarabine and 2'-deoxyadenosine in human cancer cells. Br-ATP was used as internal standard. Separation was achieved on a hypercarb column. Analytes were eluted with a mixture of hexylamine (5 mM), DEA (0.4%, v/v, pH 10.5) and acetonitrile, in a gradient mode at a flow rate of 0.3mLmin-1. Multiple reactions monitoring (MRM) and electrospray ionization in negative mode (ESI-) were used for detection. The application of this method to the quantification of these phosphorylated cytotoxic compounds in a human follicular lymphoma cell line, showed that it was suitable for the study of relevant biological samples.
Collapse
|
25
|
Resistance to the nucleotide analogue cidofovir in HPV(+) cells: a multifactorial process involving UMP/CMP kinase 1. Oncotarget 2016; 7:10386-401. [PMID: 26824416 PMCID: PMC4891127 DOI: 10.18632/oncotarget.7006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(−) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process.
Collapse
|
26
|
Zimmermann M, Wang SS, Zhang H, Lin TY, Malfatti M, Haack K, Ognibene T, Yang H, Airhart S, Turteltaub KW, Cimino GD, Tepper CG, Drakaki A, Chamie K, de Vere White R, Pan CX, Henderson PT. Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice. Mol Cancer Ther 2016; 16:376-387. [PMID: 27903751 DOI: 10.1158/1535-7163.mct-16-0381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/05/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022]
Abstract
We report progress on predicting tumor response to platinum-based chemotherapy with a novel mass spectrometry approach. Fourteen bladder cancer patients were administered one diagnostic microdose each of [14C]carboplatin (1% of the therapeutic dose). Carboplatin-DNA adducts were quantified by accelerator mass spectrometry in blood and tumor samples collected within 24 hours, and compared with subsequent chemotherapy response. Patients with the highest adduct levels were responders, but not all responders had high adduct levels. Four patient-derived bladder cancer xenograft mouse models were used to test the possibility that another drug in the regimen could cause a response. The mice were dosed with [14C]carboplatin or [14C]gemcitabine and the resulting drug-DNA adduct levels were compared with tumor response to chemotherapy. At least one of the drugs had to induce high drug-DNA adduct levels or create a synergistic increase in overall adducts to prompt a corresponding therapeutic response, demonstrating proof-of-principle for drug-DNA adducts as predictive biomarkers. Mol Cancer Ther; 16(2); 376-87. ©2016 AACR.
Collapse
Affiliation(s)
- Maike Zimmermann
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California.,Accelerated Medical Diagnostics Incorporated, Berkeley, California
| | - Si-Si Wang
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Hongyong Zhang
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | - Tzu-Yin Lin
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California
| | | | - Kurt Haack
- Lawrence Livermore National Laboratory, Livermore, California
| | - Ted Ognibene
- Lawrence Livermore National Laboratory, Livermore, California
| | | | | | | | - George D Cimino
- Accelerated Medical Diagnostics Incorporated, Berkeley, California
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, California
| | - Alexandra Drakaki
- Division of Hematology and Oncology, UCLA Medical Center, Los Angeles, California
| | - Karim Chamie
- Department of Urology, UCLA Medical Center, Los Angeles, California
| | - Ralph de Vere White
- Department of Urology, University of California Davis, Sacramento, California
| | - Chong-Xian Pan
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California. .,Department of Urology, University of California Davis, Sacramento, California.,VA Northern California Health Care System, Mather, California
| | - Paul T Henderson
- Department of Internal Medicine, Division of Hematology and Oncology and UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, California. .,Accelerated Medical Diagnostics Incorporated, Berkeley, California
| |
Collapse
|
27
|
Rebolleda N, Losada-Fernandez I, Perez-Chacon G, Castejon R, Rosado S, Morado M, Vallejo-Cremades MT, Martinez A, Vargas-Nuñez JA, Perez-Aciego P. Synergistic Activity of Deguelin and Fludarabine in Cells from Chronic Lymphocytic Leukemia Patients and in the New Zealand Black Murine Model. PLoS One 2016; 11:e0154159. [PMID: 27101369 PMCID: PMC4839760 DOI: 10.1371/journal.pone.0154159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/08/2016] [Indexed: 12/02/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) remains an incurable disease, and despite the improvement achieved by therapeutic regimes developed over the last years still a subset of patients face a rather poor prognosis and will eventually relapse and become refractory to therapy. The natural rotenoid deguelin has been shown to induce apoptosis in several cancer cells and cell lines, including primary human CLL cells, and to act as a chemopreventive agent in animal models of induced carcinogenesis. In this work, we show that deguelin induces apoptosis in vitro in primary human CLL cells and in CLL-like cells from the New Zealand Black (NZB) mouse strain. In both of them, deguelin dowregulates AKT, NFκB and several downstream antiapoptotic proteins (XIAP, cIAP, BCL2, BCL-XL and survivin), activating the mitochondrial pathway of apoptosis. Moreover, deguelin inhibits stromal cell-mediated c-Myc upregulation and resistance to fludarabine, increasing fludarabine induced DNA damage. We further show that deguelin has activity in vivo against NZB CLL-like cells in an experimental model of CLL in young NZB mice transplanted with spleen cells from aged NZB mice with lymphoproliferation. Moreover, the combination of deguelin and fludarabine in this model prolonged the survival of transplanted mice at doses of both compounds that were ineffective when administered individually. These results suggest deguelin could have potential for the treatment of human CLL.
Collapse
MESH Headings
- Age Factors
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/metabolism
- Cells, Cultured
- Drug Synergism
- Female
- Humans
- Immunoblotting
- Immunohistochemistry
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Mice, Inbred NZB
- NF-kappa B/metabolism
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Rotenone/administration & dosage
- Rotenone/analogs & derivatives
- Rotenone/pharmacology
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Vidarabine/administration & dosage
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
Collapse
Affiliation(s)
| | | | - Gema Perez-Chacon
- Instituto de Investigaciones Biomedicas “Alberto Sols”, CSIC-UAM, Madrid, Spain
| | - Raquel Castejon
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, Universidad Autonoma de Madrid, Madrid, Spain
| | - Silvia Rosado
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marta Morado
- Servicio de Hematologia y Hemoterapia, Hospital Universitario La Paz, Madrid, Spain
| | | | | | - Juan A. Vargas-Nuñez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, IDIPHIM, Universidad Autonoma de Madrid, Madrid, Spain
| | | |
Collapse
|
28
|
Ahmad MF, Huff SE, Pink J, Alam I, Zhang A, Perry K, Harris ME, Misko T, Porwal SK, Oleinick NL, Miyagi M, Viswanathan R, Dealwis CG. Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators. J Med Chem 2015; 58:9498-509. [PMID: 26488902 DOI: 10.1021/acs.jmedchem.5b00929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.
Collapse
Affiliation(s)
- Md Faiz Ahmad
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Sarah E Huff
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - John Pink
- Case Comprehensive Cancer Center, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Intekhab Alam
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Andrew Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Kay Perry
- Northeastern-CAT at the Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Michael E Harris
- Department of Biochemistry, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Tessianna Misko
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Suheel K Porwal
- Department of Chemistry, Dehradun Institute of Technology, University of Deharadun , Dehradun 248197, India
| | - Nancy L Oleinick
- Case Comprehensive Cancer Center, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Department of Radiation Oncology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Masaru Miyagi
- Center for Proteomics and Bioinformatics, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Rajesh Viswanathan
- Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Chris Godfrey Dealwis
- Department of Pharmacology, School of Medicine, Case Western Reserve University , Cleveland, Ohio 44106, United States.,Center for Proteomics and the Department of Chemistry, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
29
|
Christopherson RI, Mactier S, Almazi JG, Kohnke PL, Best OG, Mulligan SP. Mechanisms of action of fludarabine nucleoside against human Raji lymphoma cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 33:375-83. [PMID: 24940695 DOI: 10.1080/15257770.2013.863334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fludarabine (2-FaraAMP) is a purine analog that is effective against chronic lymphocytic leukemia (CLL) and non-Hodgkins lymphoma (NHL). For some cases of CLL, 2-FaraAMP as a single agent can clear the blood of leukemia cells, but leukemia stem cells usually remain protected in sanctuary sites. It is clear that 2-FaraAMP has multiple mechanisms of action that may collectively result in strand breaks in DNA, accumulation of phosphorylated p53 and apoptosis. We have demonstrated using the human Burkitt's lymphoma B-cell line, Raji, that p53, p63 and p73 all accumulate in the nucleus, following treatment of cells with fludarabine nucleoside (2-FaraA). In addition, phosphorylated p53 accumulates in the cytosol and at mitochondria. Using sophisticated methods of proteomic analysis with mass spectrometry, proteins that become differentially abundant after treatment of cells with 2-FaraA have been identified, providing considerable additional information about the cellular responses of B-lymphoid cancers to this purine analog. The levels of proteins involved in the unfolded protein response increase, indicating that endoplasmic reticulum stress is likely to be one mechanism for induction of apoptosis. The levels of a number of proteins found on the outer plasma membrane change on cells treated with 2-FaraA, suggesting that signaling from the B-cell antigen receptor (BCR) is stimulated, resulting in induction of apoptosis through the intrinsic pathway. Increased levels of the cell surface proteins, CD50, CD100 and ECE-1, would promote survival of these cells; the balance between these survival and death responses would determine the fate of the cell.
Collapse
|
30
|
Evaluation of bendamustine in combination with fludarabine in primary chronic lymphocytic leukemia cells. Blood 2014; 123:3780-9. [PMID: 24747434 DOI: 10.1182/blood-2013-12-541433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fludarabine and cyclophosphamide couplet has become the backbone of the chronic lymphocytic leukemia (CLL) standard of care. Although this is an effective treatment, it results in untoward toxicity. Bendamustine is a newly approved and better-tolerated alkylating agent. We hypothesized that similar to cyclophosphamide, bendamustine-induced DNA damage will be inhibited by fludarabine, resulting in increased cytotoxicity. To test this hypothesis and the role of the stromal microenvironment in this process, we treated CLL lymphocytes in vitro with each drug alone and in combination. Simultaneous or prior addition of fludarabine to bendamustine resulted in maximum cytotoxicity assayed by 3,3'-dihexyloxacarbocyanine iodine negativity, annexin positivity, and poly (adenosine 5'-diphosphate-ribose) polymerase cleavage. Cytotoxicity elicited by combination of both agents was similar in these malignant B cells cultured either in suspension or on marrow stroma cells. Cell death was associated with DNA damage response, which was determined by phosphorylation of H2AX and unscheduled DNA synthesis. H2AX activation was maximum with the drug combination, and unscheduled DNA synthesis induced by bendamustine was blocked by fludarabine. In parallel, ATM, Chk2, and p53 were phosphorylated and PUMA was induced. Cell death was caspase independent; however, caspases did decrease levels of Mcl-1 survival protein. These data provide a rationale for combining fludarabine with bendamustine for patients with CLL.
Collapse
|
31
|
The many isoforms of human adenylate kinases. Int J Biochem Cell Biol 2014; 49:75-83. [PMID: 24495878 DOI: 10.1016/j.biocel.2014.01.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 02/05/2023]
Abstract
Adenine nucleotides are involved in a variety of cellular metabolic processes, including nucleic acid synthesis and repair, formation of coenzymes, energy transfer, cell and ciliary motility, hormone secretion, gene expression regulation and ion-channel control. Adenylate kinases are abundant phosphotransferases that catalyze the interconversion of adenine nucleotides and thus regulate the adenine nucleotide ratios in different intracellular compartments. Nine different adenylate kinase isoenzymes have been identified and characterized so far in human tissues, named AK1 to AK9 according to their order of discovery. Adenylate kinases differ in molecular weight, tissue distribution, subcellular localization, substrate and phosphate donor specificity and kinetic properties. The preferred substrate and phosphate donor of all adenylate kinases are AMP and ATP respectively, but some members of the family can phosphorylate other substrates and use other phosphate donors. In addition to their nucleoside monophosphate kinase activity, adenylate kinases were found to possess nucleoside diphosphate kinase activity as they are able to phosphorylate both ribonucleoside and deoxyribonucleoside diphosphates to their corresponding triphosphates. Nucleoside analogues are structural analogues of natural nucleosides, used in the treatment of cancer and viral infections. They are inactive prodrugs that are dependent on intracellular phosphorylation to their pharmacologically active triphosphate form. Novel data presented in this review confirm the role of adenylate kinases in the activation of deoxyadenosine and deoxycytidine nucleoside analogues.
Collapse
|
32
|
Paulus A, Masood A, Miller KC, Khan ANMNH, Akhtar D, Advani P, Foran J, Rivera C, Roy V, Colon-Otero G, Chitta K, Chanan-Khan A. The investigational agent MLN2238 induces apoptosis and is cytotoxic to CLL cells in vitro, as a single agent and in combination with other drugs. Br J Haematol 2014; 165:78-88. [PMID: 24467634 DOI: 10.1111/bjh.12731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/13/2013] [Indexed: 12/21/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in the U.S. The course of the disease has been shown to be negatively impacted by increased levels of BCL2. Strategies to downregulate BCL2 and shift the balance towards cellular demise are actively being explored. Therefore, we examined whether the investigational agent MLN2238 could inhibit the proteasomal machinery and induce CLL cell death while also downregulating BCL2. MLN2238-induced cell death was studied in peripheral blood mononuclear cells from 28 CLL patients. MLN2238 produced a dose-dependent reduction in BCL2 and CLL cell viability with maximum cell death observed at a 50 nmol/l concentration by 48 h. Annexin-V staining, PARP1 and caspase-3 cleavage along with an increase in mitochondrial membrane permeability were noted after cells were treated with MLN2238; however, apoptosis was only partially blocked by the pan-caspase inhibitor z-VAD.fmk. Furthermore, we observed enhanced anti-CLL effects in tumour cells treated with either a combination of MLN2238 and the BH3 mimetic AT-101 or MLN2238 and fludarabine. Together, our data suggest the potential for proteasome inhibitor based therapy in CLL and the rationale design of drug combination strategies based on CLL biology.
Collapse
Affiliation(s)
- Aneel Paulus
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA; Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Golden J, Motea E, Zhang X, Choi JS, Feng Y, Xu Y, Lee I, Berdis AJ. Development and characterization of a non-natural nucleoside that displays anticancer activity against solid tumors. ACS Chem Biol 2013; 8:2452-65. [PMID: 23992753 DOI: 10.1021/cb400350h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nucleoside analogs are an important class of anticancer agent that historically show better efficacy against hematological cancers versus solid tumors. This report describes the development and characterization of a new class of nucleoside analog that displays anticancer effects against both hematological and adherent cancer cell lines. These new analogs lack canonical hydrogen-bonding groups yet are effective nucleotide substrates for several high-fidelity DNA polymerases. Permutations in the position of the non-hydrogen-bonding functional group greatly influence the kinetic behavior of these nucleosides. One particular analog designated 4-nitroindolyl-2'-deoxynucleoside triphosphate (4-NITP) is unique as it is incorporated opposite C and T with high catalytic efficiencies. In addition, this analog functions as a nonobligate chain terminator of DNA synthesis, since it is poorly elongated. Consistent with this mechanism, the corresponding nucleoside, 4-nitroindolyl-2'-deoxynucleoside (4-NIdR), produces antiproliferative effects against leukemia cells. 4-NIdR also produces cytostatic and cytotoxic effects against several adherent cancer cell lines, especially those that are deficient in mismatch repair and p53. Cell death in this case appears to occur via mitotic catastrophe, a specialized form of apoptosis. Mass spectroscopy experiments performed on nucleic acid isolated from cells treated with 4-NIdR validate that the non-natural nucleoside is stably incorporated into DNA. Xenograft mouse studies demonstrate that administration of 4-NIdR delays tumor growth without producing adverse side effects such as anemia and thrombocytopenia. Collectively, the results of in vitro, cell-based, and animal studies provide evidence for the development of a novel nucleoside analog that shows enhanced effectiveness against solid tumors.
Collapse
Affiliation(s)
- Jackelyn Golden
- Departments of Pharmacology and ‡Chemistry, Case Western Reserve University , 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ahmad MF, Dealwis CG. The structural basis for the allosteric regulation of ribonucleotide reductase. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:389-410. [PMID: 23663976 PMCID: PMC4059395 DOI: 10.1016/b978-0-12-386931-9.00014-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ribonucleotide reductases (RRs) catalyze a crucial step of de novo DNA synthesis by converting ribonucleoside diphosphates to deoxyribonucleoside diphosphates. Tight control of the dNTP pool is essential for cellular homeostasis. The activity of the enzyme is tightly regulated at the S-phase by allosteric regulation. Recent structural studies by our group and others provided the molecular basis for understanding how RR recognizes substrates, how it interacts with chemotherapeutic agents, and how it is regulated by its allosteric regulators ATP and dATP. This review discusses the molecular basis of allosteric regulation and substrate recognition of RR, and particularly the discovery that subunit oligomerization is an important prerequisite step in enzyme inhibition.
Collapse
Affiliation(s)
- Md Faiz Ahmad
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
35
|
Ahmad MF, Wan Q, Jha S, Motea E, Berdis A, Dealwis C. Evaluating the therapeutic potential of a non-natural nucleotide that inhibits human ribonucleotide reductase. Mol Cancer Ther 2012; 11:2077-86. [PMID: 22933704 DOI: 10.1158/1535-7163.mct-12-0199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human ribonucleotide reductase (hRR) is the key enzyme involved in de novo dNTP synthesis and thus represents an important therapeutic target against hyperproliferative diseases, most notably cancer. The purpose of this study was to evaluate the ability of non-natural indolyl-2'-deoxynucleoside triphosphates to inhibit the activity of hRR. The structural similarities of these analogues with dATP predicted that they would inhibit hRR activity by binding to its allosteric sites. In silico analysis and in vitro characterization identified one particular analogue designated as 5-nitro-indolyl-2'-deoxyribose triphosphate (5-NITP) that inhibits hRR. 5-NITP binding to hRR was determined by isothermal titration calorimetry. X-ray crystal structure of 5-NITP bound to RR1 was determined. Cell-based studies showed the anti-cancer effects of the corresponding non-natural nucleoside against leukemia cells. 5-NITP binds to hRR with micromolar affinity. Binding does not induce hexamerization of hRR1 like dATP, the native allosteric inhibitor of hRR that binds with high affinity to the A-site. The X-ray crystal structure of Saccharomyces cerevisiae RR1-5-NITP (ScRR1-5-NITP) complex determined to 2.3 Å resolution shows that 5-NITP does not bind to the A-site but rather at the S-site. Regardless, 5-nitro-indolyl-2'-deoxynucleoside (5-NIdR) produces cytostatic and cytotoxic effects against human leukemia cells by altering cell-cycle progression. Our studies provide useful insights toward developing new inhibitors with improved potency and efficacy against hRR.
Collapse
Affiliation(s)
- Md Faiz Ahmad
- Corresponding Author: Chris Dealwis, Case Western Reserve University, 10900 Euclid Avenue, Wood Building, W303, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
36
|
Casorelli I, Bossa C, Bignami M. DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy-related leukemias. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2636-57. [PMID: 23066388 PMCID: PMC3447578 DOI: 10.3390/ijerph9082636] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/12/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022]
Abstract
Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers.
Collapse
Affiliation(s)
- Ida Casorelli
- Azienda Ospedaliera Sant’Andrea, Via di Grottarossa 1035-1039, Roma 00189, Italy;
| | - Cecilia Bossa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
- Author to whom correspondence should be addressed; ; Tel.: +39-6-49901-2355; Fax: +39-6-49901-3650
| |
Collapse
|
37
|
Motea EA, Lee I, Berdis AJ. A non-natural nucleoside with combined therapeutic and diagnostic activities against leukemia. ACS Chem Biol 2012; 7:988-98. [PMID: 22390204 DOI: 10.1021/cb300038f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of childhood cancer, presenting with approximately 5,000 new cases each year in the United States. An interesting enzyme implicated in this disease is terminal deoxynucleotidyl transferase (TdT), a specialized DNA polymerase involved in V(D)J recombination. TdT is an excellent biomarker for ALL as it is overexpressed in ~90% of ALL patients, and these higher levels correlate with a poor prognosis. These collective features make TdT an attractive target to design new selective anti-cancer agents against ALL. In this report, we evaluate the anti-leukemia activities of two non-natural nucleotides designated 5-nitroindolyl-2'-deoxynucleoside triphosphate (5-NITP) and 3-ethynyl-5-nitroindolyl-2'-deoxynucleoside triphosphate (3-Eth-5-NITP). Using purified TdT, we demonstrate that both non-natural nucleotides are efficiently utilized as TdT substrates. However, 3-Eth-5-NITP is poorly elongated, and this observation validates its activity as a chain-terminator for blunt-end DNA synthesis. Cell-based experiments validate that the corresponding non-natural nucleoside produces robust cytostatic and cytotoxic effects against leukemia cells that overexpress TdT. The strategic placement of the ethynyl moiety allows the incorporated nucleoside triphosphate to be selectively tagged with an azide-containing fluorophore via "click" chemistry. This reaction allows the extent of nucleotide incorporation to be quantified such that the anti-cancer effects of the corresponding non-natural nucleoside can be self-assessed. The applications of this novel nucleoside are discussed, focusing on its use as a "theranostic" agent that can improve the accuracy of dosing regimens and accelerate clinical decisions regarding therapeutic intervention.
Collapse
Affiliation(s)
- Edward A. Motea
- Departments of †Chemistry and ‡Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Irene Lee
- Departments of †Chemistry and ‡Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Anthony J. Berdis
- Departments of †Chemistry and ‡Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
38
|
Henrich S, Mactier S, Best G, Mulligan SP, Crossett B, Christopherson RI. Fludarabine nucleoside modulates nuclear "survival and death" proteins in resistant chronic lymphocytic leukemia cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 30:1181-9. [PMID: 22132973 DOI: 10.1080/15257770.2011.603716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The nuclear mechanisms by which fludarabine nucleoside (F-ara-A) induces apoptosis have been investigated in human MEC1 cells derived from B-cell chronic lymphocytic leukemia. Upon treatment of cells with F-ara-A (100 μM, 72 hours), 15 nuclear proteins changed in abundance by more than 2-fold. Nuclear proteins up-regulated included calmodulin (4.3-fold), prohibitin (3.9-fold), β-actin variant (3.7-fold), and structure-specific recognition protein 1 (3.7-fold); those down-regulated included 60S ribosomal protein P2B (0.12-fold), fumarate hydratase (0.19-fold), splicing factor arginine/serine-rich 3 (0.35-fold), and replication protein A2 (0.42-fold). These changes in the levels of specific proteins promote survival or apoptosis; because the end result is apoptosis of MEC1 cells, apoptotic effects predominate.
Collapse
Affiliation(s)
- Silke Henrich
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Nitsche M, Christiansen H, Lederer K, Griesinger F, Schmidberger H, Pradier O. Fludarabine combined with radiotherapy in patients with locally advanced NSCLC lung carcinoma: a phase I study. J Cancer Res Clin Oncol 2012; 138:1113-20. [PMID: 22402597 PMCID: PMC3605492 DOI: 10.1007/s00432-012-1185-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 02/24/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND PURPOSE Fludarabine is an adenine nucleoside analogue that has significant activity in hematological malignancies and has shown promising activity in combination with radiation in preclinical solid tumor models. We designed a phase I trial exploring concurrent fludarabine and radiotherapy in patients with advanced non-small cell lung cancer (NSCLC) to determine the maximum tolerated dose (MTD) of fludarabine given with concurrent irradiation. MATERIALS AND METHODS Thirteen patients with stage IIIB NSCLC received thoracic irradiation of 60 Gy. Fludarabine was administered during the 5th and 6th week of radiotherapy. Doses started at 10 mg/m(2) per day and increased by steps of 3 mg/m(2) per day. RESULTS At a daily dose of 16 mg/m(2), one out of six patients developed a grade 4 leukopenia, and one a grad 3 pneumonitis. Further grade III toxicity was not observed. The dose of 13 mg/m(2) was identified as the MTD. All patients developed a fludarabine dose-dependent lymphocytopenia. CONCLUSION Fludarabine can be safely administered concurrently with radiation at a daily dose of 13 mg/m(2) during the final 2 weeks of radiotherapy. Further prospective clinical studies are required to establish the potential role of concurrent fludarabine and radiotherapy in the treatment of locally advanced inoperable NSCLC.
Collapse
Affiliation(s)
- Mirko Nitsche
- Center of Radiation-Oncology, Gröpelinger Heerstr. 406-408, 28239 Bremen, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Targeting the Large Subunit of Human Ribonucleotide Reductase for Cancer Chemotherapy. Pharmaceuticals (Basel) 2011; 4:1328-1354. [PMID: 23115527 PMCID: PMC3483043 DOI: 10.3390/ph4101328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ribonucleotide reductase (RR) is a crucial enzyme in de novo DNA synthesis, where it catalyses the rate determining step of dNTP synthesis. RRs consist of a large subunit called RR1 (α), that contains two allosteric sites and one catalytic site, and a small subunit called RR2 (β), which houses a tyrosyl free radical essential for initiating catalysis. The active form of mammalian RR is an αnβm hetero oligomer. RR inhibitors are cytotoxic to proliferating cancer cells. In this brief review we will discuss the three classes of RR, the catalytic mechanism of RR, the regulation of the dNTP pool, the substrate selection, the allosteric activation, inactivation by ATP and dATP, and the nucleoside drugs that target RR. We will also discuss possible strategies for developing a new class of drugs that disrupts the RR assembly.
Collapse
|
41
|
Synergistic effects of combination with fludarabine and carboplatin depend on fludarabine-mediated inhibition of enhanced nucleotide excision repair in leukemia. Int J Hematol 2011; 94:378-389. [PMID: 21948264 DOI: 10.1007/s12185-011-0930-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Overcoming drug resistance remains a major obstacle to curing relapsed or refractory lymphoma and obtaining a beneficial long-term prognosis for patients, despite the introduction of several salvage regimens to date. Our ultimate purpose is to establish a standard second-line salvage chemotherapy regimen for curing relapsed/refractory lymphoma. In this basic pre-clinical study, we evaluated a combination regimen consisting of 9-β-D: -arabinofuranosyl-2-fluoroadenine (F-araA) and carboplatin that targeted nucleotide excision repair (NER) of DNA in five representative leukemia lineages in vitro. Isobologram analysis demonstrated that simultaneous exposure to these two drugs produced synergistic interactions in U937 and K562 cells, in which lines showed enhanced NER activity by the measurement of UV or drug-induced DNA strand break (comet assay), or quantitation of ERCC1 mRNA (RT-PCR), a key enzyme for NER. Histone γH2AX formation was synergistically induced, but no such formation was observed after exposure to either agent alone in K562 cells. In summary, we synergistically inhibited the NER activity of leukemia cells by treating them with a combination of F-araA and carboplatin, suggesting that this combinatory regimen could be used as a novel salvage therapy for refractory or drug-resistant lymphoma.
Collapse
|
42
|
Zecevic A, Sampath D, Ewald B, Chen R, Wierda W, Plunkett W. Killing of chronic lymphocytic leukemia by the combination of fludarabine and oxaliplatin is dependent on the activity of XPF endonuclease. Clin Cancer Res 2011; 17:4731-41. [PMID: 21632856 DOI: 10.1158/1078-0432.ccr-10-2561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) resistant to fludarabine-containing treatments responds to oxaliplatin-based therapy that contains fludarabine. We postulated that a mechanism for this activity is the incorporation of fludarabine into DNA during nucleotide excision repair (NER) stimulated by oxaliplatin adducts. EXPERIMENTAL DESIGN We analyzed CLL cell viability, DNA damage, and signaling pathways in response to treatment by fludarabine, oxaliplatin, or the combination. The dependency of the combination on oxaliplatin-induced DNA repair was investigated using siRNA in CLL cells or cell line models of NER deficiency. RESULTS Synergistic apoptotic killing was observed in CLL cells after exposure to the combination in vitro. Oxaliplatin induced DNA synthesis in CLL cells, which was inhibited by fludarabine and was eliminated by knockdown of XPF, the NER 5'-endonuclease. Wild-type Chinese hamster ovarian cells showed synergistic killing after combination treatment, whereas only additive killing was observed in cells lacking XPF. Inhibition of repair by fludarabine in CLL cells was accompanied by DNA single-strand break formation. CLL cells initiated both intrinsic and extrinsic apoptotic pathways as evidenced by the loss of mitochondrial outer membrane potential and partial inhibition of cell death upon incubation with FasL antibody. CONCLUSIONS The synergistic cell killing is caused by a mechanistic interaction that requires the initiation of XPF-dependent excision repair in response to oxaliplatin adducts, and the inhibition of that process by fludarabine incorporation into the repair patch. This combination strategy may be useful against other malignancies.
Collapse
Affiliation(s)
- Alma Zecevic
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
43
|
Mactier S, Henrich S, Che Y, Kohnke PL, Christopherson RI. Comprehensive Proteomic Analysis of the Effects of Purine Analogs on Human Raji B-Cell Lymphoma. J Proteome Res 2011; 10:1030-42. [DOI: 10.1021/pr100803b] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Swetlana Mactier
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Silke Henrich
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Yiping Che
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | - Philippa L. Kohnke
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
44
|
Valdez BC, Li Y, Murray D, Champlin RE, Andersson BS. The synergistic cytotoxicity of clofarabine, fludarabine and busulfan in AML cells involves ATM pathway activation and chromatin remodeling. Biochem Pharmacol 2011; 81:222-32. [PMID: 20933509 PMCID: PMC3006064 DOI: 10.1016/j.bcp.2010.09.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
DNA alkylating agents alone or with ionizing radiation have been the preferred conditioning treatment in allogeneic hematopoietic stem cell transplantation (allo-HSCT). In search of less toxic alternatives, we hypothesized that combination of busulfan (Bu), fludarabine (Flu) and clofarabine (Clo) would provide superior efficacy. At low concentrations, these drugs show synergistic cytotoxicity in Bu-resistant AML KBM3/Bu250(6) cells. Similar molecular responses were observed in other AML cell lines and in primary explanted AML cells. The [Clo+Flu+Bu] combination activates an intense DNA damage response through the ATM pathway, leading to cell cycle checkpoint activation and apoptosis. Phosphorylations of SMC1 and SMC3, and methylations of histones 3 and 4, are much more pronounced in cells exposed to [Clo+Flu+Bu] than [Clo+Flu], suggesting their relevance in the efficacy of the triple-drug combination. A possible mechanism for these observed synergistic effects involves the capability of [Clo+Flu] to induce histone methylations and subsequent chromatin remodeling, which may render the genomic DNA more accessible to Bu alkylation. The Bu-mediated DNA cross-linking may provide a feedback loop which perpetuates the DNA damage response initiated by [Clo+Flu] and commits the cells to apoptosis. Our results provide a conceptual mechanistic basis for exploring this triple-drug combination in pretransplant conditioning therapy for allo-HSCT.
Collapse
Affiliation(s)
- Benigno C. Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| | - Yang Li
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| | - David Murray
- Department of Experimental Oncology, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, Canada T6G 1Z2
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| | - Borje S. Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030
| |
Collapse
|
45
|
Wang Q, Liu X, Wang Q, Zhang Y, Jiang J, Guo X, Fan Q, Zheng L, Yu X, Wang N, Pan Z, Song C, Qi W, Chang J. FNC, a novel nucleoside analogue inhibits cell proliferation and tumor growth in a variety of human cancer cells. Biochem Pharmacol 2011; 81:848-55. [PMID: 21219886 DOI: 10.1016/j.bcp.2011.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/01/2011] [Accepted: 01/04/2011] [Indexed: 11/29/2022]
Abstract
Inhibition of cellular DNA synthesis is a strategy to block cancer cell division. Nucleoside analogues can incorporate into DNA and terminate DNA strand elongation. So far, several nucleoside analogues have been successfully used as anticancer drugs. FNC, 2'-deoxy-2'-β-fluoro-4'-azidocytidine is a novel cytidine analogue which demonstrated potent activity against hepatitis C virus (HCV). To investigate the therapeutic potential of FNC in human cancers we studied its activity in a number of cancer cells in vitro and in vivo. FNC potently inhibited cell proliferation with an IC(50) of 0.95-4.55μM in a variety of aggressive human cancer cell lines including B-cell non-Hodgkin's lymphomas, lung adenocarcinoma and acute myeloid leukemia. Cells treated with FNC exhibited G1 and S cell cycle arrest at high and low dose, respectively, which confirms the mechanism of action of nucleoside analogues. Treatment of B-NHL cell lines with FNC induced apoptosis in a dose and time dependent manner. Finally, mouse xenograft models of hepatocarcinoma (H22), sarcoma (S180) and gastric carcinoma (SGC7901) demonstrated that FNC had significant tumor growth inhibition activity in a dose-dependent manner with low toxicity. Together, our results suggest that FNC may be a valuable therapy in cancer patients and warrant early phase clinical trial evaluation.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Priest C, Prives C, Poyurovsky MV. Deconstructing nucleotide binding activity of the Mdm2 RING domain. Nucleic Acids Res 2010; 38:7587-98. [PMID: 20671028 PMCID: PMC2995081 DOI: 10.1093/nar/gkq669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mdm2, a central negative regulator of the p53 tumor suppressor, possesses a Really Interesting New Gene (RING) domain within its C-terminus. In addition to E3 ubiquitin ligase activity, the Mdm2 RING preferentially binds adenine base nucleotides, and such binding leads to a conformational change in the Mdm2 C-terminus. Here, we present further biochemical analysis of the nucleotide–Mdm2 interaction. We have found that MdmX, an Mdm2 family member with high sequence homology, binds adenine nucleotides with similar affinity and specificity as Mdm2, suggesting that residues involved in nucleotide binding may be conserved between the two proteins and adenosine triphosphate (ATP) binding may have similar functional consequences for both Mdm family members. By generating and testing a series of proteins with deletions and substitution mutations within the Mdm2 RING, we mapped the specific adenine nucleotide binding region of Mdm2 to residues 429–484, encompassing the minimal RING domain. Using a series of ATP derivatives, we demonstrate that phosphate coordination by the Mdm2 P-loop contributes to, but is not primarily responsible for, ATP binding. Additionally, we have identified the 2′ and 3′ hydroxyls of the ribose and the C6 amino group of the adenine base moiety as being essential for binding.
Collapse
Affiliation(s)
- Christina Priest
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
47
|
Valdez BC, Andersson BS. Interstrand crosslink inducing agents in pretransplant conditioning therapy for hematologic malignancies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:659-668. [PMID: 20577993 PMCID: PMC4346159 DOI: 10.1002/em.20603] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Despite successful molecularly targeted, highly specific, therapies for hematologic malignancies, the DNA interstrand crosslinking agents, which are among the oldest and least specific cytotoxic drugs, still have an important role. This is particularly true in stem cell transplantation, where virtually every patient receives conditioning therapy with a DNA-alkylating agent-based program. However, due to concern about serious additive toxicities with combinations of different alkylating drugs, the last several years have seen nucleoside analogs, whose cytotoxic action follows vastly different molecular pathways, introduced in combination with alkylating agents. The mechanistic differences paired with different metabolic pathways for the respective drugs have clinically translated into increased safety without appreciable loss of antileukemic activity. In this report, we review pre-clinical evidence for synergistic antileukemic activity when nucleoside analog(s) and DNA-alkylating agent(s) are combined in the most appropriate manner(s), without a measurable decrease in clinical efficacy compared with the more established alkylating agent combinations. Data from our own laboratory using combinations of fludarabine, clofarabine, and busulfan as prototype representatives for these respective classes of cytotoxic agents are combined with information from other investigators to explain how the observed molecular events will result in greatly enhanced synergistic cytotoxicity. We further present possible mechanistic pathways for such desirable cytotoxic synergism. Finally, we propose how this information-backed hypothesis can be incorporated in the design of the next generation conditioning therapy programs in stem cell transplantation to optimize antileukemic efficacy while still safeguarding patient safety.
Collapse
Affiliation(s)
| | - Borje S. Andersson
- Correspondence to: Borje S. Andersson, Department of Stem Cell Transplantation and Cellular Therapy, UT MD Anderson Cancer Center, Unit 423, 1515 Holcombe Blvd, Houston, TX 77030.
| |
Collapse
|
48
|
Yin W, Karyagina EV, Lundberg AS, Greenblatt DJ, Lister-James J. Pharmacokinetics, bioavailability and effects on electrocardiographic parameters of oral fludarabine phosphate. Biopharm Drug Dispos 2010; 31:72-81. [PMID: 19862681 DOI: 10.1002/bdd.690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The pharmacokinetics, bioavailability and effects on electrocardiographic (ECG) parameters of fludarabine phosphate (2F-ara-AMP) were evaluated in adult patients with B-cell chronic lymphocytic leukemia. Patients received single doses of intravenous (IV) (25 mg/m(2), n=14) or oral (40 mg/m(2), n=42) 2F-ara-AMP. Plasma concentrations of drug and metabolites and digital 12-lead ECGs were monitored for 23 h after dosing. The dephosphorylated product fludarabine (2F-ara-A) was the principal metabolite present in the systemic circulation. Mean (+/-SD) elimination half-life did not differ significantly between IV and oral dosage groups (11.3+/-4.0 vs 9.7+/-2.0 h, p=0.053). Renal excretion was a major clearance pathway, along with transformation to a hypoxanthine metabolite 2F-ara-Hx. Estimated mean oral bioavailability of 2F-ara-A was 58%. Compared to the time-matched drug-free baseline Fridericia correction of the QT interval (QTcF), the mean QTcF change following 2F-ara-AMP did not differ from zero, and a treatment effect of >+10 and >+15 ms could be excluded following oral and IV 2F-ara-AMP, respectively. Similarly, heart rate, PR interval and QRS duration did not change following 2F-ara-AMP treatment. Thus the 25 mg/m(2) IV and 40 mg/m(2) oral doses of 2F-ara-AMP produce similar systemic exposure, and do not prolong QTcF, indicating low risk of drug induced Torsades de Pointes.
Collapse
Affiliation(s)
- Wei Yin
- Department of Clinical Pharmacology, Antisoma Research Limited, 300 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | |
Collapse
|
49
|
O'Konek JJ, Ladd B, Flanagan SA, Im MM, Boucher PD, Thepsourinthone TS, Secrist JA, Shewach DS. Alteration of the carbohydrate for deoxyguanosine analogs markedly changes DNA replication fidelity, cell cycle progression and cytotoxicity. Mutat Res 2010; 684:1-10. [PMID: 20004674 DOI: 10.1016/j.mrfmmm.2009.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/29/2009] [Accepted: 11/17/2009] [Indexed: 11/17/2022]
Abstract
Nucleoside analogs are efficacious cancer chemotherapeutics due to their incorporation into tumor cell DNA. However, they exhibit vastly different antitumor efficacies, suggesting that incorporation produces divergent effects on DNA replication. Here we have evaluated the consequences of incorporation on DNA replication and its fidelity for three structurally related deoxyguanosine analogs: ganciclovir (GCV), currently in clinical trials in a suicide gene therapy approach for cancer, D-carbocyclic 2'-deoxyguanosine (CdG) and penciclovir (PCV). GCV and CdG elicited similar cytotoxicity at low concentrations, whereas PCV was 10-100-fold less cytotoxic in human tumor cells. DNA replication fidelity was evaluated using a supF plasmid-based mutation assay. Only GCV induced a dose-dependent increase in mutation frequency, predominantly GC-->TA transversions, which contributed to cytotoxicity and implicated the ether oxygen in mutagenicity. Activation of mismatch repair with hydroxyurea decreased mutations but failed to repair the GC-->TA transversions. GCV slowed S-phase progression and CdG also induced a G2/M block, but both drugs allowed completion of one cell cycle after drug treatment followed by cell death in the second cell cycle. In contrast, PCV induced a lengthy early S-phase block due to profound suppression of DNA synthesis, with cell death in the first cell cycle after drug treatment. These data suggest that GCV and CdG elicit superior cytotoxicity due to their effects in template DNA, whereas strong inhibition of nascent strand synthesis by PCV may protect against cytotoxicity. Nucleoside analogs based on the carbohydrate structures of GCV and CdG is a promising area for antitumor drug development.
Collapse
Affiliation(s)
- Jessica J O'Konek
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev 2009; 109:2880-93. [PMID: 19476376 DOI: 10.1021/cr900028p] [Citation(s) in RCA: 408] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- William B Parker
- Southern Research Institute, 2000 Ninth Avenue, South Birmingham, Alabama 35205, USA.
| |
Collapse
|