1
|
Silverstein RL. Just Say NO to CD36 Expression: A Regulatory Pathway With Implications in Many Chronic Diseases. Arterioscler Thromb Vasc Biol 2025; 45:1087-1089. [PMID: 40469036 DOI: 10.1161/atvbaha.125.322894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2025]
Affiliation(s)
- Roy L Silverstein
- Department of Medicine, Medical College of Wisconsin and Versiti Blood Research Institute, Versiti Blood Center of Wisconsin, Milwaukee
| |
Collapse
|
2
|
Parolini C. Sepsis and high-density lipoproteins: Pathophysiology and potential new therapeutic targets. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167761. [PMID: 40044061 DOI: 10.1016/j.bbadis.2025.167761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/19/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
In 2020, sepsis has been defined a worldwide health major issue (World Health Organization). Lung, urinary tract and abdominal cavity are the preferred sites of sepsis-linked infection. Research has highlighted that the advancement of sepsis is not only related to the presence of inflammation or microbial or host pattern recognition. Clinicians and researchers now recognized that a severe immunosuppression is also a common feature found in patients with sepsis, increasing the susceptibility to secondary infections. Lipopolysaccharides (LPS) are expressed on the cell surface of Gram-negative, whereas Gram-positive bacteria express peptidoglycan (PGN) and lipoteichoic acid (LTA). The main mechanism by which LPS trigger host innate immune responses is binding to TLR4-MD2 (toll-like receptor4-myeloid differentiation factor 2), whereas, PGN and LTA are exogenous ligands of TLR2. Nucleotide-binding oligomerization domain (NOD)-like receptors are the most well-characterized cytosolic pattern recognition receptors, which bind microbial molecules, endogenous by-products and environmental triggers. It has been demonstrated that high-density lipoproteins (HDL), besides their major role in promoting cholesterol efflux, possess diverse pleiotropic properties, ranging from a modulation of the immune system to anti-inflammatory, anti-apoptotic, and anti-oxidant functions. In addition, HDL are able at i) binding LPS, preventing the activating of TLR4, and ii) inducing the expression of ATF3 (Activating transcription factor 3), a negative regulator of the TLR signalling pathways, contributing at justifying their capacity to hamper infection-based illnesses. Therefore, reconstituted HDL (rHDL), constituted by apolipoprotein A-I/apolipoprotein A-IMilano complexed with phospholipids, may be considered as a new therapeutic tool for the management of sepsis.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, "Rodolfo Paoletti", via Balzaretti 9 - Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
3
|
Wu J, Luo J, He Q, Zhang F, Shi C, Zhao J, Li C, Deng W. CD36 molecule and AMP-activated protein kinase signaling drive docosahexaenoic acid-induced lipid remodeling in goat mammary epithelial cells. Int J Biol Macromol 2025; 311:144076. [PMID: 40348225 DOI: 10.1016/j.ijbiomac.2025.144076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Goat milk is a vital component of China's dairy industry, renowned for its richness in lipids essential to human health. Polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (C22:6n-3, DHA), are particularly valuable for their integration into phospholipids and triacylglycerols. While mammary cells can uptake and channel PUFAs into lipids for milk fat secretion, the broader functional effects of DHA within these cells remain unclear. This study demonstrated that DHA supplementation markedly altered levels of lipid subclasses in goat mammary epithelial cells (GMECs), as revealed by lipidomic analysis. DHA treatment significantly increased the levels of free DHA, alongside DHA-enriched triacylglycerols, phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine, thereby driving lipid remodeling in GMECs. Additionally, DHA modulated transcription of key fatty acid metabolism genes, such as SREBP1, FASD2, and FASN. Mechanistically, DHA supplementation activated the AMPK signaling pathway inhibiting fatty acid metabolism, and upregulated the expression of fatty acid transport gene-CD36 in GMECs. Knockdown or mutation of the fatty acid binding domain of CD36 diminished DHA-induced AMPK activation and transcriptional regulation of fatty acid metabolism genes in GMECs. In summary, DHA supplementation induces lipid remodeling in GMECs via the CD36-AMPK signaling axis, highlighting its potential to facilitate the development of DHA-enriched functional goat milk.
Collapse
Affiliation(s)
- Jiao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China; College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Jun Luo
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China.
| | - Qiuya He
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Fuhong Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Chenbo Shi
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Jianqing Zhao
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Cong Li
- College of Animal Science and Technology, Northwest A & F University, Yangling 712100, People's Republic of China
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, People's Republic of China
| |
Collapse
|
4
|
Huang L, Zhang T, Zhu Y, Lai X, Tao H, Xing Y, Li Z. Deciphering the Role of CD36 in Gestational Diabetes Mellitus: Linking Fatty Acid Metabolism and Inflammation in Disease Pathogenesis. J Inflamm Res 2025; 18:1575-1588. [PMID: 39925938 PMCID: PMC11806725 DOI: 10.2147/jir.s502314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/27/2025] [Indexed: 02/11/2025] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications which exerts detrimental effects on mothers and children. Emerging evidence has pointed to the important role of the fatty acid transporter protein CD36 in the pathogenesis of GDM. As a heavily glycosylated transmembrane protein, CD36 is widely expressed in diverse cell types, including placental trophoblasts, monocytes/macrophages, adipocytes, and pancreatic cells et al. CD36 plays a key role in lipid metabolism and signal transduction in the pathophysiological mechanism of GDM. The modified expression and functionality of CD36 may contribute to inflammation and oxidative stress in maternal tissues, interfere with insulin signaling, and subsequently influence maternal insulin sensitivity and fetal growth, increasing the risk for GDM. This review provides an overview of the current knowledge regarding the expression and function of CD36 in various tissues throughout pregnancy and explores how CD36 dysregulation can activate inflammatory pathways, worsen insulin resistance, and disrupt lipid metabolism, thereby complicating the necessary metabolic adjustments during pregnancy. Furthermore, the review delves into emerging therapeutic approaches targeting CD36 signaling to alleviate the impacts of GDM. Understanding the involvement of CD36 in GDM could yield crucial insights into its mechanisms and potential interventions for enhancing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Li Huang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Tong Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanyuan Zhu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Xueling Lai
- Shenzhen Guangming Maternal & Child Healthcare Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| | - Yuhan Xing
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, Sichuan, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
5
|
Dasso ME, Centola CL, Galardo MN, Riera MF, Meroni SB. FSH increases lipid droplet content by regulating the expression of genes related to lipid storage in Rat Sertoli cells. Mol Cell Endocrinol 2025; 595:112403. [PMID: 39490730 DOI: 10.1016/j.mce.2024.112403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Sertoli cells (SCs) are essential for appropriate spermatogenesis. From a metabolic standpoint, they catabolize glucose and provide germ cells with lactate, which is their main energy source. SCs also oxidize fatty acids (FAs), which are stored as triacylglycerides (TAGs) within lipid droplets (LDs), to fulfill their own energy requirements. On the other hand, it has been demonstrated that FSH regulates some of SCs functions, but little is known about its effect on lipid metabolism. In the present study, we aimed to analyze FSH-mediated regulation of (1) lipid storage in LDs and (2) the expression of genes involved in FAs activation and TAG synthesis and storage in SCs. SCs obtained from 20-day-old rats were cultured for different incubation periods with FSH (100 ng/ml). It was observed that FSH increased LD content and TAG levels in SCs. There were also increments in the expression of Plin1, Fabp5, Acsl1, Acsl4, Gpat3, and Dgat1, which suggests that these proteins may mediate the increase in TAGs and LDs elicited by FSH. Regarding the signaling involved in FSH actions, it was observed that dbcAMP increased LD, and H89, a PKA inhibitor, inhibited FSH stimulus. Also, dbcAMP increased Plin2, Fabp5, Acsl1, Acsl4, and Dgat1 mRNA levels, confirming a role of the cAMP/PKA pathway in the regulation of lipid storage in SCs. Altogether, these results suggest that FSH, via the cAMP/PKA pathway, regulates lipid storage in SCs ensuring the availability of substrates to satisfy their energy requirements.
Collapse
Affiliation(s)
- Marina Ercilia Dasso
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Cecilia Lucia Centola
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Noel Galardo
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Maria Fernanda Riera
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina
| | - Silvina Beatriz Meroni
- Centro de Investigaciones Endocrinológicas, "Dr César Bergadá", CONICET-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Argentina.
| |
Collapse
|
6
|
Liu H, Chen H, Han T, Wang X, Dai J, Yang X, Chan S, Cannon RD, Yang Y, Mousa H, Chang S, Chang R, Han TL. Lipid imbalance and inflammatory oxylipin cascade at the maternal-fetal interface in recurrent spontaneous abortion. Heliyon 2024; 10:e40515. [PMID: 39759287 PMCID: PMC11700280 DOI: 10.1016/j.heliyon.2024.e40515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
Background Recurrent spontaneous abortion (RSA) is intricately linked to metabolic dysregulation at the maternal-fetal interface during early gestation. Abnormal levels of essential fatty acids and downstream oxylipins in decidua and chorionic villi have been identified as potential risk factors for RSA. Oxylipins have been linked to excessive inflammation, which might disrupt maternal-fetal immune tolerance, potentially contributing to RSA. Nonetheless, the exact fatty acid-oxylipin metabolic pathway at the matrernal-fetal interface in RSA occurrence remains unknown. Therefore, this research aimed to explore the effect of essential fatty acids, their transport, and downstream oxylipins at the maternal-fetal interface on RSA pathogenesis. Methods Plasma, chorionic villus, and decidual tissue samples from the first trimester were collected from healthy pregnant women undergoing elective pregnancy terminations, as well as from patients experiencing spontaneous abortion. The concentrations of essential fatty acids and their downstream oxylipins in the villi and decidua were quantified using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS). The expression of enzymes related to metabolic pathways was investigated by q-PCR. The ratios of M1/M2 macrophages were assessed by flow cytometry (FCM). Results This study found elevated concentrations of omega-6 fatty acids, encompassing arachidonic acid (AA), linoleic acid (LA), and dihomo-gamma-linolenic acid (DGLA) in maternal plasma and chorionic villi, whereas lower concentrations were observed in the decidua, than in samples from normal pregnancies. Further analysis revealed that the transport of these fatty acids was dysregulated at the maternal-fetal interface in RSA women, possibly due to the aberrant expression of the fatty acid translocase (FAT/CD36). In addition, this study revealed that RSA patients displayed higher levels of downstream oxylipins, such as prostaglandin F2a (PGF2a), prostaglandin E2 (PGE2), and leukotriene B4 (LTB4) in chorionic villi and decidua. These compounds may contribute to M1 inflammatory macrophage polarization in RSA, thereby forming a highly inflammatory environment and influencing immunomodulation at the maternal-fetal interface. Conclusion The study revealed alterations in omega-6 fatty acids, CD36 transport, and AA downstream oxylipins in RSA, which in turn promote M1 macrophage polarization. Thus, this research has established a foundation for identifying potential biomarkers for, and providing novel insights into, the diagnosis and pathophysiology of RSA.
Collapse
Affiliation(s)
- Hao Liu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huijia Chen
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xin Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Jingcong Dai
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojia Yang
- Department of Occupational and Environmental Hygiene, School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | | | - Richard D. Cannon
- Department of Oral Sciences, Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Yang Yang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hatem Mousa
- University of Leicester, NHS Trust, Leicester, UK
| | - Shufang Chang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruiqi Chang
- The Center for Reproductive Medicine, Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Joint International Research Lab for Reproduction and Development, Ministry of Education, Chongqing, China
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing Medical University, Chongqing, China
| | - Ting-Li Han
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Chen Y, Zhang X, Huang S, Febbraio M. Hidden features: CD36/SR-B2, a master regulator of macrophage phenotype/function through metabolism. Front Immunol 2024; 15:1468957. [PMID: 39742252 PMCID: PMC11685046 DOI: 10.3389/fimmu.2024.1468957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/30/2024] [Indexed: 01/03/2025] Open
Abstract
Once thought to be in a terminally differentiated state, macrophages are now understood to be highly pliable, attuned and receptive to environmental cues that control and align responses. In development of purpose, the centrality of metabolic pathways has emerged. Thus, macrophage inflammatory or reparative phenotypes are tightly linked to catabolic and anabolic metabolism, with further fine tuning of specific gene expression patterns in specific settings. Single-cell transcriptome analyses have revealed a breadth of macrophage signatures, with some new influencers driving phenotype. CD36/Scavenger Receptor B2 has established roles in immunity and lipid metabolism. Macrophage CD36 is a key functional player in metabolic expression profiles that determine phenotype. Emerging data show that alterations in the microenvironment can recast metabolic pathways and modulate macrophage function, with the potential to be leveraged for therapeutic means. This review covers recent data on phenotypic characterization of homeostatic, atherosclerotic, lipid-, tumor- and metastatic-associated macrophages, with the integral role of CD36 highlighted.
Collapse
Affiliation(s)
- Yuge Chen
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Xuejia Zhang
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Maria Febbraio
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Wang S, Zota V, Vincent MY, Clossey D, Chen JJ, Cieslewicz M, Watnick RS, Mahoney J, Watnick J. Assessing CD36 and CD47 expression levels in solid tumor indications to stratify patients for VT1021 treatment. NPJ Precis Oncol 2024; 8:278. [PMID: 39627379 PMCID: PMC11614903 DOI: 10.1038/s41698-024-00774-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Despite the development of cancer biomarkers and targeted therapies, most cancer patients do not have a specific biomarker directly associated with effective treatment options. We have developed VT1021 that induces the expression of thrombospondin-1 (TSP-1) in myeloid-derived suppressor cells (MDSCs) recruited to the tumor microenvironment (TME). Our studies identified CD36 and CD47 as dual biomarkers that can be used as patient stratifying tools and prognostic biomarkers for VT1021 treatment.
Collapse
|
9
|
Cosset FL, Denolly S. Lipoprotein receptors: A little grease for enveloped viruses to open the lock? J Biol Chem 2024; 300:107849. [PMID: 39357828 PMCID: PMC11550601 DOI: 10.1016/j.jbc.2024.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
Several studies recently highlighted the role of lipoprotein receptors in viral entry. These receptors are evolutionarily ancient proteins, key for the transport of lipids as well as other signaling molecules across the plasma membrane. Here, we discuss the different families of lipoprotein receptors and how they are hijacked by enveloped viruses to promote their entry into infected cells. While the usage of lipoprotein receptors was known for members of the Flaviviridae family and vesicular stomatitis virus, the last 4 years have seen the discovery that these receptors are used by many genetically unrelated viruses. We also emphasize how viral particles interact with these receptors and the possible targeting of these host factors as antiviral strategies.
Collapse
Affiliation(s)
- François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Université de Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308 ENS de Lyon, Lyon, France.
| | - Solène Denolly
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, Lyon, France.
| |
Collapse
|
10
|
Zhang X, Majumdar A, Kim C, Kleiboeker B, Magee KL, Learman BS, Thomas SA, Lodhi IJ, MacDougald OA, Scheller EL. Central activation of catecholamine-independent lipolysis drives the end-stage catabolism of all adipose tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605812. [PMID: 39131323 PMCID: PMC11312544 DOI: 10.1101/2024.07.30.605812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Several adipose depots, including constitutive bone marrow adipose tissue (cBMAT), resist conventional lipolytic cues, making them metabolically non-responsive. However, under starvation, wasting, or cachexia, the body can eventually catabolize these stable adipocytes through unknown mechanisms. To study this, we developed a mouse model of brain-evoked depletion of all fat, including cBMAT, independent of food intake. Genetic, surgical, and chemical approaches demonstrated that depletion of stable fat required adipose triglyceride lipase-dependent lipolysis but was independent of local nerves, the sympathetic nervous system, and catecholamines. Instead, concurrent hypoglycemia and hypoinsulinemia activated a potent catabolic state by suppressing lipid storage and increasing catecholamine-independent lipolysis via downregulation of cell-autonomous lipolytic inhibitors Acvr1c, G0s2, and Npr3. This was also sufficient to delipidate classical adipose depots. Overall, this work defines unique adaptations of stable adipocytes to resist lipolysis in healthy states while isolating a potent in vivo neurosystemic pathway by which the body can rapidly catabolize all adipose tissues.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Clara Kim
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristann L Magee
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Learman
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Thomas
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
11
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
12
|
Roca-Rivada A, Do Cruzeiro M, Denis RG, Zhang Q, Rouault C, Rouillé Y, Launay JM, Cruciani-Guglielmacci C, Mattot V, Clément K, Jockers R, Dam J. Whole-body deletion of Endospanin 1 protects from obesity-associated deleterious metabolic alterations. JCI Insight 2024; 9:e168418. [PMID: 38716728 PMCID: PMC11141941 DOI: 10.1172/jci.insight.168418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/27/2024] [Indexed: 05/12/2024] Open
Abstract
The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.
Collapse
Affiliation(s)
- Arturo Roca-Rivada
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Cité, F-75014 Paris, France
| | - Marcio Do Cruzeiro
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Cité, F-75014 Paris, France
| | - Raphaël G.P. Denis
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Cité, F-75014 Paris, France
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, 75013 Paris, France
| | - Qiang Zhang
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Cité, F-75014 Paris, France
| | - Christine Rouault
- Sorbonne Université, Inserm, Nutrition and obesities: systemic approaches, Nutriomics, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | - Yves Rouillé
- Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | | | | | - Virginie Mattot
- Université Paris Cité, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, F-59000, Lille, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and obesities: systemic approaches, Nutriomics, Department of Nutrition, Pitié-Salpêtrière Hospital, Assistance Publique Hopitaux de Paris, Paris, France
| | - Ralf Jockers
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Cité, F-75014 Paris, France
| | - Julie Dam
- Institut Cochin, Inserm U1016, CNRS UMR 8104, Université Paris Cité, F-75014 Paris, France
| |
Collapse
|
13
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
14
|
Abstract
CD36 (also known as platelet glycoprotein IV) is expressed by a variety of different cell entities, where it possesses functions as a signaling receptor, but additionally acts as a transporter for long-chain fatty acids. This dual function of CD36 has been investigated for its relevance in immune and nonimmune cells. Although CD36 was first identified on platelets, the understanding of the role of CD36 in platelet biology remained scarce for decades. In the past few years, several discoveries have shed a new light on the CD36 signaling activity in platelets. Notably, CD36 has been recognized as a sensor for oxidized low-density lipoproteins in the circulation that mitigates the threshold for platelet activation under conditions of dyslipidemia. Thus, platelet CD36 transduces atherogenic lipid stress into an increased risk for thrombosis, myocardial infarction, and stroke. The underlying pathways that are affected by CD36 are the inhibition of cyclic nucleotide signaling pathways and simultaneously the induction of activatory signaling events. Furthermore, thrombospondin-1 secreted by activated platelets binds to CD36 and furthers paracrine platelet activation. CD36 also serves as a binding hub for different coagulation factors and, thus, contributes to the plasmatic coagulation cascade. This review provides a comprehensive overview of the recent findings on platelet CD36 and presents CD36 as a relevant target for the prevention of thrombotic events for dyslipidemic individuals with an elevated risk for thrombosis.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
15
|
Wang J, Li DL, Zheng LF, Ren S, Huang ZQ, Tao Y, Liu Z, Shang Y, Pang D, Guo H, Zeng T, Wang HR, Huang H, Du X, Ye H, Zhou HM, Li P, Zhao TJ. Dynamic palmitoylation of STX11 controls injury-induced fatty acid uptake to promote muscle regeneration. Dev Cell 2024; 59:384-399.e5. [PMID: 38198890 DOI: 10.1016/j.devcel.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Different types of cells uptake fatty acids in response to different stimuli or physiological conditions; however, little is known about context-specific regulation of fatty acid uptake. Here, we show that muscle injury induces fatty acid uptake in muscle stem cells (MuSCs) to promote their proliferation and muscle regeneration. In humans and mice, fatty acids are mobilized after muscle injury. Through CD36, fatty acids function as both fuels and growth signals to promote MuSC proliferation. Mechanistically, injury triggers the translocation of CD36 in MuSCs, which relies on dynamic palmitoylation of STX11. Palmitoylation facilitates the formation of STX11/SNAP23/VAMP4 SANRE complex, which stimulates the fusion of CD36- and STX11-containing vesicles. Restricting fatty acid supply, blocking fatty acid uptake, or inhibiting STX11 palmitoylation attenuates muscle regeneration in mice. Our studies have identified a critical role of fatty acids in muscle regeneration and shed light on context-specific regulation of fatty acid sensing and uptake.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dong-Lin Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Lang-Fan Zheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Su Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Zi-Qin Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Ying Tao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Ziyu Liu
- Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an Second People's Hospital, Xuzhou 220005, Jiangsu, China
| | - Yanxia Shang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Dejian Pang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Taoling Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - He Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Xingrong Du
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Haobin Ye
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Hai-Meng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, Zhejiang, China
| | - Peng Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tong-Jin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China; Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
16
|
Guo W, Ciwang R, Wang L, Zhang S, Liu N, Zhao J, Zhou L, Li H, Gao X, He J. CircRNA-5335 Regulates the Differentiation and Proliferation of Sheep Preadipocyte via the miR-125a-3p/STAT3 Pathway. Vet Sci 2024; 11:70. [PMID: 38393088 PMCID: PMC10891738 DOI: 10.3390/vetsci11020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The content of intramuscular fat (IMF) from preadipocytes is proportional to meat quality in livestock. However, the roles of circRNAs in IMF deposition in sheep are not well known. In this study, we show that circRNA-5335/miR-125a-3p/STAT3 play a crucial adjective role in the proliferation and differentiation of sheep preadipocytes. In this study, we characterized the roles of differentially expressed circRNA-5335/miR-125a-3p/STAT3, which were screened from sheep of different months of age and based on sequencing data. Firstly, the expression profiles of circRNA-5335/miR-125a-3p/STAT3 were identified during the differentiation of preadipocytes in vitro by RT-qPCR and WB. Then, the targeting relationship of the circRNA-5335/miR-125a-3p/STAT3 was verified by dual-luciferase reporter assays. The results of RT-qPCR, CCK8, EdU and Oil Red O staining assay showed that miR-125a-3p suppressed the differentiation and raised the proliferation of preadipocytes by targeting STAT3. As a competing endogenous RNA, the downregulation of circRNA-5335 decreased the expression of STAT3 by increasing miR-125a-3p, which inhibited the differentiation of preadipocytes and promoted proliferation. Our present study demonstrates the functional significance of circRNA-5335/miR-125a-3p/STAT3 in the differentiation of sheep preadipocytes, and provides novel insights into exploring the mechanism of IMF.
Collapse
Affiliation(s)
- Wei Guo
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Renzeng Ciwang
- Institute of Animal Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
| | - Lei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- Shandong Animal Husbandry Chief Station, Jinan 250100, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Lisheng Zhou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Hegang Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaoxiao Gao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
17
|
Dussold C, Zilinger K, Turunen J, Heimberger AB, Miska J. Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer. J Clin Invest 2024; 134:e175445. [PMID: 38226622 PMCID: PMC10786697 DOI: 10.1172/jci175445] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Immunometabolism is a burgeoning field of research that investigates how immune cells harness nutrients to drive their growth and functions. Myeloid cells play a pivotal role in tumor biology, yet their metabolic influence on tumor growth and antitumor immune responses remains inadequately understood. This Review explores the metabolic landscape of tumor-associated macrophages, including the immunoregulatory roles of glucose, fatty acids, glutamine, and arginine, alongside the tools used to perturb their metabolism to promote antitumor immunity. The confounding role of metabolic inhibitors on our interpretation of myeloid metabolic phenotypes will also be discussed. A binary metabolic schema is currently used to describe macrophage immunological phenotypes, characterizing inflammatory M1 phenotypes, as supported by glycolysis, and immunosuppressive M2 phenotypes, as supported by oxidative phosphorylation. However, this classification likely underestimates the variety of states in vivo. Understanding these nuances will be critical when developing interventional metabolic strategies. Future research should focus on refining drug specificity and targeted delivery methods to maximize therapeutic efficacy.
Collapse
|
18
|
Dakic T, Velickovic K, Lakic I, Ruzicic A, Milicevic A, Plackic N, Vujovic P, Jevdjovic T. Rat brown adipose tissue thermogenic markers are modulated by estrous cycle phases and short-term fasting. Biofactors 2024; 50:101-113. [PMID: 37482913 DOI: 10.1002/biof.1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Brown adipose tissue (BAT) converts chemical energy into heat to maintain body temperature. Although fatty acids (FAs) represent a primary substrate for uncoupling protein 1 (UCP1)-dependent thermogenesis, BAT also utilizes glucose for the same purpose. Considering that estrous cycle effects on BAT are not greatly explored, we examined those of 6-h fasting on interscapular BAT (iBAT) thermogenic markers in proestrus and diestrus. We found that the percentage of multilocular adipocytes was lower in proestrus than in diestrus, although it was increased after fasting in both analyzed estrous cycle stages. Furthermore, the percentage of paucilocular adipocytes was increased by fasting, unlike the percentage of unilocular cells, which decreased in both analyzed stages of the estrous cycle. The UCP1 amount was lower in proestrus irrespectively of the examined dietary regimens. Regarding FA transporters, it was shown that iBAT CD36 content was increased in fasted rats in diestrus. In contrast to GLUT1, the level of GLUT4 was interactively modulated by selected estrous cycle phases and fasting. There was no change in insulin receptor and ERK1/2 activation, while AKT activation was interactively modulated by fasting and estrous cycle stages. Our study showed that iBAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, iBAT undergoes additional dynamic functional and morphological changes during short-term fasting to modulate nutrient utilization and adjust energy expenditure.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Institute for Zoology, University of Belgrade-Faculty of Biology, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Andjela Milicevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Nikola Plackic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| |
Collapse
|
19
|
Cassau S, Krieger J. Evidence for a role of SNMP2 and antennal support cells in sensillum lymph clearance processes of moth pheromone-responsive sensilla. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 164:104046. [PMID: 38043913 DOI: 10.1016/j.ibmb.2023.104046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
In insect antenna, following the activation of olfactory sensory neurons, odorant molecules are inactivated by enzymes in the sensillum lymph. How the inactivation products are cleared from the sensillum lymph is presently unknown. Here we studied the role of support cells (SCs) and the so-called sensory neuron membrane protein 2 (SNMP2), a member of the CD36 family of lipid transporters abundantly expressed in SCs, in sensillum lymph clearance processes in the moths Heliothis virescens and Bombyx mori. In these species, the sex pheromone components are inactivated to long-chain fatty acids. To approach a role of SNMP2 in the removal of such inactivation products, we analyzed the uptake of a fluorescent long-chain fatty acid analog into a newly generated HvirSNMP2-expressing cell line. We found an increased uptake of the analog into SNMP2-cells compared to control cells, which could be blocked by the CD36 protein inhibitor, SSO. Furthermore, analyses of sensilla from antenna treated with the fatty acid analog indicated that SNMP2-expressing SCs are able to take up fatty acids from the sensillum lymph. In addition, sensilla from SSO-pretreated antenna of B. mori showed reduced removal of the fluorescent analog from the sensillum lymph. Finally, we revealed that SSO pretreatment of male silkmoth antenna significantly prolonged the duration of the female pheromone-induced wing-fluttering behavior, possibly as a result of impaired lymph clearance processes. Together our findings in H. virescens and B. mori support a pivotal role of olfactory SCs in sensillum lymph maintenance processes and suggest an integral role of SNMP2 in the removal of lipophilic "waste products" such as fatty acids resulting from sex pheromone inactivation.
Collapse
Affiliation(s)
- Sina Cassau
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany.
| | - Jürgen Krieger
- Martin Luther University Halle-Wittenberg, Institute of Biology/Zoology, Department of Animal Physiology, 06120 Halle (Saale), Germany.
| |
Collapse
|
20
|
Wen SY, Zhi X, Liu HX, Wang X, Chen YY, Wang L. Is the suppression of CD36 a promising way for atherosclerosis therapy? Biochem Pharmacol 2024; 219:115965. [PMID: 38043719 DOI: 10.1016/j.bcp.2023.115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023]
Abstract
Atherosclerosis is the main underlying pathology of many cardiovascular diseases and is marked by plaque formation in the artery wall. It has posed a serious threat to the health of people all over the world. CD36 acts as a significant regulator of lipid homeostasis, which is closely associated with the onset and progression of atherosclerosis and may be a new therapeutic target. The abnormal overexpression of CD36 facilitates lipid accumulation, foam cell formation, inflammation, endothelial apoptosis, and thrombosis. Numerous natural products and lipid-lowering agents are found to target the suppression of CD36 or inhibit the upregulation of CD36 to prevent and treat atherosclerosis. Here, the structure, expression regulation and function of CD36 in atherosclerosis and its related pharmacological therapies are reviewed. This review highlights the importance of drugs targeting CD36 suppression in the treatment and prevention of atherosclerosis, in order to develop new therapeutic strategies and potential anti-atherosclerotic drugs both preclinically and clinically.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Zhi
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Hai-Xin Liu
- School of Traditional Chinese Materia Medica, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
21
|
Yang X, Lu X, Wang L, Bai L, Yao R, Jia Z, Ma Y, Chen Y, Hao H, Wu X, Wang Z, Wang Y. Stearic acid promotes lipid synthesis through CD36/Fyn/FAK/mTORC1 axis in bovine mammary epithelial cells. Int J Biol Macromol 2023; 253:127324. [PMID: 37838116 DOI: 10.1016/j.ijbiomac.2023.127324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Stearic acid (C18:0, SA) is a saturated long-chain fatty acid (LCFA) that has a prominent function in lactating dairy cows. It is obtained primarily from the diet and is stored in the form of triacylglycerol (TAG) molecules. The transmembrane glycoprotein cluster of differentiation 36 (CD36) is also known as fatty acid translocase, but whether SA promotes lipid synthesis through CD36 and FAK/mTORC1 signaling is unknown. In this study, we examined the function and mechanism of CD36-mediated SA-induced lipid synthesis in bovine mammary epithelial cells (BMECs). SA-enriched supplements enhanced lipid synthesis and the FAK/mTORC1 pathway in BMECs. SA-induced lipid synthesis, FAK/mTORC1 signaling, and the expression of lipogenic genes were impaired by anti-CD36 and the CD36-specific inhibitor SSO, whereas overexpression of CD36 effected the opposite results. Inhibition of FAK/mTORC1 by TAE226/Rapamycin attenuated SA-induced TAG synthesis, inactivated FAK/mTORC1 signaling, and downregulated the lipogenic genes PPARG, CD36, ACSL1, SCD, GPAT4, LIPIN1, and DGAT1 at the mRNA and protein levels in BMECs. By coimmunoprecipitation and yeast two-hybrid screen, CD36 interacted directly with Fyn but not Lyn, and Fyn bound directly to FAK; FAK also interacted directly with TSC2. CD36 linked FAK through Fyn, and FAK coupled mTORC1 through TSC2 to form the CD36/Fyn/FAK/mTORC1 signaling axis. Thus, stearic acid promotes lipogenesis through CD36 and Fyn/FAK/mTORC1 signaling in BMECs. Our findings provide novel insights into the underlying molecular mechanisms by which LCFA supplements promote lipid synthesis in BMECs.
Collapse
Affiliation(s)
- Xiaoru Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xinyue Lu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Liping Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Linfeng Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Ruiyuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Zhibo Jia
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Yuhao Chen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China; School of Life Sciences, Jining Normal University, Jining 012000, China
| | - Huifang Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Xiaotong Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
22
|
Kim DH, Song NY, Yim H. Targeting dysregulated lipid metabolism in the tumor microenvironment. Arch Pharm Res 2023; 46:855-881. [PMID: 38060103 PMCID: PMC10725365 DOI: 10.1007/s12272-023-01473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
The reprogramming of lipid metabolism and its association with oncogenic signaling pathways within the tumor microenvironment (TME) have emerged as significant hallmarks of cancer. Lipid metabolism is defined as a complex set of molecular processes including lipid uptake, synthesis, transport, and degradation. The dysregulation of lipid metabolism is affected by enzymes and signaling molecules directly or indirectly involved in the lipid metabolic process. Regulation of lipid metabolizing enzymes has been shown to modulate cancer development and to avoid resistance to anticancer drugs in tumors and the TME. Because of this, understanding the metabolic reprogramming associated with oncogenic progression is important to develop strategies for cancer treatment. Recent advances provide insight into fundamental mechanisms and the connections between altered lipid metabolism and tumorigenesis. In this review, we explore alterations to lipid metabolism and the pivotal factors driving lipid metabolic reprogramming, which exacerbate cancer progression. We also shed light on the latest insights and current therapeutic approaches based on small molecular inhibitors and phytochemicals targeting lipid metabolism for cancer treatment. Further investigations are worthwhile to fully understand the underlying mechanisms and the correlation between altered lipid metabolism and carcinogenesis.
Collapse
Affiliation(s)
- Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, 16227, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, BK21 Four Project, Yonsei University, Seoul, 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 15588, Korea.
| |
Collapse
|
23
|
Terry AR, Nogueira V, Rho H, Ramakrishnan G, Li J, Kang S, Pathmasiri KC, Bhat SA, Jiang L, Kuchay S, Cologna SM, Hay N. CD36 maintains lipid homeostasis via selective uptake of monounsaturated fatty acids during matrix detachment and tumor progression. Cell Metab 2023; 35:2060-2076.e9. [PMID: 37852255 PMCID: PMC11748917 DOI: 10.1016/j.cmet.2023.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 04/11/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
A high-fat diet (HFD) promotes metastasis through increased uptake of saturated fatty acids (SFAs). The fatty acid transporter CD36 has been implicated in this process, but a detailed understanding of CD36 function is lacking. During matrix detachment, endoplasmic reticulum (ER) stress reduces SCD1 protein, resulting in increased lipid saturation. Subsequently, CD36 is induced in a p38- and AMPK-dependent manner to promote preferential uptake of monounsaturated fatty acids (MUFAs), thereby maintaining a balance between SFAs and MUFAs. In attached cells, CD36 palmitoylation is required for MUFA uptake and protection from palmitate-induced lipotoxicity. In breast cancer mouse models, CD36-deficiency induced ER stress while diminishing the pro-metastatic effect of HFD, and only a palmitoylation-proficient CD36 rescued this effect. Finally, AMPK-deficient tumors have reduced CD36 expression and are metastatically impaired, but ectopic CD36 expression restores their metastatic potential. Our results suggest that, rather than facilitating HFD-driven tumorigenesis, CD36 plays a supportive role by preventing SFA-induced lipotoxicity.
Collapse
Affiliation(s)
- Alexander R Terry
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Veronique Nogueira
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyunsoo Rho
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gopalakrishnan Ramakrishnan
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jing Li
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Soeun Kang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Koralege C Pathmasiri
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sameer Ahmed Bhat
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Liping Jiang
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Shafi Kuchay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA; Research and Development Section, Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Fu C, Xiang ML, Chen S, Dong G, Liu Z, Chen CB, Liang J, Cao Y, Zhang M, Liu Q. Molecular Drug Simulation and Experimental Validation of the CD36 Receptor Competitively Binding to Long-Chain Fatty Acids by 7-Ketocholesteryl-9-carboxynonanoate. ACS OMEGA 2023; 8:28277-28289. [PMID: 37576668 PMCID: PMC10413453 DOI: 10.1021/acsomega.3c02082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Long-chain fatty acids (LCFAs) are one of the main energy-supplying substances in the body. LCFAs with different lengths and saturations may have contrasting biological effects that exacerbate or alleviate progress against a variety of systemic disorders of lipid metabolism in organisms. Nonalcoholic fatty liver disease is characterized by chronic inflammation and steatosis, mainly caused by the ectopic accumulation of lipids in the liver, especially LCFAs. CD36 is a scavenger receptor that recognizes and mediates the transmembrane absorption of LCFAs and is expressed in a variety of cells throughout the body. In previous studies, our group found that 7-ketocholesteryl-9-carboxynonanoate (oxLig-1) has the biological effect of targeting CD36 to inhibit oxidized low-density lipoprotein lipotoxicity-induced lipid metabolism disorder; it has an ω-carboxyl physiologically active center and is structurally similar to LCFAs. However, the biological mechanism of oxLig-1 binding to CD36 and competing for binding to different types of LCFAs is still not clear. In this study, molecular docking and molecular dynamics simulation were utilized to simulate and analyze the binding activity between oxLig-1 and different types of LCFAs to CD36 and confirmed by the enzyme-linked immunosorbent assay (ELISA) method. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) platform was applied to predict the drug-forming properties of oxLig-1, and HepG2 cells model of oleic acid and nonalcoholic fatty liver disease (NAFLD) model mice were validated to verify the biological protection of oxLig-1 on lipid lowering. The results showed that there was a co-binding site of LCFAs and oxLig-1 on CD36, and the binding driving forces were mainly hydrogen bonding and hydrophobic interactions. The binding abilities of polyunsaturated LCFAs, oxLig-1, monounsaturated LCFAs, and saturated LCFAs to CD36 showed a decreasing trend in this order. There was a similar decreasing trend in the stability of the molecular dynamics simulation. ELISA results similarly confirmed that the binding activity of oxLig-1 to CD36 was significantly higher than that of typical monounsaturated and saturated LCFAs. ADMET prediction results indicated that oxLig-1 had a good drug-forming property. HepG2 cells model of oleic acid and NAFLD model mice study results demonstrated the favorable lipid-lowering biological effects of oxLig-1. Therefore, oxLig-1 may have a protective effect by targeting CD36 to inhibit the excessive influx and deposition of lipotoxicity monounsaturated LCFAs and saturated LCFAs in hepatocytes.
Collapse
Affiliation(s)
- Changzhen Fu
- Joint
Shantou International Eye Center of Shantou University and The Chinese
University of Hong Kong, Shantou, Guangdong Province 515041, China
| | - Meng-Lin Xiang
- Joint
Shantou International Eye Center of Shantou University and The Chinese
University of Hong Kong, Shantou, Guangdong Province 515041, China
- Shantou
University Medical College, Shantou, Guangdong Province 515031, China
| | - Shaolang Chen
- Joint
Shantou International Eye Center of Shantou University and The Chinese
University of Hong Kong, Shantou, Guangdong Province 515041, China
| | - Geng Dong
- Shantou
University Medical College, Shantou, Guangdong Province 515031, China
| | - Zibo Liu
- Joint
Shantou International Eye Center of Shantou University and The Chinese
University of Hong Kong, Shantou, Guangdong Province 515041, China
| | - Chong-Bo Chen
- Joint
Shantou International Eye Center of Shantou University and The Chinese
University of Hong Kong, Shantou, Guangdong Province 515041, China
| | - Jiajian Liang
- Joint
Shantou International Eye Center of Shantou University and The Chinese
University of Hong Kong, Shantou, Guangdong Province 515041, China
| | - Yingjie Cao
- Joint
Shantou International Eye Center of Shantou University and The Chinese
University of Hong Kong, Shantou, Guangdong Province 515041, China
| | - Mingzhi Zhang
- Joint
Shantou International Eye Center of Shantou University and The Chinese
University of Hong Kong, Shantou, Guangdong Province 515041, China
| | - Qingping Liu
- Joint
Shantou International Eye Center of Shantou University and The Chinese
University of Hong Kong, Shantou, Guangdong Province 515041, China
- Key
Laboratory of Carbohydrate and Lipid Metabolism Research of Liaoning
Province, Dalian, Liaoning Province 116024, China
| |
Collapse
|
25
|
Baars I, Jaedtka M, Dewitz LA, Fu Y, Franz T, Mohr J, Gintschel P, Berlin H, Degen A, Freier S, Rygol S, Schraven B, Kahlfuß S, van Zandbergen G, Müller AJ. Leishmania major drives host phagocyte death and cell-to-cell transfer depending on intracellular pathogen proliferation rate. JCI Insight 2023; 8:e169020. [PMID: 37310793 PMCID: PMC10443809 DOI: 10.1172/jci.insight.169020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The virulence of intracellular pathogens relies largely on the ability to survive and replicate within phagocytes but also on release and transfer into new host cells. Such cell-to-cell transfer could represent a target for counteracting microbial pathogenesis. However, our understanding of the underlying cellular and molecular processes remains woefully insufficient. Using intravital 2-photon microscopy of caspase-3 activation in the Leishmania major-infected (L. major-infected) live skin, we showed increased apoptosis in cells infected by the parasite. Also, transfer of the parasite to new host cells occurred directly without a detectable extracellular state and was associated with concomitant uptake of cellular material from the original host cell. These in vivo findings were fully recapitulated in infections of isolated human phagocytes. Furthermore, we observed that high pathogen proliferation increased cell death in infected cells, and long-term residency within an infected host cell was only possible for slowly proliferating parasites. Our results therefore suggest that L. major drives its own dissemination to new phagocytes by inducing host cell death in a proliferation-dependent manner.
Collapse
Affiliation(s)
- Iris Baars
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Moritz Jaedtka
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Leon-Alexander Dewitz
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Yan Fu
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Tobias Franz
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Juliane Mohr
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Patricia Gintschel
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannes Berlin
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Angelina Degen
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sandra Freier
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Stefan Rygol
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuß
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ger van Zandbergen
- Division of Immunology, Paul Ehrlich Institute, Langen, Germany
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas J. Müller
- Experimental Immunodynamics, Institute of Molecular and Clinical Immunology, Medical Faculty, and
- Health Campus Immunology, Infectiology and Inflammation (GCI3), Medical Faculty and Center for Health and Medical Prevention (CHaMP), Otto von Guericke University Magdeburg, Magdeburg, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
26
|
Feng WW, Zuppe HT, Kurokawa M. The Role of CD36 in Cancer Progression and Its Value as a Therapeutic Target. Cells 2023; 12:1605. [PMID: 37371076 PMCID: PMC10296821 DOI: 10.3390/cells12121605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cluster of differentiation 36 (CD36) is a cell surface scavenger receptor that plays critical roles in many different types of cancer, notably breast, brain, and ovarian cancers. While it is arguably most well-known for its fatty acid uptake functions, it is also involved in regulating cellular adhesion, immune response, and apoptosis depending on the cellular and environmental contexts. Here, we discuss the multifaceted role of CD36 in cancer biology, such as its role in mediating metastasis, drug resistance, and immune evasion to showcase its potential as a therapeutic target. We will also review existing approaches to targeting CD36 in pre-clinical studies, as well as discuss the only CD36-targeting drug to advance to late-stage clinical trials, VT1021. Given the roles of CD36 in the etiology of metabolic disorders, such as atherosclerosis, diabetes, and non-alcoholic fatty liver disease, the clinical implications of CD36-targeted therapy are wide-reaching, even beyond cancer.
Collapse
Affiliation(s)
- William W. Feng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Hannah T. Zuppe
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Manabu Kurokawa
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
- Department of Biological Sciences, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
27
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
28
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
29
|
Cheng L, Xu Y, Zhu K, Liang B, Zhang S, Liu P. Protein sample preparation for tissue distribution study. Proteomics Clin Appl 2023; 17:e2200088. [PMID: 36333925 DOI: 10.1002/prca.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The distribution and expression level of a protein among animal tissues is indicative of its possible roles. It is important to establish a generally applicable method to prepare protein samples with high-quality and achieve near 100% recovery of proteins from animal tissues. EXPERIMENTAL DESIGN During preparation, to sufficiently dissolve and maintain stability of almost all proteins from tissues, as well as to avoid most contaminations affecting protein detection, 2×SDS Sample Buffer, sonication and trichloroacetic acid precipitation are applied. RESULTS Here we provide a relatively simple, reproducible, and broadly applicable method for studying protein distribution in most tissues, in which the issues resulting from protein degradation and modification during sample preparation and assay interference by other cellular components like neutral lipids and glycogen could be overcome. Furthermore, this method represents the protein content by equal wet tissue mass, which is a better means to present the expression level of a protein in various tissues. High-quality protein samples from almost all tissues could be prepared. CONCLUSIONS AND CLINICAL RELEVANCE The samples produced are amenable to tissue distribution analysis by Western blotting and for silver/Coomassie staining, proteomics, and other protein analyses, which would contribute to potential biomarkers or treatments for a disease.
Collapse
Affiliation(s)
- Linjia Cheng
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yilu Xu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangling Zhu
- Huazhong University of Science and Technology, Wuhan, China
| | - Bin Liang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Shuyan Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Institute of Infectious Diseases, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Infectious Diseases, Beijing, China.,National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Pingsheng Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
Samovski D, Jacome-Sosa M, Abumrad NA. Fatty Acid Transport and Signaling: Mechanisms and Physiological Implications. Annu Rev Physiol 2023; 85:317-337. [PMID: 36347219 DOI: 10.1146/annurev-physiol-032122-030352] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-chain fatty acids (FAs) are components of plasma membranes and an efficient fuel source and also serve as metabolic regulators through FA signaling mediated by membrane FA receptors. Impaired tissue FA uptake has been linked to major complications of obesity, including insulin resistance, cardiovascular disease, and type 2 diabetes. Fatty acid interactions with a membrane receptor and the initiation of signaling can modify pathways related to nutrient uptake and processing, cell proliferation or differentiation, and secretion of bioactive factors. Here, we review the major membrane receptors involved in FA uptake and FA signaling. We focus on two types of membrane receptors for long-chain FAs: CD36 and the G protein-coupled FA receptors FFAR1 and FFAR4. We describe key signaling pathways and metabolic outcomes for CD36, FFAR1, and FFAR4 and highlight the parallels that provide insight into FA regulation of cell function.
Collapse
Affiliation(s)
- Dmitri Samovski
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Miriam Jacome-Sosa
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Harder JW, Ma J, Alard P, Sokoloski KJ, Mathiowitz E, Furtado S, Egilmez NK, Kosiewicz MM. Male microbiota-associated metabolite restores macrophage efferocytosis in female lupus-prone mice via activation of PPARγ/LXR signaling pathways. J Leukoc Biol 2023; 113:41-57. [PMID: 36822162 DOI: 10.1093/jleuko/qiac002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Systemic lupus erythematosus development is influenced by both sex and the gut microbiota. Metabolite production is a major mechanism by which the gut microbiota influences the immune system, and we have previously found differences in the fecal metabolomic profiles of lupus-prone female and lupus-resistant male BWF1 mice. Here we determine how sex and microbiota metabolite production may interact to affect lupus. Transcriptomic analysis of female and male splenocytes showed genes that promote phagocytosis were upregulated in BWF1 male mice. Because patients with systemic lupus erythematosus exhibit defects in macrophage-mediated phagocytosis of apoptotic cells (efferocytosis), we compared splenic macrophage efferocytosis in vitro between female and male BWF1 mice. Macrophage efferocytosis was deficient in female compared to male BWF1 mice but could be restored by feeding male microbiota. Further transcriptomic analysis of the genes upregulated in male BWF1 mice revealed enrichment of genes stimulated by PPARγ and LXR signaling. Our previous fecal metabolomics analyses identified metabolites in male BWF1 mice that can activate PPARγ and LXR signaling and identified one in particular, phytanic acid, that is a very potent agonist. We show here that treatment of female BWF1 splenic macrophages with phytanic acid restores efferocytic activity via activation of the PPARγ and LXR signaling pathways. Furthermore, we found phytanic acid may restore female BWF1 macrophage efferocytosis through upregulation of the proefferocytic gene CD36. Taken together, our data indicate that metabolites produced by BWF1 male microbiota can enhance macrophage efferocytosis and, through this mechanism, could potentially influence lupus progression.
Collapse
Affiliation(s)
- James W Harder
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Jing Ma
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Pascale Alard
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Edith Mathiowitz
- Department of Medical Science and Engineering, Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Stacia Furtado
- Department of Medical Science and Engineering, Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Michele M Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| |
Collapse
|
32
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
33
|
Yang R, Liu Q, Zhang M. The Past and Present Lives of the Intraocular Transmembrane Protein CD36. Cells 2022; 12:cells12010171. [PMID: 36611964 PMCID: PMC9818597 DOI: 10.3390/cells12010171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cluster of differentiation 36 (CD36) belongs to the B2 receptors of the scavenger receptor class B family, which is comprised of single-chain secondary transmembrane glycoproteins. It is present in a variety of cell types, including monocytes, macrophages, microvascular endothelial cells, adipocytes, hepatocytes, platelets, skeletal muscle cells, kidney cells, cardiomyocytes, taste bud cells, and a variety of other cell types. CD36 can be localized on the cell surface, mitochondria, endoplasmic reticulum, and endosomes, playing a role in lipid accumulation, oxidative stress injury, apoptosis, and inflammatory signaling. Recent studies have found that CD36 is expressed in a variety of ocular cells, including retinal pigment epithelium (RPE), retinal microvascular endothelial cells, retinal ganglion cells (RGC), Müller cells, and photoreceptor cells, playing an important role in eye diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Therefore, a comprehensive understanding of CD36 function and downstream signaling pathways is of great significance for the prevention and treatment of eye diseases. This article reviews the molecular characteristics, distribution, and function of scavenger receptor CD36 and its role in ophthalmology in order to deepen the understanding of CD36 in eye diseases and provide new ideas for treatment strategies.
Collapse
Affiliation(s)
- Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology, Shantou University Medical College, Shantou University, Shantou 515041, China
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| |
Collapse
|
34
|
Abe I, Oguri Y, Verkerke ARP, Monteiro LB, Knuth CM, Auger C, Qiu Y, Westcott GP, Cinti S, Shinoda K, Jeschke MG, Kajimura S. Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Dev Cell 2022; 57:2623-2637.e8. [PMID: 36473459 PMCID: PMC9875052 DOI: 10.1016/j.devcel.2022.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
De novo beige adipocyte biogenesis involves the proliferation of progenitor cells in white adipose tissue (WAT); however, what regulates this process remains unclear. Here, we report that in mouse models but also in human tissues, WAT lipolysis-derived linoleic acid triggers beige progenitor cell proliferation following cold acclimation, β3-adrenoceptor activation, and burn injury. A subset of adipocyte progenitors, as marked by cell surface markers PDGFRα or Sca1 and CD81, harbored cristae-rich mitochondria and actively imported linoleic acid via a fatty acid transporter CD36. Linoleic acid not only was oxidized as fuel in the mitochondria but also was utilized for the synthesis of arachidonic acid-derived signaling entities such as prostaglandin D2. Oral supplementation of linoleic acid was sufficient to stimulate beige progenitor cell proliferation, even under thermoneutral conditions, in a CD36-dependent manner. Together, this study provides mechanistic insights into how diverse pathophysiological stimuli, such as cold and burn injury, promote de novo beige fat biogenesis.
Collapse
Affiliation(s)
- Ichitaro Abe
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Yasuo Oguri
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Anthony R P Verkerke
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lauar B Monteiro
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Carly M Knuth
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yunping Qiu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory P Westcott
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Saverio Cinti
- Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Division of Endocrinology & Diabetes, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism, Bronx, NY, USA
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, ON, Canada; Department of Surgery, Division of Plastic Surgery, and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
35
|
Zhao Z, Wang C, Jia J, Wang Z, Li L, Deng X, Cai Z, Yang L, Wang D, Ma S, Zhao L, Tu Z, Yuan G. Regulatory network of metformin on adipogenesis determined by combining high-throughput sequencing and GEO database. Adipocyte 2022; 11:56-68. [PMID: 34974794 PMCID: PMC8741290 DOI: 10.1080/21623945.2021.2013417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adipose differentiation and excessive lipid accumulation are the important characteristics of obesity. Metformin, as a classic hypoglycaemic drug, has been proved to reduce body weight in type 2 diabetes, the specific mechanism has not been completely clear. A few studies have explored its effect on adipogenesis in vitro, but the existing experimental results are ambiguous. 3T3-L1 preadipocytes were used to explore the effects of metformin on the morphological and physiological changes of lipid droplets during adipogenesis. A high throughput sequencing was used to examine the effects of metformin on the transcriptome of adipogenesis. Considering the inevitable errors among independent experiments, we performed integrated bioinformatics analysis to identify important genes involved in adipogenesis and reveal potential molecular mechanisms. During the process of adipogenesis, metformin visibly relieved the morphological and functional changes. In addition, metformin reverses the expression pattern of genes related to adipogenesis at the transcriptome level. Combining with integrated bioinformatics analyses to further identify the potential targeted genes regulated by metformin during adipogenesis. The present study identified novel changes in the transcriptome of metformin in the process of adipogenesis that might shed light on the underlying mechanism by which metformin impedes the progression of obesity.
Collapse
Affiliation(s)
- Zhicong Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chenxi Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jue Jia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhaoxiang Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lian Li
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhensheng Cai
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ling Yang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Suxian Ma
- Department of Endocrinology, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Li Zhao
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
36
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
37
|
CD36-Fatty Acid-Mediated Metastasis via the Bidirectional Interactions of Cancer Cells and Macrophages. Cells 2022; 11:cells11223556. [PMID: 36428985 PMCID: PMC9688315 DOI: 10.3390/cells11223556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Tumour heterogeneity refers to the complexity of cell subpopulations coexisting within the tumour microenvironment (TME), such as proliferating tumour cells, tumour stromal cells and infiltrating immune cells. The bidirectional interactions between cancer and the surrounding microenvironment mark the tumour survival and promotion functions, which allow the cancer cells to become invasive and initiate the metastatic cascade. Importantly, these interactions have been closely associated with metabolic reprogramming, which can modulate the differentiation and functions of immune cells and thus initiate the antitumour response. The purpose of this report is to review the CD36 receptor, a prominent cell receptor in metabolic activity specifically in fatty acid (FA) uptake, for the metabolic symbiosis of cancer-macrophage. In this review, we provide an update on metabolic communication between tumour cells and macrophages, as well as how the immunometabolism indirectly orchestrates the tumour metastasis.
Collapse
|
38
|
Li Y, Huang X, Yang G, Xu K, Yin Y, Brecchia G, Yin J. CD36 favours fat sensing and transport to govern lipid metabolism. Prog Lipid Res 2022; 88:101193. [PMID: 36055468 DOI: 10.1016/j.plipres.2022.101193] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/26/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
CD36, located on the cell membrane, transports fatty acids in response to dietary fat. It is a critical fatty acid sensor and regulator of lipid metabolism. The interaction between CD36 and lipid dysmetabolism and obesity has been identified in various models and human studies. Nevertheless, the mechanisms by which CD36 regulates lipid metabolism and the role of CD36 in metabolic diseases remain obscure. Here, we summarize the latest research on the role of membrane CD36 in fat metabolism, with emphasis on CD36-mediated fat sensing and transport. This review also critically discusses the factors affecting the regulation of CD36-mediated fat dysfunction. Finally, we review previous clinical evidence of CD36 in metabolic diseases and consider the path forward.
Collapse
Affiliation(s)
- Yunxia Li
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Xingguo Huang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Guan Yang
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong SAR, China
| | - Kang Xu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milano, Via dell'Università, 26900 Lodi, Italy
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128, China.
| |
Collapse
|
39
|
Cifarelli V, Peche VS, Abumrad NA. Vascular and lymphatic regulation of gastrointestinal function and disease risk. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159207. [PMID: 35882297 PMCID: PMC9642046 DOI: 10.1016/j.bbalip.2022.159207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
The vascular and lymphatic systems in the gut regulate lipid transport while restricting transfer of commensal gut microbiota and directing immune cell trafficking. Increased permeability of the endothelial systems in the intestine associates with passage of antigens and microbiota from the gut into the bloodstream leading to tissue inflammation, the release of pro-inflammatory mediators and ultimately to abnormalities of systemic metabolism. Recent studies show that lipid metabolism maintains homeostasis and function of intestinal blood and lymphatic endothelial cells, BECs and LECs, respectively. This review highlights recent progress in this area, and information related to the contribution of the lipid transporter CD36, abundant in BECs and LECs, to gastrointestinal barrier integrity, inflammation, and to gut regulation of whole body metabolism. The potential role of endothelial lipid delivery in epithelial tissue renewal after injury and consequently in the risk of gastric and intestinal diseases is also discussed.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| | - Vivek S Peche
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Choi SYC, Ribeiro CF, Wang Y, Loda M, Plymate SR, Uo T. Druggable Metabolic Vulnerabilities Are Exposed and Masked during Progression to Castration Resistant Prostate Cancer. Biomolecules 2022; 12:1590. [PMID: 36358940 PMCID: PMC9687810 DOI: 10.3390/biom12111590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
There is an urgent need for exploring new actionable targets other than androgen receptor to improve outcome from lethal castration-resistant prostate cancer. Tumor metabolism has reemerged as a hallmark of cancer that drives and supports oncogenesis. In this regard, it is important to understand the relationship between distinctive metabolic features, androgen receptor signaling, genetic drivers in prostate cancer, and the tumor microenvironment (symbiotic and competitive metabolic interactions) to identify metabolic vulnerabilities. We explore the links between metabolism and gene regulation, and thus the unique metabolic signatures that define the malignant phenotypes at given stages of prostate tumor progression. We also provide an overview of current metabolism-based pharmacological strategies to be developed or repurposed for metabolism-based therapeutics for castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Stephen Y. C. Choi
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Caroline Fidalgo Ribeiro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Department of Experimental Therapeutics, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY 10021, USA
- New York Genome Center, New York, NY 10013, USA
| | - Stephen R. Plymate
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
- Geriatrics Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Takuma Uo
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, 850 Republican St., Seattle, WA 98109, USA
| |
Collapse
|
41
|
Touré M, Hichami A, Sayed A, Suliman M, Samb A, Khan NA. Association between polymorphisms and hypermethylation of CD36 gene in obese and obese diabetic Senegalese females. Diabetol Metab Syndr 2022; 14:117. [PMID: 35982478 PMCID: PMC9386198 DOI: 10.1186/s13098-022-00881-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity and related metabolic disorders are associated with genetic and epigenetic alterations. In this study, we have examined the association between polymorphisms and hypermethylation of the CD36 gene promoter with obesity in Senegalese females with or without type 2 diabetes mellitus to identify novel molecular markers of these pathologies (obesity and type 2 diabetes mellitus). MATERIALS AND METHODS The study was conducted in Senegal with healthy lean control, obese, and obese diabetic (age; 49.98 years ± 7.52 vs 50.50 years ± 8.76 vs 51.06 ± 5.78, and body mass index (BMI); 24.19 kg/m2 ± 2.74 vs 34.30 kg/m2 ± 4.41 vs 33.09 kg/m2 ± 4.30). We determined three genetic polymorphisms of CD36 i.e., rs1761667, rs1527483, and rs3211867 by real-time polymerase chain reaction, and methylation of CPG islands of CD36 was assessed by methylation-specific polymerase chain reaction (MS-PCR) in DNA isolated from peripheral blood of each participant. Plasma sCD36 levels and DNA methyltransferase 3a (DNMT3a) levels were determined by enzyme-linked immunosorbent assay (ELISA). According to the standard laboratory protocol, all biochemical parameters were analyzed from fasting serum or plasma. RESULTS For rs1761667, obese and obese diabetic subjects had statistically significant different parameters depending on the genotypic distribution. These were waist size for obese and HDL cholesterol for obese diabetic, they were significantly higher in subjects harboring GG genotype of rs1761667 (respectively p = 0.04 and p = 0.04). For rs3211867, obese subjects harboring the AA/AC genotype had significantly higher BMI (p = 0.02) and total cholesterol (p = 0.03) than obese subjects harboring the CC genotype. At the same time, the obese diabetic subjects harboring the AA/AC genotype had total cholesterol levels significantly higher than the obese diabetic subjects harboring the CC genotype (p = 0.03). For rs1527483, only the control subjects had statistically significant different parameters depending on the genotypic distribution. The control subjects harboring the GG genotype had a significantly higher BMI than the control subjects harboring the AA/AG genotype (p = 0.003). The CD36 gene methylation was significantly 1.36 times more frequent in obese and obese diabetic compared to lean control (RR = 1.36; p = 0.04). DNMT3a levels were higher in subjects with CD36 gene methylation than in subjects without CD36 gene methylation in each group. Obese diabetic subjects with CD36 gene methylation had significantly fewer plasmas sCD36 (p = 0.03) and more LDL-cholesterol (p = 0.01) than obese diabetic subjects without CD36 gene methylation. In the control group, an increase in sCD36 levels would be associated with a decrease in total cholesterol and triglyceride levels (coef = -7647.56 p = 0.01 and coef = -2528.50 p = 0.048, respectively) would be associated with an increase in LDL cholesterol levels. For the obese group, an increase in sCD36 levels would be associated with an increase in fasting insulin levels (coef = 490.99 p = 0.02) and a decrease in glycated hemoglobin levels (coef = -1196.26 p = 0.03). An increase in the sCD36 levels would be associated with an increase in the triglyceride levels in the obese diabetic group (coef = 9937.41 p = 0.02). The AA/AC genotype of SNP rs3211867 polymorphism was significantly associated with CD36 gene methylation in the control and obese diabetic groups (respectively p = 0.05, p = 0.002; 95% CI). CONCLUSION These observations suggest that polymorphisms and epigenetic changes in CD36 gene promoters may be implicated in the onset of obesity and its related complication type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Maïmouna Touré
- Laboratoire de Physiologie Humaine et d'Explorations Fonctionnelles, Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie (FMPOS) de l'Université Cheikh Anta Diop (UCAD), Dakar, Sénégal.
- Physiologie de La Nutrition & Toxicologie, INSERM U1231, Université de Bourgogne-Franche Comté (UBFC), Dijon AgroSup, 21000, Dijon, France.
- IRL3189 ESS (Environnement, Santé, Sociétés ), CNRS, CNRST, Bamoko-UCAD, Dakar, Sénégal.
| | - Aziz Hichami
- Physiologie de La Nutrition & Toxicologie, INSERM U1231, Université de Bourgogne-Franche Comté (UBFC), Dijon AgroSup, 21000, Dijon, France
| | - Amira Sayed
- Physiologie de La Nutrition & Toxicologie, INSERM U1231, Université de Bourgogne-Franche Comté (UBFC), Dijon AgroSup, 21000, Dijon, France
| | - Muhtadi Suliman
- Physiologie de La Nutrition & Toxicologie, INSERM U1231, Université de Bourgogne-Franche Comté (UBFC), Dijon AgroSup, 21000, Dijon, France
| | - Abdoulaye Samb
- Laboratoire de Physiologie Humaine et d'Explorations Fonctionnelles, Faculté de Médecine, de Pharmacie et d'Odonto-Stomatologie (FMPOS) de l'Université Cheikh Anta Diop (UCAD), Dakar, Sénégal
- IRL3189 ESS (Environnement, Santé, Sociétés ), CNRS, CNRST, Bamoko-UCAD, Dakar, Sénégal
| | - Naim Akhtar Khan
- Physiologie de La Nutrition & Toxicologie, INSERM U1231, Université de Bourgogne-Franche Comté (UBFC), Dijon AgroSup, 21000, Dijon, France
| |
Collapse
|
42
|
Zou Y, Pei J, Wang Y, Chen Q, Sun M, Kang L, Zhang X, Zhang L, Gao X, Lin Z. The Deficiency of SCARB2/LIMP-2 Impairs Metabolism via Disrupted mTORC1-Dependent Mitochondrial OXPHOS. Int J Mol Sci 2022; 23:ijms23158634. [PMID: 35955761 PMCID: PMC9368982 DOI: 10.3390/ijms23158634] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Deficiency in scavenger receptor class B, member 2 (SCARB2) is related to both Gaucher disease (GD) and Parkinson’s disease (PD), which are both neurodegenerative-related diseases without cure. Although both diseases lead to weight loss, which affects the quality of life and the progress of diseases, the underlying molecular mechanism is still unclear. In this study, we found that Scarb2−/− mice showed significantly reduced lipid storage in white fat tissues (WAT) compared to WT mice on a regular chow diet. However, the phenotype is independent of heat production, activity, food intake or energy absorption. Furthermore, adipocyte differentiation and cholesterol homeostasis were unaffected. We found that the impaired lipid accumulation of Adiponectin-cre; Scarb2fl/fl mice was due to the imbalance between glycolysis and oxidative phosphorylation (OXPHOS). Mechanistically, the mechanistic target of rapamycin complex 1 (mTORC1)/ eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) pathway was down-regulated in Scarb2 deficient adipocytes, leading to impaired mitochondrial respiration and enhanced glycolysis. Altogether, we reveal the role of SCARB2 in metabolism regulation besides the nervous system, which provides a theoretical basis for weight loss treatment of patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yujie Zou
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Jingwen Pei
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Yushu Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Qin Chen
- Department of Oral Surgery, Shanghai Jiao Tong University, 639 Zhizaoju Road, Huangpu District, Shanghai 200240, China;
| | - Minli Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Lulu Kang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Xuyuan Zhang
- The Center of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.Z.); (L.Z.)
| | - Liguo Zhang
- The Center of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.Z.); (L.Z.)
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
- Correspondence: (X.G.); (Z.L.)
| | - Zhaoyu Lin
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
- Correspondence: (X.G.); (Z.L.)
| |
Collapse
|
43
|
Lecoutre S, Lambert M, Drygalski K, Dugail I, Maqdasy S, Hautefeuille M, Clément K. Importance of the Microenvironment and Mechanosensing in Adipose Tissue Biology. Cells 2022; 11:cells11152310. [PMID: 35954152 PMCID: PMC9367348 DOI: 10.3390/cells11152310] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
The expansion of adipose tissue is an adaptive mechanism that increases nutrient buffering capacity in response to an overall positive energy balance. Over the course of expansion, the adipose microenvironment undergoes continual remodeling to maintain its structural and functional integrity. However, in the long run, adipose tissue remodeling, typically characterized by adipocyte hypertrophy, immune cells infiltration, fibrosis and changes in vascular architecture, generates mechanical stress on adipose cells. This mechanical stimulus is then transduced into a biochemical signal that alters adipose function through mechanotransduction. In this review, we describe the physical changes occurring during adipose tissue remodeling, and how they regulate adipose cell physiology and promote obesity-associated dysfunction in adipose tissue.
Collapse
Affiliation(s)
- Simon Lecoutre
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Mélanie Lambert
- Labex Inflamex, Université Sorbonne Paris Nord, INSERM, F-93000 Bobigny, France;
| | - Krzysztof Drygalski
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Isabelle Dugail
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet Hospital, C2-94, 14186 Stockholm, Sweden;
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR 7622), IBPS, Sorbonne Université, F-75005 Paris, France;
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group (Nutri-Omics), Sorbonne Université, INSERM, F-75013 Paris, France; (S.L.); (K.D.); (I.D.)
- Assistance Publique Hôpitaux de Paris, Nutrition Department, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, F-75013 Paris, France
- Correspondence: or
| |
Collapse
|
44
|
Fatty acid translocase: a culprit of lipid metabolism dysfunction in disease. IMMUNOMETABOLISM 2022; 4:e00001. [PMID: 35991116 PMCID: PMC9380421 DOI: 10.1097/in9.0000000000000001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Dysregulation of lipid deposition into and mobilization from white adipose tissue (WAT) underlies various diseases. Long-chain fatty acids (LCFA) and cholesterol trafficking in and out of adipocytes is a process relying on transporters shuttling lipids from the plasma membrane (PM) to lipid droplets (LD). CD36 is the fatty acid translocase (FAT) that transports LCFA and cholesterol across the PM. Interactions of CD36 with proteins PHB1, ANX2, and CAV1 mediate intercellular lipid transport between adipocytes, hematopoietic, epithelial, and endothelial cells. Intracellularly, the FAT complex has been found to regulate LCFA trafficking between the PM and LD. This process is regulated by CD36 glycosylation and S-acylation, as well as by post-translational modifications of PHB1 and ANX2, which determine both protein–protein interactions and the cellular localization of the complex. Changes in extracellular and intracellular LCFA levels have been found to induce the post-translational modifications and the function of the FAT complex in lipid uptake and mobilization. The role of the CD36/PHB1/ANX2 complex may span beyond lipid trafficking. The requirement of PHB1 for mitochondrial oxidative metabolism in brown adipocytes has been revealed. Cancer cells which take advantage of lipids mobilized by adipocytes and oxidized in leukocytes are indirectly affected by the function of FAT complex in other tissues. The direct importance of CD36 interaction with PHB1/and ANX2 in cancer cells remains to be established. This review highlights the multifaceted roles of the FAT complex in systemic lipid trafficking and discuss it as a potential target in metabolic disease and cancer.
Collapse
|
45
|
Chen Y, Zhang J, Cui W, Silverstein RL. CD36, a signaling receptor and fatty acid transporter that regulates immune cell metabolism and fate. J Exp Med 2022; 219:e20211314. [PMID: 35438721 PMCID: PMC9022290 DOI: 10.1084/jem.20211314] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
CD36 is a type 2 cell surface scavenger receptor widely expressed in many immune and non-immune cells. It functions as both a signaling receptor responding to DAMPs and PAMPs, as well as a long chain free fatty acid transporter. Recent studies have indicated that CD36 can integrate cell signaling and metabolic pathways through its dual functions and thereby influence immune cell differentiation and activation, and ultimately help determine cell fate. Its expression along with its dual functions in both innate and adaptive immune cells contribute to pathogenesis of common diseases, including atherosclerosis and tumor progression, which makes CD36 and its downstream effectors potential therapeutic targets. This review comprehensively examines the dual functions of CD36 in a variety of immune cells, especially macrophages and T cells. We also briefly discuss CD36 function in non-immune cells, such as adipocytes and platelets, which impact the immune system via intercellular communication. Finally, outstanding questions in this field are provided for potential directions of future studies.
Collapse
Affiliation(s)
- Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Versiti, Blood Research Institute, Milwaukee, WI
| | - Jue Zhang
- Versiti, Blood Research Institute, Milwaukee, WI
| | - Weiguo Cui
- Versiti, Blood Research Institute, Milwaukee, WI
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Roy L. Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
- Versiti, Blood Research Institute, Milwaukee, WI
| |
Collapse
|
46
|
Yang Q, Hinkle J, Reed JN, Aherrahrou R, Xu Z, Harris TE, Stephenson EJ, Musunuru K, Keller SR, Civelek M. Adipocyte-Specific Modulation of KLF14 Expression in Mice Leads to Sex-Dependent Impacts on Adiposity and Lipid Metabolism. Diabetes 2022; 71:677-693. [PMID: 35081256 PMCID: PMC8965685 DOI: 10.2337/db21-0674] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022]
Abstract
Genome-wide association studies identified single nucleotide polymorphisms on chromosome 7 upstream of KLF14 to be associated with metabolic syndrome traits and increased risk for type 2 diabetes (T2D). The associations were more significant in women than in men. The risk allele carriers expressed lower levels of the transcription factor KLF14 in adipose tissues than nonrisk allele carriers. To investigate how adipocyte KLF14 regulates metabolic traits in a sex-dependent manner, we characterized high-fat diet-fed male and female mice with adipocyte-specific Klf14 deletion or overexpression. Klf14 deletion resulted in increased fat mass in female mice and decreased fat mass in male mice. Female Klf14-deficient mice had overall smaller adipocytes in subcutaneous fat depots but larger adipocytes in parametrial depots, indicating a shift in lipid storage from subcutaneous to visceral fat depots. They had reduced metabolic rates and increased respiratory exchange ratios consistent with increased use of carbohydrates as an energy source. Fasting- and isoproterenol-induced adipocyte lipolysis was defective in female Klf14-deficient mice, and concomitantly, adipocyte triglycerides lipase mRNA levels were downregulated. Female Klf14-deficient mice cleared blood triglyceride and nonesterified fatty acid less efficiently than wild-type. Finally, adipocyte-specific overexpression of Klf14 resulted in lower total body fat in female but not male mice. Taken together, consistent with human studies, adipocyte KLF14 deficiency in female but not in male mice causes increased adiposity and redistribution of lipid storage from subcutaneous to visceral adipose tissues. Increasing KLF14 abundance in adipocytes of females with obesity and T2D may provide a novel treatment option to alleviate metabolic abnormalities.
Collapse
Affiliation(s)
- Qianyi Yang
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA
- Corresponding authors: Qianyi Yang, , and Mete Civelek,
| | - Jameson Hinkle
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA
| | - Jordan N. Reed
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA
| | - Redouane Aherrahrou
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA
| | - Zhiwen Xu
- Department of Chemistry, College of Arts and Sciences, University of Virginia, Charlottesville, VA
| | - Thurl E. Harris
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA
| | - Erin J. Stephenson
- Department of Anatomy, College of Graduate Studies & Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL
| | - Kiran Musunuru
- Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Susanna R. Keller
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA
| | - Mete Civelek
- Center for Public Health Genomics, School of Medicine, University of Virginia, Charlottesville, VA
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA
- Corresponding authors: Qianyi Yang, , and Mete Civelek,
| |
Collapse
|
47
|
Tsuzuki S, Kimoto Y, Marui K, Lee S, Inoue K, Sasaki T. Application of a novel fluorescence intensity assay: identification of distinct fatty acetates as volatile compounds that bind specifically to amino acid region 149-168 of a transmembrane receptor CD36. Biosci Biotechnol Biochem 2022; 86:509-518. [PMID: 35102395 DOI: 10.1093/bbb/zbac018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022]
Abstract
The cluster of differentiation 36 (CD36) is a transmembrane receptor expressed in various cells and has diverse lipid ligands. The expression of CD36 in the murine olfactory epithelium and its ability to recognize certain species of fatty aldehydes, a class of odor-active volatile compounds, have suggested a role for this receptor in the capture of specific odorants in the nasal cavity of mammals. However, the spectrum of CD36-recognizable volatile compounds is poorly understood. In this study, we employed our recently devised assay with fluorescently labeled peptides as probes (fluorescence intensity assay) and identified distinct fatty acetates as volatile compounds that bind specifically to amino acid region 149-168 of CD36 (eg dodecyl and tetradecyl acetates). The present findings demonstrate the utility of our assay for the discovery of novel CD36 ligands and support the notion that the receptor functions as a captor of volatile compounds in the mammalian olfactory system.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Yusaku Kimoto
- Department of Food Science and Biotechnology, Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Keita Marui
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Shinhye Lee
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| | - Tsutomu Sasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University Sakyo-ku, Kyoto, Japan
| |
Collapse
|
48
|
Maryanovich M, Ito K. CD36-Mediated Fatty Acid Oxidation in Hematopoietic Stem Cells Is a Novel Mechanism of Emergency Hematopoiesis in Response to Infection. IMMUNOMETABOLISM 2022; 4:e220008. [PMID: 35465142 PMCID: PMC9029143 DOI: 10.20900/immunometab20220008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022]
Abstract
Hematopoietic homeostasis depends on the close regulation of hematopoietic stem cell (HSC) activity in the bone marrow. Quiescence and activation in response to stress, among other changes in state, are mediated by shifts in HSC metabolic activity. Although HSC steady-state metabolism is well established, the mechanisms driving HSC activation, proliferation, and differentiation in response to stress remain poorly understood. Here we discuss a study by Mistry et al. that describes a novel metabolic mechanism that fuels HSC activation and expansion. The authors show that to meet their metabolic needs in response to infection, hematopoietic stem and progenitor cells uptake free fatty acids from their microenvironment via CD36 to fuel fatty acid oxidation. These exciting findings suggest that in the context of infection, HSCs undergo a metabolic shift toward fatty acid metabolism that drives emergency hematopoiesis and raise questions about the role of the microenvironment in this process.
Collapse
Affiliation(s)
- Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Einstein Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
49
|
Jiang XX, Bian W, Zhu YR, Wang Z, Ye P, Gu Y, Zhang H, Zuo G, Li X, Zhu L, Liu Z, Sun C, Chen SL, Zhang DM. Targeting the KCa3.1 channel suppresses diabetes-associated atherosclerosis via the STAT3/CD36 axis. Diabetes Res Clin Pract 2022; 185:109776. [PMID: 35149165 DOI: 10.1016/j.diabres.2022.109776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND In diet-induced arterial atherosclerosis, increased KCa3.1 channel was associated with atherosclerotic plaque progression and instability. Macrophages are involved in the formation of atherosclerotic plaques, and the release of inflammatory cytokines and oxygen free radicals promotes plaque progression. However, whether the macrophage KCa3.1 channel facilitates diabetes-accelerated atherosclerosis is still unclear. This study investigated atherosclerotic plaque in ApoE-/- mice regulated by the KCa3.1 channel. METHODS AND RESULTS In vivo, blocking KCa3.1channel inhibit the development of the atherosclerotic lesion in diabetic ApoE-/- mice fed with a high-fat diet. In vitro, upregulation of KCa3.1 channel level occurred in RAW264.7 cells treated with HG plus ox-LDL in a time-dependent manner. Blocking KCa3.1 significantly reduced the uptake of ox-LDL in mice peritoneal macrophages. Further studies indicated the KCa3.1 siRNA and TRAM-34 (KCa3.1 inhibitor) attenuated the scavenger receptor CD36 expression via inhibiting STAT3 phosphorylation. CONCLUSION Blockade of macrophage KCa3.1 channel inhibit cellular oxidized low-density lipoprotein accumulation and decrease proinflammation factors expression via STAT3/CD36 axis. This study provided a novel therapeutic target to reduce the risk of atherosclerosis development in diabetic patients.
Collapse
Affiliation(s)
- Xiao-Xin Jiang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Yan-Rong Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Xiaobo Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Linlin Zhu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Zhizhong Liu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China
| | - Chongxiu Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China.
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, PR China; Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, No. 109 Longmian Road, Nanjing 211166, PR China.
| |
Collapse
|
50
|
Exploring the Pattern of Metabolic Alterations Causing Energy Imbalance via PPARα Dysregulation in Cardiac Muscle During Doxorubicin Treatment. Cardiovasc Toxicol 2022; 22:436-461. [PMID: 35157213 DOI: 10.1007/s12012-022-09725-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity by anthracycline antineoplastic drug doxorubicin is one of the systemic toxicity of the cardiovascular system. The mechanism responsible for doxorubicin cardiotoxicity and lipid metabolism remains elusive. The current study tested the hypotheses that the role of peroxisome proliferator-activated receptor α (PPARα) in the progress of doxorubicin-induced cardiomyopathy and its mechanism behind lipid metabolism. In the present study, male rats were subjected to intraperitoneal injection (5-week period) of doxorubicin with different dosages such as low dosage (1.5 mg/kg body weight) and high dosage (15 mg/kg body weight) to induce doxorubicin cardiomyopathy. Myocardial PPARα was impaired in both low dosage and high dosage of doxorubicin-treated rats in a dose-dependent manner. The attenuated level of PPARα impairs the expression of the genes involved in mitochondrial transporter, fatty acid transportation, lipolysis, lipid metabolism, and fatty acid oxidation. Moreover, it disturbs the reverse triacylglycerol transporter apolipoprotein B-100 (APOB) in the myocardium. Doxorubicin elevates the circulatory lipid profile and glucose. Further aggravated lipid profile in circulation impedes the metabolism of lipid in cardiac tissue, which causes a lipotoxic condition in the heart and subsequently associated disease for the period of doxorubicin treatment. Elevated lipids in the circulation translocate into the heart dysregulates lipid metabolism in the heart, which causes augmented oxidative stress and necro-apoptosis and mediates lipotoxic conditions. This finding determines the mechanistic role of doxorubicin-disturbed lipid metabolism via PPARα, which leads to cardiac dysfunction.
Collapse
|