1
|
Chang CH, Few LL, Lim BH, Yvonne-Tee GB, Chew AL, See Too WC. Unusual metal ion cofactor requirement of Entamoeba histolytica choline and ethanolamine kinase isoforms. Parasitol Res 2023:10.1007/s00436-023-07869-5. [PMID: 37202563 DOI: 10.1007/s00436-023-07869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
The de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica is largely dependent on the CDP-choline and CDP-ethanolamine pathways. Although the first enzymes of these pathways, EhCK1 and EhCK2, have been previously characterized, their enzymatic activity was found to be low and undetectable, respectively. This study aimed to identify the unusual characteristics of these enzymes in this deadly parasite. The discovery that EhCKs prefer Mn2+ over the typical Mg2+ as a metal ion cofactor is intriguing for CK/EK family of enzymes. In the presence of Mn2+, the activity of EhCK1 increased by approximately 108-fold compared to that in Mg2+. Specifically, in Mg2+, EhCK1 exhibited a Vmax and K0.5 of 3.5 ± 0.1 U/mg and 13.9 ± 0.2 mM, respectively. However, in Mn2+, it displayed a Vmax of 149.1 ± 2.5 U/mg and a K0.5 of 9.5 ± 0.1 mM. Moreover, when Mg2+ was present at a constant concentration of 12 mM, the K0.5 value for Mn2+ was ~ 2.4-fold lower than that in Mn2+ alone, without affecting its Vmax. Although the enzyme efficiency of EhCK1 was significantly improved by about 25-fold in Mn2+, it is worth noting that its Km for choline and ATP were higher than in equimolar of Mg2+ in a previous study. In contrast, EhCK2 showed specific activity towards ethanolamine in Mn2+, exhibiting Michaelis-Menten kinetic with ethanolamine (Km = 312 ± 27 µM) and cooperativity with ATP (K0.5 = 2.1 ± 0.2 mM). Additionally, we investigated the effect of metal ions on the substrate recognition of human choline and ethanolamine kinase isoforms. Human choline kinase α2 was found to absolutely require Mg2+, while choline kinase β differentially recognized choline and ethanolamine in Mg2+ and Mn2+, respectively. Finally, mutagenesis studies revealed that EhCK1 Tyr129 was critical for Mn2+ binding, while Lys233 was essential for substrate catalysis but not metal ion binding. Overall, these findings provide insight into the unique characteristics of the EhCKs and highlight the potential for new approaches to treating amoebiasis. Amoebiasis is a challenging disease for clinicians to diagnose and treat, as many patients are asymptomatic. However, by studying the enzymes involved in the CDP-choline and CDP-ethanolamine pathways, which are crucial for de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica, there is great potential to discover new therapeutic approaches to combat this disease.
Collapse
Affiliation(s)
- Chiat Han Chang
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Boon Huat Lim
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Get Bee Yvonne-Tee
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ai Lan Chew
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
Xian L, Sahu SK, Huang L, Fan Y, Lin J, Su J, Bai M, Chen Y, Wang S, Ye P, Wang F, Luo Q, Bai H, Lin X, Yuan C, Geng X, Liu H, Wu H. The draft genome and multi-omics analyses reveal new insights into geo-herbalism properties of Citrus grandis 'Tomentosa'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111489. [PMID: 36216298 DOI: 10.1016/j.plantsci.2022.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Citrus grandis 'Tomentosa' (CGT) (Huajuhong, HJH) is a widely used medicinal plant, which is mainly produced in Guangdong and Guangxi provinces of South China. Particularly, HJH from Huazhou (HZ) county of Guangdong province has been well-regarded as the best national product for geo-herbalism. But the reasons for geo-herbalism property in HJH from HZ county remains a mystery. Therefore, a multi-omics approach was applied to identify the nature of the geo-herbalism in CGT from three different regions. The comprehensive screening of differential metabolites revealed that the Nobiletin content was significantly different in HZ region compared to other regions, and could be employed as a key indicator to determine the geo-herbalism. Furthermore, the high-quality genome (N50 of 9.12 Mb), coupled with genomics and transcriptomics analyses indicated that CGT and Citrus grandis are closely related, with a predicted divergence time of 19.1 million years ago (MYA), and no recent WGD occurred in the CGT, and the bioactive ingredients of CGT were more abundant than that of Citrus grandis. Interestingly, Nobiletin (Polymethoxyflavones) content was identified as a potential indicator of geo-herbalism, and O-methyltransferase (OMT) genes are involved in the synthesis of Polymethoxyflavones. Further multi-omics analysis led to the identification of a novel OMT gene (CtgOMT1) whose transient overexpression displayed significantly higher Nobiletin content, suggesting that CtgOMT1 was involved in the synthesis of Nobiletin. Overall, our findings provide new data resources for geo-herbalism evaluation, germplasm conservation and insights into Nobiletin biosynthesis pathways for the medicinal plant C. grandis 'Tomentosa'.
Collapse
Affiliation(s)
- Lin Xian
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Liying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jianhao Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianmu Su
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Peng Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haiyi Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Caihong Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodie Geng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
|
4
|
The dual enzyme LRRK2 hydrolyzes GTP in both its GTPase and kinase domains in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:274-280. [PMID: 27939437 DOI: 10.1016/j.bbapap.2016.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022]
Abstract
The evolutionarily conserved enzyme encoded by the leucine-rich repeat kinase 2 gene, LRRK2, harbors both a Rab-like GTPase domain and a serine/threonine protein kinase domain. Pathogenic mutations in either the GTPase or kinase domain can cause neurodegeneration and Parkinson disease. No high-resolution structure of the human LRRK2 kinase domain is available but the most common mutation, G2019S in the kinase domain, is predicted to alter the ATP-binding pocket structure and interaction with divalent cations. Here we find that the manganese-bound kinase domain acquires a robust ability to utilize both GTP as well as ATP in autophosphorylation of the GTPase domain and phosphorylation of peptide substrates in vitro. The G2019S LRRK2 mutation increases the efficiency of GTP-mediated kinase activity ten-fold compared to WT LRRK2 activity. Moreover, GTP-dependent phosphorylation alters autophosphorylation-site preference in vitro. While additional studies are required to determine the physiological relevance of these observations, LRRK2 is one of the only known kinases to be able to utilize GTP as a phospho-donor at physiological levels in vitro, and thus one of the only known proteins to be able to hydrolyze GTP in two distinct domains within the same protein.
Collapse
|
5
|
Mansuri MS, Babuta M, Ali MS, Bharadwaj R, Deep jhingan G, Gourinath S, Bhattacharya S, Bhattacharya A. Autophosphorylation at Thr279 of Entamoeba histolytica atypical kinase EhAK1 is required for activity and regulation of erythrophagocytosis. Sci Rep 2016; 6:16969. [PMID: 26739245 PMCID: PMC4703981 DOI: 10.1038/srep16969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
Phagocytosis plays a key role in survival and pathogenicity of Entamoeba histolytica. We have recently demonstrated that an atypical kinase EhAK1 is involved in phagocytosis in this parasite. It is recruited to the phagocytic cups through interaction with EhCaBP1. EhAK1 manipulates actin dynamics by multiple mechanisms including phosphorylation of G-actin. Biochemical analysis showed that EhAK1 is a serine/threonine kinase with broad ion specificity and undergoes multiple trans-autophosphorylation. Three autophosphorylation sites were identified by mass spectrometry. Out of these Thr279 appears to be involved in both autophosphorylation as well as substrate phosphorylation. Over expression of the mutant Thr279A inhibited erythrophagocytosis showing dominant negative phenotype. Multiple alignments of different kinases including alpha kinases displayed conserved binding sites that are thought to be important for function of the protein. Mutation studies demonstrated the importance of some of these binding sites in kinase activity. Binding studies with fluorescent-ATP analogs supported our prediction regarding ATP binding site based on sequence alignment. In conclusion, EhAK1 has multiple regulatory features and enrichment of EhAK1 at the site of phagocytosis stimulates trans-autophosphorylation reaction that increases kinase activity resulting in enhanced actin dynamics and phagocytosis. Some of the properties of EhAK1 are similar to that seen in alpha kinases.
Collapse
Affiliation(s)
- M Shahid Mansuri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mrigya Babuta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mohammad Sabir Ali
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ravi Bharadwaj
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sudha Bhattacharya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Alok Bhattacharya
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Heng MCY. Signaling pathways targeted by curcumin in acute and chronic injury: burns and photo-damaged skin. Int J Dermatol 2012; 52:531-43. [PMID: 23231506 DOI: 10.1111/j.1365-4632.2012.05703.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phosphorylase kinase (PhK) is a unique enzyme in which the spatial arrangements of the specificity determinants can be manipulated to allow the enzyme to recognize substrates of different specificities. In this way, PhK is capable of transferring high energy phosphate bonds from ATP to serine/threonine and tyrosine moieties in serine/threonine kinases and tyrosine kinases, thus playing a key role in the activation of multiple signaling pathways. Phosphorylase kinase is released within five minutes following injury and is responsible for activating inflammatory pathways in injury-activated scarring following burns. In photo-damaged skin, PhK plays an important role in promoting photocarcinogenesis through activation of NF-kB-dependent signaling pathways with inhibition of apoptosis of photo-damaged cells, thus promoting the survival of precancerous cells and allowing for subsequent tumor transformation. Curcumin, the active ingredient in the spice, turmeric, is a selective and non-competitive PhK inhibitor. By inhibition of PhK, curcumin targets multiple PhK-dependent pathways, with salutary effects on a number of skin diseases induced by injury. In this paper, we show that curcumin gel produces rapid healing of burns, with little or no residual scarring. Curcumin gel is also beneficial in the repair of photo-damaged skin, including pigmentary changes, solar elastosis, thinning of the skin with telangiectasia (actinic poikiloderma), and premalignant lesions such as actinic keratoses, dysplastic nevi, and advanced solar lentigines, but the repair process takes many months.
Collapse
|
7
|
Rogers NM, Stephenson MD, Kitching AR, Horowitz JD, Coates PTH. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells. Br J Pharmacol 2012; 166:194-209. [PMID: 21745189 DOI: 10.1111/j.1476-5381.2011.01590.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. EXPERIMENTAL APPROACH We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. KEY RESULTS Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. CONCLUSIONS AND IMPLICATIONS Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury.
Collapse
Affiliation(s)
- N M Rogers
- Transplant Immunology Laboratory, Hanson Institute, Adelaide, SA, Australia
| | | | | | | | | |
Collapse
|
8
|
Low H, Chua CS, Sim TS. Plasmodium falciparum possesses a unique dual-specificity serine/threonine and tyrosine kinase, Pfnek3. Cell Mol Life Sci 2012; 69:1523-35. [PMID: 22116321 PMCID: PMC11114921 DOI: 10.1007/s00018-011-0888-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 10/15/2022]
Abstract
Despite the absence of classical tyrosine kinases encrypted in the kinome of Plasmodium falciparum, biochemical analyses have detected significant tyrosine phosphorylation in its cell lysates. Supporting such phosphorylation is critical for parasite development. These observations have thus raised queries regarding the plasmodial enzymes accountable for tyrosine kinase activities in vivo. In the current investigation, immunoblot analysis intriguingly demonstrated that Pfnek3, a plasmodial mitogen-activated protein kinase kinase (MAPKK), displayed both serine/threonine and tyrosine kinase activities in autophosphorylation reactions as well as in phosphorylation of the exogenous myelin basic protein substrate. The results obtained strongly support Pfnek3 as a novel dual-specificity kinase of the malarial parasite, even though it displays a HGDLKSTN motif in the catalytic loop that resembles the consensus HRDLKxxN signature found in the serine/threonine kinases. Notably, its serine/threonine and tyrosine kinase activities were found to be distinctly influenced by Mg(2+) and Mn(2+) cofactors. Further probing into the regulatory mechanism of Pfnek3 also revealed tyrosine phosphorylation to be a crucial factor that stimulates its kinase activity. Through biocomputational analyses and functional assays, tyrosine residues Y117, Y122, Y172, and Y238 were proposed as phosphorylation sites essential for mediating the catalytic activities of Pfnek3. The discovery of Pfnek3's dual role in phosphorylation marks its importance in closing the loop for cellular regulation in P. falciparum, which remains elusive to date.
Collapse
Affiliation(s)
- Huiyu Low
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
9
|
Abstract
Wound healing in adult skin, a complex process involving many cell types and processes such as epidermal, fibroblastic, and endothelial cell proliferation, cell migration, matrix synthesis, and wound contraction, almost invariably results in scar tissue formation and wound induration. Unlike in adult skin, wound healing in embryos involves repair processes that result in the essentially perfect regeneration of damaged tissue. This paper discusses key mechanisms that lead to scar tissue formation in adult human skin and treatment modalities, including curcumin gel, that may result in essentially perfect skin regeneration following surgical procedures.
Collapse
Affiliation(s)
- Madalene C Y Heng
- UCLA School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Somlata, Kamanna S, Agrahari M, Babuta M, Bhattacharya S, Bhattacharya A. Autophosphorylation of Ser428 of EhC2PK plays a critical role in regulating erythrophagocytosis in the parasite Entamoeba histolytica. J Biol Chem 2012; 287:10844-52. [PMID: 22753771 DOI: 10.1074/jbc.m111.308874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The protozoan parasite Entamoeba histolytica can invade both intestinal and extra intestinal tissues resulting in amoebiasis. During the process of invasion E. histolytica ingests red blood and host cells using phagocytic processes. Though phagocytosis is considered to be a key virulence determinant, the mechanism is not very well understood in E. histolytica. We have recently demonstrated that a novel C2 domain-containing protein kinase, EhC2PK is involved in the initiation of erythrophagocytosis. Because cells overexpressing the kinase-dead mutant of EhC2PK displayed a reduction in erythrophagocytosis, it appears that kinase activity is necessary for initiation. Biochemical analysis showed that EhC2PK is an unusual Mn(2+)-dependent serine kinase. It has a trans-autophosphorylated site at Ser(428) as revealed by mass spectrometric and biochemical analysis. The autophosphorylation defective mutants (S428A, KDΔC) showed a reduction in auto and substrate phosphorylation. Time kinetics of in vitro kinase activity suggested two phases, an initial short slow phase followed by a rapid phase for wild type protein, whereas mutations in the autophosphorylation sites that cause defect (S428A) or conferred phosphomimetic property (S428E) displayed no distinct phases, suggesting that autophosphorylation may be controlling kinase activity through an autocatalytic mechanism. A reduction and delay in erythrophagocytosis was observed in E. histolytica cells overexpressing S428A and KDΔC proteins. These results indicate that enrichment of EhC2PK at the site of phagocytosis enhances the rate of trans-autophosphorylation, thereby increasing kinase activity and regulating the initiation of erythrophagocytosis in E. histolytica.
Collapse
Affiliation(s)
- Somlata
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | | | | | |
Collapse
|
11
|
Covy JP, Giasson BI. The G2019S pathogenic mutation disrupts sensitivity of leucine-rich repeat kinase 2 to manganese kinase inhibition. J Neurochem 2010; 115:36-46. [PMID: 20626563 DOI: 10.1111/j.1471-4159.2010.06894.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in leucine-rich repeat kinase-2 (LRRK2) are the most common cause of late-onset Parkinson disease. Previously, we showed that the G2019S pathogenic mutation can cause a dramatic increase (approximately 10-fold) in kinase activity, far above other published studies. A notable experimental difference was the use of Mn-ATP as a substrate. Therefore, the effects of metal cation-ATP cofactors on LRRK2 kinase activity were investigated. It is shown, using several divalent metal cations, that only Mg(2+) or Mn(2+) can support LRRK2 kinase activity. However, for wild-type, I2020T, and R1441C LRRK2, Mn(2+) was significantly less effective at supporting kinase activity. In sharp contrast, both Mn(2+) and Mg(2+) were effective at supporting the activity of G2019S LRRK2. These divergent effects associated with divalent cation usage and the G2019S mutation were predominantly because of differences in catalytic rates. However, LRRK2 was shown to have much lower (approximately 40-fold) ATP K(m) for Mn-ATP compared with Mg-ATP. Consequently, sub-stoichiometric concentrations of Mn(2+) can act to inhibit the kinase activity of wild-type, but not G2019S LRRK2 in the presence of Mg(2+) . From these findings, a new model is proposed for a possible function of LRRK2 and the consequence of the G2019S LRRK2 pathogenic mutation.
Collapse
Affiliation(s)
- Jason P Covy
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | |
Collapse
|
12
|
Lovitt B, Vanderporten EC, Sheng Z, Zhu H, Drummond J, Liu Y. Differential effects of divalent manganese and magnesium on the kinase activity of leucine-rich repeat kinase 2 (LRRK2). Biochemistry 2010; 49:3092-100. [PMID: 20205471 DOI: 10.1021/bi901726c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to susceptibility for both familial and idiopathic late-onset Parkinson's disease (PD). In this study, we have demonstrated that phosphorylation of MBP and LRRKtide by the LRRK2 G2019S mutant was activated by Mn(2+) in vitro. This enhanced G2019S kinase activity was due to the combination of an increase in kinase and a decrease in ATPase activity by Mn(2+). Compared to 10 mM Mg(2+), 1 mM Mn(2+) reduced ATP K(m) for G2019S from 103 to 1.8 muM and only modestly reduced k(cat) (2.5-fold); as a result, the Mn(2+) increased its k(cat)/K(m) by 22-fold. This change in ATP K(m) was due in large part to an increase in nucleotide affinity. While Mn(2+) also increased ATP affinity and had similar effects on k(cat)/K(m) for LRRK2 WT and R1441C enzymes, it reduced their k(cat) values significantly by 13-17-fold. Consequently, the difference in the kinase activity between G2019S and other LRRK2 variants was enhanced from about 2-fold in Mg(2+) to 10-fold in Mn(2+) at saturating ATP concentrations relative to its K(m). Furthermore, while Mg(2+) yielded optimal V(max) values at Mg(2+) concentration greater than 5 mM, the optimal Mn(2+) concentration for activating LRRK2 catalysis was in the micromolar range with increasing Mn(2+) above 1 mM causing a decrease in enzyme activity. Finally, despite the large but expected differences in IC(50) tested at 100 muM ATP, the apparent K(i) values of a small set of LRRK2 ATP-competitive inhibitors were within 5-fold between Mg(2+)- and Mn(2+)-mediated reactions except AMP-CPP, an ATP analogue.
Collapse
Affiliation(s)
- Brian Lovitt
- Biochemical Pharmacology and Early Leads, Genentech, Inc.,One DNA Way, South San Francisco, California 90480, USA
| | | | | | | | | | | |
Collapse
|
13
|
Heng MC. Curcumin targeted signaling pathways: basis for anti-photoaging and anti-carcinogenic therapy. Int J Dermatol 2010; 49:608-22. [DOI: 10.1111/j.1365-4632.2010.04468.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
de Boer AR, Letzel T, Lingeman H, Irth H. Systematic development of an enzymatic phosphorylation assay compatible with mass spectrometric detection. Anal Bioanal Chem 2005; 381:647-55. [PMID: 15703914 DOI: 10.1007/s00216-005-3070-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/22/2004] [Accepted: 01/10/2005] [Indexed: 11/26/2022]
Abstract
The enzymatic peptide phosphorylation by cAMP-dependent protein kinase A (PKA) was optimized and monitored by means of electrospray ionization mass spectrometry (ESI-MS). The direct detection of phosphorylated peptides by MS renders labeling unnecessary, reduces time and labor, due to less initial sample pretreatment. In this study the phosphorylation of the peptide malantide by PKA was performed in batch and reaction compounds were detected by ESI-MS after the incubation time. The subsequent product quantitation was accomplished by using one-point normalization. Applying this set-up, optimum solvent conditions (such as salt and modifier content), concentrations of essential reaction compounds (such as cAMP, Mg2+ and ATP), and the influence of reaction properties (such as pH and reaction time) were determined. The reaction milieu has to be suitable for both, the enzymatic reaction and the mass spectrometric detection. We found that the modifier content and the pH value had to be changed after the enzymatic reaction occurred. Through the addition of methanol and acetic acid, the reaction stopped immediately and a more sensitive mass spectrometric detection could be obtained simultaneously. Furthermore, an inhibitor study was performed, testing the inhibition potency of three protein kinase A inhibitors (PKIs). IC50 values were determined and used to calculate the Ki values, that were 7.4, 19.0 and 340.0 nmol/L for PKI(6-22)amide, PKI(5-24)amide, and PKI(14-24)amide, respectively. These data vary between factor 4.4 (for PKI(6-22)amide) and 8.3 (for PKI(5-24)amide) compared to the Ki values described in literature. However, the Ki values are in good agreement with the data mainly obtained by fluorescence- or radioactivity-based methods. Nevertheless, our results indicate that ESI-MS is a realistic alternative to radioactivity and fluorescence detection in determining enzymatic activity. Furthermore we were able to illustrate its high potential as a quantitative detection method.
Collapse
Affiliation(s)
- A R de Boer
- Section of Analytical Chemistry and Applied Spectroscopy, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV , Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG. Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem 2003; 279:3708-16. [PMID: 14594813 DOI: 10.1074/jbc.m308820200] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Channel-kinase TRPM7/ChaK1 is a member of a recently discovered family of protein kinases called alpha-kinases that display no sequence homology to conventional protein kinases. It is an unusual bifunctional protein that contains an alpha-kinase domain fused to an ion channel. The TRPM7/ChaK1 channel has been characterized using electrophysiological techniques, and recent evidence suggests that it may play a key role in the regulation of magnesium homeostasis. However, little is known about its protein kinase activity. To characterize the kinase activity of TRPM7/ChaK1, we expressed the kinase catalytic domain in bacteria. ChaK1-cat is able to undergo autophosphorylation and to phosphorylate myelin basic protein and histone H3 on serine and threonine residues. The kinase is specific for ATP and cannot use GTP as a substrate. ChaK1-cat is insensitive to staurosporine (up to 0.1 mM) but can be inhibited by rottlerin. Because the kinase domain is physically linked to an ion channel, we investigated the effect of ions on ChaK1-cat activity. The kinase requires Mg(2+) (optimum at 4-10 mM) or Mn(2+) (optimum at 3-5 mM), with activity in the presence of Mn(2+) being 2 orders of magnitude higher than in the presence of Mg(2+). Zn(2+) and Co(2+) inhibited ChaK1-cat kinase activity. Ca(2+) at concentrations up to 1 mM did not affect kinase activity. Considering intracellular ion concentrations, our results suggest that, among divalent metal ions, only Mg(2+) can directly modulate TRPM7/ChaK1 kinase activity in vivo.
Collapse
Affiliation(s)
- Lillia V Ryazanova
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
16
|
Czupalla C, Culo M, Müller EC, Brock C, Reusch HP, Spicher K, Krause E, Nürnberg B. Identification and characterization of the autophosphorylation sites of phosphoinositide 3-kinase isoforms beta and gamma. J Biol Chem 2003; 278:11536-45. [PMID: 12502714 DOI: 10.1074/jbc.m210351200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class I phosphoinositide 3-kinases (PI3Ks) are bifunctional enzymes possessing lipid kinase activity and the capacity to phosphorylate their catalytic and/or regulatory subunits. In this study, in vitro autophosphorylation of the G protein-sensitive p85-coupled class I(A) PI3K beta and p101-coupled class I(B) PI3K gamma was examined. Autophosphorylation sites of both PI3K isoforms were mapped to C-terminal serine residues of the catalytic p110 subunit (i.e. serine 1070 of p110 beta and serine 1101 of p110 gamma). Like other class I(A) PI3K isoforms, autophosphorylation of p110 beta resulted in down-regulated PI3K beta lipid kinase activity. However, no inhibitory effect of p110 gamma autophosphorylation on PI3K gamma lipid kinase activity was observed. Moreover, PI3K beta and PI3K gamma differed in the regulation of their autophosphorylation. Whereas p110 beta autophosphorylation was stimulated neither by G beta gamma complexes nor by a phosphotyrosyl peptide derived from the platelet-derived growth factor receptor, autophosphorylation of p110 gamma was significantly enhanced by G beta gamma in a time- and concentration-dependent manner. In summary, we show that autophosphorylation of both PI3K beta and PI3K gamma occurs in a C-terminal region of the catalytic p110 subunit but differs in its regulation and possible functional consequences, suggesting distinct roles of autophosphorylation of PI3K beta and PI3K gamma.
Collapse
Affiliation(s)
- Cornelia Czupalla
- Institut für Biochemie und Molekularbiologie II, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Heng MC, Song MK, Harker J, Heng MK. Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol 2000; 143:937-49. [PMID: 11069500 DOI: 10.1046/j.1365-2133.2000.03767.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Phosphorylase kinase (PhK), also known as adenosine triphosphate (ATP)-phosphorylase b phosphotransferase, integrates multiple calcium/calmodulin-dependent signalling pathways, including those involved in cell migration and cell proliferation, while coupling these pathways to glycogenolysis and ATP-dependent phosphorylation, thus ensuring continuing energy supply for these activities. OBJECTIVES Our laboratory recently reported correlation of elevated PhK activity with psoriatic activity. This study further evaluates the significance of drug-induced suppression of PhK activity on psoriatic activity. PATIENTS AND METHODS PhK activity was assayed in four groups, each with 10 patients: (i) active untreated psoriasis; (ii) resolving psoriasis treated by calcipotriol (Dovonex(R), Bristol Myers Squibb, Princeton, NJ, U.S.A. ), a vitamin D3 analogue and an indirect inhibitor of PhK; (iii) curcumin (diferuloylmethane), a selective PhK inhibitor; and (iv) 10 normal non-psoriatic subjects. RESULTS PhK activity in units mg-1 protein was highest in active untreated psoriasis (1204 +/- 804.3; mean +/- SD), lower in the calcipotriol-treated group (550.7 +/- 192. 9), lower in curcumin-treated group (207.2 +/- 97.6), and lowest in normal skin (105.4 +/- 44.6). One-way analysis of variance performed on log-transformed PhK activity measure showed significant differences among the four groups, F3,36 = 48.79, P < 0.0001. Decreased PhK activity in curcumin-and calcipotriol-treated psoriasis was associated with corresponding decreases in keratinocyte transferrin receptor (TRR) expression, severity of parakeratosis and density of epidermal CD8+ T cells. CONCLUSIONS Our results demonstrate that drug-induced suppression of PhK activity is associated with resolution of psoriatic activity as assessed by clinical, histological and immunohistochemical criteria, and support the hypothesis that effective antipsoriatic activity may be achieved through modulation of PhK activity.
Collapse
Affiliation(s)
- M C Heng
- Division of Dermatology, Department of Medicine, UCLA San Fernando Valley Program, VA Greater Los Angeles Healthcare System (Sepulveda), 16111 Plummer Street, Sepulveda, CA 91343, USA
| | | | | | | |
Collapse
|
18
|
Himpel S, Tegge W, Frank R, Leder S, Joost HG, Becker W. Specificity determinants of substrate recognition by the protein kinase DYRK1A. J Biol Chem 2000; 275:2431-8. [PMID: 10644696 DOI: 10.1074/jbc.275.4.2431] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DYRK1A is a dual-specificity protein kinase that is thought to be involved in brain development. We identified a single phosphorylated amino acid residue in the DYRK substrate histone H3 (threonine 45) by mass spectrometry, phosphoamino acid analysis, and protein sequencing. Exchange of threonine 45 for alanine abolished phosphorylation of histone H3 by DYRK1A and by the related kinases DYRK1B, DYRK2, and DYRK3 but not by CLK3. In order to define the consensus sequence for the substrate specificity of DYRK1A, a library of 300 peptides was designed in variation of the H3 phosphorylation site. Evaluation of the phosphate incorporation into these peptides identified DYRK1A as a proline-directed kinase with a phosphorylation consensus sequence (RPX(S/T)P) similar to that of ERK2 (PX(S/T)P). A peptide designed after the optimal substrate sequence (DYRKtide) was efficiently phosphorylated by DYRK1A (K(m) = 35 microM) but not by ERK2. Both ERK2 and DYRK1A phosphorylated myelin basic protein, whereas only ERK2, but not DYRK1A, phosphorylated the mitogen-activated protein kinase substrate ELK-1. This marked difference in substrate specificity between DYRK1A and ERK2 can be explained by the requirement for an arginine at the P -3 site of DYRK substrates and its presumed interaction with aspartate 247 conserved in all DYRKs.
Collapse
Affiliation(s)
- S Himpel
- Institut für Pharmakologie und Toxikologie, RWTH Aachen, 52057 Aachen, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Marin O, Meggio F, Sarno S, Cesaro L, Pagano MA, Pinna LA. Tyrosine versus serine/threonine phosphorylation by protein kinase casein kinase-2. A study with peptide substrates derived from immunophilin Fpr3. J Biol Chem 1999; 274:29260-5. [PMID: 10506183 DOI: 10.1074/jbc.274.41.29260] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase casein kinase-2 (CK2) is a spontaneously active, ubiquitous, and pleiotropic enzyme that phosphorylates seryl/threonyl residues specified by multiple negatively charged side chains, the one at position n + 3 being of crucial importance (minimum consensus S/T-x-x-E/D/S(P)/T(P). Recently CK2 has been reported to catalyze phosphorylation of the yeast nucleolar immunophilin Fpr3 at a tyrosyl residue (Tyr(184)) fulfilling the consensus sequence of Ser/Thr substrates (Wilson, L.K., Dhillon, N., Thorner, J., and Martin, G.S. (1997) J. Biol. Chem. 272, 12961-12967). Here we show that, by contrast to other tyrosyl peptides fulfilling the consensus sequence for CK2, a peptide reproducing the sequence around Fpr3 Tyr(184) (DEDADIY(184)DEEDYDL) is phosphorylated by CK2, albeit with much higher K(m) (384 versus 4. 3 microM) and lower V(max) (8.4 versus 1,132 nmol.min(-1).mg(-1)) than its derivative with Tyr(184) replaced by serine. The replacement of Asp at position n + 1 with alanine and, to a lesser extent, of Ile at n - 1 with Asp are especially detrimental to tyrosine phosphorylation as compared with serine phosphorylation, which is actually stimulated by the Ile to Asp modification. In contrast the replacement of Glu at n + 3 with alanine almost suppresses serine phosphorylation but not tyrosine phosphorylation. It can be concluded that CK2 is capable to phosphorylate, under special circumstances, tyrosyl residues, which are specified by structural features partially different from those that optimize Ser/Thr phosphorylation.
Collapse
Affiliation(s)
- O Marin
- Dipartimento di Chimica Biologica and Centro di Studio delle Biomembrane del C.N.R., Università di Padova, viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Graves D, Bartleson C, Biorn A, Pete M. Substrate and inhibitor recognition of protein kinases: what is known about the catalytic subunit of phosphorylase kinase? Pharmacol Ther 1999; 82:143-55. [PMID: 10454193 DOI: 10.1016/s0163-7258(98)00049-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although much can be learned about the specificity of protein kinases from studies with peptide substrates, the question remains, how do kinases recognize their three-dimensional protein substrates? Information derived from such studies provides further understanding of substrate recognition and can facilitate the design of specific protein kinase inhibitors. Phosphorylase kinase (PhK) catalyzes the phosphorylation of phosphorylase b (phos. b) to form the active phosphorylase a. No other protein kinase can duplicate this reaction. Why? To probe this question and establish what features in the protein are important for substrate binding and product release, mutants of phos. b have been studied. This report shows how mutations change the properties of the protein substrate and the ability of these mutants to be phosphorylated by PhK and other kinases. Action of protein kinases on their substrates is often regulated by autoinhibitory segments. The C-terminus of the catalytic gamma-subunit of PhK contains two inhibitory sites overlapping two calmodulin-binding regions. These two peptide segments resemble sequences in phos. b and may explain why peptides of these regions are potent inhibitors of PhK. We will show results with peptide inhibitors, using various expressed forms of the catalytic subunit, which describe their modes of interaction and mechanisms of inhibition. Metal ions can change molecular interactions. With PhK, Mn2+ facilitates the use of GTP as a phosphoryl group donor and greatly increases phosphorylation of a tyrosine residue in angiotensin II. This implies that the spatial arrangement of specificity determinants can be manipulated so that PhK can utilize other substrates.
Collapse
Affiliation(s)
- D Graves
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames 50011, USA
| | | | | | | |
Collapse
|
21
|
Sam MD, Perona JJ. Mn2+-dependent Catalysis by Restriction Enzymes: Pre-Steady-State Analysis of EcoRV Endonuclease Reveals Burst Kinetics and the Origins of Reduced Activity. J Am Chem Soc 1999. [DOI: 10.1021/ja983787q] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- My D. Sam
- Contribution from the Department of Chemistry and Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, Santa Barbara California 93106-9510
| | - John J. Perona
- Contribution from the Department of Chemistry and Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, Santa Barbara California 93106-9510
| |
Collapse
|
22
|
Gomez-Escobar N, Chou CF, Lin WW, Hsieh SL, Campbell RD. The G11 gene located in the major histocompatibility complex encodes a novel nuclear serine/threonine protein kinase. J Biol Chem 1998; 273:30954-60. [PMID: 9812991 DOI: 10.1074/jbc.273.47.30954] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinases are involved in signal transduction pathways and play fundamental roles in the regulation of cell functions. Here we report that the gene G11 located in the human major histocompatibility complex encodes a novel Ser/Thr protein kinase. The G11 gene products of 41.5 and 30 kDa were expressed in insect cells using the baculovirus system and transiently in the mammalian cell line COS-7. It was found that after immunoprecipitation of the G11 polypeptides from recombinant baculovirus-infected insect cell lysates or transfected COS-7 cell lysates the immunoprecipitates contained a Mn2+-dependent protein kinase activity that phosphorylated alpha-casein at Ser/Thr residues and histone at Ser residues. Furthermore, mutation of the ATP-binding site by converting the invariant lysine in the catalytic domain (amino acid 317) to a proline resulted in the complete ablation of the enzyme activity. This was consistent with the observation that the G11 polypeptide can be covalently modified by the reactive ATP analogue 5'-p-fluorosulfonylbenzoyladenosine in the absence of ATP, and that this modification is prevented in the presence of 1 mM ATP, indicating that the kinase domain of the G11 polypeptide is capable of binding ATP. Immunofluorescence staining of transfected COS-7 cells transiently expressing G11 revealed that this novel Ser/Thr protein kinase is localized predominantly in the nucleus.
Collapse
Affiliation(s)
- N Gomez-Escobar
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Wilson LK, Dhillon N, Thorner J, Martin GS. Casein kinase II catalyzes tyrosine phosphorylation of the yeast nucleolar immunophilin Fpr3. J Biol Chem 1997; 272:12961-7. [PMID: 9148902 DOI: 10.1074/jbc.272.20.12961] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the nucleolar immunophilin, Fpr3, is phosphorylated at tyrosine and dephosphorylated by the phosphotyrosine-specific phosphoprotein phosphatase, Ptp1. In Ptp1-deficient cells, Fpr3 contains phospho-Tyr at a single site (Tyr184), but also contains phospho-Ser and phospho-Thr. Ser186 (adjacent to Tyr184) is situated within a canonical site for phosphorylation by casein kinase II (CKII). Yeast cell lysates contain an activity that binds to Fpr3 in vitro and phosphorylates Fpr3 at Ser, Thr, and Tyr; this activity was found to be dependent on expression of functional yeast CKII. Moreover, purified Fpr3 was phosphorylated on Tyr184 in vitro by either purified yeast CKII or purified, bacterially-expressed human CKII. Likewise, phosphorylation of Fpr3 at tyrosine in vivo was markedly enhanced in yeast cells overexpressing a heterologous (Drosophila) CKII, but was undetectable in yeast cells carrying only a temperature-sensitive allele of the endogenous CKII, even when the cells were grown at a permissive temperature. Phosphorylation of Fpr3 at Tyr184 by CKII in vitro lagged behind phosphorylation of Fpr3 at Ser, and was accelerated by pre-phosphorylation of Fpr3 at Ser using CKII. Furthermore, synthetic peptides corresponding to the sequence surrounding Tyr184 that contained P-Ser (or Glu) at position 186 were much more efficient substrates for CKII phosphorylation of Tyr184 than a synthetic peptide containing Ala at position 186. These findings indicate that CKII phosphorylates Fpr3 at tyrosine and serine both in vivo and in vitro and thus possesses dual specificity. These results also indicate that Tyr184 is phosphorylated by CKII via a two-step process, in which phosphorylation at the +2 position provides a negatively-charged specificity determinant that allows subsequent phosphorylation of Tyr184.
Collapse
Affiliation(s)
- L K Wilson
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3204, USA
| | | | | | | |
Collapse
|
24
|
Ganguli S, Hu L, Menke P, Collier RJ, Gertler A. Nuclear accumulation of multiple protein kinases during prolactin-induced proliferation of Nb2 rat lymphoma cells. J Cell Physiol 1996; 167:251-60. [PMID: 8613465 DOI: 10.1002/(sici)1097-4652(199605)167:2<251::aid-jcp8>3.0.co;2-o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intracellular kinases play important roles in signal transduction and are involved in the surface receptor-mediated regulation of cellular functions, including mitogenesis. In the present study, we examined the possible involvement of various protein kinases in the passage of a mitogenic signal from the cell surface to the nucleus of Nb2 cells, a rat nodal lymphoma cell line in which prolactin is a mitogen. Following a prolactin challenge, various kinase activities were monitored at short intervals in different cellular fractions over a 60 min period. Protein kinase C (PKC) activity in the cytosolic fraction rapidly declined to 50% of its original activity within the first 30 min, while PKC activity in the nuclear fractions increased sharply, reaching its highest level by 30 min following a prolactin challenge. There were also increases in both casein kinase and protein tyrosine kinase (PTK) activities in the nuclear fractions during the first 30 min following a prolactin challenge that paralleled PKC activity. The activities of all three kinases declined thereafter, reaching levels close to their respective basal values by 60 min following initiation of prolactin treatment. These observations suggest the possibility that multiple protein kinases may be involved in mitogenic signal transduction for prolactin in Nb2 cells.
Collapse
Affiliation(s)
- S Ganguli
- Indiana University School of Medicine, Terre Haute Center for Medical Education 47809, USA
| | | | | | | | | |
Collapse
|
25
|
Kentrup H, Becker W, Heukelbach J, Wilmes A, Schürmann A, Huppertz C, Kainulainen H, Joost HG. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem 1996; 271:3488-95. [PMID: 8631952 DOI: 10.1074/jbc.271.7.3488] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The cDNA of a novel, ubiquitously expressed protein kinase (Dyrk) was cloned from a rat brain cDNA library. The deduced amino acid sequence (763 amino acids) contains a catalytic domain that is only distantly related to that of other mammalian protein kinases. Its closest relative is the protein kinase Mnb of Drosophila, which is presumably involved in postembryonic neurogenesis (85% identical amino acids within the catalytic domain). Outside the catalytic domain, the sequence comprises several striking structural features: a bipartite nuclear translocation signal, a tyrosine-rich hydrophilic motif flanking the nuclear localization signal, a PEST region, a repeat of 13 histidines, a repeat of 17 serine/threonine residues, and an alternatively spliced insertion of nine codons. A recombinant glutathione S-transferase-Dyrk fusion protein catalyzed autophosphorylation and histone phosphorylation on tyrosine and serine/threonine residues with an apparent Km of approximately 3.4 microM. Exchange of two tyrosine residues in the "activation loop" between subdomains VII and VIII for phenylalanine almost completely suppressed the activity and tyrosine autophosphorylation of Dyrk. Tyrosine autophosphorylation was also reduced by exchange of the tyrosine (Tyr-219) in a tyrosine phosphorylation consensus motif. The data suggest that Dyrk is a dual specificity protein kinase that is regulated by tyrosine phosphorylation in the activation loop and might be a component of a signaling pathway regulating nuclear functions.
Collapse
Affiliation(s)
- H Kentrup
- Institut für Pharmakologie und Toxikologie, Rheinisch-Westfälische Technische Hochschule Aachen, D-52057 Aachen, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cirino NM, Cameron CE, Smith JS, Rausch JW, Roth MJ, Benkovic SJ, Le Grice SF. Divalent cation modulation of the ribonuclease functions of human immunodeficiency virus reverse transcriptase. Biochemistry 1995; 34:9936-43. [PMID: 7543283 DOI: 10.1021/bi00031a016] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The stimulatory effect of Mg2+ and Mn2+ on the ribonuclease H (RNase H) functions of HIV-1 reverse transcriptase (RT) has been evaluated using a model 90-nt RNA template/36-nt DNA primer. Wild type enzyme exhibits similar endonuclease and directional processing activities in response to both cations, while RNase H activity (hydrolysis of double-stranded RNA) is only evident in the presence of Mn2+. Enzyme altered at the p66 residue Glu478 (Glu478-->Gln478), which participates in metal ion binding, is completely inactive in Mg2+. However, Mn2+ restores specifically its endoribonuclease activity. In the presence of Mn2+, mutant RT also catalyzes specific removal of the tRNA replication primer, eliminating the possibility of contaminating Escherichia coli RNase H in our recombinant enzyme. However, the efficiency with which mutant RT catalyzes transfer of nascent DNA between RNA templates (an event mandating RNase H activity) is severely reduced. These findings raise the possibility that directional processing activity is required to accelerate transfer of nascent DNA between templates during retroviral replication.
Collapse
Affiliation(s)
- N M Cirino
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Yuan C, Huang C, Graves D. Oxidation and site-directed mutagenesis of the sulfhydryl groups of a truncated gamma catalytic subunit of phosphorylase kinase. Functional and structural effects. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51092-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Balla T, Catt KJ. Phosphoinositides and calcium signaling New aspects and diverse functions in cell regulation. Trends Endocrinol Metab 1994; 5:250-5. [PMID: 18407216 DOI: 10.1016/1043-2760(94)p3084-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Numerous circulating and locally produced hormones bind to specific cell-surface receptors and activate a variety of second-messenger pathways that evoke characteristic phenotypic responses in their target cells. One of the most ubiquitous signal transduction mechanisms is the phosphoinositide-calcium messenger system, which is activated by hormones, neurotransmitters, and growth factors. Stimulation of these receptors by their ligands causes a characteristic change in the metabolism of membrane phospholipids with production of diacylglycerol and a rapid increase in cytoplasmic Ca(2+) concentration, due to the release of stored intracellular Ca(2+) and stimulated Ca(2+) entry from the extracellular space. These intracettular signals act in concert to activate protein kinases that phosphorylate a variety of regulatory proteins. The link between phosphoinositide turnover and Ca(2+) mobilization is inositol 1,4,5-trisphosphate, the major Ca(2+)-mobilizing second messenger, which is produced from membrane phosphoinositides by activated phospholipase C enzymes. The mechanisms of ligand-regulated Ca(2+) influx and the additional regulatory role(s) of phosphoinositides and inositol phosphates are still being unfolded. This review and the following article summarize some recent developments and unsolved issues about this major signal transduction cascade that links calcium-mobilizing hormone receptors to the regulation of endocrine cell function.
Collapse
Affiliation(s)
- T Balla
- The Endocrinology and Reproduction Research Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Huang CY, Yuan CJ, Luo S, Graves DJ. Mutational analyses of the metal ion and substrate binding sites of phosphorylase kinase gamma subunit. Biochemistry 1994; 33:5877-83. [PMID: 8180216 DOI: 10.1021/bi00185a027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphorylase kinase (PhK) and truncated gamma subunit, denoted gamma 1-300, can phosphorylate seryl and tyrosyl residues dependent on the metal ion [Yuan, C.-J., Huang, C. F., & Graves, D. J. (1993) J. Biol. Chem. 268, 17683-17686]. Recombinant gamma 1-300 was used to explore its dual specificity and the location of the metal ion binding sites by using site-directed mutagenesis. Two approaches were taken to generate 26 mutants. First, on the basis of the crystal structure of cAMP-dependent protein kinase (cAPK), the invariant Asn155 and highly conserved Asp168-Phe169-Gly170 residues were mutated. Changes included production of N155H, D168E, D168N, F169R, G170V, G170I, G170L (less than 1% of enzymatic activities were found in these mutants), F169W, and G170A mutants. Second, charge to alanine and charge reversal scanning mutations were used to probe the metal ion binding sites. Two mutants, E111K and E154R, showed very different metal ion response compared to wild-type gamma and were further characterized. The mutants F169W, G170A, E111K, and E154R had 15%, 5%, 8%, and 25% specific activity relative to wild-type gamma, respectively. The folding pattern of wild-type and mutated enzyme forms of gamma was determined by photoacoustic infrared spectroscopy. Conformational disruptions were found in G170V, G170I, and G170L mutants, but the conformation of the rest of the mutants was similar to that of wild-type gamma, suggesting that the loss of enzymatic activities of these mutants was not because of incorrect refolding.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Y Huang
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011
| | | | | | | |
Collapse
|