1
|
Goupil E, Lacroix L, Brière J, Guga S, Saba-El-Leil MK, Meloche S, Labbé JC. OSGN-1 is a conserved flavin-containing monooxygenase required to stabilize the intercellular bridge in late cytokinesis. Proc Natl Acad Sci U S A 2024; 121:e2308570121. [PMID: 38442170 PMCID: PMC10945809 DOI: 10.1073/pnas.2308570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024] Open
Abstract
Cytokinesis is the last step of cell division and is regulated by the small GTPase RhoA. RhoA activity is required for all steps of cytokinesis, including prior to abscission when daughter cells are ultimately physically separated. Like germ cells in all animals, the Caenorhabditis elegans embryonic germline founder cell initiates cytokinesis but does not complete abscission, leaving a stable intercellular bridge between the two daughter cells. Here, we identify and characterize C. elegans OSGN-1 as a cytokinetic regulator that promotes RhoA activity during late cytokinesis. Sequence analyses and biochemical reconstitutions reveal that OSGN-1 is a flavin-containing monooxygenase (MO). Genetic analyses indicate that the MO activity of OSGN-1 is required to maintain active RhoA at the end of cytokinesis in the germline founder cell and to stabilize the intercellular bridge. Deletion of OSGIN1 in human cells results in an increase in binucleation as a result of cytokinetic furrow regression, and this phenotype can be rescued by expressing a catalytically active form of C. elegans OSGN-1, indicating that OSGN-1 and OSGIN1 are functional orthologs. We propose that OSGN-1 and OSGIN1 are conserved MO enzymes required to maintain RhoA activity at the intercellular bridge during late cytokinesis and thus favor its stability, enabling proper abscission in human cells and bridge stabilization in C. elegans germ cells.
Collapse
Affiliation(s)
- Eugénie Goupil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Léa Lacroix
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jonathan Brière
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Sandra Guga
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Marc K. Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QCH3C 3J7, Canada
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QCH3C 3J7, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QCH3C 3J7, Canada
| |
Collapse
|
2
|
Rho GTPases in the Physiology and Pathophysiology of Peripheral Sensory Neurons. Cells 2019; 8:cells8060591. [PMID: 31208035 PMCID: PMC6627758 DOI: 10.3390/cells8060591] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Numerous experimental studies demonstrate that the Ras homolog family of guanosine triphosphate hydrolases (Rho GTPases) Ras homolog family member A (RhoA), Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division cycle 42 (Cdc42) are important regulators in somatosensory neurons, where they elicit changes in the cellular cytoskeleton and are involved in diverse biological processes during development, differentiation, survival and regeneration. This review summarizes the status of research regarding the expression and the role of the Rho GTPases in peripheral sensory neurons and how these small proteins are involved in development and outgrowth of sensory neurons, as well as in neuronal regeneration after injury, inflammation and pain perception. In sensory neurons, Rho GTPases are activated by various extracellular signals through membrane receptors and elicit their action through a wide range of downstream effectors, such as Rho-associated protein kinase (ROCK), phosphoinositide 3-kinase (PI3K) or mixed-lineage kinase (MLK). While RhoA is implicated in the assembly of stress fibres and focal adhesions and inhibits neuronal outgrowth through growth cone collapse, Rac1 and Cdc42 promote neuronal development, differentiation and neuroregeneration. The functions of Rho GTPases are critically important in the peripheral somatosensory system; however, their signalling interconnections and partially antagonistic actions are not yet fully understood.
Collapse
|
3
|
Essmann CL, Ryan KR, Elmi M, Bryon-Dodd K, Porter A, Vaughan A, McMullan R, Nurrish S. Activation of RHO-1 in cholinergic motor neurons competes with dopamine signalling to control locomotion. PLoS One 2018; 13:e0204057. [PMID: 30240421 PMCID: PMC6150489 DOI: 10.1371/journal.pone.0204057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 12/14/2022] Open
Abstract
The small GTPase RhoA plays a crucial role in the regulation of neuronal signalling to generate behaviour. In the developing nervous system RhoA is known to regulate the actin cytoskeleton, however the effectors of RhoA-signalling in adult neurons remain largely unidentified. We have previously shown that activation of the RhoA ortholog (RHO-1) in C. elegans cholinergic motor neurons triggers hyperactivity of these neurons and loopy locomotion with exaggerated body bends. This is achieved in part through increased diacylglycerol (DAG) levels and the recruitment of the synaptic vesicle protein UNC-13 to synaptic release sites, however other pathways remain to be identified. Dopamine, which is negatively regulated by the dopamine re-uptake transporter (DAT), has a central role in modulating locomotion in both humans and C. elegans. In this study we identify a new pathway in which RHO-1 regulates locomotory behaviour by repressing dopamine signalling, via DAT-1, linking these two pathways together. We observed an upregulation of dat-1 expression when RHO-1 is activated and show that loss of DAT-1 inhibits the loopy locomotion phenotype caused by RHO-1 activation. Reducing dopamine signalling in dat-1 mutants through mutations in genes involved in dopamine synthesis or in the dopamine receptor DOP-1 restores the ability of RHO-1 to trigger loopy locomotion in dat-1 mutants. Taken together, we show that negative regulation of dopamine signalling via DAT-1 is necessary for the neuronal RHO-1 pathway to regulate locomotion.
Collapse
Affiliation(s)
- Clara L. Essmann
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Katie R. Ryan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Muna Elmi
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Kimberley Bryon-Dodd
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Andrew Porter
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Andrew Vaughan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Rachel McMullan
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
4
|
Guanine nucleotide exchange factor OSG-1 confers functional aging via dysregulated Rho signaling in Caenorhabditis elegans neurons. Genetics 2014; 199:487-96. [PMID: 25527286 DOI: 10.1534/genetics.114.173500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho signaling regulates a variety of biological processes, but whether it is implicated in aging remains an open question. Here we show that a guanine nucleotide exchange factor of the Dbl family, OSG-1, confers functional aging by dysregulating Rho GTPases activities in C. elegans. Thus, gene reporter analysis revealed widespread OSG-1 expression in muscle and neurons. Loss of OSG-1 gene function was not associated with developmental defects. In contrast, suppression of OSG-1 lessened loss of function (chemotaxis) in ASE sensory neurons subjected to conditions of oxidative stress generated during natural aging, by oxidative challenges, or by genetic mutations. RNAi analysis showed that OSG-1 was specific toward activation of RHO-1 GTPase signaling. RNAi further implicated actin-binding proteins ARX-3 and ARX-5, thus the actin cytoskeleton, as one of the targets of OSG-1/RHO-1 signaling. Taken together these data suggest that OSG-1 is recruited under conditions of oxidative stress, a hallmark of aging, and contributes to promote loss of neuronal function by affecting the actin cytoskeleton via altered RHO-1 activity.
Collapse
|
5
|
Perez-Mansilla B, Nurrish S. A network of G-protein signaling pathways control neuronal activity in C. elegans. ADVANCES IN GENETICS 2009; 65:145-192. [PMID: 19615533 DOI: 10.1016/s0065-2660(09)65004-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Caenorhabditis elegans neuromuscular junction (NMJ) is one of the best studied synapses in any organism. A variety of genetic screens have identified genes required both for the essential steps of neurotransmitter release from motorneurons as well as the signaling pathways that regulate rates of neurotransmitter release. A number of these regulatory genes encode proteins that converge to regulate neurotransmitter release. In other cases genes are known to regulate signaling at the NMJ but how they act remains unknown. Many of the proteins that regulate activity at the NMJ participate in a network of heterotrimeric G-protein signaling pathways controlling the release of synaptic vesicles and/or dense-core vesicles (DCVs). At least four heterotrimeric G-proteins (Galphaq, Galpha12, Galphao, and Galphas) act within the motorneurons to control the activity of the NMJ. The Galphaq, Galpha12, and Galphao pathways converge to control production and destruction of the lipid-bound second messenger diacylglycerol (DAG) at sites of neurotransmitter release. DAG acts via at least two effectors, MUNC13 and PKC, to control the release of both neurotransmitters and neuropeptides from motorneurons. The Galphas pathway converges with the other three heterotrimeric G-protein pathways downstream of DAG to regulate neuropeptide release. Released neurotransmitters and neuropeptides then act to control contraction of the body-wall muscles to control locomotion. The lipids and proteins involved in these networks are conserved between C. elegans and mammals. Thus, the C. elegans NMJ acts as a model synapse to understand how neuronal activity in the human brain is regulated.
Collapse
Affiliation(s)
- Borja Perez-Mansilla
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
6
|
Abstract
The Rho GTPases are implicated in almost every fundamental cellular process. They act as molecular switches that cycle between an active GTP-bound and an inactive GDP-bound state. Their slow intrinsic GTPase activity is greatly enhanced by RhoGAPs (Rho GTPase-activating proteins), thus causing their inactivation. To date, more than 70 RhoGAPs have been identified in eukaryotes, ranging from yeast to human, and based on sequence homology of their RhoGAP domain, we have grouped them into subfamilies. In the present Review, we discuss their regulation, biological functions and implication in human diseases.
Collapse
Affiliation(s)
- Joseph Tcherkezian
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2
| | | |
Collapse
|
7
|
McMullan R, Hiley E, Morrison P, Nurrish SJ. Rho is a presynaptic activator of neurotransmitter release at pre-existing synapses in C. elegans. Genes Dev 2006; 20:65-76. [PMID: 16391233 PMCID: PMC1356101 DOI: 10.1101/gad.359706] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 10/31/2005] [Indexed: 11/25/2022]
Abstract
Rho GTPases have important roles in neuronal development, but their function in adult neurons is less well understood. We demonstrate that presynaptic changes in Rho activity at Caenorhabditis elegans neuromuscular junctions can radically change animal behavior via modulation of two separate pathways. In one, presynaptic Rho increases acetylcholine (ACh) release by stimulating the accumulation of diacylglycerol (DAG) and the DAG-binding protein UNC-13 at sites of neurotransmitter release; this pathway requires binding of Rho to the DAG kinase DGK-1. A second DGK-1-independent mechanism is revealed by the ability of a Rho inhibitor (C3 transferase) to decrease levels of release even in the absence of DGK-1; this pathway is independent of UNC-13 accumulation at release sites. We do not detect any Rho-induced changes in neuronal morphology or synapse number; thus, Rho facilitates synaptic transmission by a novel mechanism. Surprisingly, many commonly available human RhoA constructs contain an uncharacterized mutation that severely reduces binding of RhoA to DAG kinase. Thus, a role for RhoA in controlling DAG levels is likely to have been underestimated.
Collapse
Affiliation(s)
- Rachel McMullan
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Pharmacology, University College, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
8
|
Norman KR, Fazzio RT, Mellem JE, Espelt MV, Strange K, Beckerle MC, Maricq AV. The Rho/Rac-family guanine nucleotide exchange factor VAV-1 regulates rhythmic behaviors in C. elegans. Cell 2005; 123:119-32. [PMID: 16213217 DOI: 10.1016/j.cell.2005.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 06/04/2005] [Accepted: 08/05/2005] [Indexed: 11/27/2022]
Abstract
Rhythmic behaviors are a fundamental feature of all organisms. Pharyngeal pumping, the defecation cycle, and gonadal-sheath-cell contractions are three well-characterized rhythmic behaviors in the nematode C. elegans. The periodicities of the rhythms range from subsecond (pharynx) to seconds (gonadal sheath) to minutes (defecation). However, the molecular mechanisms underlying these rhythmic behaviors are not well understood. Here, we show that the C. elegans Rho/Rac-family guanine nucleotide exchange factor, VAV-1, which is homologous to the mammalian Vav proto-oncogene, has a crucial role in all three behaviors. vav-1 mutants die as larvae because VAV-1 function is required in the pharynx for synchronous contraction of the musculature. In addition, ovulation and the defecation cycle are abnormal and arrhythmic. We show that Rho/Rac-family GTPases and the signaling molecule inositol triphosphate (IP(3)) act downstream of VAV-1 signaling and that the VAV-1 pathway modulates rhythmic behaviors by dynamically regulating the concentration of intracellular Ca(2+).
Collapse
Affiliation(s)
- Kenneth R Norman
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Yau DM, Yokoyama N, Goshima Y, Siddiqui ZK, Siddiqui SS, Kozasa T. Identification and molecular characterization of the G alpha12-Rho guanine nucleotide exchange factor pathway in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2003; 100:14748-53. [PMID: 14657363 PMCID: PMC299794 DOI: 10.1073/pnas.2533143100] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Indexed: 11/18/2022] Open
Abstract
G alpha 12/13-mediated pathways have been shown to be involved in various fundamental cellular functions in mammalian cells such as axonal guidance, apoptosis, and chemotaxis. Here, we identified a homologue of Rho-guanine nucleotide exchange factor (GEF) in Caenorhabditis elegans (CeRhoGEF), which functions downstream of gpa-12, the C. elegans homologue of G alpha 12/13. CeRhoGEF contains a PSD-95/Dlg/ZO-1 domain and a regulator of G protein signaling (RGS) domain upstream of the Dbl homology-pleckstrin homology region similar to mammalian RhoGEFs with RGS domains, PSD-95/Dlg/ZO-1-RhoGEF and leukemia-associated RhoGEF. It has been shown in mammalian cells that these RhoGEFs interact with activated forms of G alpha 12 or G alpha 13 through their RGS domains. We demonstrated by coimmunoprecipitation that the RGS domain of CeRhoGEF interacts with GPA-12 in an AIF4- activation-dependent manner and confirmed that the Dbl homology-pleckstrin homology domain of CeRhoGEF was capable of Rho-dependent signaling. These results proved conservation of the G alpha 12-RhoGEF pathway in C. elegans. Expression of DsRed or GFP under the control of the promoter of CeRhoGEF or gpa-12 revealed an overlap of their expression patterns in ventral cord motor neurons and several neurons in the head. RNA-mediated gene interference for CeRhoGEF and gpa-12 resulted in similar phenotypes such as embryonic lethality and sensory and locomotive defects in adults. Thus, the G alpha 12/13-RhoGEF pathway is likely to be involved in embryonic development and neuronal function in C. elegans.
Collapse
Affiliation(s)
- Douglas M Yau
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
During embryonic development, polarized epithelial cells are either formed during cleavage or formed from mesenchymal cells. Because the formation of epithelia during embryogenesis has to occur with high fidelity to ensure proper development, embryos allow a functional approach to study epithelial cell polarization in vivo. In particular, genetic model organisms have greatly advanced our understanding of the generation and maintenance of epithelial cell polarity. Many novel and important polarity genes have been identified and characterized in invertebrate systems, like Drosophila melanogaster and Caenorhabditis elegans. With the rapid identification of mammalian homologues of these invertebrate polarity genes, it has become clear that many important protein domains, single proteins and even entire protein complexes are evolutionarily conserved. It is to be expected that the field of epithelial cell polarity is just experiencing the 'top of the iceberg' of a large protein network that is fundamental for the specific adhesive, cell signalling and transport functions of epithelial cells.
Collapse
Affiliation(s)
- H-Arno J Müller
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf D-40225, Germany.
| | | |
Collapse
|
11
|
Kubiseski TJ, Culotti J, Pawson T. Functional analysis of the Caenorhabditis elegans UNC-73B PH domain demonstrates a role in activation of the Rac GTPase in vitro and axon guidance in vivo. Mol Cell Biol 2003; 23:6823-35. [PMID: 12972602 PMCID: PMC193939 DOI: 10.1128/mcb.23.19.6823-6835.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The Caenorhabditis elegans UNC-73B protein regulates axon guidance through its ability to act as a guanine nucleotide exchange factor (GEF) for the CeRAC/MIG-2 GTPases. Like other GEFs for Rho family GTPases, UNC-73B has a Dbl homology (DH) catalytic domain, followed by a C-terminal pleckstrin homology (PH) domain. We have explored whether the PH domain cooperates with the adjacent DH domain to promote UNC-73B GEF activity and axonal pathfinding. We show that the UNC-73B PH domain binds preferentially to monophosphorylated phosphatidylinositides in vitro. Replacement of residues Lys1420 and Arg1422 with Glu residues within the PH domain impaired this phospholipid binding but did not affect the in vitro catalytic activity of the DH domain. In contrast, a mutant UNC-73B protein with a Trp1502-to-Ala substitution in the PH domain still interacted with phosphorylated phosphatidylinositides but had lost its GEF activity. UNC-73B minigenes containing these mutations were microinjected into C. elegans and transferred to unc-73(e936) mutant worms. Unlike the wild-type protein, neither PH domain mutant was able to rescue the unc-73 axon guidance defect. These results suggest that the UNC-73B PH domain plays distinct roles in targeting and promoting GEF activity towards the Rac GTPase, both of which are important for the directed movements of motorneurons in vivo.
Collapse
Affiliation(s)
- Terrance J Kubiseski
- Samuel Lunenfeld Research Institute of Mt. Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | | | | |
Collapse
|
12
|
Spencer AG, Orita S, Malone CJ, Han M. A RHO GTPase-mediated pathway is required during P cell migration in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2001; 98:13132-7. [PMID: 11687661 PMCID: PMC60836 DOI: 10.1073/pnas.241504098] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2001] [Accepted: 09/24/2001] [Indexed: 11/18/2022] Open
Abstract
The Rho family of guanine triphosphate hydrolases controls various cellular processes, including cell migration. We describe here the demonstration of a role for a RhoA GTPase homologue during cell migration in Caenorhabditis elegans. We show that eliminating or reducing rho-1 gene function by using a dominant-negative transgene or dsRNA interference results in a severe defect in migration of hypodermal P cells to a ventral position. Biochemical and genetic data also suggest that unc-73, which encodes a Trio-like guanine nucleotide exchange factor, may act as an activator of rho-1 in the migration process. Mutations in let-502 ROCK, a homologue of a RhoA effector in mammals, also cause defects in P cell migration, suggesting that it may be one of several effectors acting downstream of rho-1 during P cell migration. Finally, we provide evidence to support the idea that other small Rac subfamily small GTPases act redundantly and in parallel to RHO-1 in this specific cell migration event.
Collapse
Affiliation(s)
- A G Spencer
- Howard Hughes Medical Institute, Department of Molecular Cell and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Epithelial cells are essential and abundant in all multicellular animals where their dynamic cell shape changes orchestrate morphogenesis of the embryo and individual organs. Genetic analysis in the simple nematode Caenorhabditis elegans provides some clues to the mechanisms that are involved in specifying epithelial cell fates and in controlling specific epithelial processes such as junction assembly, trafficking or cell fusion and cell adhesion. Here we review recent findings concerning C. elegans epithelial cells, focusing in particular on epithelial polarity, and transcriptional control.
Collapse
Affiliation(s)
- G Michaux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS /INSERM /ULP, BP. 163, F-67404 Illkirch Cedex, C.U. de Strasbourg, Strasbourg, France
| | | | | |
Collapse
|
14
|
Laplante I, Paquin J, Béliveau R. RhoB expression is induced after the transient upregulation of RhoA and Cdc42 during neuronal differentiation and influenced by culture substratum and microtubule integrity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 129:157-68. [PMID: 11506860 DOI: 10.1016/s0165-3806(01)00197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RhoGTPases are important intracellular signalling switches in the regulation of cytoskeleton organization. They likely have an important role in ontogenesis because cytoskeletal rearrangements accompany cell differentiation and specialization. Western blotting showed that protein expression of RhoA, RhoB and Cdc42 RhoGTPases dramatically increased, in a programmed manner, during neuronal differentiation of P19 mouse embryonal carcinoma cells with retinoic acid. RhoA and Cdc42 expression were sequentially upregulated and peaked during the commitment period while that of RhoB was induced in post-mitotic neurons. Although RhoB had a higher expression on matrices allowing cell spreading and neurite elongation, it was distributed throughout cell volume by immunocytofluorescence and associated with various cell compartments by centrifugal subfractionation, suggesting a role not restricted at neurites at this stage of differentiation. RhoA and Cdc42 were mainly cytosolic and RhoB particulate in the P19 cell model. Treatment of cells with cytoskeleton disruptors showed that poisons of microtubules but not of actin filaments or neurofilaments increased the cytosolic level of RhoB. The results indicate that RhoA, Cdc42 and RhoB must intervene at specific stages of neuronal development and there exists a relationship between RhoB expression/distribution, the microtubule network and the extracellular matrix during this process.
Collapse
Affiliation(s)
- I Laplante
- Laboratoire de Neuroendocrinologie développementale, Département de chimie et de biochimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montreal, Québec, H3C 3P8 Canada
| | | | | |
Collapse
|
15
|
Abstract
The change in shape of the C. elegans embryo from an ovoid ball of cells into a worm-shaped larva is driven by three events within the cells of the hypodermis (epidermis): (1) intercalation of two rows of dorsal cells, (2) enclosure of the ventral surface by hypodermis, and (3) elongation of the embryo. While the behavior of the hypodermal cells involved in each of these processes differs dramatically, it is clear that F-actin and microtubules have essential functions in each of these processes, whereas contraction of actomyosin structures appears to be involved specifically in elongation. Molecular analysis of these processes is revealing components specific to C. elegans as well as components found in other systems. Since C. elegans hypodermal cells demonstrate dramatically different behaviors during intercalation, enclosure and elongation, the study of cytoskeletal dynamics in these processes may reveal both unique and conserved activities during distinct epithelial morphogenetic movements. BioEssays 23:12-23, 2001.
Collapse
Affiliation(s)
- J S Simske
- Department of Zoology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
16
|
Zallen JA, Peckol EL, Tobin DM, Bargmann CI. Neuronal cell shape and neurite initiation are regulated by the Ndr kinase SAX-1, a member of the Orb6/COT-1/warts serine/threonine kinase family. Mol Biol Cell 2000; 11:3177-90. [PMID: 10982409 PMCID: PMC14984 DOI: 10.1091/mbc.11.9.3177] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Caenorhabditis elegans sax-1 gene regulates several aspects of neuronal cell shape. sax-1 mutants have expanded cell bodies and ectopic neurites in many classes of neurons, suggesting that SAX-1 functions to restrict cell and neurite growth. The ectopic neurites in sensory neurons of sax-1 mutants resemble the defects caused by decreased sensory activity. However, the activity-dependent pathway, mediated in part by the UNC-43 calcium/calmodulin-dependent kinase II, functions in parallel with SAX-1 to suppress neurite initiation. sax-1 encodes a serine/threonine kinase in the Ndr family that is related to the Orb6 (Schizosaccharomyces pombe), Warts/Lats (Drosophila), and COT-1 (Neurospora) kinases that function in cell shape regulation. These kinases have similarity to Rho kinases but lack consensus Rho-binding domains. Dominant negative mutations in the C. elegans RhoA GTPase cause neuronal cell shape defects similar to those of sax-1 mutants, and genetic interactions between rhoA and sax-1 suggest shared functions. These results suggest that SAX-1/Ndr kinases are endogenous inhibitors of neurite initiation and cell spreading.
Collapse
Affiliation(s)
- J A Zallen
- Howard Hughes Medical Institute, Programs in Developmental Biology, Neuroscience, and Genetics, Department of Anatomy and Department of Biochemistry and Biophysics, The University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
17
|
Uno T, Nakasuji A, Hara W, Aizono Y. Molecular cloning of a cDNA for a small GTP binding protein, BRho, from the embryo of Bombyx mori and its characterization after expression and purification. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2000; 43:165-172. [PMID: 10737920 DOI: 10.1002/(sici)1520-6327(200004)43:4<165::aid-arch2>3.0.co;2-c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cDNA clone encoding a small GTP binding protein (Brho) was isolated from an embryonic cDNA library of Bombyx mori that encoded a polypeptide with 202 amino acids sharing 60-80% similarity with the Rho1 family of GTP binding proteins. The effector site and one of the guanine nucleotide binding sites differed from other members of the Rho family. To characterize the biochemical properties of Brho, the clone was expressed in Escherichia coli as a glutathione S-transferase (GST) fusion protein. The recombinant protein was purified to homogeneity with glutathione S-Sepharose. The fusion protein bound [(35)S] GTPgammaS and [(3)H] GDP with association constants of 11x10(6) M(-1) and 6.2x10(6) M(-1), respectively. The binding of [(35)S] GTPgammaS was inhibited by GTP and GDP, but by no other nucleotides. The calculated GTP-hydrolysis activity was 89.6 m mol/min/mol of Brho. Bound [(35)S] GTPgammaS and [(3)H] GDP were exchanged with GTPgammaS most efficiently in the presence of 6 mM MgCl(2). These results suggest that Brho has a higher affinity for GTP than GDP, converts from the GTP-bound state into the GDP-bound state by intrinsic GTP hydrolytic activity, and returns to the GTP-bound state with the exchange of GDP with GTP. Arch.
Collapse
Affiliation(s)
- T Uno
- Laboratory of Biological Chemistry, Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, Nada-Ku, Kobe, Hyogo, Japan.
| | | | | | | |
Collapse
|
18
|
Yap SF, Chen W, Lim L. Molecular characterization of the Caenorhabditis elegans Rho GDP-dissociation inhibitor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1090-100. [PMID: 10583406 DOI: 10.1046/j.1432-1327.1999.00953.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GDP-dissociation inhibitors (GDIs) form one of the classes of regulatory proteins that modulate the cycling of the Ras superfamily of GTPases between active GTP-bound and inactive GDP-bound states. We report here the characterization of the Caenorhabditis elegans RhoGDI (CeRhoGDI) as part of our investigations into Rho-GTPase signalling pathways that are involved in nematode development. CeRhoGDI is a 23-kDa protein that is localized predominantly in the cytosol. CeRhoGDI interacts only with the lipid-modified forms of C. elegans Rho-GTPases, CeRhoA, CeRac1 and Cdc42Ce, in vitro and is able to solubilize the membrane-bound forms of these GTPases. CeRhoGDI recognizes the GTPases in both GTP- and GDP-bound forms; hence it inhibits both the guanine-nucleotide dissociation and GTP-hydrolysis activities. The inhibitory activity towards the GTP-bound GTPases is weak compared with that towards GDP-bound GTPases. CeRhoGDI is expressed throughout development and is highly expressed in marginal and vulval epithelial cells, in sperm cells and spicules. Taken together, our results suggest that CeRhoGDI may be involved in specific morphogenetic events mediated by the C. elegans Rho-GTPases.
Collapse
Affiliation(s)
- S F Yap
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, Singapore
| | | | | |
Collapse
|
19
|
Abstract
It is becoming increasingly clear that the complex family of Rho-related GTPases and their associated regulators and targets are essential mediators of a variety of morphogenetic events required for normal development of multicellular organisms. It is worth noting that the results obtained thus far indicate that the Rho family proteins are largely associated with the regulation of morphogenesis, as opposed to other essential developmental processes such as cell proliferation and cell fate determination. Accumulating evidence also suggests that the role of these proteins and their associated signaling pathways in morphogenesis is in many, but not necessarily all, cases related to their ability to affect the organization of the actin cytoskeleton. Thus, these in vivo observations have served to corroborate similar findings in numerous cultured cell studies. As described, the power of genetics, particularly in Drosophila and C. elegans, has been critical to the recent identification and functional characterization of several Rho family signaling components. Moreover, evidence suggests that the highly evolutionarily conserved structures of many of these proteins translate into conservation of function as well. Thus, it will be possible, in many cases, to extrapolate the findings in the simple systems described herein to higher eukaryotes, including humans. Expanding use of these genetic model systems to dissect Rho-mediated signaling pathways in vivo will undoubtedly lead to a flood of new insights into the organization and function of these pathways in the coming years, especially in development. As the C. elegans genome sequencing effort nears completion and with the Drosophila genome project well underway, the identification of novel relevant genes will proceed with even greater speed. In addition, the rapidly expanding use of mouse knockout strategies, combined with recent developments in the associated knockout technology, will also contribute greatly to the investigation of mammalain Rho signaling pathways and their roles in development.
Collapse
Affiliation(s)
- J Settleman
- Massachusetts General Hospital Cancer Center, Charlestown, USA
| |
Collapse
|
20
|
Oon CJ, Chen WN, Zhao Y, Teng SW, Leong AL. Detection of hepatitis B surface antigen mutants and their integration in human hepatocellular carcinoma. Cancer Lett 1999; 136:95-9. [PMID: 10211946 DOI: 10.1016/s0304-3835(98)00314-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vaccine escape hepatitis B virus surface antigen (HBsAg) mutants are capable of independent replication and have been implicated in acute hepatitis. We now report the detection of these mutants with changes at various positions of the antigenic 'a' determinant in human hepatocellular carcinoma (HCC). Southern blot analysis indicated that the HBsAg mutant with the Glycine to Arginine change at position 145 was integrated in HCC, whereas those with a Threonine at position 133 instead of a Methionine were identified in the serum of aggressive HCC. Further studies on HBsAg mutants in HCC should provide new insights on their involvement in the hepatocarcinogenesis.
Collapse
Affiliation(s)
- C J Oon
- Department of Clinical Research, Ministry of Health, Singapore General Hospital, Republic of Singapore
| | | | | | | | | |
Collapse
|
21
|
The Regulation of Cell and Growth Cone Migrations During the Development of Caenorhabditis elegans. Development 1999. [DOI: 10.1007/978-3-642-59828-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Aspbury RA, Prescott MC, Fisher MJ, Rees HH. Isoprenylation of polypeptides in the nematode Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1392:265-75. [PMID: 9630668 DOI: 10.1016/s0005-2760(98)00040-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Covalent modification of eucaryotic proteins, involving addition of isoprenyl groups, is a widespread phenomenon. Here we provide direct evidence for this form of covalent modification in the free-living nematode, Caenorhabditis elegans. Following incubation in the presence of [3H]mevalonolactone, specific C. elegans polypeptides became labelled in both aqueous and detergent (Triton X-114)-enriched extracts. Chemical and GC-MS analysis of modifying groups, cleaved from C. elegans polypeptides, revealed that geranylgeranylation and, to a lesser extent, farnesylation of target polypeptides occurred. Immunoblot analysis provided preliminary evidence that the ras-like let-60 polypeptide was a target for isoprenylation in C. elegans.
Collapse
Affiliation(s)
- R A Aspbury
- Department of Biochemistry, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK
| | | | | | | |
Collapse
|
23
|
Steven R, Kubiseski TJ, Zheng H, Kulkarni S, Mancillas J, Ruiz Morales A, Hogue CW, Pawson T, Culotti J. UNC-73 activates the Rac GTPase and is required for cell and growth cone migrations in C. elegans. Cell 1998; 92:785-95. [PMID: 9529254 DOI: 10.1016/s0092-8674(00)81406-3] [Citation(s) in RCA: 260] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
unc-73 is required for cell migrations and axon guidance in C. elegans and encodes overlapping isoforms of 283 and 189 kDa that are closely related to the vertebrate Trio and Kalirin proteins, respectively. UNC-73A contains, in order, eight spectrin-like repeats, a Dbl/Pleckstrin homology (DH/PH) element, an SH3-like domain, a second DH/PH element, an immunoglobulin domain, and a fibronectin type III domain. UNC-73B terminates just downstream of the SH3-like domain. The first DH/PH element specifically activates the Rac GTPase in vitro and stimulates actin polymerization when expressed in Rat2 cells. Both functions are eliminated by introducing the S1216F mutation of unc-73(rh40) into this DH domain. Our results suggest that UNC-73 acts cell autonomously in a protein complex to regulate actin dynamics during cell and growth cone migrations.
Collapse
Affiliation(s)
- R Steven
- Samuel Lunenfeld Research Institute of Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee MH, Jang YJ, Koo HS. Alternative splicing in the Caenorhabditis elegans DNA topoisomerase I gene. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1396:207-14. [PMID: 9540836 DOI: 10.1016/s0167-4781(97)00209-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5'-end cDNA fragments of the Caenorhabditis elegans DNA topoisomerase I gene were obtained by rapid amplification of the cDNA ends from C. elegans mRNAs. The presence of a SL1 sequence at the 5'-terminus of the cDNA sequence suggested trans-splicing of the pre-mRNA. By comparing the complete cDNA sequence with the genomic lambda DNA clones, the gene structure composed of five exons was established. Alternative splicing deleting the second exon was observed in the cDNA fragments obtained by a gene-specific reverse transcription followed by polymerase chain reactions. The shorter mRNA missing the second exon was expressed at all the developmental stages, while the full-length mRNA was present only in embryos.
Collapse
Affiliation(s)
- M H Lee
- Department of Biochemistry, College of Science, Yonsei University, Seoul, South Korea
| | | | | |
Collapse
|
25
|
Kondoh O, Tachibana Y, Ohya Y, Arisawa M, Watanabe T. Cloning of the RHO1 gene from Candida albicans and its regulation of beta-1,3-glucan synthesis. J Bacteriol 1997; 179:7734-41. [PMID: 9401032 PMCID: PMC179736 DOI: 10.1128/jb.179.24.7734-7741.1997] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Saccharomyces cerevisiae RHO1 gene encodes a low-molecular-weight GTPase. One of its recently identified functions is the regulation of beta-1,3-glucan synthase, which synthesizes the main component of the fungal cell wall (J. Drgonova et al., Science 272:277-279, 1996; T. Mazur and W. Baginsky, J. Biol. Chem. 271:14604-14609, 1996; and H. Qadota et al., Science 272:279-281, 1996). From the opportunistic pathogenic fungus Candida albicans, we cloned the RHO1 gene by the PCR and cross-hybridization methods. Sequence analysis revealed that the Candida RHO1 gene has a 597-nucleotide region which encodes a putative 22.0-kDa peptide. The deduced amino acid sequence predicts that Candida albicans Rho1p is 82.9% identical to Saccharomyces Rho1p and contains all the domains conserved among Rho-type GTPases from other organisms. The Candida albicans RHO1 gene could rescue a S. cerevisiae strain containing a rho1 deletion. Furthermore, recombinant Candida albicans Rho1p could reactivate the beta-1,3-glucan synthesis activities of both C. albicans and S. cerevisiae membranes in which endogenous Rho1p had been depleted by Tergitol NP-40-NaCl treatment. Candida albicans Rho1p was copurified with the beta-1,3-glucan synthase putative catalytic subunit, Candida albicans Gsc1p, by product entrapment. Candida albicans Rho1p was shown to interact directly with Candida albicans Gsc1p in a ligand overlay assay and a cross-linking study. These results indicate that Candida albicans Rho1p acts in the same manner as Saccharomyces cerevisiae Rho1p to regulate beta-1,3-glucan synthesis.
Collapse
Affiliation(s)
- O Kondoh
- Department of Mycology, Nippon Roche Research Center, Kamakura, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- L Van Aelst
- Cold Spring Harbor Laboratory, New York 11724, USA. vanaelst@.cshl.org
| | | |
Collapse
|
27
|
Zipkin ID, Kindt RM, Kenyon CJ. Role of a new Rho family member in cell migration and axon guidance in C. elegans. Cell 1997; 90:883-94. [PMID: 9298900 DOI: 10.1016/s0092-8674(00)80353-0] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rho family GTPases are thought to regulate actin-dependent processes, but their functions in vivo are still poorly understood. We have investigated the function of a new, widely expressed Rho family member in C. elegans by analyzing mutations in the endogenous gene. Activated and null alleles all inhibit cell migration, demonstrating that this protein is required for cell migration in vivo. Only a small subset of the migrations inhibited by activating mutations are inhibited by null mutations, suggesting that considerable functional redundancy exists within this system. Our findings support this conclusion and show that mig-2 functions redundantly with another pathway to regulate nuclear migration. Surprisingly, activated alleles also cause misguided axon growth, suggesting that Rho family GTPases may couple guidance cues to process outgrowth.
Collapse
Affiliation(s)
- I D Zipkin
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0554, USA
| | | | | |
Collapse
|
28
|
Wissmann A, Ingles J, McGhee JD, Mains PE. Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes Dev 1997; 11:409-22. [PMID: 9042856 DOI: 10.1101/gad.11.4.409] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have identified two genes associated with the hypodermal cell shape changes that occur during elongation of the Caenorhabditis elegans embryo. The first gene, called let-502, encodes a protein with high similarity to Rho-binding Ser/Thr kinases and to human myotonic dystrophy kinase (DM-kinase). Strong mutations in let-502 block embryonic elongation, and let-502 reporter constructs are expressed in hypodermal cells at the elongation stage of development. The second gene, mel-11, was identified by mutations that act as extragenic suppressors of let-502. mel-11 encodes a protein similar to the 110- to 133-kD regulatory subunits of vertebrate smooth muscle myosin-associated phosphatase (PP-1M). We suggest that the LET-502 kinase and the MEL-11 phosphatase subunit act in a pathway linking a signal generated by the small GTP-binding protein Rho to a myosin-based hypodermal contractile system that drives embryonic elongation. LET-502 may directly regulate the activity of the MEL-11 containing phosphatase complex and the similarity between LET-502 and DM-kinase suggests a similar function for DM-kinase.
Collapse
Affiliation(s)
- A Wissmann
- University of Calgary, Department of Medical Biochemistry, Alberta, Canada.
| | | | | | | |
Collapse
|
29
|
Chen W, Yap SF, Lim L. Isolation of the gene coding for Caenorhabditis elegans Rac2 homologue, a Ras-related small GTP-binding protein. Gene 1996; 180:217-9. [PMID: 8973370 DOI: 10.1016/s0378-1119(96)00414-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
When screening a Caenorhabditis elegans genomic library using the human Rac1 cDNA as probe, a hybridizing fragment of 2.7 kb was isolated which contained four exons with high sequence similarity to CeRac1, coding for the nematode homologue of the Ras-related small GTP-binding protein Rac1. The putative translational product of 195 amino acids (aa) from the exons displayed 88% identity to the sequence of CeRac1. Interestingly, three alterations were found in the N-terminal "effector domain' (residues 22-45) which hitherto was identical among all known Rac p21s, suggesting that CeRac2 might have different targets/functions for nematode development. Additionally, an insertion of 4 aa was found in the hypervariable region at the C terminus of CeRac2.
Collapse
Affiliation(s)
- W Chen
- Glaxo-IMCB Group, National University of Singapore, Singapore
| | | | | |
Collapse
|
30
|
Chen W, Chen S, Yap SF, Lim L. The Caenorhabditis elegans p21-activated kinase (CePAK) colocalizes with CeRac1 and CDC42Ce at hypodermal cell boundaries during embryo elongation. J Biol Chem 1996; 271:26362-8. [PMID: 8824291 DOI: 10.1074/jbc.271.42.26362] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The p21-activated kinase (PAK) is a downstream target of Rac and CDC42, members of the Ras-related Rho subfamily, that mediates signaling pathway leading to cytoskeletal reorganization. To investigate its function in Caenorhabditis elegans development, we have isolated the cDNA coding for the p21-activated kinase homologue (CePAK) from a C. elegans embryonic cDNA library. This 2.35-kilobase pair cDNA encodes a polypeptide of 572 amino acid residues, with the highly conserved N-terminal p21-binding and the C-terminal kinase domains. Similar to its mammalian and Drosophila counterparts, the CePAK protein expressed in E. coli exhibits binding activity toward GTP-bound CeRac1 and CDC42Ce. Polyclonal antibodies raised against the recombinant CePAK recognize a specific 70-kDa protein from embryonic extracts that displays CeRac1/CDC42Ce-binding and kinase activities. Immunofluorescence analysis indicates that CePAK is specifically expressed at the hypodermal cell boundaries during embryonic body elongation, which involves dramatic cytoskeletal reorganization. Interestingly, CeRac1 and CDC42Ce are found at the same location, which might point to their common involvement in hypodermal cell fusion, a crucial morphogenetic event for nematode development.
Collapse
Affiliation(s)
- W Chen
- Glaxo-IMCB Group, Institute of Molecular & Cell Biology, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore
| | | | | | | |
Collapse
|
31
|
Machesky LM, Hall A. Rho: a connection between membrane receptor signalling and the cytoskeleton. Trends Cell Biol 1996; 6:304-10. [PMID: 15157438 DOI: 10.1016/0962-8924(96)10026-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Rho family of GTP-binding proteins has yielded fresh insights into cell signalling in relation to motility, shape and the control of the actin cytoskeleton. Rho itself is probably near the top of several diverse signalling cascades and has been implicated in cell adhesion, actin filament organization, control of mitogen-activated protein kinase pathways and phospholipid synthesis and turnover. As a member of the Ras superfamily, Rho is regulated by GDP-GTP exchange factors (GEFs) that have homology to the dbl oncogene, and by GTPase-activating proteins (GAPs). These proteins regulate the nucleotide (GDP or GTP) bound to Rho, thus determining the activity of Rho and the interactions of Rho with many of its downstream targets. In the past year, many new targets of Rho have been identified, which hopefully will uncover molecular connections among the diverse downstream effects of Rho activation.
Collapse
Affiliation(s)
- L M Machesky
- MRC-LMCB and Dept of Biochemistry, University College London, Gower St, London, UK WC1E 6BT
| | | |
Collapse
|