1
|
Fiumara M, Molteni R, Scorpio G, Tomelleri A, Bergonzi GM, Ferrari S, Matucci-Cerinic M, Cenci S, Dagna L, Ciceri F, Diral E, Campochiaro C. Clonal hematopoiesis meets an autoinflammatory disease: the new paradigm of VEXAS syndrome. Expert Rev Hematol 2025. [PMID: 40396343 DOI: 10.1080/17474086.2025.2508505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/22/2025]
Abstract
INTRODUCTION VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome is an acquired autoinflammatory disorder caused by somatic mutations in the UBA1 gene. Predominantly affecting males over 50, the disease presents with systemic inflammation, hematologic abnormalities, and features of clonal hematopoiesis, with nearly half of patients developing myelodysplastic syndromes (MDS). The interaction between inflammation and clonal expansion defines disease progression, emphasizing the need for a comprehensive understanding of its pathogenesis and management. AREAS COVERED This review discusses the clinical spectrum, genetic landscape, and pathogenic mechanisms of VEXAS syndrome. The correlation between UBA1 mutations and disease severity is explored, alongside the role of clonal hematopoiesis and inflammatory pathways. Current treatments, including corticosteroids, immunosuppressants, JAK inhibitors, and azacitidine, are evaluated for efficacy and limitations. The potential of allogeneic hematopoietic stem cell transplantation (allo-HSCT) as a curative approach is also addressed. Literature search was conducted from January 2020 to present using PubMed and Scopus databases to identify relevant studies. EXPERT OPINION VEXAS syndrome reflects a complex interaction between autoinflammation and clonal hematopoiesis. While targeted therapies offer symptomatic control, responses remain variable. Future strategies should focus on genotype-driven, personalized treatments and optimizing allo-HSCT protocols to improve patient outcomes and offer disease-modifying potential.
Collapse
Affiliation(s)
- Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaella Molteni
- Vita-Salute San Raffaele University, Milan, Italy
- Inflammation Fibrosis and Ageing Initiative (INFLAGE), Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianluca Scorpio
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Tomelleri
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gregorio Maria Bergonzi
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Matucci-Cerinic
- Vita-Salute San Raffaele University, Milan, Italy
- Inflammation Fibrosis and Ageing Initiative (INFLAGE), Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Cenci
- Vita-Salute San Raffaele University, Milan, Italy
- Inflammation Fibrosis and Ageing Initiative (INFLAGE), Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Diral
- Unit of Hematology and Stem Cell Transplantation, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Corrado Campochiaro
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
2
|
Plourde A, Ogata-Bean JC, Vahidi S. Mapping the structural heterogeneity of Pup ligase PafA using H/D exchange mass spectrometry. J Biol Chem 2025; 301:108437. [PMID: 40122174 PMCID: PMC12053664 DOI: 10.1016/j.jbc.2025.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
The Pup-proteasome system (PPS) is a unique bacterial proteolytic pathway found in some bacterial species, including in Mycobacterium tuberculosis, that plays a vital role in maintaining proteome integrity and survival during infection. Pupylation is the process of tagging substrates with Pup for degradation and is catalyzed by PafA, the sole Pup ligase in bacteria. However, how PafA interacts with diverse targets and its oligomeric state remains poorly understood. Although X-ray crystal structures have characterized PafA as a domain-swapped dimer, it is widely regarded as functionally active in its monomeric form. It remains to be established whether PafA dimerizes in solution, and how dimerization influences its function. In this study, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS) alongside complementary biophysical techniques to explore the oligomeric states and conformational dynamics of PafA. We show that recombinantly-produced PafA exists in a monomeric and a domain-swapped dimeric state in solution. Although nucleotide binding stabilizes PafAdimer, it primarily adopts a catalytically inactive conformation. Our HDX-MS highlighted regions throughout the N- and C-terminal domains that facilitate the PafA dimerization process. HDX-MS also revealed nucleotide binding induces global conformational changes on PafAmonomer, underscoring the structural plasticity of this promiscuous enzyme. Our findings enhance our understanding of the structural and conformational heterogeneity of PafA and demonstrate how nucleotide binding and dimerization may influence its function.
Collapse
Affiliation(s)
- Alicia Plourde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jacquelyn C Ogata-Bean
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Tarjányi O, Olasz K, Rátky F, Sétáló G, Boldizsár F. Proteasome Inhibitors: Potential in Rheumatoid Arthritis Therapy? Int J Mol Sci 2025; 26:2943. [PMID: 40243560 PMCID: PMC11988683 DOI: 10.3390/ijms26072943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to the destruction of peripheral joint cartilage and bone tissue. Despite the advent of biological therapies in the past decades, the complete remission of RA patients is still out of reach. Therefore, the search for novel therapeutic approaches is still open in the field of RA. Proteasome inhibitors (PIs) were originally designed to be used in hematological malignancies like multiple myeloma. However, evidence has shown that they are potent inhibitors of the NF-κB pathway, which plays a pivotal role in inflammatory processes and RA. Furthermore, inhibition of cell activation and induction of apoptosis was also reported about PIs. In the present review, we summarize the current knowledge about the potential effects of PIs in RA based on reports from animal and human studies. We believe that there is substantial potential in the use of PIs in RA therapy either alone or in combination with the medications already used.
Collapse
Affiliation(s)
- Oktávia Tarjányi
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Katalin Olasz
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| | - Fanni Rátky
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - György Sétáló
- Department of Medical Biology, Medical School, University of Pecs, H-7624 Pecs, Hungary; (O.T.); (F.R.); (G.S.)
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Medical School, University of Pecs, H-7624 Pecs, Hungary;
| |
Collapse
|
4
|
Kochańczyk T, Fishman M, Lima CD. Chemical Tools for Probing the Ub/Ubl Conjugation Cascades. Chembiochem 2025; 26:e202400659. [PMID: 39313481 PMCID: PMC11727022 DOI: 10.1002/cbic.202400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Conjugation of ubiquitin (Ub) and structurally related ubiquitin-like proteins (Ubls), essential for many cellular processes, employs multi-step reactions orchestrated by specific E1, E2 and E3 enzymes. The E1 enzyme activates the Ub/Ubl C-terminus in an ATP-dependent process that results in the formation of a thioester linkage with the E1 active site cysteine. The thioester-activated Ub/Ubl is transferred to the active site of an E2 enzyme which then interacts with an E3 enzyme to promote conjugation to the target substrate. The E1-E2-E3 enzymatic cascades utilize labile intermediates, extensive conformational changes, and vast combinatorial diversity of short-lived protein-protein complexes to conjugate Ub/Ubl to various substrates in a regulated manner. In this review, we discuss various chemical tools and methods used to study the consecutive steps of Ub/Ubl activation and conjugation, which are often too elusive for direct studies. We focus on methods developed to probe enzymatic activities and capture and characterize stable mimics of the transient intermediates and transition states, thereby providing insights into fundamental mechanisms in the Ub/Ubl conjugation pathways.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Michael Fishman
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Christopher D. Lima
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
- Howard Hughes Medical Institute1275 York AvenueNew York, New York10065USA
| |
Collapse
|
5
|
Shi JJ, Chen RY, Liu YJ, Li CY, Yu J, Tu FY, Sheng JX, Lu JF, Zhang LL, Yang GJ, Chen J. Unraveling the role of ubiquitin-conjugating enzyme 5 (UBC5) in disease pathogenesis: A comprehensive review. Cell Signal 2024; 124:111376. [PMID: 39236836 DOI: 10.1016/j.cellsig.2024.111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
While certain members of ubiquitin-coupled enzymes (E2s) have garnered attention as potential therapeutic targets across diverse diseases, research progress on Ubiquitin-Conjugating Enzyme 5 (UBC5)-a pivotal member of the E2s family involved in crucial cellular processes such as apoptosis, DNA repair, and signal transduction-has been relatively sluggish. Previous findings suggest that UBC5 plays a vital role in the ubiquitination of various target proteins implicated in diseases and homeostasis, particularly in various cancer types. This review comprehensively introduces the structure and biological functions of UBC5, with a specific focus on its contributions to the onset and advancement of diverse diseases. It suggests that targeting UBC5 holds promise as a therapeutic approach for disease therapy. Recent discoveries highlighting the high homology between UBC5, UBC1, and UBC4 have provided insight into the mechanism of UBC5 in protein degradation and the regulation of cellular functions. As our comprehension of the structural distinctions among UBC5 and its homologues, namely UBC1 and UBC4, advances, our understanding of UBC5's functional significance also expands.
Collapse
Affiliation(s)
- Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jing Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fei-Yang Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Xiang Sheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
6
|
Safreena N, Nair IC, Chandra G. Therapeutic potential of Parkin and its regulation in Parkinson's disease. Biochem Pharmacol 2024; 230:116600. [PMID: 39500382 DOI: 10.1016/j.bcp.2024.116600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/14/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the midbrain substantia nigra, resulting in motor and non-motor symptoms. While the exact etiology of PD remains elusive, a growing body of evidence suggests that dysfunction in the parkin protein plays a pivotal role in the pathogenesis of the disease. Parkin is an E3 ubiquitin ligase that ubiquitinates substrate proteins to control a number of crucial cellular processes including protein catabolism, immune response, and cellular apoptosis.While autosomal recessive mutations in the PARK2 gene, which codes for parkin, are linked to an inherited form of early-onset PD, heterozygous mutations in PARK2 have also been reported in the more commonly occurring sporadic PD cases. Impairment of parkin's E3 ligase activity is believed to play a pathogenic role in both familial and sporadic forms of PD.This article provides an overview of the current understanding of the mechanistic basis of parkin's E3 ligase activity, its major physiological role in controlling cellular functions, and how these are disrupted in familial and sporadic PD. The second half of the manuscript explores the currently available and potential therapeutic strategies targeting parkin structure and/or function in order to slow down or mitigate the progressive neurodegeneration in PD.
Collapse
Affiliation(s)
- Narukkottil Safreena
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India
| | - Indu C Nair
- SAS SNDP Yogam College, Konni, Pathanamthitta 689691, Kerala, India
| | - Goutam Chandra
- Cell Biology Laboratory, Center for Development and Aging Research, Inter University Center for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam 686009, Kerala, India.
| |
Collapse
|
7
|
Kar A, Mukherjee S, Mukherjee S, Biswas A. Ubiquitin: A double-edged sword in hepatitis B virus-induced hepatocellular carcinoma. Virology 2024; 599:110199. [PMID: 39116646 DOI: 10.1016/j.virol.2024.110199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Hepatitis B virus is one of the leading causes behind the neoplastic transformation of liver tissue and associated mortality. Despite the availability of many therapies and vaccines, the pathogenic landscape of the virus remains elusive; urging the development of novel strategies based on the fundamental infectious and transformative modalities of the virus-host interactome. Ubiquitination is a widely observed post-translational modification of several proteins, which either regulates the proteins' turnover or impacts their functionalities. In recent years, ample amount of literature has accumulated regarding the ubiquitination dynamics of the HBV proteins as well as the host proteins during HBV infection and carcinogenesis; with direct and detailed characterization of the involvement of HBV in these processes. Interestingly, while many of these ubiquitination events restrict HBV life cycle and carcinogenesis, several others promote the emergence of hepatocarcinoma by putting the virus in an advantageous position. This review sums up the snowballing literature on ubiquitination-mediated regulation of the host-HBV crosstalk, with special emphasis on its influence on the establishment and progression of hepatocellular carcinoma on a molecular level. With the advent of cutting-edge ubiquitination-targeted therapeutic approaches, the findings emanating from this review may potentiate the identification of novel anti-HBV targets for the formulation of novel anticancer strategies to control the HBV-induced hepato-carcinogenic process on a global scale.
Collapse
Affiliation(s)
- Arpita Kar
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Sandipan Mukherjee
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India
| | - Soumyadeep Mukherjee
- Department of in Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | - Avik Biswas
- Department of Signal Transduction & Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata, India.
| |
Collapse
|
8
|
Gao R, Wu Y, Wang Y, Yang Z, Mao Y, Yang Y, Yang C, Chen Z. Ubiquitination and De-Ubiquitination in the Synthesis of Cow Milk Fat: Reality and Prospects. Molecules 2024; 29:4093. [PMID: 39274941 PMCID: PMC11397273 DOI: 10.3390/molecules29174093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Ubiquitination modifications permit the degradation of labelled target proteins with the assistance of proteasomes and lysosomes, which is the main protein degradation pathway in eukaryotic cells. Polyubiquitination modifications of proteins can also affect their functions. De-ubiquitinating enzymes reverse the process of ubiquitination via cleavage of the ubiquitin molecule, which is known as a de-ubiquitination. It was demonstrated that ubiquitination and de-ubiquitination play key regulatory roles in fatty acid transport, de novo synthesis, and desaturation in dairy mammary epithelial cells. In addition, natural plant extracts, such as stigmasterol, promote milk fat synthesis in epithelial cells via the ubiquitination pathway. This paper reviews the current research on ubiquitination and de-ubiquitination in dairy milk fat production, with a view to providing a reference for subsequent research on milk fat and exploring new directions for the improvement of milk quality.
Collapse
Affiliation(s)
- Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chunhua Yang
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330029, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Shokeen K, Baroi MK, Chahar M, Das D, Saini H, Kumar S. Arginyltransferase 1 (ATE1)-mediated proteasomal degradation of viral haemagglutinin protein: a unique host defence mechanism. J Gen Virol 2024; 105. [PMID: 39207120 DOI: 10.1099/jgv.0.002020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The extensive protein production in virus-infected cells can disrupt protein homeostasis and activate various proteolytic pathways. These pathways utilize post-translational modifications (PTMs) to drive the ubiquitin-mediated proteasomal degradation of surplus proteins. Protein arginylation is the least explored PTM facilitated by arginyltransferase 1 (ATE1) enzyme. Several studies have provided evidence supporting its importance in multiple physiological processes, including ageing, stress, nerve regeneration, actin formation and embryo development. However, its function in viral pathogenesis is still unexplored. The present work utilizes Newcastle disease virus (NDV) as a model to establish the role of the ATE1 enzyme and its activity in pathogenesis. Our data indicate a rise in levels of N-arginylated cellular proteins in the infected cells. Here, we also explore the haemagglutinin-neuraminidase (HN) protein of NDV as a presumable target for arginylation. The data indicate that the administration of Arg amplifies the arginylation process, resulting in reduced stability of the HN protein. ATE1 enzyme activity inhibition and gene expression knockdown studies were also conducted to analyse modulation in HN protein levels, which further substantiated the findings. Moreover, we also observed Arg addition and probable ubiquitin modification to the HN protein, indicating engagement of the proteasomal degradation machinery. Lastly, we concluded that the enhanced levels of the ATE1 enzyme could transfer the Arg residue to the N-terminus of the HN protein, ultimately driving its proteasomal degradation.
Collapse
Affiliation(s)
- Kamal Shokeen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Malay Kumar Baroi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Manjeet Chahar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, India
| | - Harimohan Saini
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
10
|
Eichbichler D, Bernecker C, Stengel F, Scheffner M. Phase separation promotes the activity of HECT E3 ligases-A word of caution. Proc Natl Acad Sci U S A 2024; 121:e2402551121. [PMID: 38527205 PMCID: PMC10998622 DOI: 10.1073/pnas.2402551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Affiliation(s)
| | | | - Florian Stengel
- Department of Biology, University of Konstanz, 78457Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, 78457Konstanz, Germany
| |
Collapse
|
11
|
Zhang M, Wei T, Guo D. The role of abnormal ubiquitination in hepatocellular carcinoma pathology. Cell Signal 2024; 114:110994. [PMID: 38036196 DOI: 10.1016/j.cellsig.2023.110994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Primary liver cancer is known for its high incidence and fatality rate. Over the years, therapeutic strategies for primary liver cancer have advanced significantly. Nonetheless, a substantial number of patients have not benefited from these methods, underscoring the pressing need for new and effective treatments for primary liver cancer. Ubiquitination is a critical post-translational modification that enables proteins to fulfill their normal biological functions and maintain their expression stability within cells. Importantly, increasing evidence suggests that the progression of liver cancer cells is often accompanied by disruptions in protein ubiquitination and deubiquitination processes. In this comprehensive review, we have compiled pertinent research about dysregulated ubiquitination in hepatocellular carcinoma (HCC) to broaden our understanding in this field. We elucidate the connections between the ubiquitination proteasome system, deubiquitination, and HCC. Furthermore, we shed light on the role of ubiquitination in cells situated within the tumor microenvironment of HCC including its involvement in mediating the activation of oncogenic pathways, reprogramming metabolic processes, and perturbing normal cellular functions. In conclusion, targeting the dysregulation of ubiquitination in HCC holds promise as a prospective and complementary therapeutic approach to existing treatments.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Tingju Wei
- Department of Cardiac Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Danfeng Guo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
12
|
Chen A, Zhou Y, Ren Y, Liu C, Han X, Wang J, Ma Z, Chen Y. Ubiquitination of acetyltransferase Gcn5 contributes to fungal virulence in Fusarium graminearum. mBio 2023; 14:e0149923. [PMID: 37504517 PMCID: PMC10470610 DOI: 10.1128/mbio.01499-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/29/2023] Open
Abstract
The histone acetyltransferase general control non-depressible 5 (Gcn5) plays a critical role in the epigenetic landscape and chromatin modification for regulating a wide variety of biological events. However, the post-translational regulation of Gcn5 itself is poorly understood. Here, we found that Gcn5 was ubiquitinated and deubiquitinated by E3 ligase Tom1 and deubiquitinating enzyme Ubp14, respectively, in the important plant pathogenic fungus Fusarium graminearum. Tom1 interacted with Gcn5 in the nucleus and subsequently ubiquitinated Gcn5 mainly at K252 to accelerate protein degradation. Conversely, Ubp14 deubiquitinated Gcn5 and enhanced its stability. In the deletion mutant Δubp14, protein level of Gcn5 was significantly reduced and resulted in attenuated virulence in the fungus by affecting the mycotoxin production, autophagy process, and the penetration ability. Our findings indicate that Tom1 and Ubp14 show antagonistic functions in the control of the protein stability of Gcn5 via post-translational modification and highlight the importance of Tom1-Gcn5-Ubp14 circuit in the fungal virulence. IMPORTANCE Post-translational modification (PTM) enzymes have been reported to be involved in regulating numerous cellular processes. However, the modification of these PTM enzymes themselves is largely unknown. In this study, we found that the E3 ligase Tom1 and deubiquitinating enzyme Ubp14 contributed to the regulation of ubiquitination and deubiquitination of acetyltransferase Gcn5, respectively, in Fusarium graminearum, the causal agent of Fusarium head blight of cereals. Our findings provide deep insights into the modification of acetyltransferase Gcn5 and its dynamic regulation via ubiquitination and deubiquitination. To our knowledge, this work is the most comprehensive analysis of a regulatory network of ubiquitination that impinges on acetyltransferase in filamentous pathogens. Moreover, our findings are important because we present the novel roles of the Tom1-Gcn5-Ubp14 circuit in fungal virulence, providing novel possibilities and targets to control fungal diseases.
Collapse
Affiliation(s)
- Ahai Chen
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yifan Zhou
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiyi Ren
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xingmin Han
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jing Wang
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
De Silva ARI, Page RC. Ubiquitination detection techniques. Exp Biol Med (Maywood) 2023; 248:1333-1346. [PMID: 37787047 PMCID: PMC10625345 DOI: 10.1177/15353702231191186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
Ubiquitination is an intricately regulated post-translational modification that involves the covalent attachment of ubiquitin to a substrate protein. The complex dynamic nature of the ubiquitination process regulates diverse cellular functions including targeting proteins for degradation, cell cycle, deoxyribonucleic acid (DNA) damage repair, and numerous cell signaling pathways. Ubiquitination also serves as a crucial mechanism in protein quality control. Dysregulation in ubiquitination could result in lethal disease conditions such as cancers and neurodegenerative diseases. Therefore, the ubiquitination cascade has become an attractive target for therapeutic interventions. Enormous efforts have been made to detect ubiquitination involving different detection techniques to better grasp the underlying molecular mechanisms of ubiquitination. This review discusses a wide range of techniques stretching from the simplest assays to real-time assays. This includes western blotting/immunoblotting, fluorescence assays, chemiluminescence assays, spectrophotometric assays, and nanopore sensing assays. This review compares these applications, and the inherent advantages and limitations.
Collapse
Affiliation(s)
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
14
|
Chen XQ, Shen T, Fang SJ, Sun XM, Li GY, Li YF. Protein homeostasis in aging and cancer. Front Cell Dev Biol 2023; 11:1143532. [PMID: 36875752 PMCID: PMC9978402 DOI: 10.3389/fcell.2023.1143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Aging is a major risk factor for cancer development. As dysfunction in protein homeostasis, or proteostasis, is a universal hallmark of both the aging process and cancer, a comprehensive understanding of the proteostasis system and its roles in aging and cancer will shed new light on how we can improve health and quality of life for older individuals. In this review, we summarize the regulatory mechanisms of proteostasis and discuss the relationship between proteostasis and aging and age-related diseases, including cancer. Furthermore, we highlight the clinical application value of proteostasis maintenance in delaying the aging process and promoting long-term health.
Collapse
Affiliation(s)
- Xiao-Qiong Chen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Tao Shen
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Shao-Jun Fang
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Xiao-Min Sun
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Guo-Yu Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| | - Yun-Feng Li
- Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
15
|
Yuan L, Gao F, Lv Z, Nayak D, Nayak A, Santos Bury PD, Cano KE, Jia L, Oleinik N, Atilgan FC, Ogretmen B, Williams KM, Davies C, El Oualid F, Wasmuth EV, Olsen SK. Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6. Nat Commun 2022; 13:4880. [PMID: 35986001 PMCID: PMC9391358 DOI: 10.1038/s41467-022-32613-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
The E1 enzyme Uba6 initiates signal transduction by activating ubiquitin and the ubiquitin-like protein FAT10 in a two-step process involving sequential catalysis of adenylation and thioester bond formation. To gain mechanistic insights into these processes, we determined the crystal structure of a human Uba6/ubiquitin complex. Two distinct architectures of the complex are observed: one in which Uba6 adopts an open conformation with the active site configured for catalysis of adenylation, and a second drastically different closed conformation in which the adenylation active site is disassembled and reconfigured for catalysis of thioester bond formation. Surprisingly, an inositol hexakisphosphate (InsP6) molecule binds to a previously unidentified allosteric site on Uba6. Our structural, biochemical, and biophysical data indicate that InsP6 allosterically inhibits Uba6 activity by altering interconversion of the open and closed conformations of Uba6 while also enhancing its stability. In addition to revealing the molecular mechanisms of catalysis by Uba6 and allosteric regulation of its activities, our structures provide a framework for developing Uba6-specific inhibitors and raise the possibility of allosteric regulation of other E1s by naturally occurring cellular metabolites.
Collapse
Affiliation(s)
- Lingmin Yuan
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Fei Gao
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Research & Development, Beijing IPE Center for Clinical Laboratory CO, Beijing, 100176, China
| | - Zongyang Lv
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Digant Nayak
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anindita Nayak
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Priscila Dos Santos Bury
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kristin E Cano
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lijia Jia
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Natalia Oleinik
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Firdevs Cansu Atilgan
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Katelyn M Williams
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Davies
- Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Farid El Oualid
- UbiQ Bio B.V., Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Elizabeth V Wasmuth
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
The E3 ubiquitin ligase HECTD1 contributes to cell proliferation through an effect on mitosis. Sci Rep 2022; 12:13160. [PMID: 35915203 PMCID: PMC9343455 DOI: 10.1038/s41598-022-16965-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
The cell cycle is tightly regulated by protein phosphorylation and ubiquitylation events. During mitosis, the multi-subunit cullin-RING E3 ubiquitin ligase APC/c functions as a molecular switch which signals for one cell to divide into two daughter cells, through the ubiquitylation and proteasomal degradation of mitotic cyclins. The contributions of other E3 ligase families during cell cycle progression remain less well understood. Similarly, the roles of ubiquitin chain types beyond homotypic K48 chains in S-phase or branched K11/K48 chains during mitosis, also remain to be fully determined. Our recent findings that HECTD1 ubiquitin ligase activity assembles branched K29/K48 ubiquitin linkages prompted us to evaluate HECTD1 function during the cell cycle. We used transient knockdown and genetic knockout to show that HECTD1 depletion in HEK293T and HeLa cells decreases cell number and we established that this is mediated through loss of ubiquitin ligase activity. Interestingly, we found that HECTD1 depletion increases the proportion of cells with aligned chromosomes (Prometa/Metaphase) and we confirmed this molecularly using phospho-Histone H3 (Ser28) as a marker of mitosis. Time-lapse microscopy of NEBD to anaphase onset established that HECTD1-depleted cells take on average longer to go through mitosis. In line with this data, HECTD1 depletion reduced the activity of the Spindle Assembly Checkpoint, and BUB3, a component of the Mitosis Checkpoint Complex, was identified as novel HECTD1 interactor. BUB3, BUBR1 or MAD2 protein levels remained unchanged in HECTD1-depleted cells. Overall, this study reveals a novel putative role for HECTD1 during mitosis and warrants further work to elucidate the mechanisms involved.
Collapse
|
17
|
Zheng Y, Ma G, Wang T, Hofmann A, Song J, Gasser RB, Young ND. Ubiquitination pathway model for the barber's pole worm - Haemonchus contortus. Int J Parasitol 2022; 52:581-590. [PMID: 35853501 DOI: 10.1016/j.ijpara.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
The ubiquitin-mediated pathway has been comprehensively explored in the free-living nematode Caenorhabditis elegans, but very little is known about this pathway in parasitic nematodes. Here, we inferred the ubiquitination pathway for an economically significant and pathogenic nematode - Haemonchus contortus - using abundant resources available for C. elegans. We identified 215 genes encoding ubiquitin (Ub; n = 3 genes), ubiquitin-activating enzyme (E1; one), -conjugating enzymes (E2s; 21), ligases (E3s; 157) and deubiquitinating enzymes (DUBs; 33). With reference to C. elegans, Ub, E1 and E2 were relatively conserved in sequence and structure, and E3s and DUBs were divergent, likely reflecting functional and biological uniqueness in H. contortus. Most genes encoding ubiquitination pathway components exhibit high transcription in the egg compared with other stages, indicating marked protein homeostasis in this early developmental stage. The ubiquitination pathway model constructed for H. contortus provides a foundation to explore the ubiquitin-proteasome system, crosstalk between autophagy and the proteasome system, and the parasite-host interactions. Selected E3 and DUB proteins which are very divergent in sequence and structure from host homologues or entirely unique to H. contortus and related parasitic nematodes may represent possible anthelmintic targets.
Collapse
Affiliation(s)
- Yuanting Zheng
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Guangxu Ma
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia; College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Tao Wang
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia; Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Germany
| | - Jiangning Song
- Department of Data Science and AI, Faculty of IT, Monash University, Victoria, Australia; Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia; Monash Data Futures Institute, Monash University, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
18
|
Lambert-Smith IA, Saunders DN, Yerbury JJ. Progress in biophysics and molecular biology proteostasis impairment and ALS. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:3-27. [PMID: 35716729 DOI: 10.1016/j.pbiomolbio.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and fatal neurodegenerative disease that results from the loss of both upper and lower motor neurons. It is the most common motor neuron disease and currently has no effective treatment. There is mounting evidence to suggest that disturbances in proteostasis play a significant role in ALS pathogenesis. Proteostasis is the maintenance of the proteome at the right level, conformation and location to allow a cell to perform its intended function. In this review, we present a thorough synthesis of the literature that provides evidence that genetic mutations associated with ALS cause imbalance to a proteome that is vulnerable to such pressure due to its metastable nature. We propose that the mechanism underlying motor neuron death caused by defects in mRNA metabolism and protein degradation pathways converges on proteostasis dysfunction. We propose that the proteostasis network may provide an effective target for therapeutic development in ALS.
Collapse
Affiliation(s)
- Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Darren N Saunders
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
19
|
Fry M. Question-driven stepwise experimental discoveries in biochemistry: two case studies. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2022; 44:12. [PMID: 35320436 DOI: 10.1007/s40656-022-00491-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Philosophers of science diverge on the question what drives the growth of scientific knowledge. Most of the twentieth century was dominated by the notion that theories propel that growth whereas experiments play secondary roles of operating within the theoretical framework or testing theoretical predictions. New experimentalism, a school of thought pioneered by Ian Hacking in the early 1980s, challenged this view by arguing that theory-free exploratory experimentation may in many cases effectively probe nature and potentially spawn higher evidence-based theories. Because theories are often powerless to envisage workings of complex biological systems, theory-independent experimentation is common in the life sciences. Some such experiments are triggered by compelling observation, others are prompted by innovative techniques or instruments, whereas different investigations query big data to identify regularities and underlying organizing principles. A distinct fourth type of experiments is motivated by a major question. Here I describe two question-guided experimental discoveries in biochemistry: the cyclic adenosine monophosphate mediator of hormone action and the ubiquitin-mediated system of protein degradation. Lacking underlying theories, antecedent data bases, or new techniques, the sole guides of the two discoveries were respective substantial questions. Both research projects were similarly instigated by theory-free exploratory experimentation and continued in alternating phases of results-based interim working hypotheses, their examination by experiment, provisional hypotheses again, and so on. These two cases designate theory-free, question-guided, stepwise biochemical investigations as a distinct subtype of the new experimentalism mode of scientific enquiry.
Collapse
Affiliation(s)
- Michael Fry
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, POB 9649, 31096, Haifa, Israel.
| |
Collapse
|
20
|
Mirzalieva O, Juncker M, Schwartzenburg J, Desai S. ISG15 and ISGylation in Human Diseases. Cells 2022; 11:cells11030538. [PMID: 35159348 PMCID: PMC8834048 DOI: 10.3390/cells11030538] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Type I Interferons (IFNs) induce the expression of >500 genes, which are collectively called ISGs (IFN-stimulated genes). One of the earliest ISGs induced by IFNs is ISG15 (Interferon-Stimulated Gene 15). Free ISG15 protein synthesized from the ISG15 gene is post-translationally conjugated to cellular proteins and is also secreted by cells into the extracellular milieu. ISG15 comprises two ubiquitin-like domains (UBL1 and UBL2), each of which bears a striking similarity to ubiquitin, accounting for its earlier name ubiquitin cross-reactive protein (UCRP). Like ubiquitin, ISG15 harbors a characteristic β-grasp fold in both UBL domains. UBL2 domain has a conserved C-terminal Gly-Gly motif through which cellular proteins are appended via an enzymatic cascade similar to ubiquitylation called ISGylation. ISG15 protein is minimally expressed under physiological conditions. However, its IFN-dependent expression is aberrantly elevated or compromised in various human diseases, including multiple types of cancer, neurodegenerative disorders (Ataxia Telangiectasia and Amyotrophic Lateral Sclerosis), inflammatory diseases (Mendelian Susceptibility to Mycobacterial Disease (MSMD), bacteriopathy and viropathy), and in the lumbar spinal cords of veterans exposed to Traumatic Brain Injury (TBI). ISG15 and ISGylation have both inhibitory and/or stimulatory roles in the etiology and pathogenesis of human diseases. Thus, ISG15 is considered a “double-edged sword” for human diseases in which its expression is elevated. Because of the roles of ISG15 and ISGylation in cancer cell proliferation, migration, and metastasis, conferring anti-cancer drug sensitivity to tumor cells, and its elevated expression in cancer, neurodegenerative disorders, and veterans exposed to TBI, both ISG15 and ISGylation are now considered diagnostic/prognostic biomarkers and therapeutic targets for these ailments. In the current review, we shall cover the exciting journey of ISG15, spanning three decades from the bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Shyamal Desai
- Correspondence: ; Tel.: +1-504-568-4388; Fax: +1-504-568-2093
| |
Collapse
|
21
|
Pande A, Mun BG, Khan M, Rahim W, Lee DS, Lee GM, Al Azawi TNI, Hussain A, Yun BW. Nitric Oxide Signaling and Its Association with Ubiquitin-Mediated Proteasomal Degradation in Plants. Int J Mol Sci 2022; 23:ijms23031657. [PMID: 35163578 PMCID: PMC8835921 DOI: 10.3390/ijms23031657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/05/2023] Open
Abstract
Nitric oxide (NO) is a versatile signaling molecule with diverse roles in plant biology. The NO-mediated signaling mechanism includes post-translational modifications (PTMs) of target proteins. There exists a close link between NO-mediated PTMs and the proteasomal degradation of proteins via ubiquitylation. In some cases, ubiquitin-mediated proteasomal degradation of target proteins is followed by an NO-mediated post-translational modification on them, while in other cases NO-mediated PTMs can regulate the ubiquitylation of the components of ubiquitin-mediated proteasomal machinery for promoting their activity. Another pathway that links NO signaling with the ubiquitin-mediated degradation of proteins is the N-degron pathway. Overall, these mechanisms reflect an important mechanism of NO signal perception and transduction that reflect a close association of NO signaling with proteasomal degradation via ubiquitylation. Therefore, this review provides insight into those pathways that link NO-PTMs with ubiquitylation.
Collapse
Affiliation(s)
- Anjali Pande
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
- Correspondence: (A.P.); (B.-W.Y.)
| | - Bong-Gyu Mun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Murtaza Khan
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Waqas Rahim
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Da-Sol Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Geun-Mo Lee
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Tiba Nazar Ibrahim Al Azawi
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
| | - Adil Hussain
- Laboratory of Cell Biology, Department of Entomology, Abdul Wali Khan University, Mardan 23200, Khyber Pakhtunkhwa, Pakistan;
| | - Byung-Wook Yun
- Laboratory of Plant Molecular Pathology and Functional Genomics, Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41944, Korea; (B.-G.M.); (M.K.); (W.R.); (D.-S.L.); (G.-M.L.); (T.N.I.A.A.)
- Correspondence: (A.P.); (B.-W.Y.)
| |
Collapse
|
22
|
Gong L, Lu P, Lu C, Li M, Wan H, Wang Y. Design, Synthesis and Biological Evaluation of Coumarin Derivatives as NEDD8 Activating Enzyme Inhibitors in Pancreatic Cancer Cells. Med Chem 2022; 18:679-693. [PMID: 34895126 DOI: 10.2174/1573406418666211210163817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND NEDD8 (neural precursor cell expressed developmentally downregulated protein 8) is one of the ubiquitin-like proteins which is activated by the NEDD8 activating enzyme (NAE). The overexpressed NAE can cause a variety of diseases such as numerous cancer types and inflammatory diseases. The selective inhibition of NAE could mediate the rate of ubiquitination and the subsequent degradation of proteins associated with cancer so as to achieve the purpose of treatment. OBJECTIVE In this article, we decided to study the synthesis and screening of coumarin scaffold derivatives against cancer cell lines, specifically the human pancreatic cancer cell line BxPC-3. METHODS Twenty-four targeted compounds were synthesized, and their anti-proliferative activity against three cancer cell lines, cytotoxicity against three normal cell lines through CCK-8 and MTT assay were evaluated to screen out the candidate compound. Then the target was further confirmed by both enzyme and cell-based experiments, as well as cell apoptosis research. RESULTS Several new 4-position substituted coumarin derivatives (12a~x) were synthesized and most of them exhibit antiproliferative activity in three cancer cell lines. A series of experiments were performed to identify the best candidate compound 12v. This compound displayed the highest potency against BxPC-3 with an IC50 value of 0.28 μM. It can also inhibit NAE activity in enzyme and cellbased assay, and induce CRLs-mediated accumulation of the substrate and apoptosis in BxPC-3 cells. Meanwhile, it exhibited relatively low toxicity in three normal cells. CONCLUSION Based on these results, we found that compound 12v inhibited NAE activity in enzyme and cell-based systems and induced apoptosis in BxPC-3 cells. Additionally, it also had a low toxicity. These results suggested that 12v may be promising lead compounds for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Lei Gong
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Peng Lu
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Cheng Lu
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Mengli Li
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Huiyang Wan
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Technical University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| |
Collapse
|
23
|
Structural Diversity of Ubiquitin E3 Ligase. Molecules 2021; 26:molecules26216682. [PMID: 34771091 PMCID: PMC8586995 DOI: 10.3390/molecules26216682] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
The post-translational modification of proteins regulates many biological processes. Their dysfunction relates to diseases. Ubiquitination is one of the post-translational modifications that target lysine residue and regulate many cellular processes. Three enzymes are required for achieving the ubiquitination reaction: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). E3s play a pivotal role in selecting substrates. Many structural studies have been conducted to reveal the molecular mechanism of the ubiquitination reaction. Recently, the structure of PCAF_N, a newly categorized E3 ligase, was reported. We present a review of the recent progress toward the structural understanding of E3 ligases.
Collapse
|
24
|
Upadhyay A. Natural compounds in the regulation of proteostatic pathways: An invincible artillery against stress, ageing, and diseases. Acta Pharm Sin B 2021; 11:2995-3014. [PMID: 34729300 PMCID: PMC8546668 DOI: 10.1016/j.apsb.2021.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 01/13/2023] Open
Abstract
Cells have different sets of molecules for performing an array of physiological functions. Nucleic acids have stored and carried the information throughout evolution, whereas proteins have been attributed to performing most of the cellular functions. To perform these functions, proteins need to have a unique conformation and a definite lifespan. These attributes are achieved by a highly coordinated protein quality control (PQC) system comprising chaperones to fold the proteins in a proper three-dimensional structure, ubiquitin-proteasome system for selective degradation of proteins, and autophagy for bulk clearance of cell debris. Many kinds of stresses and perturbations may lead to the weakening of these protective cellular machinery, leading to the unfolding and aggregation of cellular proteins and the occurrence of numerous pathological conditions. However, modulating the expression and functional efficiency of molecular chaperones, E3 ubiquitin ligases, and autophagic proteins may diminish cellular proteotoxic load and mitigate various pathological effects. Natural medicine and small molecule-based therapies have been well-documented for their effectiveness in modulating these pathways and reestablishing the lost proteostasis inside the cells to combat disease conditions. The present article summarizes various similar reports and highlights the importance of the molecules obtained from natural sources in disease therapeutics.
Collapse
Key Words
- 17-AAG, 17-allylamino-geldanamycin
- APC, anaphase-promoting complex
- Ageing
- Autophagy
- BAG, BCL2-associated athanogene
- CAP, chaperone-assisted proteasomal degradation
- CASA, chaperone-assisted selective autophagy
- CHIP, carboxy-terminus of HSC70 interacting protein
- CMA, chaperone-mediated autophagy
- Cancer
- Chaperones
- DUBs, deubiquitinases
- Drug discovery
- EGCG, epigallocatechin-3-gallate
- ESCRT, endosomal sorting complexes required for transport
- HECT, homologous to the E6-AP carboxyl terminus
- HSC70, heat shock cognate 70
- HSF1, heat shock factor 1
- HSP, heat shock protein
- KFERQ, lysine-phenylalanine-glutamate-arginine-glutamine
- LAMP2a, lysosome-associated membrane protein 2a
- LC3, light chain 3
- NBR1, next to BRCA1 gene 1
- Natural molecules
- Neurodegeneration
- PQC, protein quality control
- Proteinopathies
- Proteostasis
- RING, really interesting new gene
- UPS, ubiquitin–proteasome system
- Ub, ubiquitin
- Ubiquitin proteasome system
Collapse
Affiliation(s)
- Arun Upadhyay
- Department of Biochemistry, Central University of Rajasthan, Bandar Sindari, Kishangarh, Ajmer, Rajasthan 305817, India
| |
Collapse
|
25
|
Ji F, Zhou M, Sun Z, Jiang Z, Zhu H, Xie Z, Ouyang X, Zhang L, Li L. Integrative proteomics reveals the role of E3 ubiquitin ligase SYVN1 in hepatocellular carcinoma metastasis. Cancer Commun (Lond) 2021; 41:1007-1023. [PMID: 34196494 PMCID: PMC8504139 DOI: 10.1002/cac2.12192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/29/2020] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tumor metastasis is a major factor for poor prognosis of hepatocellular carcinoma (HCC), but the relationship between ubiquitination and metastasis need to be studied more systematically. We analyzed the ubiquitinome of HCC in this study to have a more comprehensive insight into human HCC metastasis. METHODS The protein ubiquitination levels in 15 HCC specimens with vascular invasion and 15 without vascular invasion were detected by ubiquitinome. Proteins with significantly different ubiquitination levels between HCCs with and without vascular invasion were used to predict E3 ubiquitin ligases associated with tumor metastasis. The topological network of protein substrates and corresponding E3 ubiquitin ligases was constructed to identify the key E3 ubiquitin ligase. Besides, the growth, migration and invasion ability of LM3 and HUH7 hepatoma cell lines with and without SYVN1 expression interference were measured by cell proliferation assay, subcutaneous tumor assay, umphal vein endothelium tube formation assay, transwell migration and invasion assays. Finally, the interacting proteins of SYVN1 were screened and verified by protein interaction omics, immunofluorescence, and immunoprecipitation. Ubiquitin levels of related protein substrates in LM3 and HUH7 cells were compared in negative control, SYVN1 knockdown, and SYVN1 overexpression groups. RESULTS In this study, our whole-cell proteomic dataset and ubiquitinomic dataset contained approximately 5600 proteins and 12,000 ubiquitinated sites. We discovered increased ubiquitinated sites with shorter ubiquitin chains during the progression of HCC metastasis. In addition, proteomic and ubiquitinomic analyses revealed that high expression of E3 ubiquitin-protein ligase SYVN1 is related with tumor metastasis. Furthermore, we found that SYVN1 interacted with heat shock protein 90 (HSP90) and impacted the ubiquitination of eukaryotic elongation factor 2 kinase (EEF2K). CONCLUSIONS The ubiquitination profiles of HCC with and without vascular invasion were significantly different. SYVN1 was the most important E3 ubiquitin-protein ligase responsible for this phenomenon, and it was related with tumor metastasis and growth. Therefore, SYVN1 might be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Zhengyi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Huihui Zhu
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310003P. R. China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesHangzhouZhejiang310003P. R. China
| |
Collapse
|
26
|
Henneberg LT, Schulman BA. Decoding the messaging of the ubiquitin system using chemical and protein probes. Cell Chem Biol 2021; 28:889-902. [PMID: 33831368 PMCID: PMC7611516 DOI: 10.1016/j.chembiol.2021.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Post-translational modification of proteins by ubiquitin is required for nearly all aspects of eukaryotic cell function. The numerous targets of ubiquitylation, and variety of ubiquitin modifications, are often likened to a code, where the ultimate messages are diverse responses to target ubiquitylation. E1, E2, and E3 multiprotein enzymatic assemblies modify specific targets and thus function as messengers. Recent advances in chemical and protein tools have revolutionized our ability to explore the ubiquitin system, through enabling new high-throughput screening methods, matching ubiquitylation enzymes with their cellular targets, revealing intricate allosteric mechanisms regulating ubiquitylating enzymes, facilitating structural revelation of transient assemblies determined by multivalent interactions, and providing new paradigms for inhibiting and redirecting ubiquitylation in vivo as new therapeutics. Here we discuss the development of methods that control, disrupt, and extract the flow of information across the ubiquitin system and have enabled elucidation of the underlying molecular and cellular biology.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
27
|
Yuan L, Yin P, Yan H, Zhong X, Ren C, Li K, Chin Heng B, Zhang W, Tong G. Single-cell transcriptome analysis of human oocyte ageing. J Cell Mol Med 2021; 25:6289-6303. [PMID: 34037315 PMCID: PMC8256362 DOI: 10.1111/jcmm.16594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Oocyte ageing is a key bottleneck and intractable challenge for in vitro fertilization treatment of aged female patients. The underlying molecular mechanisms of human oocyte ageing remain to be elucidated. Hence, this study aims to investigate the key genes and relevant biological signalling pathways involved in human oocyte ageing. We isolated mRNA for single-cell RNA sequencing from MII human oocytes donated by patients undergoing intracytoplasmic sperm injection. Nine RNA-seq datasets were analyzed, which included 6 older patients(average 42.67±2.25 years) and 3 younger patients (average 25.67±2.08 years). 481 differentially expressed genes (DEGs) were identified, including 322 upregulated genes enriched in transcription, ubiquitination, epigenetic regulation, and cellular processes, and 159 downregulated genes enriched in ubiquitination, cell cycle, signalling pathway, and DNA repair. The STRING database was used to analyse protein-protein interactions, and the Cytoscape software was used to identify hub genes. From these DEGs, 17 hub genes were identified including 12 upregulated genes (UBE2C, UBC, CDC34, UBR1, KIF11, ASF1B, PRC1, ESPL1, GTSE1, EXO1, UBA1, KIF4A) and 5 downregulated genes (UBA52, UBE2V2, SKP1, CCNB1, MAD2L1). The significant key biological processes that are associated with these hub genes include ubiquitin-mediated proteolysis, ubiquitination-related pathways, oocyte meiosis, and cell cycle. Among these, UBE2C may play a crucial role in human oocyte ageing.
Collapse
Affiliation(s)
- Lihua Yuan
- Shuguang Clinical Medical CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ping Yin
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hua Yan
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiufang Zhong
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunxia Ren
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Kai Li
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | | | - Wuwen Zhang
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guoqing Tong
- Center of Reproductive MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
28
|
Wang J, Ge P, Lei Z, Lu Z, Qiang L, Chai Q, Zhang Y, Zhao D, Li B, Su J, Peng R, Pang Y, Shi Y, Zhang Y, Gao GF, Qiu XB, Liu CH. Mycobacterium tuberculosis protein kinase G acts as an unusual ubiquitinating enzyme to impair host immunity. EMBO Rep 2021; 22:e52175. [PMID: 33938130 DOI: 10.15252/embr.202052175] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 11/09/2022] Open
Abstract
Upon Mycobacterium tuberculosis (Mtb) infection, protein kinase G (PknG), a eukaryotic-type serine-threonine protein kinase (STPK), is secreted into host macrophages to promote intracellular survival of the pathogen. However, the mechanisms underlying this PknG-host interaction remain unclear. Here, we demonstrate that PknG serves both as a ubiquitin-activating enzyme (E1) and a ubiquitin ligase (E3) to trigger the ubiquitination and degradation of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TGF-β-activated kinase 1 (TAK1), thereby inhibiting the activation of NF-κB signaling and host innate responses. PknG promotes the attachment of ubiquitin (Ub) to the ubiquitin-conjugating enzyme (E2) UbcH7 via an isopeptide bond (UbcH7 K82-Ub), rather than the usual C86-Ub thiol-ester bond. PknG induces the discharge of Ub from UbcH7 by acting as an isopeptidase, before attaching Ub to its substrates. These results demonstrate that PknG acts as an unusual ubiquitinating enzyme to remove key components of the innate immunity system, thus providing a potential target for tuberculosis treatment.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Pupu Ge
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Qiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Dongdong Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bingxi Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Su
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China
| | - Yu Pang
- Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Bo Qiu
- Ministry of Education Key Laboratory of Cell Proliferation and Regulation Biology, Department of Cell Biology, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Franco R, Rivas-Santisteban R, Navarro G, Pinna A, Reyes-Resina I. Genes Implicated in Familial Parkinson's Disease Provide a Dual Picture of Nigral Dopaminergic Neurodegeneration with Mitochondria Taking Center Stage. Int J Mol Sci 2021; 22:4643. [PMID: 33924963 PMCID: PMC8124903 DOI: 10.3390/ijms22094643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
The mechanism of nigral dopaminergic neuronal degeneration in Parkinson's disease (PD) is unknown. One of the pathological characteristics of the disease is the deposition of α-synuclein (α-syn) that occurs in the brain from both familial and sporadic PD patients. This paper constitutes a narrative review that takes advantage of information related to genes (SNCA, LRRK2, GBA, UCHL1, VPS35, PRKN, PINK1, ATP13A2, PLA2G6, DNAJC6, SYNJ1, DJ-1/PARK7 and FBXO7) involved in familial cases of Parkinson's disease (PD) to explore their usefulness in deciphering the origin of dopaminergic denervation in many types of PD. Direct or functional interactions between genes or gene products are evaluated using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The rationale is to propose a map of the interactions between SNCA, the gene encoding for α-syn that aggregates in PD, and other genes, the mutations of which lead to early-onset PD. The map contrasts with the findings obtained using animal models that are the knockout of one of those genes or that express the mutated human gene. From combining in silico data from STRING-based assays with in vitro and in vivo data in transgenic animals, two likely mechanisms appeared: (i) the processing of native α-syn is altered due to the mutation of genes involved in vesicular trafficking and protein processing, or (ii) α-syn mutants alter the mechanisms necessary for the correct vesicular trafficking and protein processing. Mitochondria are a common denominator since both mechanisms require extra energy production, and the energy for the survival of neurons is obtained mainly from the complete oxidation of glucose. Dopamine itself can result in an additional burden to the mitochondria of dopaminergic neurons because its handling produces free radicals. Drugs acting on G protein-coupled receptors (GPCRs) in the mitochondria of neurons may hopefully end up targeting those receptors to reduce oxidative burden and increase mitochondrial performance. In summary, the analysis of the data of genes related to familial PD provides relevant information on the etiology of sporadic cases and might suggest new therapeutic approaches.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain; (R.F.); (R.R.-S.); (I.R.-R.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain;
| | - Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain; (R.F.); (R.R.-S.); (I.R.-R.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain;
| | - Gemma Navarro
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain;
- Department Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Annalisa Pinna
- National Research Council of Italy (CNR), Neuroscience Institute–Cagliari, Cittadella Universitaria, Blocco A, SP 8, Km 0.700, 09042 Monserrato (CA), Italy
| | - Irene Reyes-Resina
- Department Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain; (R.F.); (R.R.-S.); (I.R.-R.)
| |
Collapse
|
30
|
Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Nat Commun 2021; 12:2370. [PMID: 33888705 PMCID: PMC8062481 DOI: 10.1038/s41467-021-22598-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/18/2021] [Indexed: 01/07/2023] Open
Abstract
E1 enzymes function as gatekeepers of ubiquitin (Ub) signaling by catalyzing activation and transfer of Ub to tens of cognate E2 conjugating enzymes in a process called E1-E2 transthioesterification. The molecular mechanisms of transthioesterification and the overall architecture of the E1-E2-Ub complex during catalysis are unknown. Here, we determine the structure of a covalently trapped E1-E2-ubiquitin thioester mimetic. Two distinct architectures of the complex are observed, one in which the Ub thioester (Ub(t)) contacts E1 in an open conformation and another in which Ub(t) instead contacts E2 in a drastically different, closed conformation. Altogether our structural and biochemical data suggest that these two conformational states represent snapshots of the E1-E2-Ub complex pre- and post-thioester transfer, and are consistent with a model in which catalysis is enhanced by a Ub(t)-mediated affinity switch that drives the reaction forward by promoting productive complex formation or product release depending on the conformational state.
Collapse
|
31
|
Gundogdu M, Tadayon R, Salzano G, Shaw GS, Walden H. A mechanistic review of Parkin activation. Biochim Biophys Acta Gen Subj 2021; 1865:129894. [PMID: 33753174 DOI: 10.1016/j.bbagen.2021.129894] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
Parkin and phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) constitute a feed-forward signalling pathway that mediates autophagic removal of damaged mitochondria (mitophagy). With over 130 mutations identified to date in over 1000 patients with early onset parkinsonism, Parkin is considered a hot spot of signalling pathways involved in PD aetiology. Parkin is an E3 ligase and how its activity is regulated has been extensively studied: inter-domain interactions exert a tight inhibition on Parkin activity; binding to phospho-ubiquitin relieves this auto-inhibition; and phosphorylation of Parkin shifts the equilibrium towards maximal Parkin activation. This review focusses on recent, structural findings on the regulation of Parkin activity. What follows is a mechanistic introduction to the family of E3 ligases that includes Parkin, followed by a brief description of structural elements unique to Parkin that lock the enzyme in an autoinhibited state, contrasted with emerging models that have shed light on possible mechanisms of Parkin activation.
Collapse
Affiliation(s)
- Mehmet Gundogdu
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Roya Tadayon
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Giulia Salzano
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gary S Shaw
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada
| | - Helen Walden
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
32
|
Qu J, Zou T, Lin Z. The Roles of the Ubiquitin-Proteasome System in the Endoplasmic Reticulum Stress Pathway. Int J Mol Sci 2021; 22:1526. [PMID: 33546413 PMCID: PMC7913544 DOI: 10.3390/ijms22041526] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells, which is essential for synthesis, processing, sorting of protein and lipid metabolism. However, the cells activate a defense mechanism called endoplasmic reticulum stress (ER stress) response and initiate unfolded protein response (UPR) as the unfolded proteins exceed the folding capacity of the ER due to the environmental influences or increased protein synthesis. ER stress can mediate many cellular processes, including autophagy, apoptosis and senescence. The ubiquitin-proteasome system (UPS) is involved in the degradation of more than 80% of proteins in the cells. Today, increasing numbers of studies have shown that the two important components of UPS, E3 ubiquitin ligases and deubiquitinases (DUBs), are tightly related to ER stress. In this review, we summarized the regulation of the E3 ubiquitin ligases and DUBs in ER stress.
Collapse
Affiliation(s)
| | | | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China; (J.Q.); (T.Z.)
| |
Collapse
|
33
|
Herpes simplex virus 1 infection induces ubiquitination of UBE1a. Biochem J 2021; 478:261-279. [PMID: 33355669 DOI: 10.1042/bcj20200885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 11/17/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a human DNA virus that causes cold sores, keratitis, meningitis, and encephalitis. Ubiquitination is a post-translational protein modification essential for regulation of cellular events, such as proteasomal degradation, signal transduction, and protein trafficking. The process is also involved in events for establishing viral infection and replication. The first step in ubiquitination involves ubiquitin (Ub) binding with Ub-activating enzyme (E1, also termed UBE1) via a thioester linkage. Our results show that HSV-1 infection alters protein ubiquitination pattern in host cells, as evidenced by MS spectra and co-immunoprecipitation assays. HSV-1 induced ubiquitination of UBE1a isoform via an isopeptide bond with Lys604. Moreover, we show that ubiquitination of K604 in UBE1a enhances UBE1a activity; that is, the activity of ubiquitin-transfer to E2 enzyme. Subsequently, we investigated the functional role of UBE1a and ubiquitination of K604 in UBE1a. We found that UBE1-knockdown increased HSV-1 DNA replication and viral production. Furthermore, overexpression of UBE1a, but not a UBE1a K604A mutant, suppressed viral replication. Furthermore, we found that UBE1a and ubiquitination at K604 in UBE1a retarded expression of HSV-1 major capsid protein, ICP5. Our findings show that UBE1a functions as an antiviral factor that becomes activated upon ubiquitination at Lys604.
Collapse
|
34
|
UBE1a Suppresses Herpes Simplex Virus-1 Replication. Viruses 2020; 12:v12121391. [PMID: 33291814 PMCID: PMC7762088 DOI: 10.3390/v12121391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is the causative agent of cold sores, keratitis, meningitis, and encephalitis. HSV-1-encoded ICP5, the major capsid protein, is essential for capsid assembly during viral replication. Ubiquitination is a post-translational modification that plays a critical role in the regulation of cellular events such as proteasomal degradation, protein trafficking, and the antiviral response and viral events such as the establishment of infection and viral replication. Ub-activating enzyme (E1, also named UBE1) is involved in the first step in the ubiquitination. However, it is still unknown whether UBE1 contributes to viral infection or the cellular antiviral response. Here, we found that UBE1a suppressed HSV-1 replication and contributed to the antiviral response. The UBE1a inhibitor PYR-41 increased HSV-1 production. Immunofluorescence analysis revealed that UBE1a highly expressing cells presented low ICP5 expression, and vice versa. UBE1a inhibition by PYR-41 and shRNA increased ICP5 expression in HSV-1-infected cells. UBE1a reduced and retarded ICP5 protein expression, without affecting transcription of ICP5 mRNA or degradation of ICP5 protein. Additionally, UBE1a interacted with ICP27, and both partially co-localized at the Hsc70 foci/virus-induced chaperone-enriched (VICE) domains. PYR-41 reduced the co-localization of UBE1a and ICP27. Thus, our findings provide insights into the mechanism of UBE1a in the cellular response to viral infection.
Collapse
|
35
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
36
|
Dong HJ, Zhang R, Kuang Y, Wang XJ. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Arch Microbiol 2020; 203:1021-1032. [PMID: 33124672 PMCID: PMC7594972 DOI: 10.1007/s00203-020-02094-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
As intracellular parasites, viruses depend heavily on host cell structures and their functions to complete their life cycle and produce new viral particles. Viruses utilize or modulate cellular translational machinery to achieve efficient replication; the role of ribosome biogenesis and protein synthesis in viral replication particularly highlights the importance of the ribosome quantity and/or quality in controlling viral protein synthesis. Recently reported studies have demonstrated that ribosome biogenesis factors (RBFs) and ribosomal proteins (RPs) act as multifaceted regulators in selective translation of viral transcripts. Here we summarize the recent literature on RBFs and RPs and their association with subcellular redistribution, post-translational modification, enzyme catalysis, and direct interaction with viral proteins. The advances described in this literature establish a rationale for targeting ribosome production and function in the design of the next generation of antiviral agents.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yu Kuang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
37
|
Elmatboly AM, Sherif AM, Deeb DA, Benmelouka A, Bin-Jumah MN, Aleya L, Abdel-Daim MM. The impact of proteostasis dysfunction secondary to environmental and genetic causes on neurodegenerative diseases progression and potential therapeutic intervention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11461-11483. [PMID: 32072427 DOI: 10.1007/s11356-020-07914-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Aggregation of particular proteins in the form of inclusion bodies or plaques followed by neuronal death is a hallmark of neurodegenerative proteopathies such as primary Parkinsonism, Alzheimer's disease, Lou Gehrig's disease, and Huntington's chorea. Complex polygenic and environmental factors implicated in these proteopathies. Accumulation of proteins in these disorders indicates a substantial disruption in protein homeostasis (proteostasis). Proteostasis or cellular proteome homeostasis is attained by the synchronization of a group of cellular mechanisms called the proteostasis network (PN), which is responsible for the stability of the proteome and achieves the equilibrium between synthesis, folding, and degradation of proteins. In this review, we will discuss the different types of PN and the impact of PN component dysfunction on the four major neurodegenerative diseases mentioned earlier. Graphical abstract.
Collapse
Affiliation(s)
| | - Ahmed M Sherif
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Dalia A Deeb
- Faculty of Medicine, Zagazig University, El-Sharkia, Egypt
| | - Amira Benmelouka
- Faculty of Medicine, University of Algiers, Sidi M'Hamed, Algeria
| | - May N Bin-Jumah
- Biology Department, College Of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
38
|
CRL3s: The BTB-CUL3-RING E3 Ubiquitin Ligases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:211-223. [PMID: 31898230 DOI: 10.1007/978-981-15-1025-0_13] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome pathway is one of the major regulatory tools used by eukaryotic cells. The evolutionarily conserved cullin family proteins can assemble as many as >600 distinct E3 ubiquitin ligase complexes that regulate diverse cellular pathways. In most of Cullin-RING ubiquitin ligase (CRL) complexes, separate linker and adaptor proteins build the substrate recognition module. Differently, a single BTB-containing adaptor molecule utilizing two protein interaction sites can link the CUL3 scaffold to the substrate, forming as many as 188 CUL3-BTB E3 ligase complexes in mammals. Here, we review the most recent studies on CRL3 complexes, with a focus on the model for CUL3 assembly with its BTB-containing substrate receptors. Also, we summarize the current knowledge of CRL3 substrates and their relevant biological functions. Next, we discuss the mutual exclusivity of somatic mutations in KEAP1, NRF2, and CUL3 in human lung cancer. Finally, we highlight new strategies to expand CUL3 substrates and discuss outstanding questions remaining in the field.
Collapse
|
39
|
Differential Inhibition of Human and Trypanosome Ubiquitin E1S by TAK-243 Offers Possibilities for Parasite Selective Inhibitors. Sci Rep 2019; 9:16195. [PMID: 31700050 PMCID: PMC6838199 DOI: 10.1038/s41598-019-52618-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/08/2019] [Indexed: 11/25/2022] Open
Abstract
Novel strategies to target Trypanosoma brucei, Trypanosoma cruzi and Leishmania are urgently needed to generate better and safer drugs against Human African Trypanosomiasis, Chagas disease and Leishmaniasis, respectively. Here, we investigated the feasibility of selectively targeting in trypanosomatids the ubiquitin E1 activating enzyme (UBA1), an essential eukaryotic protein required for protein ubiquitination. Trypanosomatids contain two UBA1 genes in contrast to mammals and yeast that only have one, and using T. brucei as a model system, we show that both are active in vitro. Surprisingly, neither protein is inhibited by TAK-243, a potent inhibitor of human UBA1. This resistance stems from differences with the human protein at key amino acids, which includes a residue termed the gatekeeper because its mutation in E1s leads to resistance to TAK-243 and related compounds. Importantly, our results predict that trypanosomatid selective UBA1 inhibition is feasible and suggest ways to design novel compounds to achieve this.
Collapse
|
40
|
Li C, Wang X, Li X, Qiu K, Jiao F, Liu Y, Kong Q, Liu Y, Wu Y. Proteasome Inhibition Activates Autophagy-Lysosome Pathway Associated With TFEB Dephosphorylation and Nuclear Translocation. Front Cell Dev Biol 2019; 7:170. [PMID: 31508418 PMCID: PMC6713995 DOI: 10.3389/fcell.2019.00170] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Ubiquitin-proteasome pathway (UPS) and autophagy-lysosome pathway (ALP) are the two major protein degradation pathways, which are critical for proteostasis. Growing evidence indicates that proteasome inhibition-induced ALP activation is an adaptive response. Transcription Factor EB (TFEB) is a master regulator of ALP. However, the characteristics of TFEB and its role in proteasome inhibition-induced ALP activation are not fully investigated. Here we reported that the half-life of TFEB is around 13.5 h in neuronal-like cells, and TFEB is degraded through proteasome pathway in both neuronal-like and non-neuronal cells. Moreover, proteasome impairment not only promotes TFEB accumulation but also facilitates its dephosphorylation and nuclear translocation. In addition, proteasome inhibition-induced TFEB accumulation, dephosphorylation and nuclear translocation significantly increases the expression of a number of TFEB downstream genes involved in ALP activation, including microtubule-associated protein 1B light chain-3 (LC3), particularly LC3-II, cathepsin D and lysosomal-associated membrane protein 1 (LAMP1). Furthermore, we demonstrated that proteasome inhibition increases autophagosome biogenesis but not impairs autophagic flux. Our study advances the understanding of features of TFEB and indicates that TFEB might be a key mediator of proteasome impairment-induced ALP activation.
Collapse
Affiliation(s)
- Chunyan Li
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xin Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Xuezhi Li
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Kaixin Qiu
- Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yidan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingxia Kong
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yan Liu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
41
|
Abstract
Posttranslational protein modification by ubiquitin (Ub) regulates aspects of biology, including protein turnover and the cell cycle. Proteins and enzymes that promote Ub conjugation are therapeutic targets because they are sometimes dysregulated in cancer, neurodegenerative diseases, and other disorders. Ub conjugation is initiated by a Ub-activating enzyme that adopts different conformations to catalyze Ub activation, Ub-activating enzyme thioester bond formation, and thioester bond transfer to Ub-conjugating enzymes. Here, we illuminate 2 uncharacterized states for Ub-activating enzyme, one bound to pyrophosphate prior to thioester bond formation and one captured during thioester bond formation. These structures reveal key differences and similarities among activating enzymes for Ub and SUMO with respect to conformational changes that accompany thioester formation. The ubiquitin (Ub) and Ub-like (Ubl) protein-conjugation cascade is initiated by E1 enzymes that catalyze Ub/Ubl activation through C-terminal adenylation, thioester bond formation with an E1 catalytic cysteine, and thioester bond transfer to Ub/Ubl E2 conjugating enzymes. Each of these reactions is accompanied by conformational changes of the E1 domain that contains the catalytic cysteine (Cys domain). Open conformations of the Cys domain are associated with adenylation and thioester transfer to E2s, while a closed conformation is associated with pyrophosphate release and thioester bond formation. Several structures are available for Ub E1s, but none has been reported in the open state before pyrophosphate release or in the closed state. Here, we describe the structures of Schizosaccharomyces pombe Ub E1 in these two states, captured using semisynthetic Ub probes. In the first, with a Ub-adenylate mimetic (Ub-AMSN) bound, the E1 is in an open conformation before release of pyrophosphate. In the second, with a Ub-vinylsulfonamide (Ub-AVSN) bound covalently to the catalytic cysteine, the E1 is in a closed conformation required for thioester bond formation. These structures provide further insight into Ub E1 adenylation and thioester bond formation. Conformational changes that accompany Cys-domain rotation are conserved for SUMO and Ub E1s, but changes in Ub E1 involve additional surfaces as mutational and biochemical analysis of residues within these surfaces alter Ub E1 activities.
Collapse
|
42
|
Rojas VK, Park IW. Role of the Ubiquitin Proteasome System (UPS) in the HIV-1 Life Cycle. Int J Mol Sci 2019; 20:ijms20122984. [PMID: 31248071 PMCID: PMC6628307 DOI: 10.3390/ijms20122984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023] Open
Abstract
Given that the ubiquitin proteasome system (UPS) is the major protein degradation process in the regulation of a wide variety of cellular processes in eukaryotic cells, including alteration of cellular location, modulation of protein activity, and regulation of protein interaction, it is reasonable to suggest that the infecting HIV-1 and the invaded hosts exploit the UPS in a contest for survival and proliferation. However, to date, regulation of the HIV-1 life cycle has been mainly explained by the stage-specific expression of HIV-1 viral genes, not by elimination processes of the synthesized proteins after completion of their duties in the infected cells, which is also quintessential for understanding the molecular processes of the virus life cycle and thereby HIV-1 pathogenesis. In fact, several previous publications have indicated that the UPS plays a critical role in the regulation of the proteasomal degradation of viral and cellular counterparts at every step of the HIV-1 life cycle, from the virus entry to release of the assembled virus particles, which is integral for the regulation of survival and proliferation of the infecting HIV-1 and to replication restriction of the invading virus in the host. However, it is unknown whether and how these individual events taking place at different stages of the HIV-1 life cycle are orchestrated as an overall strategy to overcome the restrictions conferred by the host cells. Thus, in this review, we overview the interplay between HIV-1 viral and cellular proteins for restrictions/competitions for proliferation of the virus in the infected cell, which could open a new avenue for the development of therapeutics against HIV-1 via targeting a specific step of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Vivian K Rojas
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| | - In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
43
|
Patir-Nebioglu MG, Andrés Z, Krebs M, Fink F, Drzewicka K, Stankovic-Valentin N, Segami S, Schuck S, Büttner M, Hell R, Maeshima M, Melchior F, Schumacher K. Pyrophosphate modulates plant stress responses via SUMOylation. eLife 2019; 8:44213. [PMID: 30785397 PMCID: PMC6382351 DOI: 10.7554/elife.44213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Pyrophosphate (PPi), a byproduct of macromolecule biosynthesis is maintained at low levels by soluble inorganic pyrophosphatases (sPPase) found in all eukaryotes. In plants, H+-pumping pyrophosphatases (H+-PPase) convert the substantial energy present in PPi into an electrochemical gradient. We show here, that both cold- and heat stress sensitivity of fugu5 mutants lacking the major H+-PPase isoform AVP1 is correlated with reduced SUMOylation. In addition, we show that increased PPi concentrations interfere with SUMOylation in yeast and we provide evidence that SUMO activating E1-enzymes are inhibited by micromolar concentrations of PPi in a non-competitive manner. Taken together, our results do not only provide a mechanistic explanation for the beneficial effects of AVP1 overexpression in plants but they also highlight PPi as an important integrator of metabolism and stress tolerance.
Collapse
Affiliation(s)
- M Görkem Patir-Nebioglu
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Zaida Andrés
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Melanie Krebs
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Fabian Fink
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Katarzyna Drzewicka
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Shoji Segami
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sebastian Schuck
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Michael Büttner
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Masayoshi Maeshima
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Frauke Melchior
- Center for Molecular Biology of Heidelberg University (ZMBH) and DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Karin Schumacher
- Department Cell Biology, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
44
|
Lv Z, Williams KM, Yuan L, Atkison JH, Olsen SK. Crystal structure of a human ubiquitin E1-ubiquitin complex reveals conserved functional elements essential for activity. J Biol Chem 2018; 293:18337-18352. [PMID: 30279270 PMCID: PMC6254350 DOI: 10.1074/jbc.ra118.003975] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/24/2018] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin (Ub) signaling plays a key regulatory role in nearly every aspect of eukaryotic biology and is initiated by E1 enzymes that activate and transfer Ub to E2 Ub-conjugating enzymes. Despite Ub E1's fundamental importance to the cell and its attractiveness as a target for therapeutic intervention in cancer and other diseases, its only available structural information is derived from yeast orthologs of human ubiquitin-like modifier-activating enzyme 1 (hUBA1). To illuminate structural differences between yeast and hUBA1 structures that might be exploited for the development of small-molecule therapeutics, we determined the first crystal structure of a hUBA1-Ub complex. Using structural analysis, molecular modeling, and biochemical analysis, we demonstrate that hUBA1 shares a conserved overall structure and mechanism with previously characterized yeast orthologs, but displays subtle structural differences, particularly within the active site. Computational analysis revealed four potential ligand-binding hot spots on the surface of hUBA1 that might serve as targets to inhibit hUBA1 at the level of Ub activation or E2 recruitment or that might potentially be used in approaches such as protein-targeting chimeric molecules. Taken together, our work enhances our understanding of the hUBA1 mechanism, provides an improved framework for the development of small-molecule inhibitors of UBA1, and serves as a stepping stone for structural studies that involve the enzymes of the human Ub system at the level of both E1 and E2.
Collapse
Affiliation(s)
- Zongyang Lv
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Katelyn M Williams
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lingmin Yuan
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - James H Atkison
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shaun K Olsen
- From the Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
45
|
Liu X, Zhang Y, Hu Z, Li Q, Yang L, Xu G. The Catalytically Inactive Mutation of the Ubiquitin-Conjugating Enzyme CDC34 Affects its Stability and Cell Proliferation. Protein J 2018; 37:132-143. [PMID: 29564676 DOI: 10.1007/s10930-018-9766-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ubiquitin proteasome system (UPS) plays important roles in the regulation of protein stability, localization, and activity. A myriad of studies have focused on the functions of ubiquitin ligases E3s and deubiquitinating enzymes DUBs due to their specificity in the recognition of downstream substrates. However, the roles of the most ubiquitin-conjugating enzymes E2s are not completely understood except that they transport the activated ubiquitin and form E2-E3 protein complexes. Ubiquitin-conjugating enzyme CDC34 can promote the degradation of downstream targets through the UPS whereas its non-catalytic functions are still elusive. Here, we find that mutation of the catalytically active cysteine to serine (C93S) results in the reduced ubiquitination, increased stability, and attenuated degradation rate of CDC34. Through semi-quantitative proteomics, we identify the CDC34-interacting proteins and discover that the wild-type and mutant proteins have many differentially interacted proteins. Detailed examination finds that some of them are involved in the regulation of gene expression, cell growth, and cell proliferation. Cell proliferation assay reveals that both the wild-type and C93S proteins affect the proliferation of a cancer cell line. Database analyses show that CDC34 mRNA is highly expressed in multiple cancers, which is correlated with the reduced patient survival rate. This work may help to elucidate the enzymatic and non-enzymatic functions of this protein and might provide additional insights for drug discovery targeting E2s.
Collapse
Affiliation(s)
- Xun Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Yang Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zhanhong Hu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Qian Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Lu Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
46
|
Muller J, Baeyens A, Dustin ML. Tumor Necrosis Factor Receptor Superfamily in T Cell Priming and Effector Function. Adv Immunol 2018; 140:21-57. [PMID: 30366518 DOI: 10.1016/bs.ai.2018.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The tumor necrosis factor receptor superfamily (TNFRSF) and their ligands mediate lymphoid tissue development and homeostasis in addition to key aspects of innate and adaptive immune responses. T cells of the adaptive immune system express a number of TNFRSF members that are used to receive signals at different instructive stages and produce several tumor necrosis factor superfamily (TNFSF) members as effector molecules. There is also one example of a TNFRSF member serving as a ligand for negative regulatory checkpoint receptors. In most cases, the ligands in afferent and efferent phases are membrane proteins and thus the interaction with TNFRSF members must take place in immunological synapses and other modes of cell-cell interaction. A particular feature of the TNFRSF-mediated signaling is the prominent use of linear ubiquitin chains as scaffolds for signaling complexes that activate nuclear factor κ-B and Fos/Jun transcriptional regulators. This review will focus on the signaling mechanisms triggered by TNFRSF members in their role as costimulators of early and late phases of T cell instruction and the delivery mechanism of TNFSF members through the immunological synapses of helper and cytotoxic effector cells.
Collapse
Affiliation(s)
- James Muller
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Audrey Baeyens
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine and Immunology Training Program, New York University School of Medicine, New York, NY, United States; Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
47
|
Sannino S, Guerriero CJ, Sabnis AJ, Stolz DB, Wallace CT, Wipf P, Watkins SC, Bivona TG, Brodsky JL. Compensatory increases of select proteostasis networks after Hsp70 inhibition in cancer cells. J Cell Sci 2018; 131:jcs217760. [PMID: 30131440 PMCID: PMC6140321 DOI: 10.1242/jcs.217760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer cells thrive when challenged with proteotoxic stress by inducing components of the protein folding, proteasome, autophagy and unfolded protein response (UPR) pathways. Consequently, specific molecular chaperones have been validated as targets for anti-cancer therapies. For example, inhibition of Hsp70 family proteins (hereafter Hsp70) in rhabdomyosarcoma triggers UPR induction and apoptosis. To define how these cancer cells respond to compromised proteostasis, we compared rhabdomyosarcoma cells that were sensitive (RMS13) or resistant (RMS13-R) to the Hsp70 inhibitor MAL3-101. We discovered that endoplasmic reticulum-associated degradation (ERAD) and autophagy were activated in RMS13-R cells, suggesting that resistant cells overcome Hsp70 ablation by increasing misfolded protein degradation. Indeed, RMS13-R cells degraded ERAD substrates more rapidly than RMS cells and induced the autophagy pathway. Surprisingly, inhibition of the proteasome or ERAD had no effect on RMS13-R cell survival, but silencing of select autophagy components or treatment with autophagy inhibitors restored MAL3-101 sensitivity and led to apoptosis. These data indicate a route through which cancer cells overcome a chaperone-based therapy, define how cells can adapt to Hsp70 inhibition, and demonstrate the value of combined chaperone and autophagy-based therapies.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Amit J Sabnis
- Department of Pediatrics, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Donna Beer Stolz
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Callen T Wallace
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Peter Wipf
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Simon C Watkins
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Trever G Bivona
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
48
|
Miricescu A, Goslin K, Graciet E. Ubiquitylation in plants: signaling hub for the integration of environmental signals. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4511-4527. [PMID: 29726957 DOI: 10.1093/jxb/ery165] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/27/2018] [Indexed: 05/20/2023]
Abstract
A fundamental question in biology is how organisms integrate the plethora of environmental cues that they perceive to trigger a co-ordinated response. The regulation of protein stability, which is largely mediated by the ubiquitin-proteasome system in eukaryotes, plays a pivotal role in these processes. Due to their sessile lifestyle and the need to respond rapidly to a multitude of environmental factors, plants are thought to be especially dependent on proteolysis to regulate cellular processes. In this review, we present the complexity of the ubiquitin system in plants, and discuss the relevance of the proteolytic and non-proteolytic roles of this system in the regulation and co-ordination of plant responses to environmental signals. We also discuss the role of the ubiquitin system as a key regulator of plant signaling pathways. We focus more specifically on the functions of E3 ligases as regulators of the jasmonic acid (JA), salicylic acid (SA), and ethylene hormone signaling pathways that play important roles to mount a co-ordinated response to multiple environmental stresses. We also provide examples of new players in this field that appear to integrate different cues and signaling pathways.
Collapse
Affiliation(s)
- Alexandra Miricescu
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Kevin Goslin
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | | |
Collapse
|
49
|
Koszela J, Pham NT, Evans D, Mann S, Perez-Pi I, Shave S, Ceccarelli DFJ, Sicheri F, Tyers M, Auer M. Real-time tracking of complex ubiquitination cascades using a fluorescent confocal on-bead assay. BMC Biol 2018; 16:88. [PMID: 30097011 PMCID: PMC6086040 DOI: 10.1186/s12915-018-0554-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/24/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) controls the stability, localization and/or activity of the proteome. However, the identification and characterization of complex individual ubiquitination cascades and their modulators remains a challenge. Here, we report a broadly applicable, multiplexed, miniaturized on-bead technique for real-time monitoring of various ubiquitination-related enzymatic activities. The assay, termed UPS-confocal fluorescence nanoscanning (UPS-CONA), employs a substrate of interest immobilized on a micro-bead and a fluorescently labeled ubiquitin which, upon enzymatic conjugation to the substrate, is quantitatively detected on the bead periphery by confocal imaging. RESULTS UPS-CONA is suitable for studying individual enzymatic activities, including various E1, E2, and HECT-type E3 enzymes, and for monitoring multi-step reactions within ubiquitination cascades in a single experimental compartment. We demonstrate the power of the UPS-CONA technique by simultaneously following ubiquitin transfer from Ube1 through Ube2L3 to E6AP. We applied this multi-step setup to investigate the selectivity of five ubiquitination inhibitors reportedly targeting different classes of ubiquitination enzymes. Using UPS-CONA, we have identified a new activity of a small molecule E2 inhibitor, BAY 11-7082, and of a HECT E3 inhibitor, heclin, towards the Ube1 enzyme. CONCLUSIONS As a sensitive, quantitative, flexible, and reagent-efficient method with a straightforward protocol, UPS-CONA constitutes a powerful tool for interrogation of ubiquitination-related enzymatic pathways and their chemical modulators, and is readily scalable for large experiments.
Collapse
Affiliation(s)
- Joanna Koszela
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Nhan T. Pham
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - David Evans
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Stefan Mann
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Irene Perez-Pi
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Steven Shave
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Derek F. J. Ceccarelli
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 1090, Toronto, Ontario M5G 1X5 Canada
| | - Frank Sicheri
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 1090, Toronto, Ontario M5G 1X5 Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3C 3J7 Canada
| | - Manfred Auer
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
- Biomedical Sciences, Medical School, University of Edinburgh, C H Waddington Building, 3.07, Max Born Crescent, Edinburgh, EH9 3BF UK
| |
Collapse
|
50
|
Mi J, Zhang J, Liao S, Tu X. Solution structure of a ubiquitin-like protein from Trypanosoma brucei. Protein Sci 2018; 27:1831-1836. [PMID: 30058168 DOI: 10.1002/pro.3492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 11/09/2022]
Abstract
Ubiquitin-like proteins, similar to ubiquitin, can either exist freely or be covalently attached to other proteins via an enzymatic cascade. The ubiquitin-like proteins play roles in multiple biological processes including transcription, stress responses, DNA repair and so on. In this study, a novel ubiquitin-like protein (TbUbl11) was identified in Trypanosoma brucei. The solution structure of TbUbl11 was solved by NMR spectroscopy. TbUbl11 adopts a conserved β-grasp fold composed by a five-stranded β-sheet curling around a central α-helix, similar to other ubiquitin-like proteins. Meanwhile, some differences between TbUbl11 and other ubiquitin-like proteins were also identified. Additionally, we revealed that TbUbl11 is located in the whole cell body of procyclic-form T. brucei.
Collapse
Affiliation(s)
- Juan Mi
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Jiahai Zhang
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Shanhui Liao
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Xiaoming Tu
- Hefei National Laboratory for Physical Science at Microscale and School of Life Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|