1
|
Nie R, Niu W, Tang T, Zhang J, Zhang X. Integrating microRNA expression, miRNA-mRNA regulation network and signal pathway: a novel strategy for lung cancer biomarker discovery. PeerJ 2021; 9:e12369. [PMID: 34754623 PMCID: PMC8552790 DOI: 10.7717/peerj.12369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Since there are inextricably connections among molecules in the biological networks, it would be a more efficient and accurate research strategy to screen microRNA (miRNA) markers combining with miRNA-mRNA regulatory networks. The independent regulation mode is more “fragile” and “influential” than the co-regulation mode. miRNAs can be used as biomarkers if they can independently regulate hub genes with important roles in the PPI network, simultaneously the expression products of the regulated hub genes play important roles in the signaling pathways of related tissue diseases. Methods We collected miRNA expression of non-small cell lung cancer (NSCLC) from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. Volcano plot and signal-to-noise ratio (SNR) methods were used to obtain significant differentially expressed (SDE) miRNAs from the TCGA database and GEO database, respectively. A human miRNA-mRNA regulatory network was constructed and the number of genes uniquely targeted (NOG) by a certain miRNA was calculated. The area under the curve (AUC) values were used to screen for clinical sensitivity and specificity. The candidate markers were obtained using the criteria of the top five maximum AUC values and NOG ≥ 3. The protein–protein interaction (PPI) network was constructed and independently regulated hub genes were obtained. Gene Ontology (GO) analysis and KEGG pathway analysis were used to identify genes involved in cancer-related pathways. Finally, the miRNA which can independently regulate a hub gene and the hub gene can participate in an important cancer-related pathway was considered as a biomarker. The AUC values and gene expression profile analysis from two external GEO datasets as well as literature validation were used to verify the screening capability and reliability of this marker. Results Fifteen SDE miRNAs in lung cancer were obtained from the intersection of volcano plot and SNR based on the GEO database and the TCGA database. Five miRNAs with the top five maximum AUC values and NOG ≥ 3 were screened out. A total of 61 hub genes were obtained from the PPI network. It was found that the hub gene GTF2F2 was independently regulated by miR-708-5p. Further pathway analysis indicated that GTF2F2 participates in protein expression by binding with polymerase II, and it can regulate transcription and accelerate tumor growth. Hence, miR-708-5p could be used as a biomarker. The good screening capability and reliability of miR-708-5p as a lung cancer marker were confirmed by AUC values and gene expression profiling of external datasets, and experimental literature. The potential mechanism of miR-708-5p was proposed. Conclusions This study proposes a new idea for lung cancer marker screening by integrating microRNA expression, regulation network and signal pathway. miR-708-5p was identified as a biomarker using this novel strategy. This study may provide some help for cancer marker screening.
Collapse
Affiliation(s)
- Renqing Nie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Wenling Niu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Tang Tang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jin Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Xiaoyi Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
2
|
Abstract
Transcription of eukaryotic protein-coding genes commences with the assembly of a conserved initiation complex, which consists of RNA polymerase II (Pol II) and the general transcription factors, at promoter DNA. After two decades of research, the structural basis of transcription initiation is emerging. Crystal structures of many components of the initiation complex have been resolved, and structural information on Pol II complexes with general transcription factors has recently been obtained. Although mechanistic details await elucidation, available data outline how Pol II cooperates with the general transcription factors to bind to and open promoter DNA, and how Pol II directs RNA synthesis and escapes from the promoter.
Collapse
|
3
|
Kilpatrick AM, Koharudin LMI, Calero GA, Gronenborn AM. Structural and binding studies of the C-terminal domains of yeast TFIIF subunits Tfg1 and Tfg2. Proteins 2011; 80:519-29. [PMID: 22095626 DOI: 10.1002/prot.23217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/12/2011] [Accepted: 09/27/2011] [Indexed: 12/13/2022]
Abstract
The general transcription factor TFIIF plays essential roles at several steps during eukaryotic transcription. While several studies have offered insights into the structure/function relationship in human TFIIF, much less is known about the yeast system. Here, we describe the first NMR structural and binding studies of the C-terminal domains (CTDs) of Tfg1 and Tfg2 subunits of Saccharomyces cerevisiae TFIIF. We used the program CS-ROSETTA to determine the three-dimensional folds of these domains in solution, and performed binding studies with DNA and protein targets. CS-ROSETTA models indicate that the Tfg1 and Tfg2 C-terminal domains have winged-helix architectures, similar to the human homologs. We showed that both Tfg1 and Tfg2 CTDs interact with double-stranded DNA oligonucleotides, and mapped the DNA binding interfaces using solution NMR. Tfg1-CTD, but not Tfg2-CTD, also binds to yeast FCP1, an RNA polymerase II-specific phosphatase, and we delineated the interaction surface with the CTD of FCP1. Our results provide insights into the structural basis of yeast TFIIF function and the differential roles of Tfg1 and Tfg2 subunits during transcription.
Collapse
Affiliation(s)
- Adina M Kilpatrick
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | | | | | | |
Collapse
|
4
|
Abstract
RNA polymerases (RNAPs) carry out transcription in all living organisms. All multisubunit RNAPs are derived from a common ancestor, a fact that becomes apparent from their amino acid sequence, subunit composition, structure, function and molecular mechanisms. Despite the similarity of these complexes, the organisms that depend on them are extremely diverse, ranging from microorganisms to humans. Recent findings about the molecular and functional architecture of RNAPs has given us intriguing insights into their evolution and how their activities are harnessed by homologous and analogous basal factors during the transcription cycle. We provide an overview of the evolutionary conservation of and differences between the multisubunit polymerases in the three domains of life, and introduce the 'elongation first' hypothesis for the evolution of transcriptional regulation.
Collapse
Affiliation(s)
- Finn Werner
- RNA Polymerase Laboratory, Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
5
|
Chen ZA, Jawhari A, Fischer L, Buchen C, Tahir S, Kamenski T, Rasmussen M, Lariviere L, Bukowski-Wills JC, Nilges M, Cramer P, Rappsilber J. Architecture of the RNA polymerase II-TFIIF complex revealed by cross-linking and mass spectrometry. EMBO J 2010; 29:717-26. [PMID: 20094031 PMCID: PMC2810376 DOI: 10.1038/emboj.2009.401] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/10/2009] [Indexed: 11/09/2022] Open
Abstract
Higher-order multi-protein complexes such as RNA polymerase II (Pol II) complexes with transcription initiation factors are often not amenable to X-ray structure determination. Here, we show that protein cross-linking coupled to mass spectrometry (MS) has now sufficiently advanced as a tool to extend the Pol II structure to a 15-subunit, 670 kDa complex of Pol II with the initiation factor TFIIF at peptide resolution. The N-terminal regions of TFIIF subunits Tfg1 and Tfg2 form a dimerization domain that binds the Pol II lobe on the Rpb2 side of the active centre cleft near downstream DNA. The C-terminal winged helix (WH) domains of Tfg1 and Tfg2 are mobile, but the Tfg2 WH domain can reside at the Pol II protrusion near the predicted path of upstream DNA in the initiation complex. The linkers between the dimerization domain and the WH domains in Tfg1 and Tfg2 are located to the jaws and protrusion, respectively. The results suggest how TFIIF suppresses non-specific DNA binding and how it helps to recruit promoter DNA and to set the transcription start site. This work establishes cross-linking/MS as an integrated structure analysis tool for large multi-protein complexes.
Collapse
Affiliation(s)
- Zhuo Angel Chen
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sadhale P, Verma J, Naorem A. Basal transcription machinery: role in regulation of stress response in eukaryotes. J Biosci 2007; 32:569-78. [PMID: 17536176 DOI: 10.1007/s12038-007-0056-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The holoenzyme of prokaryotic RNA polymerase consists of the core enzyme, made of two alpha, beta, beta' and omega subunits, which lacks promoter selectivity and a sigma (sigma) subunit which enables the core enzyme to initiate transcription in a promoter dependent fashion. A stress sigma factor sigma(s), in prokaryotes seems to regulate several stress response genes in conjunction with other stress specific regulators. Since the basic principles of transcription are conserved from simple bacteria to multicellular complex organisms, an obvious question is: what is the identity of a counterpart of sigma(s), that is closest to the core polymerase and that dictates transcription of stress regulated genes in general? In this review, we discuss the logic behind the suggestion that like in prokaryotes,eukaryotes also have a common functional unit in the transcription machinery through which the stress specific transcription factors regulate rapid and highly controlled induction of gene expression associated with generalized stress response and point to some candidates that would fit the bill of the eukaryotic sigma(s).
Collapse
Affiliation(s)
- Parag Sadhale
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore 560 012, India.
| | | | | |
Collapse
|
7
|
Abstract
In eukaryotes, the core promoter serves as a platform for the assembly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which function collectively to specify the transcription start site. PIC formation usually begins with TFIID binding to the TATA box, initiator, and/or downstream promoter element (DPE) found in most core promoters, followed by the entry of other general transcription factors (GTFs) and pol II through either a sequential assembly or a preassembled pol II holoenzyme pathway. Formation of this promoter-bound complex is sufficient for a basal level of transcription. However, for activator-dependent (or regulated) transcription, general cofactors are often required to transmit regulatory signals between gene-specific activators and the general transcription machinery. Three classes of general cofactors, including TBP-associated factors (TAFs), Mediator, and upstream stimulatory activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoisomerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally function independently or in combination to fine-tune the promoter activity in a gene-specific or cell-type-specific manner. In addition, other cofactors, such as TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID binding to the core promoter. In general, these cofactors are capable of repressing basal transcription when activators are absent and stimulating transcription in the presence of activators. Here we review the roles of these cofactors and GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC, SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated transcription, with emphasis on the events occurring after the chromatin has been remodeled but prior to the formation of the first phosphodiester bond.
Collapse
Affiliation(s)
- Mary C Thomas
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
8
|
Fish RN, Ammerman ML, Davie JK, Lu BF, Pham C, Howe L, Ponticelli AS, Kane CM. Genetic interactions between TFIIF and TFIIS. Genetics 2006; 173:1871-84. [PMID: 16648643 PMCID: PMC1569716 DOI: 10.1534/genetics.106.058834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 04/28/2006] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic transcript elongation factor TFIIS is encoded by a nonessential gene, PPR2, in Saccharomyces cerevisiae. Disruptions of PPR2 are lethal in conjunction with a disruption in the nonessential gene TAF14/TFG3. While investigating which of the Taf14p-containing complexes may be responsible for the synthetic lethality between ppr2Delta and taf14Delta, we discovered genetic interactions between PPR2 and both TFG1 and TFG2 encoding the two larger subunits of the TFIIF complex that also contains Taf14p. Mutant alleles of tfg1 or tfg2 that render cells cold sensitive have improved growth at low temperature in the absence of TFIIS. Remarkably, the amino-terminal 130 amino acids of TFIIS, which are dispensable for the known in vitro and in vivo activities of TFIIS, are required to complement the lethality in taf14Delta ppr2Delta cells. Analyses of deletion and chimeric gene constructs of PPR2 implicate contributions by different regions of this N-terminal domain. No strong common phenotypes were identified for the ppr2Delta and taf14Delta strains, implying that the proteins are not functionally redundant. Instead, the absence of Taf14p in the cell appears to create a dependence on an undefined function of TFIIS mediated by its N-terminal region. This region of TFIIS is also at least in part responsible for the deleterious effect of TFIIS on tfg1 or tfg2 cold-sensitive cells. Together, these results suggest a physiologically relevant functional connection between TFIIS and TFIIF.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhai W, Jeong H, Cui L, Krainc D, Tjian R. In vitro analysis of huntingtin-mediated transcriptional repression reveals multiple transcription factor targets. Cell 2006; 123:1241-53. [PMID: 16377565 DOI: 10.1016/j.cell.2005.10.030] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 05/31/2005] [Accepted: 10/18/2005] [Indexed: 10/25/2022]
Abstract
Transcriptional dysregulation has emerged as a potentially important pathogenic mechanism in Huntington's disease, a neurodegenerative disorder associated with polyglutamine expansion in the huntingtin (htt) protein. Here, we report the development of a biochemically defined in vitro transcription assay that is responsive to mutant htt. We demonstrate that both gene-specific activator protein Sp1 and selective components of the core transcription apparatus, including TFIID and TFIIF, are direct targets inhibited by mutant htt in a polyglutamine-dependent manner. The RAP30 subunit of TFIIF specifically interacts with mutant htt both in vitro and in vivo to interfere with formation of the RAP30-RAP74 native complex. Importantly, overexpression of RAP30 in cultured primary striatal cells protects neurons from mutant htt-induced cellular toxicity and alleviates the transcriptional inhibition of the dopamine D2 receptor gene by mutant htt. Our results suggest a mutant htt-directed repression mechanism involving multiple specific components of the basal transcription apparatus.
Collapse
Affiliation(s)
- Weiguo Zhai
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, 401 Barker Hall, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
10
|
Ghazy MA, Brodie SA, Ammerman ML, Ziegler LM, Ponticelli AS. Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II. Mol Cell Biol 2004; 24:10975-85. [PMID: 15572698 PMCID: PMC533996 DOI: 10.1128/mcb.24.24.10975-10985.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription factor IIF (TFIIF) is required for transcription of protein-encoding genes by eukaryotic RNA polymerase II. In contrast to numerous studies establishing a role for higher eukaryotic TFIIF in multiple steps of the transcription cycle, relatively little has been reported regarding the functions of TFIIF in the yeast Saccharomyces cerevisiae. In this study, site-directed mutagenesis, plasmid shuffle complementation assays, and primer extension analyses were employed to probe the functional domains of the S. cerevisiae TFIIF subunits Tfg1 and Tfg2. Analyses of 35 Tfg1 alanine substitution mutants and 19 Tfg2 substitution mutants identified 5 mutants exhibiting altered properties in vivo. Primer extension analyses revealed that the conditional growth properties exhibited by the tfg1-E346A, tfg1-W350A, and tfg2-L59K mutants were associated with pronounced upstream shifts in transcription initiation in vivo. Analyses of double mutant strains demonstrated functional interactions between the Tfg1 mutations and mutations in Tfg2, TFIIB, and RNA polymerase II. Importantly, biochemical results demonstrated an altered interaction between mutant TFIIF protein and RNA polymerase II. These results provide direct evidence for the involvement of S. cerevisiae TFIIF in the mechanism of transcription start site utilization and support the view that a TFIIF-RNA polymerase II interaction is a determinant in this process.
Collapse
Affiliation(s)
- Mohamed A Ghazy
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY 14214-3000, USA
| | | | | | | | | |
Collapse
|
11
|
Lewin A, Tran TT, Jacob D, Mayer M, Freytag B, Appel B. Yeast DNA sequences initiating gene expression in Escherichia coli. Microbiol Res 2004; 159:19-28. [PMID: 15160603 DOI: 10.1016/j.micres.2004.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DNA transfer between pro- and eukaryotes occurs either during natural horizontal gene transfer or as a result of the employment of gene technology. We analysed the capacity of DNA sequences from a eukaryotic donor organism (Saccharomyces cerevisiae) to serve as promoter region in a prokaryotic recipient (Escherichia coli) by creating fusions between promoterless luxAB genes from Vibrio harveyi and random DNA sequences from S. cerevisiae and measuring the luminescence of transformed E. coli. Fifty-four out of 100 randomly analysed S. cerevisiae DNA sequences caused considerable gene expression in E. coli. Determination of transcription start sites within six selected yeast sequences in E. coli confirmed the existence of bacterial -10 and -35 consensus sequences at appropriate distances upstream from transcription initiation sites. Our results demonstrate that the probability of transcription of transferred eukaryotic DNA in bacteria is extremely high and does not require the insertion of the transferred DNA behind a promoter of the recipient genome.
Collapse
Affiliation(s)
- Astrid Lewin
- Robert Koch-Institut, Nordufer 20, Berlin 13353, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Wei W, Gu JX, Zhu CQ, Sun FY, Dorjsuren D, Lin Y, Murakami S. Interaction with general transcription factor IIF (TFIIF) is required for the suppression of activated transcription by RPB5-mediating protein (RMP). Cell Res 2003; 13:111-20. [PMID: 12737519 DOI: 10.1038/sj.cr.7290155] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RMP was reported to regulate transcription via competing with HBx to bind the general transcription factor IIB (TFIIB) and interacting with RPB5 subunit of RNA polymerase II as a corepressor of transcription regulator. However, our present research uncovered that RMP also regulates the transcription through interaction with the general transcription factors IIF (TFIIF), which assemble in the preinitiation complex and function in both transcription initiation and elongation. With in vitro pull-down assay and Far-Western analysis, we demonstrated that RMP could bind with bacterially expressed recombinant RAP30 and RAP74 of TFIIF subunits. In the immunoprecipitation assay in COS1 cells cotransfected with FLAG-tagged RMP or its mutants, GST-fused RAP30 and RAP74 were co-immunoprecipitated with RMP in approximately equal molar ratio, which suggests that RAP30 and RAP74 interact with RMP as a TFIIF complex. Interestingly both RAP30 and RAP74 interact with the same domain (D5) of the C-terminal RMP of 118-amino-acid residuals which overlaps with its TFIIB-binding domain. Internal deletion of D5 region of RMP abolished its binding ability with both subunits of TFIIF, while D5 domain alone was sufficient to interact with TFIIF subunits. The result of luciferase assay showed that overexpression of RMP, but not the mutant RMP lacking D5 region, suppressed the transcription activated by Gal-VP16, suggesting that interaction with TFIIF is required for RMP to suppress the activated transcription. The interaction between RMP and TFIIF may be an additional passway for RMP to regulate the transcription, or alternatively TFIIF may cooperate with RPB5 and TFIIB for the corepressor function of RMP.
Collapse
Affiliation(s)
- Wenxiang Wei
- National Key Laboratory of Medical Neurobiology, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Wei W, Dorjsuren D, Lin Y, Qin W, Nomura T, Hayashi N, Murakami S. Direct interaction between the subunit RAP30 of transcription factor IIF (TFIIF) and RNA polymerase subunit 5, which contributes to the association between TFIIF and RNA polymerase II. J Biol Chem 2001; 276:12266-73. [PMID: 11278533 DOI: 10.1074/jbc.m009634200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The general transcription factor IIF (TFIIF) assembled in the initiation complex, and RAP30 of TFIIF, have been shown to associate with RNA polymerase II (pol II), although it remains unclear which pol II subunit is responsible for the interaction. We examined whether TFIIF interacts with RNA polymerase II subunit 5 (RPB5), the exposed domain of which binds transcriptional regulatory factors such as hepatitis B virus X protein and a novel regulatory protein, RPB5-mediating protein. The results demonstrated that RPB5 directly binds RAP30 in vitro using purified recombinant proteins and in vivo in COS1 cells transiently expressing recombinant RAP30 and RPB5. The RAP30-binding region was mapped to the central region (amino acids (aa) 47-120) of RPB5, which partly overlaps the hepatitis B virus X protein-binding region. Although the middle part (aa 101-170) and the N-terminus (aa 1-100) of RAP30 independently bound RPB5, the latter was not involved in the RPB5 binding when RAP30 was present in TFIIF complex. Scanning of the middle part of RAP30 by clustered alanine substitutions and then point alanine substitutions pinpointed two residues critical for the RPB5 binding in in vitro and in vivo assays. Wild type but not mutants Y124A and Q131A of RAP30 coexpressed with FLAG-RAP74 efficiently recovered endogenous RPB5 to the FLAG-RAP74-bound anti-FLAG M2 resin. The recovered endogenous RPB5 is assembled in pol II as demonstrated immunologically. Interestingly, coexpression of the central region of RPB5 and wild type RAP30 inhibited recovery of endogenous pol II to the FLAG-RAP74-bound M2 resin, strongly suggesting that the RAP30-binding region of RPB5 inhibited the association of TFIIF and pol II. The exposed domain of RPB5 interacts with RAP30 of TFIIF and is important for the association between pol II and TFIIF.
Collapse
Affiliation(s)
- W Wei
- Department of Molecular Oncology, Cancer Research Institute, Kanazawa University, Takara-machi 13-1, Kanazawa 920-0934, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Yan Q, Moreland RJ, Conaway JW, Conaway RC. Dual roles for transcription factor IIF in promoter escape by RNA polymerase II. J Biol Chem 1999; 274:35668-75. [PMID: 10585446 DOI: 10.1074/jbc.274.50.35668] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factor (TF) IIF is a multifunctional RNA polymerase II transcription factor that has well established roles in both transcription initiation, where it functions as a component of the preinitiation complex and is required for formation of the open complex and synthesis of the first phosphodiester bond of nascent transcripts, and in transcription elongation, where it is capable of interacting directly with the ternary elongation complex and stimulating the rate of transcription. In this report, we present evidence that TFIIF is also required for efficient promoter escape by RNA polymerase II. Our findings argue that TFIIF performs dual roles in this process. We observe (i) that TFIIF suppresses the frequency of abortive transcription by very early RNA polymerase II elongation intermediates by increasing their processivity and (ii) that TFIIF cooperates with TFIIH to prevent premature arrest of early elongation intermediates. In addition, our findings argue that two TFIIF functional domains mediate TFIIF action in promoter escape. First, we observe that a TFIIF mutant selectively lacking elongation activity supports TFIIH action in promoter escape, but is defective in suppressing the frequency of abortive transcription by very early RNA polymerase II elongation intermediates. Second, a TFIIF mutant selectively lacking initiation activity is more active than wild type TFIIF in increasing the processivity of very early elongation intermediates, but is defective in supporting TFIIH action in promoter escape. Taken together, our findings bring to light a function for TFIIF in promoter escape and support a role for TFIIF elongation activity in this process.
Collapse
Affiliation(s)
- Q Yan
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
15
|
Reinberg D, Orphanides G, Ebright R, Akoulitchev S, Carcamo J, Cho H, Cortes P, Drapkin R, Flores O, Ha I, Inostroza JA, Kim S, Kim TK, Kumar P, Lagrange T, LeRoy G, Lu H, Ma DM, Maldonado E, Merino A, Mermelstein F, Olave I, Sheldon M, Shiekhattar R, Zawel L. The RNA polymerase II general transcription factors: past, present, and future. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:83-103. [PMID: 10384273 DOI: 10.1101/sqb.1998.63.83] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- D Reinberg
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 0885, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Coulombe B, Burton ZF. DNA bending and wrapping around RNA polymerase: a "revolutionary" model describing transcriptional mechanisms. Microbiol Mol Biol Rev 1999; 63:457-78. [PMID: 10357858 PMCID: PMC98973 DOI: 10.1128/mmbr.63.2.457-478.1999] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A model is proposed in which bending and wrapping of DNA around RNA polymerase causes untwisting of the DNA helix at the RNA polymerase catalytic center to stimulate strand separation prior to initiation. During elongation, DNA bending through the RNA polymerase active site is proposed to lower the energetic barrier to the advance of the transcription bubble. Recent experiments with mammalian RNA polymerase II along with accumulating evidence from studies of Escherichia coli RNA polymerase indicate the importance of DNA bending and wrapping in transcriptional mechanisms. The DNA-wrapping model describes specific roles for general RNA polymerase II transcription factors (TATA-binding protein [TBP], TFIIB, TFIIF, TFIIE, and TFIIH), provides a plausible explanation for preinitiation complex isomerization, suggests mechanisms underlying the synergy between transcriptional activators, and suggests an unforseen role for TBP-associating factors in transcription.
Collapse
Affiliation(s)
- B Coulombe
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | | |
Collapse
|
17
|
Yong C, Mitsuyasu H, Chun Z, Oshiro S, Hamasaki N, Kitajima S. Structure of the human transcription factor TFIIF revealed by limited proteolysis with trypsin. FEBS Lett 1998; 435:191-4. [PMID: 9762906 DOI: 10.1016/s0014-5793(98)01068-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this study, the human general transcription factor IIF (TFIIF), a heteromeric complex of RAP74 and RAP30 subunits, was subjected to limited proteolysis with trypsin. The central region of RAP74 was demonstrated to be highly sensitive to trypsin while both the N- and C-terminal regions contained trypsin-resistant structures. In contrast, RAP30 digestion occurred after proteolysis of RAP74. The digestion pattern of RAP74 recruited into the preinitiation complex showed no marked difference from that of IIF, while RAP30 in the complex was protected from trypsin. These results indicate that RAP74 apparently contains three structural domains, the central one of which is externally surfaced and unstructured, but RAP30 is internally wrapped by RAP74. Furthermore, the accessibility of the central region of RAP74 is unaltered in the minimal preinitiation complex, while RAP30 is involved in promoter recognition through its DNA binding activity.
Collapse
Affiliation(s)
- C Yong
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Robert F, Douziech M, Forget D, Egly JM, Greenblatt J, Burton ZF, Coulombe B. Wrapping of promoter DNA around the RNA polymerase II initiation complex induced by TFIIF. Mol Cell 1998; 2:341-51. [PMID: 9774972 PMCID: PMC4492723 DOI: 10.1016/s1097-2765(00)80278-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The formation of the RNA polymerase II (Pol II) initiation complex was analyzed using site-specific protein-DNA photo-cross-linking. We show that the RAP74 subunit of transcription factor (TF) IIF, through its RAP30-binding domain and an adjacent region necessary for the formation of homomeric interactions in vitro, dramatically alters the distribution of RAP30, TFIIE, and Pol II along promoter DNA between positions -40 and +26. This isomerization of the complex, which requires both TFIIF and TFIIE, is accompanied by tight wrapping of the promoter DNA for almost a full turn around Pol II. Addition of TFIIH enhances photo-cross-linking of Pol II to a number of promoter positions, suggesting that TFIIH tightens the DNA wrap around the enzyme. We present a general model to describe transcription initiation.
Collapse
Affiliation(s)
- François Robert
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, JlK 2R1, Canada
| | - Maxime Douziech
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, JlK 2R1, Canada
| | - Diane Forget
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, JlK 2R1, Canada
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UPR 6520 (CNRS), Unité 184 (INSERM), 1 rue Laurent Fries, BP 163, Illkirch Cédex, CU de Strasbourg, France
| | - Jack Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, M5G 1L6, Canada
| | - Zachary F. Burton
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824
| | - Benoit Coulombe
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Québec, JlK 2R1, Canada
- To whom correspondence should be addressed:
| |
Collapse
|
19
|
Groft CM, Uljon SN, Wang R, Werner MH. Structural homology between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. Proc Natl Acad Sci U S A 1998; 95:9117-22. [PMID: 9689043 PMCID: PMC21301 DOI: 10.1073/pnas.95.16.9117] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The three-dimensional structure of the human Rap30 DNA-binding domain has been solved by multinuclear NMR spectroscopy. The structure of the globular domain is strikingly similar to that of linker histone H5 and its fold places Rap30 into the "winged" helix-turn-helix family of eukaryotic transcription factors. Although the domain interacts weakly with DNA, the binding surface was identified and shown to be consistent with the structure of the HNF-3/fork head-DNA complex. The architecture of the Rap30 DNA-binding domain has important implications for the function of Rap30 in the assembly of the preinitiation complex. In analogy to the function of linker histones in chromatin formation, the fold of the Rap30 DNA-binding domain suggests that its role in transcription initiation may be that of a condensation factor for preinitiation complex assembly. Functional similarity to linker histones may explain the dependence of Rap30 binding on the bent DNA environment induced by the TATA box-binding protein. Cryptic sequence identity and functional homology between the Rap30 DNA-binding domain and region 4 of Escherichia coli sigma70 may indicate that the sigma factors also possess a linker histone-like activity in the formation of a prokaryotic closed complex.
Collapse
Affiliation(s)
- C M Groft
- Laboratories of Molecular Biophysics, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
21
|
Huet J, Conesa C, Carles C, Sentenac A. A cryptic DNA binding domain at the COOH terminus of TFIIIB70 affects formation, stability, and function of preinitiation complexes. J Biol Chem 1997; 272:18341-9. [PMID: 9218475 DOI: 10.1074/jbc.272.29.18341] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
TFIIIC-dependent assembly of yeast TFIIIB on class III genes unmasks a high avidity of TFIIIB for DNA. TFIIIB contains TATA-binding protein (TBP), TFIIIB90/B", and TFIIIB70/Brf1, which is homologous to TFIIB. Using limited proteolysis, we have found that the COOH terminus of TFIIIB70 (residues 510-596) forms a protease-resistant domain that binds DNA tightly as seen by Southwestern, DNase I footprinting, and gel shift assays. Consistent with a role for this DNA binding activity, preinitiation complexes were formed less efficiently with truncated TFIIIB70 lacking the COOH-terminal domain and displayed an increased sensitivity to heparin. B' (TFIIIB70 + TBP).TFIIIC.DNA complexes were also particularly unstable. In addition, TFIIIB.TFIIIC.DNA complexes containing truncated TFIIIB70 were impaired in promoting transcription initiation.
Collapse
Affiliation(s)
- J Huet
- Service de Biochimie et Génétique Moléculaire, Commissariat à l'Energie Atomique, Saclay, F91191 Gif sur Yvette Cedex, France
| | | | | | | |
Collapse
|
22
|
Conaway RC, Conaway JW. General transcription factors for RNA polymerase II. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 56:327-46. [PMID: 9187058 DOI: 10.1016/s0079-6603(08)61009-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- R C Conaway
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | |
Collapse
|
23
|
Artsimovitch I, Murakami K, Ishihama A, Howe MM. Transcription activation by the bacteriophage Mu Mor protein requires the C-terminal regions of both alpha and sigma70 subunits of Escherichia coli RNA polymerase. J Biol Chem 1996; 271:32343-8. [PMID: 8943297 DOI: 10.1074/jbc.271.50.32343] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Middle transcription of bacteriophage Mu requires Escherichia coli RNA polymerase and a Mu-encoded protein, Mor. Consistent with these requirements, the middle promoter, Pm, has a -10 hexamer but lacks a recognizable -35 hexamer. Interactions between Mor and RNA polymerase were studied using in vitro transcription, DNase I footprinting, and the yeast interaction trap system. We observed reduced promoter activity in vitro using reconstituted RNA polymerases with C-terminal deletions in alpha or sigma70. As predicted if alpha were binding to Pm, we detected a polymerase-dependent footprint in the -60 region. Reconstituted RNA polymerases containing Ala substitutions in the alpha C-terminal domain were used to assay Mor-dependent transcription from Pm in vitro. The D258A substitution and alpha deletion gave large reductions in activation, whereas the L262A, R265A, and N268A substitutions caused smaller reductions. The interaction trap assay revealed weak interactions between Mor and both alpha and sigma70; consistent with a key role of alpha-D258, the D258A substitution abolished interaction, whereas the R265A substitution did not. We propose that: (i) alpha-D258 is a Mor "contact site"; and (ii) residues Leu-262, Arg-265, and Asn-268 indirectly affect Mor-polymerase interaction by stabilizing the ternary complex via alpha-DNA contact.
Collapse
Affiliation(s)
- I Artsimovitch
- Department of Microbiology and Immunology, University of Tennessee-Memphis, Memphis, Tennessee 38163, USA.
| | | | | | | |
Collapse
|
24
|
Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev 1996; 10:2657-83. [PMID: 8946909 DOI: 10.1101/gad.10.21.2657] [Citation(s) in RCA: 777] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- G Orphanides
- Howard Hughes Medical Institute, Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854-5635, USA
| | | | | |
Collapse
|
25
|
Fang SM, Burton ZF. RNA polymerase II-associated protein (RAP) 74 binds transcription factor (TF) IIB and blocks TFIIB-RAP30 binding. J Biol Chem 1996; 271:11703-9. [PMID: 8662660 DOI: 10.1074/jbc.271.20.11703] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A set of deletion mutants of human RNA polymerase II-associated protein (RAP) 30, the small subunit of transcription factor IIF (TFIIF; RAP30/74), was constructed to map functional domains. Mutants were tested for accurate transcriptional activity, RAP74 binding, and TFIIB binding. Transcription assays indicate the importance of both N- and C-terminal sequences for RAP30 function. RAP74 binds to the N-terminal region of RAP30 between amino acids 1 and 98. TFIIB binds to an overlapping region of RAP30, localized to amino acids 1-176 (amino acids 27-152 comprise a minimal binding region). The C-terminal region of RAP74 (amino acids 358-517) binds directly and independently to TFIIB. Interestingly, RAP74 blocks TFIIB-RAP30 binding, both by binding TFIIB and by binding RAP30. When the TFIIF complex is intact, therefore, TFIIB-TFIIF contact is maintained through RAP74. If the TFIIB-RAP30 interaction is physiologically important, the TFIIF complex must dissociate within some transcription complexes.
Collapse
Affiliation(s)
- S M Fang
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
26
|
Wang BQ, Burton ZF. Functional domains of human RAP74 including a masked polymerase binding domain. J Biol Chem 1995; 270:27035-44. [PMID: 7592953 DOI: 10.1074/jbc.270.45.27035] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RAP74, the large subunit of human transcription factor IIF (TFIIF), has been analyzed by deletion mutagenesis and in vitro assays to map functional domains. Tight binding to the RAP30 subunit involves amino acids between positions 1-172. Amino acids 1-205 are minimally sufficient to stimulate accurate transcription from the adenovirus major late promoter in an extract system, although C-terminal sequences contribute to activity. A partially masked RNA polymerase II binding domain has been mapped to the C-terminal region of the protein (amino acids 363-444). Sequences near the N terminus and within the central portion of RAP74 affect accessibility of this domain. Extending this domain to 363-486 creates a peptide that binds polymerase and DNA and inhibits transcription initiation in vitro from non-promoter DNA sites. This larger C-terminal domain may modify polymerase interaction with template during initiation and/or elongation of RNA chains.
Collapse
Affiliation(s)
- B Q Wang
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
27
|
Aso T, Lane WS, Conaway JW, Conaway RC. Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science 1995; 269:1439-43. [PMID: 7660129 DOI: 10.1126/science.7660129] [Citation(s) in RCA: 256] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Elongin (SIII) complex activates elongation by mammalian RNA polymerase II by suppressing transient pausing of the polymerase at many sites within transcription units. Elongin is a heterotrimer composed of A, B, and C subunits of 110, 18, and 15 kilodaltons, respectively. Here, the mammalian Elongin A gene was isolated and expressed, and the Elongin (SIII) complex reconstituted with recombinant subunits. Elongin A is shown to function as the transcriptionally active component of Elongin (SIII) and Elongin B and C as regulatory subunits. Whereas Elongin C assembles with Elongin A to form an AC complex with increased specific activity, Elongin B, a member of the ubiquitin-homology gene family, appears to serve a chaperone-like function, facilitating assembly and enhancing stability of the Elongin (SIII) complex.
Collapse
Affiliation(s)
- T Aso
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | | | |
Collapse
|
28
|
Frank DJ, Tyree CM, George CP, Kadonaga JT. Structure and function of the small subunit of TFIIF (RAP30) from Drosophila melanogaster. J Biol Chem 1995; 270:6292-7. [PMID: 7890767 DOI: 10.1074/jbc.270.11.6292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To study the mechanism of basal transcription by RNA polymerase II, a cDNA encoding the Drosophila homologue of the small subunit of TFIIF (also referred to as TFIIF30, RAP30, factor 5b, and gamma) was isolated. The Drosophila TFIIF30 gene is located at region 86C on the right arm of the third chromosome. The protein encoded by the cDNA, termed dTFIIF30, was synthesized in Escherichia coli and purified to greater than 95% homogeneity. In reconstituted transcription reactions with purified basal factors, the specific activity of dTFIIF30 was identical to that of its human homologue. Moreover, a carboxyl-terminal fragment, designated dF30(119-276), which contains the carboxyl-terminal 158 amino acid residues of dTFIIF30, was found to possess approximately 50% of the transcriptional activity as full-length dTFIIF30. The interaction of dTFIIF30 with the large subunit of TFIIF (also referred to as TFIIF74, RAP74, factor 5a, and beta) was investigated by glycerol gradient sedimentation analyses. In these experiments, dTFIIF30, but not dF30(119-276), assembled into a stable heteromeric complex with TFIIF74. These results, combined with those of previous work on TFIIF, support a model for TFIIF30 function in which the carboxylterminal region constitutes a functional domain that can interact with RNA polymerase II to mediate basal transcription, whereas the amino terminus comprises a domain that interacts with TFIIF74.
Collapse
Affiliation(s)
- D J Frank
- Department of Biology, University of California at San Diego, La Jolla 92093-0347
| | | | | | | |
Collapse
|
29
|
Henry NL, Campbell AM, Feaver WJ, Poon D, Weil PA, Kornberg RD. TFIIF-TAF-RNA polymerase II connection. Genes Dev 1994; 8:2868-78. [PMID: 7995524 DOI: 10.1101/gad.8.23.2868] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RNA polymerase transcription factor IIF (TFIIF) is required for initiation at most, if not all, polymerase II promoters. We report here the cloning and sequencing of genes for a yeast protein that is the homolog of mammalian TFIIF. This yeast protein, previously designated factor g, contains two subunits, Tfg1 and Tfg2, both of which are required for transcription, essential for yeast cell viability, and whose sequences exhibit significant similarity to those of the mammalian factor. The yeast protein also contains a third subunit, Tfg3, which is less tightly associated and at most stimulatory to transcription, dispensable for cell viability, and has no known counterpart in mammalian TFIIF. Remarkably, the TFG3 gene encodes yeast TAF30, and furthermore, is identical to ANC1, a gene implicated in actin cytoskeletal function in vivo (Welch and Drubin 1994). Tfg3 is also a component of the recently described mediator complex (Kim et al. 1994), whose interaction with the carboxy-terminal repeat domain of RNA polymerase II enables transcriptional activation. Deletion of TFG3 results in diminished transcription in vivo.
Collapse
Affiliation(s)
- N L Henry
- Department of Structural Biology, Stanford University School of Medicine, California 94305
| | | | | | | | | | | |
Collapse
|
30
|
Chibazakura T, Kitajima S, Yonaha M, Yasukochi Y. Enhancement of bacterial transcription initiation in vitro by the 74 kDa subunit of human general transcription factor IIF (RAP74). BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1219:592-600. [PMID: 7948016 DOI: 10.1016/0167-4781(94)90217-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The human general transcription factor IIF (TFIIF) is required for an accurate transcription initiation by RNA polymerase II and shares some analogous features with the sigma subunit of bacterial RNA polymerase. As an attempt to analyze the function of TFIIF, we examined its effect on bacterial transcription in vitro. TFIIF significantly enhanced the initiation of transcription by the bacterial RNA polymerase while other general transcription factors, TATA-binding protein, TFIIB, and TFIIE, did not. The enhancement of the bacterial transcription was ascribed to the 74 kDa subunit of TFIIF (RAP74). RAP74 had an activity of enhancing the binding of the bacterial RNA polymerase to the promoter. The enhancing activity of RAP74 depended on a low molar ratio of the RNA polymerase to the template DNA. The action of RAP74 in the bacterial transcription may be related to a possible regulatory role of RAP74 in the eukaryotic transcription initiation.
Collapse
Affiliation(s)
- T Chibazakura
- Department of Molecular Genetics, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
31
|
Roles for both the RAP30 and RAP74 subunits of transcription factor IIF in transcription initiation and elongation by RNA polymerase II. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47303-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Role of core promoter structure in assembly of the RNA polymerase II preinitiation complex. A common pathway for formation of preinitiation intermediates at many TATA and TATA-less promoters. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47233-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
An oligomeric form of the large subunit of transcription factor (TF) IIE activates phosphorylation of the RNA polymerase II carboxyl-terminal domain by TFIIH. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32056-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Coulombe B, Li J, Greenblatt J. Topological localization of the human transcription factors IIA, IIB, TATA box-binding protein, and RNA polymerase II-associated protein 30 on a class II promoter. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32114-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
35
|
Bradsher JN, Jackson KW, Conaway RC, Conaway JW. RNA polymerase II transcription factor SIII. I. Identification, purification, and properties. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74431-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
36
|
Bradsher JN, Tan S, McLaury HJ, Conaway JW, Conaway RC. RNA polymerase II transcription factor SIII. II. Functional properties and role in RNA chain elongation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74432-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|