1
|
Da'as SI, Thanassoulas A, Calver BL, Saleh A, Abdelrahman D, Hasan W, Safieh-Garabedian B, Kontogianni I, Nasrallah GK, Nounesis G, Lai FA, Nomikos M. Divergent Biochemical Properties and Disparate Impact of Arrhythmogenic Calmodulin Mutations on Zebrafish Cardiac Function. J Cell Biochem 2024; 125:e30619. [PMID: 38946237 DOI: 10.1002/jcb.30619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024]
Abstract
Calmodulin (CaM) is a ubiquitous, small cytosolic calcium (Ca2+)-binding sensor that plays a vital role in many cellular processes by binding and regulating the activity of over 300 protein targets. In cardiac muscle, CaM modulates directly or indirectly the activity of several proteins that play a key role in excitation-contraction coupling (ECC), such as ryanodine receptor type 2 (RyR2), l-type Ca2+ (Cav1.2), sodium (NaV1.5) and potassium (KV7.1) channels. Many recent clinical and genetic studies have reported a series of CaM mutations in patients with life-threatening arrhythmogenic syndromes, such as long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). We recently showed that four arrhythmogenic CaM mutations (N98I, D132E, D134H, and Q136P) significantly reduce the binding of CaM to RyR2. Herein, we investigate in vivo functional effects of these CaM mutations on the normal zebrafish embryonic heart function by microinjecting complementary RNA corresponding to CaMN98I, CaMD132E, CaMD134H, and CaMQ136P mutants. Expression of CaMD132E and CaMD134H mutants results in significant reduction of the zebrafish heart rate, mimicking a severe form of human bradycardia, whereas expression of CaMQ136P results in an increased heart rate mimicking human ventricular tachycardia. Moreover, analysis of cardiac ventricular rhythm revealed that the CaMD132E and CaMN98I zebrafish groups display an irregular pattern of heart beating and increased amplitude in comparison to the control groups. Furthermore, circular dichroism spectroscopy experiments using recombinant CaM proteins reveals a decreased structural stability of the four mutants compared to the wild-type CaM protein in the presence of Ca2+. Finally, Ca2+-binding studies indicates that all CaM mutations display reduced CaM Ca2+-binding affinities, with CaMD132E exhibiting the most prominent change. Our data suggest that CaM mutations can trigger different arrhythmogenic phenotypes through multiple and complex molecular mechanisms.
Collapse
Affiliation(s)
- Sahar I Da'as
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Brian L Calver
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Alaaeldin Saleh
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | | | - Waseem Hasan
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | | | - Iris Kontogianni
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
- National Technical University of Athens, Athens, Greece
| | - Gheyath K Nasrallah
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biological Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - George Nounesis
- National Centre for Scientific Research "Demokritos", Agia Paraskevi, Greece
| | - F Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Sir Geraint Evans Wales Heart Research Institute, College of Biomedical and Life Science, Cardiff University, Cardiff, UK
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Bonsor M, Ammar O, Schnoegl S, Wanker EE, Silva Ramos E. Polyglutamine disease proteins: Commonalities and differences in interaction profiles and pathological effects. Proteomics 2024; 24:e2300114. [PMID: 38615323 DOI: 10.1002/pmic.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Currently, nine polyglutamine (polyQ) expansion diseases are known. They include spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington's disease (HD). At the root of these neurodegenerative diseases are trinucleotide repeat mutations in coding regions of different genes, which lead to the production of proteins with elongated polyQ tracts. While the causative proteins differ in structure and molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases. PolyQ tracts mediate the association of proteins leading to the formation of protein complexes involved in gene expression regulation, RNA processing, membrane trafficking, and signal transduction. In this review, we discuss commonalities and differences among the nine polyQ proteins focusing on their structure and function as well as the pathological features of the respective diseases. We present insights from AlphaFold-predicted structural models and discuss the biological roles of polyQ-containing proteins. Lastly, we explore reported protein-protein interaction networks to highlight shared protein interactions and their potential relevance in disease development.
Collapse
Affiliation(s)
- Megan Bonsor
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orchid Ammar
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erich E Wanker
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
3
|
Fukuyama M, Horie M, Kato K, Aoki H, Fujita S, Yoshida Y, Sakazaki H, Toda T, Ueno M, Izumi G, Momoi N, Muneuchi J, Makiyama T, Nakagawa Y, Ohno S. Calmodulinopathy in Japanese Children - Their Cardiac Phenotypes Are Severe and Show Early Onset in Fetal Life and Infancy. Circ J 2023; 87:1828-1835. [PMID: 37380439 DOI: 10.1253/circj.cj-23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND Cardiac calmodulinopathy, characterized by a life-threatening arrhythmia and sudden death in the young, is extremely rare and caused by genes encoding calmodulin, namely calmodulin 1 (CALM1), CALM2, and CALM3. METHODS AND RESULTS We screened 195 symptomatic children (age 0-12 years) who were suspected of inherited arrhythmias for 48 candidate genes, using a next-generation sequencer. Ten probands were identified as carrying variants in any of CALM1-3 (5%; median age 5 years), who were initially diagnosed with long QT syndrome (LQTS; n=5), catecholaminergic polymorphic ventricular tachycardia (CPVT; n=3), and overlap syndrome (n=2). Two probands harbored a CALM1 variant and 8 probands harbored 6 CALM2 variants. There were 4 clinical phenotypes: (1) documented lethal arrhythmic events (LAEs): 4 carriers of N98S in CALM1 or CALM2; (2) suspected LAEs: CALM2 p.D96G and D132G carriers experienced syncope and transient cardiopulmonary arrest under emotional stimulation; (3) critical cardiac complication: CALM2 p.D96V and p.E141K carriers showed severe cardiac dysfunction with QTc prolongation; and (4) neurological and developmental disorders: 2 carriers of CALM2 p.E46K showed cardiac phenotypes of CPVT. Beta-blocker therapy was effective in all cases except cardiac dysfunction, especially in combination with flecainide (CPVT-like phenotype) and mexiletine (LQTS-like). CONCLUSIONS Calmodulinopathy patients presented severe cardiac features, and their onset of LAEs was earlier in life, requiring diagnosis and treatment at the earliest age possible.
Collapse
Affiliation(s)
- Megumi Fukuyama
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Koichi Kato
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Hisaaki Aoki
- Department of Pediatric Cardiology, Osaka Women's and Children's Hospital
| | - Shuhei Fujita
- Department of Pediatrics, Toyama Prefectural Central Hospital
| | - Yoko Yoshida
- Division of Pediatric Electrophysiology, Osaka City General Hospital
| | - Hisanori Sakazaki
- Department of Pediatric Cardiology, Hyogo Prefectural Amagasaki Hospital
| | - Takako Toda
- Department of Pediatrics, University of Yamanashi, Faculty of Medicine
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center
| | | | - Gaku Izumi
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| | - Nobuo Momoi
- Department of Pediatrics, Fukushima Medical University School of Medicine
| | - Jun Muneuchi
- Division of Pediatric Cardiology, Department of Pediatrics, Kyushu Hospital, Japan Community Healthcare Organization
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center
| |
Collapse
|
4
|
Thanassoulas A, Theodoridou M, Barrak L, Riguene E, Alyaarabi T, Elrayess MA, Lai FA, Nomikos M. Arrhythmia-Associated Calmodulin E105A Mutation Alters the Binding Affinity of CaM to a Ryanodine Receptor 2 CaM-Binding Pocket. Int J Mol Sci 2023; 24:15630. [PMID: 37958614 PMCID: PMC10649572 DOI: 10.3390/ijms242115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Calmodulin (CaM) is a small, multifunctional calcium (Ca2+)-binding sensor that binds and regulates the open probability of cardiac ryanodine receptor 2 (RyR2) at both low and high cytosolic Ca2+ concentrations. Recent isothermal titration calorimetry (ITC) studies of a number of peptides that correspond to different regions of human RyR2 showed that two regions of human RyR2 (3584-3602aa and 4255-4271aa) bind with high affinity to CaM, suggesting that these two regions might contribute to a putative RyR2 intra-subunit CaM-binding pocket. Moreover, a previously characterized de novo long QT syndrome (LQTS)-associated missense CaM mutation (E105A) which was identified in a 6-year-old boy, who experienced an aborted first episode of cardiac arrest revealed that this mutation dysregulates normal cardiac function in zebrafish by a complex mechanism that involves alterations in both CaM-Ca2+ and CaM-RyR2 interactions. Herein, to gain further insight into how the CaM E105A mutation leads to severe cardiac arrhythmia, we generated large quantities of recombinant CaMWT and CaME105A proteins. We then performed ITC experiments to investigate and compare the interactions of CaMWT and CaME105A mutant protein with two synthetic peptides that correspond to the two aforementioned human RyR2 regions, which we have proposed to contribute to the RyR2 CaM-binding pocket. Our data reveal that the E105A mutation has a significant negative effect on the interaction of CaM with both RyR2 regions in the presence and absence of Ca2+, highlighting the potential contribution of these two human RyR2 regions to an RyR2 CaM-binding pocket, which may be essential for physiological CaM/RyR2 association and thus channel regulation.
Collapse
Affiliation(s)
- Angelos Thanassoulas
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Maria Theodoridou
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Laila Barrak
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Emna Riguene
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Tamader Alyaarabi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Mohamed A. Elrayess
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar;
| | - F. Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (A.T.); (L.B.); (E.R.); (T.A.); (M.A.E.); (F.A.L.)
| |
Collapse
|
5
|
Wren LM, DeKeyser JM, Barefield DY, Hawkins NA, McNally EM, Kearney JA, Wasserstrom JA, George AL. Sex and Gene Influence Arrhythmia Susceptibility in Murine Models of Calmodulinopathy. Circ Arrhythm Electrophysiol 2023; 16:e010891. [PMID: 37589122 PMCID: PMC10530303 DOI: 10.1161/circep.122.010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/16/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Pathogenic variants in genes encoding CaM (calmodulin) are associated with a life-threatening ventricular arrhythmia syndrome (calmodulinopathy). The in vivo consequences of CaM variants have not been studied extensively and there is incomplete understanding of the genotype-phenotype relationship for recurrent variants. We investigated effects of different factors on calmodulinopathy phenotypes using 2 mouse models with a recurrent pathogenic variant (N98S) in Calm1 or Calm2. METHODS Genetically engineered mice with heterozygous N98S pathogenic variants in Calm1 or Calm2 were generated. Differences between the sexes and affected genes were assessed using multiple physiological assays at the cellular and whole animal levels. Statistical significance among groups was evaluated using 1-way ANOVA or the Kruskal-Wallis test when data were not normally distributed. RESULTS Calm1N98S/+ (Calm1S/+) or Calm2N98S/+ (Calm2S/+) mice exhibited sinus bradycardia and were more susceptible to arrhythmias after exposure to epinephrine and caffeine. Male Calm1S/+ mice had the most severe arrhythmia phenotype with evidence of early embryonic lethality, greater susceptibility for arrhythmic events, frequent premature beats, corrected QT prolongation, and more heart rate variability after epinephrine and caffeine than females with the same genotype. Calm2 S/+ mice exhibited a less severe phenotype, with female Calm2 S/+ mice having the least severe arrhythmia susceptibility. Flecainide was not effective in preventing arrhythmias in heterozygous CaM-N98S mice. Intracellular Ca2+ transients observed in isolated ventricular cardiomyocytes from male heterozygous CaM-N98S mice had lower peak amplitudes and slower sarcoplasmic reticulum Ca2+ release following in vitro exposure to epinephrine and caffeine, which were not observed in cardiomyocytes from heterozygous female CaM-N98S mice. CONCLUSIONS We report heterogeneity in arrhythmia susceptibility and cardiomyocyte Ca2+ dynamics among male and female mice heterozygous for a recurrent pathogenic variant in Calm1 or Calm2, illustrating a complex calmodulinopathy phenotype in vivo. Further investigation of sex and genetic differences may help identify the molecular basis for this heterogeneity.
Collapse
Affiliation(s)
- Lisa M. Wren
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Jean-Marc DeKeyser
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - David Y. Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Nicole A. Hawkins
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Elizabeth M. McNally
- Center for Genetic Medicine, The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Jennifer A. Kearney
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - J. Andrew Wasserstrom
- Department of Medicine, The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| | - Alfred L. George
- Department of Pharmacology The Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago
| |
Collapse
|
6
|
McCormick L, Wadmore K, Milburn A, Gupta N, Morris R, Held M, Prakash O, Carr J, Barrett‐Jolley R, Dart C, Helassa N. Long QT syndrome-associated calmodulin variants disrupt the activity of the slowly activating delayed rectifier potassium channel. J Physiol 2023; 601:3739-3764. [PMID: 37428651 PMCID: PMC10952621 DOI: 10.1113/jp284994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
Calmodulin (CaM) is a highly conserved mediator of calcium (Ca2+ )-dependent signalling and modulates various cardiac ion channels. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS). LQTS patients display prolonged ventricular recovery times (QT interval), increasing their risk of incurring life-threatening arrhythmic events. Loss-of-function mutations to Kv7.1 (which drives the slow delayed rectifier potassium current, IKs, a key ventricular repolarising current) are the largest contributor to congenital LQTS (>50% of cases). CaM modulates Kv7.1 to produce a Ca2+ -sensitive IKs, but little is known about the consequences of LQTS-associated CaM mutations on Kv7.1 function. Here, we present novel data characterising the biophysical and modulatory properties of three LQTS-associated CaM variants (D95V, N97I and D131H). We showed that mutations induced structural alterations in CaM and reduced affinity for Kv7.1, when compared with wild-type (WT). Using HEK293T cells expressing Kv7.1 channel subunits (KCNQ1/KCNE1) and patch-clamp electrophysiology, we demonstrated that LQTS-associated CaM variants reduced current density at systolic Ca2+ concentrations (1 μm), revealing a direct QT-prolonging modulatory effect. Our data highlight for the first time that LQTS-associated perturbations to CaM's structure impede complex formation with Kv7.1 and subsequently result in reduced IKs. This provides a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype. KEY POINTS: Calmodulin (CaM) is a ubiquitous, highly conserved calcium (Ca2+ ) sensor playing a key role in cardiac muscle contraction. Genotyping has revealed several CaM mutations associated with long QT syndrome (LQTS), a life-threatening cardiac arrhythmia syndrome. LQTS-associated CaM variants (D95V, N97I and D131H) induced structural alterations, altered binding to Kv7.1 and reduced IKs. Our data provide a novel mechanistic insight into how the perturbed structure-function relationship of CaM variants contributes to the LQTS phenotype.
Collapse
Affiliation(s)
- Liam McCormick
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
- Manchester Centre for Genomic Medicine, North West Genomic Laboratory HubSaint Mary's HospitalManchesterUK
| | - Kirsty Wadmore
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Amy Milburn
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nitika Gupta
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Rachael Morris
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Marie Held
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Ohm Prakash
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Joseph Carr
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Richard Barrett‐Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Caroline Dart
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| | - Nordine Helassa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
7
|
Werner Berchtold M. Increased exosomal Calmodulin in the urine of patients with diabetic kidney disease (DKD) may be derived from either CALM1, CALM2, CALM3 or from more than one of these genes. Clin Chim Acta 2023; 548:117515. [PMID: 37604221 DOI: 10.1016/j.cca.2023.117515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023]
Affiliation(s)
- Martin Werner Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, August Krogh Building, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
8
|
Life-threatening arrhythmogenic CaM mutations disrupt CaM binding to a distinct RyR2 CaM-binding pocket. Biochim Biophys Acta Gen Subj 2023; 1867:130313. [PMID: 36693454 DOI: 10.1016/j.bbagen.2023.130313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Calmodulin (CaM) modulates the activity of several proteins that play a key role in excitation-contraction coupling (ECC). In cardiac muscle, the major binding partner of CaM is the type-2 ryanodine receptor (RyR2) and altered CaM binding contributes to defects in sarcoplasmic reticulum (SR) calcium (Ca2+) release. Many genetic studies have reported a series of CaM missense mutations in patients with a history of severe arrhythmogenic cardiac disorders. In the present study, we generated four missense CaM mutants (CaMN98I, CaMD132E, CaMD134H and CaMQ136P) and we used a CaM-RyR2 co-immunoprecipitation and a [3H]ryanodine binding assay to directly compare the relative RyR2-binding of wild type and mutant CaM proteins and to investigate the functional effects of these CaM mutations on RyR2 activity. Furthermore, isothermal titration calorimetry (ITC) experiments were performed to investigate and compare the interactions of the wild-type and mutant CaM proteins with various synthetic peptides located in the well-established RyR2 CaM-binding region (3584-3602aa), as well as another CaM-binding region (4255-4271aa) of human RyR2. Our data revealed that all four CaM mutants displayed dramatically reduced RyR2 interaction and defective modulation of [3H]ryanodine binding to RyR2, regardless of LQTS or CPVT association. Moreover, our isothermal titration calorimetry ITC data suggest that RyR2 3584-3602aa and 4255-4271aa regions interact with significant affinity with wild-type CaM, in the presence and absence of Ca2+, two regions that might contribute to a putative intra-subunit CaM-binding pocket. In contrast, screening the interaction of the four arrhythmogenic CaM mutants with two synthetic peptides that correspond to these RyR2 regions, revealed disparate binding properties and signifying differential mechanisms that contribute to reduced RyR2 association.
Collapse
|
9
|
Gao J, Makiyama T, Yamamoto Y, Kobayashi T, Aoki H, Maurissen TL, Wuriyanghai Y, Kashiwa A, Imamura T, Aizawa T, Huang H, Kohjitani H, Nishikawa M, Chonabayashi K, Fukuyama M, Manabe H, Nakau K, Wada T, Kato K, Toyoda F, Yoshida Y, Makita N, Woltjen K, Ohno S, Kurebayashi N, Murayama T, Sakurai T, Horie M, Kimura T. Novel Calmodulin Variant p.E46K Associated With Severe Catecholaminergic Polymorphic Ventricular Tachycardia Produces Robust Arrhythmogenicity in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Arrhythm Electrophysiol 2023; 16:e011387. [PMID: 36866681 DOI: 10.1161/circep.122.011387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
BACKGROUND CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.
Collapse
Affiliation(s)
- Jingshan Gao
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeru Makiyama
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Community Medicine Supporting System (T. Makiyama), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuta Yamamoto
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Bioscience & Genetics (Y. Yamamoto, S.O.), National Cerebral & Cardiovascular Center, Suita, Japan
- Now with Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA (Y. Yamamoto)
| | - Takuya Kobayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Hisaaki Aoki
- Department of Pediatric Cardiology, Osaka Women's & Children's Hospital, Osaka, Japan (H.A.)
| | - Thomas L Maurissen
- Department of Life Science Frontiers (T.L.M., K.W.), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
- Now with Roche Pharma Research & Early Development, Immunology, Infectious Diseases & Ophthalmology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (T.L.M.)
| | - Yimin Wuriyanghai
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Now with Department of Internal medicine, Peking University Third Hospital, Beijing, China (Y.W.)
| | - Asami Kashiwa
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiko Imamura
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takanori Aizawa
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hai Huang
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohiko Kohjitani
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Misato Nishikawa
- Department of Cell Growth & Differentiation (M.N., K.C., Y. Yoshida), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kazuhisa Chonabayashi
- Department of Hematology & Oncology (K.C.), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Cell Growth & Differentiation (M.N., K.C., Y. Yoshida), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Megumi Fukuyama
- Department of Cardiovascular Medicine (M.F., K.K., M.H.), Shiga University of Medical Science, Otsu, Japan
| | - Hiromi Manabe
- Department of Pediatrics, Asahikawa Kosei General Hospital (H.M.), Asahikawa Medical University, Asahikawa, Japan
| | - Kouichi Nakau
- Asahikawa, Japan and Department of Pediatrics (K.N.), Asahikawa Medical University, Asahikawa, Japan
| | - Tsutomu Wada
- Department of Pediatrics, Sapporo Medical University Hospital, Sapporo, Japan (T.W.)
| | - Koichi Kato
- Department of Cardiovascular Medicine (M.F., K.K., M.H.), Shiga University of Medical Science, Otsu, Japan
| | - Futoshi Toyoda
- Department of Physiology (F.T.), Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Yoshida
- Department of Cell Growth & Differentiation (M.N., K.C., Y. Yoshida), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naomasa Makita
- Omics Research Center (N.M.), National Cerebral & Cardiovascular Center, Suita, Japan
- Now with Department of Cardiology, Sapporo Teishinkai Hospital, Sapporo, Japan (N.M.)
| | - Knut Woltjen
- Department of Life Science Frontiers (T.L.M., K.W.), Center for iPS Cell Research & Application (CiRA), Kyoto University, Kyoto, Japan
| | - Seiko Ohno
- Department of Bioscience & Genetics (Y. Yamamoto, S.O.), National Cerebral & Cardiovascular Center, Suita, Japan
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Takashi Sakurai
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, Japan (T. Kobayashi, N.K., T. Murayama, T.S.)
| | - Minoru Horie
- Department of Cardiovascular Medicine (M.F., K.K., M.H.), Shiga University of Medical Science, Otsu, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine (J.G., T. Makiyama, Y. Yamamoto, Y.W., A.K., T.I., T.A., H.H., H.K., T. Kimura), Kyoto University Graduate School of Medicine, Kyoto, Japan
- Now with Department of Cardiology, Hirakata Kohsai Hospital, Osaka, Japan (T. Kimura)
| |
Collapse
|
10
|
Calmodulin variant E140G associated with long QT syndrome impairs CaMKIIδ autophosphorylation and L-type calcium channel inactivation. J Biol Chem 2023; 299:102777. [PMID: 36496072 PMCID: PMC9830374 DOI: 10.1016/j.jbc.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.
Collapse
|
11
|
Munk M, Villalobo E, Villalobo A, Berchtold MW. Differential expression of the three independent CaM genes coding for an identical protein: Potential relevance of distinct mRNA stability by different codon usage. Cell Calcium 2022; 107:102656. [DOI: 10.1016/j.ceca.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/01/2022] [Accepted: 09/25/2022] [Indexed: 11/24/2022]
|
12
|
Sato O, Sakai T, Choo YY, Ikebe R, Watanabe TM, Ikebe M. Mitochondria-associated myosin 19 processively transports mitochondria on actin tracks in living cells. J Biol Chem 2022; 298:101883. [PMID: 35367209 PMCID: PMC9065997 DOI: 10.1016/j.jbc.2022.101883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are fundamentally important in cell function, and their malfunction can cause the development of cancer, cardiovascular disease, and neuronal disorders. Myosin 19 (Myo19) shows discrete localization with mitochondria and is thought to play an important role in mitochondrial dynamics and function; however, the function of Myo19 in mitochondrial dynamics at the cellular and molecular levels is poorly understood. Critical missing information is whether Myo19 is a processive motor that is suitable for transportation of mitochondria. Here, we show for the first time that single Myo19 molecules processively move on actin filaments and can transport mitochondria in cells. We demonstrate that Myo19 dimers having a leucine zipper processively moved on cellular actin tracks in demembraned cells with a velocity of 50 to 60 nm/s and a run length of ∼0.4 μm, similar to the movement of isolated mitochondria from Myo19 dimer-transfected cells on actin tracks, suggesting that the Myo19 dimer can transport mitochondria. Furthermore, we show single molecules of Myo19 dimers processively moved on single actin filaments with a large step size of ∼34 nm. Importantly, WT Myo19 single molecules without the leucine zipper processively move in filopodia in living cells similar to Myo19 dimers, whereas deletion of the tail domain abolished such active movement. These results suggest that Myo19 can processively move on actin filaments when two Myo19 monomers form a dimer, presumably as a result of tail-tail association. In conclusion, Myo19 molecules can directly transport mitochondria on actin tracks within living cells.
Collapse
Affiliation(s)
- Osamu Sato
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA
| | - Tsuyoshi Sakai
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA
| | - Young-Yeon Choo
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA
| | - Reiko Ikebe
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA
| | - Tomonobu M Watanabe
- Laboratory for Comprehensive Bioimaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, University of Texas at Tyler Health Science Center, Tyler, Texas, USA.
| |
Collapse
|
13
|
Prakash O, Held M, McCormick LF, Gupta N, Lian LY, Antonyuk S, Haynes LP, Thomas NL, Helassa N. CPVT-associated calmodulin variants N53I and A102V dysregulate Ca2+ signalling via different mechanisms. J Cell Sci 2022; 135:274029. [PMID: 34888671 PMCID: PMC8917356 DOI: 10.1242/jcs.258796] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited condition that can cause fatal cardiac arrhythmia. Human mutations in the Ca2+ sensor calmodulin (CaM) have been associated with CPVT susceptibility, suggesting that CaM dysfunction is a key driver of the disease. However, the detailed molecular mechanism remains unclear. Focusing on the interaction with the cardiac ryanodine receptor (RyR2), we determined the effect of CPVT-associated variants N53I and A102V on the structural characteristics of CaM and on Ca2+ fluxes in live cells. We provide novel data showing that interaction of both Ca2+/CaM-N53I and Ca2+/CaM-A102V with the RyR2 binding domain is decreased. Ca2+/CaM-RyR23583-3603 high-resolution crystal structures highlight subtle conformational changes for the N53I variant, with A102V being similar to wild type (WT). We show that co-expression of CaM-N53I or CaM-A102V with RyR2 in HEK293 cells significantly increased the duration of Ca2+ events; CaM-A102V exhibited a lower frequency of Ca2+ oscillations. In addition, we show that CaMKIIδ (also known as CAMK2D) phosphorylation activity is increased for A102V, compared to CaM-WT. This paper provides novel insight into the molecular mechanisms of CPVT-associated CaM variants and will facilitate the development of strategies for future therapies.
Collapse
Affiliation(s)
- Ohm Prakash
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Marie Held
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Liam F. McCormick
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Nitika Gupta
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Lu-Yun Lian
- Nuclear Magnetic Resonance Centre for Structural Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Svetlana Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - N. Lowri Thomas
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff, Redwood Building, CF10 3NB, UK
| | - Nordine Helassa
- Liverpool Centre for Cardiovascular Science, Department of Cardiovascular Science and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, UK,Author for correspondence ()
| |
Collapse
|
14
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Precision Medicine in Catecholaminergic Polymorphic Ventricular Tachycardia: JACC Focus Seminar 5/5. J Am Coll Cardiol 2021; 77:2592-2612. [PMID: 34016269 DOI: 10.1016/j.jacc.2020.12.073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 11/20/2022]
Abstract
In this final of a 5-part Focus Seminar series on precision medicine, we focus on catecholaminergic polymorphic ventricular tachycardia (CPVT). This focus on CPVT allows us to take a "deep dive" and explore the full extent of the precision medicine opportunities for a single cardiovascular condition at a level that was not possible in the preceding articles. As a new paradigm presented in this article, it has become clear that CPVT can occur as either a typical or atypical form. Although there is a degree of overlap between the typical and atypical forms, it is notable that they arise due to different underlying genetic changes, likely exhibiting differing mechanisms of action, and presenting with different phenotypic features. The recognition of these differing forms of CPVT and their different etiologies and mechanisms is an important step toward implementing rapidly emerging precision medicine approaches that will tailor novel therapies to specific gene defects.
Collapse
|
16
|
Clemens DJ, Gray B, Bagnall RD, Tester DJ, Giudicessi JR, Maleszewski JJ, Crotti L, Schwartz PJ, Matthews E, Semsarian C, Behr ER, Ackerman MJ. Prevalence and Phenotypic Correlations of Calmodulinopathy-Causative CALM1-3 Variants Detected in a Multicenter Molecular Autopsy Cohort of Sudden Unexplained Death Victims. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e003032. [PMID: 33191766 DOI: 10.1161/circgen.120.003032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Daniel J Clemens
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics (D.J.C., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN
| | - Belinda Gray
- Molecular & Clinical Sciences Research Institute, St George's University of London (B.G., E.R.B.).,Cardiology Clinical Academic Group, St George's University Hospitals' National Health Service (NHS) Foundation Trust, London, United Kingdom (B.G., E.R.B.).,Sydney Medical School Faculty of Medicine & Health (B.G., C.S.).,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia (B.G., R.D.B., C.S.)
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney (R.D.B., C.S.).,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia (B.G., R.D.B., C.S.)
| | - David J Tester
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics (D.J.C., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine (D.J.T., J.R.G., J.J.M., M.J.A.), Mayo Clinic, Rochester, MN
| | - John R Giudicessi
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (D.J.T., J.R.G., J.J.M., M.J.A.), Mayo Clinic, Rochester, MN
| | - Joseph J Maleszewski
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine (D.J.T., J.R.G., J.J.M., M.J.A.), Mayo Clinic, Rochester, MN.,Department of Laboratory Medicine & Pathology (J.J.M.), Mayo Clinic, Rochester, MN
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin & Laboratory of Cardiovascular Genetics (L.C., P.J.S.).,Istituto Auxologico Italiano, IRCCS Department of Cardiovascular, Neural & Metabolic Sciences, San Luca Hospital (L.C.).,Department of Medicine & Surgery University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin & Laboratory of Cardiovascular Genetics (L.C., P.J.S.)
| | - Emma Matthews
- Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery & University College London Institute of Neurology, London, United Kingdom (E.M.)
| | - Christopher Semsarian
- Sydney Medical School Faculty of Medicine & Health (B.G., C.S.).,Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney (R.D.B., C.S.).,Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia (B.G., R.D.B., C.S.)
| | - Elijah R Behr
- Molecular & Clinical Sciences Research Institute, St George's University of London (B.G., E.R.B.).,Cardiology Clinical Academic Group, St George's University Hospitals' National Health Service (NHS) Foundation Trust, London, United Kingdom (B.G., E.R.B.)
| | - Michael J Ackerman
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology & Experimental Therapeutics (D.J.C., D.J.T., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Heart Rhythm Services, Department of Cardiovascular Medicine (D.J.T., J.R.G., J.J.M., M.J.A.), Mayo Clinic, Rochester, MN.,Division of Pediatric Cardiology, Department of Pediatric & Adolescent Medicine (M.J.A.), Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Bae B, Gruner HN, Lynch M, Feng T, So K, Oliver D, Mastick GS, Yan W, Pieraut S, Miura P. Elimination of Calm1 long 3'-UTR mRNA isoform by CRISPR-Cas9 gene editing impairs dorsal root ganglion development and hippocampal neuron activation in mice. RNA (NEW YORK, N.Y.) 2020; 26:1414-1430. [PMID: 32522888 PMCID: PMC7491327 DOI: 10.1261/rna.076430.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/06/2020] [Indexed: 05/04/2023]
Abstract
The majority of mouse and human genes are subject to alternative cleavage and polyadenylation (APA), which most often leads to the expression of two or more alternative length 3' untranslated region (3'-UTR) mRNA isoforms. In neural tissues, there is enhanced expression of APA isoforms with longer 3'-UTRs on a global scale, but the physiological relevance of these alternative 3'-UTR isoforms is poorly understood. Calmodulin 1 (Calm1) is a key integrator of calcium signaling that generates short (Calm1-S) and long (Calm1-L) 3'-UTR mRNA isoforms via APA. We found Calm1-L expression to be largely restricted to neural tissues in mice including the dorsal root ganglion (DRG) and hippocampus, whereas Calm1-S was more broadly expressed. smFISH revealed that both Calm1-S and Calm1-L were subcellularly localized to neural processes of primary hippocampal neurons. In contrast, cultured DRG showed restriction of Calm1-L to soma. To investigate the in vivo functions of Calm1-L, we implemented a CRISPR-Cas9 gene editing strategy to delete a small region encompassing the Calm1 distal poly(A) site. This eliminated Calm1-L expression while maintaining expression of Calm1-S Mice lacking Calm1-L (Calm1ΔL/ΔL ) exhibited disorganized DRG migration in embryos, and reduced experience-induced neuronal activation in the adult hippocampus. These data indicate that Calm1-L plays functional roles in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Bongmin Bae
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hannah N Gruner
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Maebh Lynch
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Ting Feng
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Kevin So
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Daniel Oliver
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Grant S Mastick
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Wei Yan
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Simon Pieraut
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
18
|
Holt C, Hamborg L, Lau K, Brohus M, Sørensen AB, Larsen KT, Sommer C, Van Petegem F, Overgaard MT, Wimmer R. The arrhythmogenic N53I variant subtly changes the structure and dynamics in the calmodulin N-terminal domain, altering its interaction with the cardiac ryanodine receptor. J Biol Chem 2020; 295:7620-7634. [PMID: 32317284 DOI: 10.1074/jbc.ra120.013430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in the genes encoding the highly conserved Ca2+-sensing protein calmodulin (CaM) cause severe cardiac arrhythmias, including catecholaminergic polymorphic ventricular tachycardia or long QT syndrome and sudden cardiac death. Most of the identified arrhythmogenic mutations reside in the C-terminal domain of CaM and mostly affect Ca2+-coordinating residues. One exception is the catecholaminergic polymorphic ventricular tachycardia-causing N53I substitution, which resides in the N-terminal domain (N-domain). It does not affect Ca2+ coordination and has only a minor impact on binding affinity toward Ca2+ and on other biophysical properties. Nevertheless, the N53I substitution dramatically affects CaM's ability to reduce the open probability of the cardiac ryanodine receptor (RyR2) while having no effect on the regulation of the plasmalemmal voltage-gated Ca2+ channel, Cav1.2. To gain more insight into the molecular disease mechanism of this mutant, we used NMR to investigate the structures and dynamics of both apo- and Ca2+-bound CaM-N53I in solution. We also solved the crystal structures of WT and N53I CaM in complex with the primary calmodulin-binding domain (CaMBD2) from RyR2 at 1.84-2.13 Å resolutions. We found that all structures of the arrhythmogenic CaM-N53I variant are highly similar to those of WT CaM. However, we noted that the N53I substitution exposes an additional hydrophobic surface and that the intramolecular dynamics of the protein are significantly altered such that they destabilize the CaM N-domain. We conclude that the N53I-induced changes alter the interaction of the CaM N-domain with RyR2 and thereby likely cause the arrhythmogenic phenotype of this mutation.
Collapse
Affiliation(s)
- Christian Holt
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Louise Hamborg
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Kelvin Lau
- University of British Columbia, Department of Biochemistry and Molecular Biology, V6T 1Z3 Vancouver, British Columbia, Canada
| | - Malene Brohus
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | | | | | - Cordula Sommer
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| | - Filip Van Petegem
- University of British Columbia, Department of Biochemistry and Molecular Biology, V6T 1Z3 Vancouver, British Columbia, Canada
| | | | - Reinhard Wimmer
- Aalborg University, Department of Chemistry and Bioscience, 9220 Aalborg, Denmark
| |
Collapse
|
19
|
Wang K, Brohus M, Holt C, Overgaard MT, Wimmer R, Van Petegem F. Arrhythmia mutations in calmodulin can disrupt cooperativity of Ca 2+ binding and cause misfolding. J Physiol 2020; 598:1169-1186. [PMID: 32012279 DOI: 10.1113/jp279307] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/28/2020] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Mutations in the calmodulin protein (CaM) are associated with arrhythmia syndromes. This study focuses on understanding the structural characteristics of CaM disease mutants and their interactions with the voltage-gated calcium channel CaV 1.2. Arrhythmia mutations in CaM can lead to loss of Ca2+ binding, uncoupling of Ca2+ binding cooperativity, misfolding of the EF-hands and altered affinity for the calcium channel. These results help us to understand how different CaM mutants have distinct effects on structure and interactions with protein targets to cause disease. ABSTRACT Calmodulinopathies are life-threatening arrhythmia syndromes that arise from mutations in calmodulin (CaM), a calcium sensing protein whose sequence is completely conserved across all vertebrates. These mutations have been shown to interfere with the function of cardiac ion channels, including the voltage-gated Ca2+ channel CaV 1.2 and the ryanodine receptor (RyR2), in a mutation-specific manner. The ability of different CaM disease mutations to discriminate between these channels has been enigmatic. We present crystal structures of several C-terminal lobe mutants and an N-terminal lobe mutant in complex with the CaV 1.2 IQ domain, in conjunction with binding assays and complementary structural biology techniques. One mutation (D130G) causes a pathological conformation, with complete separation of EF-hands within the C-lobe and loss of Ca2+ binding in EF-hand 4. Another variant (Q136P) has severely reduced affinity for the IQ domain, and shows changes in the CD spectra under Ca2+ -saturating conditions when unbound to the IQ domain. Ca2+ binding to a pair of EF-hands normally proceeds with very high cooperativity, but we found that N98S CaM can adopt different conformations with either one or two Ca2+ ions bound to the C-lobe, possibly disrupting the cooperativity. An N-lobe variant (N54I), which causes severe stress-induced arrhythmia, does not show any major changes in complex with the IQ domain, providing a structural basis for why this mutant does not affect function of CaV 1.2. These findings show that different CaM mutants have distinct effects on both the CaM structure and interactions with protein targets, and act via distinct pathological mechanisms to cause disease.
Collapse
Affiliation(s)
- Kaiqian Wang
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| | - Malene Brohus
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Christian Holt
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Reinhard Wimmer
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada
| |
Collapse
|
20
|
Wren LM, Jiménez-Jáimez J, Al-Ghamdi S, Al-Aama JY, Bdeir A, Al-Hassnan ZN, Kuan JL, Foo RY, Potet F, Johnson CN, Aziz MC, Carvill GL, Kaski JP, Crotti L, Perin F, Monserrat L, Burridge PW, Schwartz PJ, Chazin WJ, Bhuiyan ZA, George AL. Genetic Mosaicism in Calmodulinopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:375-385. [PMID: 31454269 DOI: 10.1161/circgen.119.002581] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND CaM (calmodulin) mutations are associated with congenital arrhythmia susceptibility (calmodulinopathy) and are most often de novo. In this report, we sought to broaden the genotype-phenotype spectrum of calmodulinopathies with 2 novel calmodulin mutations and to investigate mosaicism in 2 affected families. METHODS CaM mutations were identified in 4 independent cases by DNA sequencing. Biochemical and electrophysiological studies were performed to determine functional consequences of each mutation. RESULTS Genetic studies identified 2 novel CaM variants (CALM3-E141K in 2 cases; CALM1-E141V) and one previously reported CaM pathogenic variant (CALM3-D130G) among 4 probands with shared clinical features of prolonged QTc interval (range 505-725 ms) and documented ventricular arrhythmia. A fatal outcome occurred for 2 of the cases. The parents of all probands were asymptomatic with normal QTc duration. However, 2 of the families had multiple affected offspring or multiple occurrences of intrauterine fetal demise. The mother from the family with recurrent intrauterine fetal demise exhibited the CALM3-E141K mutant allele in 25% of next-generation sequencing reads indicating somatic mosaicism, whereas CALM3-D130G was present in 6% of captured molecules of the paternal DNA sample, also indicating mosaicism. Two novel mutations (E141K and E141V) impaired Ca2+ binding affinity to the C-domain of CaM. Human-induced pluripotent stem cell-derived cardiomyocytes overexpressing mutant or wild-type CaM showed that both mutants impaired Ca2+-dependent inactivation of L-type Ca2+ channels and prolonged action potential duration. CONCLUSIONS We report 2 families with somatic mosaicism associated with arrhythmogenic calmodulinopathy, and demonstrate dysregulation of L-type Ca2+ channels by 2 novel CaM mutations affecting the same residue. Parental mosaicism should be suspected in families with unexplained fetal arrhythmia or fetal demise combined with a documented CaM mutation.
Collapse
Affiliation(s)
- Lisa M Wren
- From the Department of Pharmacology (L.M.W., F.P., P.W.B., A.L.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Juan Jiménez-Jáimez
- Cardiology Department (J.J.-J.), Virgen de las Nieves Hospital, Granada, Spain
| | - Saleh Al-Ghamdi
- Cardiac Sciences Department, Section of Pediatric Cardiology, King Abdulaziz Cardiac Center, Ministry of National Guard Health Affairs, Riyadh (S.A.-G.)
| | - Jumana Y Al-Aama
- Department of Genetic Medicine, Faculty of Medicine (J.Y.A.-A.), King Abdulaziz University, Jeddah.,Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders (J.Y.A.-A., A.B.), King Abdulaziz University, Jeddah
| | - Amnah Bdeir
- Princess Al Jawhara Albrahim Center of Excellence in Research of Hereditary Disorders (J.Y.A.-A., A.B.), King Abdulaziz University, Jeddah
| | - Zuhair N Al-Hassnan
- The Cardiovascular Genetics Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia (Z.N.A.-H.)
| | - Jyn L Kuan
- Department of Cardiology, National University Heart Center and Cardiovascular Research Institute, National University of Singapore (J.L.K., R.Y.F.)
| | - Roger Y Foo
- Department of Cardiology, National University Heart Center and Cardiovascular Research Institute, National University of Singapore (J.L.K., R.Y.F.)
| | - Franck Potet
- From the Department of Pharmacology (L.M.W., F.P., P.W.B., A.L.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Christopher N Johnson
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., W.J.C.)
| | - Miriam C Aziz
- Department of Neurology (M.C.A., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Gemma L Carvill
- Department of Neurology (M.C.A., G.L.C.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Juan-Pablo Kaski
- Institute of Cardiovascular Science, University College London, United Kingdom (J.-P.K.)
| | - Lia Crotti
- Department of Medicine and Surgery, University of Milano-Bicocca (L.C.).,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.).,Cardiology Department, Health in Code SL, A Coruña, Spain (L.M.)
| | - Francesca Perin
- Pediatric Cardiology Division (F.P.), Virgen de las Nieves Hospital, Granada, Spain
| | | | - Paul W Burridge
- From the Department of Pharmacology (L.M.W., F.P., P.W.B., A.L.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy (L.C., P.J.S.)
| | - Walter J Chazin
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN (C.N.J., W.J.C.)
| | - Zahurul A Bhuiyan
- Unité de Recherche Cardiogénétique, Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland (Z.A.B.)
| | - Alfred L George
- From the Department of Pharmacology (L.M.W., F.P., P.W.B., A.L.G.), Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
21
|
Modulation of cardiac ryanodine receptor 2 by calmodulin. Nature 2019; 572:347-351. [PMID: 31278385 DOI: 10.1038/s41586-019-1377-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 06/04/2019] [Indexed: 11/08/2022]
Abstract
The high-conductance intracellular calcium (Ca2+) channel RyR2 is essential for the coupling of excitation and contraction in cardiac muscle. Among various modulators, calmodulin (CaM) regulates RyR2 in a Ca2+-dependent manner. Here we reveal the regulatory mechanism by which porcine RyR2 is modulated by human CaM through the structural determination of RyR2 under eight conditions. Apo-CaM and Ca2+-CaM bind to distinct but overlapping sites in an elongated cleft formed by the handle, helical and central domains. The shift in CaM-binding sites on RyR2 is controlled by Ca2+ binding to CaM, rather than to RyR2. Ca2+-CaM induces rotations and intradomain shifts of individual central domains, resulting in pore closure of the PCB95 and Ca2+-activated channel. By contrast, the pore of the ATP, caffeine and Ca2+-activated channel remains open in the presence of Ca2+-CaM, which suggests that Ca2+-CaM is one of the many competing modulators of RyR2 gating.
Collapse
|
22
|
Senapati D, Kushwaha R, Dutta S, Maurya JP, Biswas S, Gangappa SN, Chattopadhyay S. COP1 regulates the stability of CAM7 to promote photomorphogenic growth. PLANT DIRECT 2019; 3:e00144. [PMID: 31245782 PMCID: PMC6593147 DOI: 10.1002/pld3.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/18/2019] [Accepted: 05/07/2019] [Indexed: 05/31/2023]
Abstract
The unique member of the calmodulin gene family, Calmodulin7 (CAM7), plays a crucial role as transcriptional regulator to promote Arabidopsis seedling development. CAM7 regulates the expression of HY5, which is intimately involved in the promotion of photomorphogenic growth and light-regulated gene expression. COP1 ubiquitin ligase suppresses photomorphogenesis by degrading multiple photomorphogenesis promoting factors including HY5 in darkness. Genetic interaction studies, in this report, reveal that CAM7 and COP1 co-ordinately work to promote photomorphogenic growth and light-regulated gene expression at lower intensity of light. CAM7 physically interacts with COP1 in the nucleus. Further, in vivo study suggests that CAM7 and COP1 interaction is light intensity dependent. We have also shown that functional COP1 is required for optimum accumulation of CAM7 at lower fluences of light. Taken together, this study demonstrates the coordinated function of CAM7 and COP1 in Arabidopsis seedling development.
Collapse
Affiliation(s)
| | - Ritu Kushwaha
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Siddhartha Dutta
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Jay Prakash Maurya
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | - Srabasthi Biswas
- Department of BiotechnologyNational Institute of TechnologyDurgapurIndia
| | | | | |
Collapse
|
23
|
Crotti L, Ghidoni A, Dagradi F. Genetics of Adult and Fetal Forms of Long QT Syndrome. GENETIC CAUSES OF CARDIAC DISEASE 2019. [DOI: 10.1007/978-3-030-27371-2_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Badone B, Ronchi C, Kotta MC, Sala L, Ghidoni A, Crotti L, Zaza A. Calmodulinopathy: Functional Effects of CALM Mutations and Their Relationship With Clinical Phenotypes. Front Cardiovasc Med 2018; 5:176. [PMID: 30619883 PMCID: PMC6297375 DOI: 10.3389/fcvm.2018.00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 12/16/2022] Open
Abstract
In spite of the widespread role of calmodulin (CaM) in cellular signaling, CaM mutations lead specifically to cardiac manifestations, characterized by remarkable electrical instability and a high incidence of sudden death at young age. Penetrance of the mutations is surprisingly high, thus postulating a high degree of functional dominance. According to the clinical patterns, arrhythmogenesis in CaM mutations can be attributed, in the majority of cases, to either prolonged repolarization (as in long-QT syndrome, LQTS phenotype), or to instability of the intracellular Ca2+ store (as in catecholamine-induced tachycardias, CPVT phenotype). This review discusses how mutations affect CaM signaling function and how this may relate to the distinct arrhythmia phenotypes/mechanisms observed in patients; this involves mechanistic interpretation of negative dominance and mutation-specific CaM-target interactions. Knowledge of the mechanisms involved may allow critical approach to clinical manifestations and aid in the development of therapeutic strategies for "calmodulinopathies," a recently identified nosological entity.
Collapse
Affiliation(s)
- Beatrice Badone
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Carlotta Ronchi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Maria-Christina Kotta
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Luca Sala
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Alice Ghidoni
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
25
|
Kotta MC, Sala L, Ghidoni A, Badone B, Ronchi C, Parati G, Zaza A, Crotti L. Calmodulinopathy: A Novel, Life-Threatening Clinical Entity Affecting the Young. Front Cardiovasc Med 2018; 5:175. [PMID: 30574507 PMCID: PMC6291462 DOI: 10.3389/fcvm.2018.00175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/22/2018] [Indexed: 01/31/2023] Open
Abstract
Sudden cardiac death (SCD) in the young may often be the first manifestation of a genetic arrythmogenic disease that had remained undiagnosed. Despite the significant discoveries of the genetic bases of inherited arrhythmia syndromes, there remains a measurable fraction of cases where in-depth clinical and genetic investigations fail to identify the underlying SCD etiology. A few years ago, 2 cases of infants with recurrent cardiac arrest episodes, due to what appeared to be as a severe form of long QT syndrome (LQTS), came to our attention. These prompted a number of clinical and genetic research investigations that allowed us to identify a novel, closely associated to LQTS but nevertheless distinct, clinical entity that is now known as calmodulinopathy. Calmodulinopathy is a life-threatening arrhythmia syndrome, affecting mostly young individuals, caused by mutations in any of the 3 genes encoding calmodulin (CaM). Calmodulin is a ubiquitously expressed Ca2+ signaling protein that, in the heart, modulates several ion channels and participates in a plethora of cellular processes. We will hereby provide an overview of CaM's structure and function under normal and disease states, highlighting the genetic etiology of calmodulinopathy and the related disease mechanisms. We will also discuss the phenotypic spectrum of patients with calmodulinopathy and present state-of-the art approaches with patient-derived induced pluripotent stem cells that have been thus far adopted in order to accurately model calmodulinopathy in vitro, decipher disease mechanisms and identify novel therapies.
Collapse
Affiliation(s)
- Maria-Christina Kotta
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Luca Sala
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Alice Ghidoni
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Beatrice Badone
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Carlotta Ronchi
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Gianfranco Parati
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.,Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
| |
Collapse
|
26
|
Jensen HH, Brohus M, Nyegaard M, Overgaard MT. Human Calmodulin Mutations. Front Mol Neurosci 2018; 11:396. [PMID: 30483049 PMCID: PMC6243062 DOI: 10.3389/fnmol.2018.00396] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/11/2018] [Indexed: 01/18/2023] Open
Abstract
Fluxes of calcium (Ca2+) across cell membranes enable fast cellular responses. Calmodulin (CaM) senses local changes in Ca2+ concentration and relays the information to numerous interaction partners. The critical role of accurate Ca2+ signaling on cellular function is underscored by the fact that there are three independent CaM genes (CALM1-3) in the human genome. All three genes are functional and encode the exact same CaM protein. Moreover, CaM has a completely conserved amino acid sequence across all vertebrates. Given this degree of conservation, it was long thought that mutations in CaM were incompatible with life. It was therefore a big surprise when the first CaM mutations in humans were identified six years ago. Today, more than a dozen human CaM missense mutations have been described, all found in patients with severe cardiac arrhythmias. Biochemical studies have demonstrated differential effects on Ca2+ binding affinities for these CaM variants. Moreover, CaM regulation of central cardiac ion channels is impaired, including the voltage-gated Ca2+ channel, CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor isoform 2, RyR2. Currently, no non-cardiac phenotypes have been described for CaM variant carriers. However, sequencing of large human cohorts reveals a cumulative frequency of additional rare CaM mutations that raise the possibility of CaM variants not exclusively causing severe cardiac arrhythmias. Here, we provide an overview of the identified CaM variants and their known consequences for target regulation and cardiac disease phenotype. We discuss experimental data, patient genotypes and phenotypes as well as which questions remain open to understand this complexity.
Collapse
Affiliation(s)
- Helene H Jensen
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Malene Brohus
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael T Overgaard
- Section for Biotechnology, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
27
|
Lim HK, Lee JK, Kim GD, Jeong TH. Multiple calmodulin genes of the Pacific abalone, Haliotis discus hannai (Mollusca: Vetigastropoda: Haliotidae). Anim Cells Syst (Seoul) 2018; 22:341-351. [PMID: 30460116 PMCID: PMC6171432 DOI: 10.1080/19768354.2018.1509126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 06/17/2018] [Accepted: 07/23/2018] [Indexed: 11/02/2022] Open
Abstract
In this study, we identified four canonical calmodulin genes in the Pacific abalone, Haliotis discus hannai. Their full-length cDNAs were variable in the 5' and 3' untranslated regions, but highly similar (91-97%) in the coding region. Each of the genes encoded 149 amino acids, with 93-97% similarity among themselves and 94-98% similarity with human CAM I. There were 54 substitutions distributed unevenly throughout the coding regions, found mostly in the third codon position. Gene structure analysis revealed that each of the calmodulin genes comprised five exons and four introns. The intron positions and phases were identical and there were no introns in the fourth exon. The corresponding introns differed in their sequences and sizes. Expression profiles of nine tissues from abalone revealed that the calmodulin genes were transcribed in common in gill and mantle tissue, but differentially in the other tissues. A phylogenetic analysis based on the amino acid sequences revealed that calmodulin C was the most common isoform in Gastropoda and calmodulin was the most diverged isoform. An in silico analysis of the calmodulin genes identified paralogous genes in other Haliotis species, indicating that gene duplication might have occurred in the last common ancestor of Haliotis. Abbreviations: ORF: open reading frame; RACE: random amplification of cDNA end; TSA: transcriptome shotgun assembly; UTR: untranslated region.
Collapse
Affiliation(s)
- Han Kyu Lim
- Department of Marine and Fisheries Resources, Mokpo National University, Korea
| | - Jong Kyu Lee
- Department of Microbiology, Pukyong National University, Korea
| | - Gun-Do Kim
- Department of Microbiology, Pukyong National University, Korea
| | - Tae Hyug Jeong
- Department of Marine and Fisheries Resources, Mokpo National University, Korea
| |
Collapse
|
28
|
Gray B, Behr ER. New Insights Into the Genetic Basis of Inherited Arrhythmia Syndromes. ACTA ACUST UNITED AC 2018; 9:569-577. [PMID: 27998945 DOI: 10.1161/circgenetics.116.001571] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Belinda Gray
- From the Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia (B.G.); Sydney Medical School, University of Sydney, Australia (B.G.), Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia (B.G.); Cardiology Clinical Academic Group, St George's University of London, United Kingdom (E.R.B.); and St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.)
| | - Elijah R Behr
- From the Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia (B.G.); Sydney Medical School, University of Sydney, Australia (B.G.), Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, New South Wales, Australia (B.G.); Cardiology Clinical Academic Group, St George's University of London, United Kingdom (E.R.B.); and St George's University Hospitals NHS Foundation Trust, London, United Kingdom (E.R.B.).
| |
Collapse
|
29
|
Cheong MS, Chi YH, Lee JY, Seo KH, Yun DJ, Kim JH. Calmodulin 2 Functions as an RNA Chaperone in Prokaryotic Cells. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0172-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Shi J, Gao ST, Lv ZT, Sheng WB, Kang H. The association between rs12885713 polymorphism in CALM1 and risk of osteoarthritis: A meta-analysis of case-control studies. Medicine (Baltimore) 2018; 97:e12235. [PMID: 30200150 PMCID: PMC6133536 DOI: 10.1097/md.0000000000012235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE The single nucleotide polymorphism (SNP) rs12885713 of calmodulin 1 gene (CALM1) has been reported to involve in the etiology of osteoarthritis (OA) in several association studies with limited sample size and conflicting results. The purpose of the present systematic review and meta-analysis was to evaluate and synthesize the currently available data on the correlation between rs12885713 and OA susceptibility. METHODS Six electronic databases including PubMed, EMBASE, ISI Web of Science, CNETRAL, CNKI, and Wanfang were systematically retrieved to identify relevant observational articles published before October 2017. Summary odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were calculated to indicate the association between CALM1 polymorphism and OA. Risk of bias was assessed through the Newcastle-Ottawa Scale. Predetermined subgroups and sensitivity analyses were performed using the RevMan 5.3 software. Publication bias was evaluated by Egger and Begg tests. RESULTS Overall, 5 case-control studies involving 2183 OA patients 2654 healthy control subjects satisfied the meta-analysis. Recessive model was confirmed to be the best-matching genetic model (TT + TC versus CC). The pooled outcomes indicated that rs12885713 SNP was not significantly associated with OA vulnerability (OR 1.11, 95% CI 0.97, 1.27; P = .12). When stratified by different genders, OA sites, and population descents respectively, still non-significant associations were found. CONCLUSION Based on the findings of our present study, the rs12885713 polymorphism of CALM1 did not appear to be associated with OA predisposition.
Collapse
Affiliation(s)
- Jia Shi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Shu-tao Gao
- Department of Spine Surgery, The First Affiliate Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zheng-tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| | - Wei-bin Sheng
- Department of Spine Surgery, The First Affiliate Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei
| |
Collapse
|
31
|
Shaik NA, Awan ZA, Verma PK, Elango R, Banaganapalli B. Protein phenotype diagnosis of autosomal dominant calmodulin mutations causing irregular heart rhythms. J Cell Biochem 2018; 119:8233-8248. [PMID: 29932249 DOI: 10.1002/jcb.26834] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/09/2018] [Indexed: 12/21/2022]
Abstract
The life-threatening group of irregular cardiac rhythmic disorders also known as Cardiac Arrhythmias (CA) are caused by mutations in highly conserved Calmodulin (CALM/CaM) genes. Herein, we present a multidimensional approach to diagnose changes in phenotypic, stability, and Ca2+ ion binding properties of CA-causing mutations. Mutation pathogenicity was determined by diverse computational machine learning approaches. We further modeled the mutations in 3D protein structure and analyzed residue level phenotype plasticity. We have also examined the influence of torsion angles, number of H-bonds, and free energy dynamics on the stability, near-native simulation dynamic potential of residue fluctuations in protein structures, Ca2+ ion binding potentials, of CaM mutants. Our study recomends to use M-CAP method for measuring the pathogenicity of CA causing CaM variants. Interestingly, most CA-causing variants we analyzed, exists in either third (V/H-96, S/I-98, V-103) or fourth (G/V-130, V/E/H-132, H-134, P-136, G-141, and L-142) EF-hands located in carboxyl domains of the CaM molecule. We observed that the minor structural fluctuations caused by these variants are likely tolerable owing to the highly flexible nature of calmodulin's globular domains. However, our molecular docking results supports that these variants disturb the affinity of CaM toward Ca2+ ions and corroborate previous findings from functional studies. Taken together, these computational findings can explain the molecular reasons for subtle changes in structure, flexibility, and stability aspects of mutant CaM molecule. Our comprehensive molecular scanning approach demonstrates the utility of computational methods in quick preliminary screening of CA- CaM mutations before undertaking time consuming and complicated functional laboratory assays.
Collapse
Affiliation(s)
- Noor A Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant K Verma
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Rocchetti M, Sala L, Dreizehnter L, Crotti L, Sinnecker D, Mura M, Pane LS, Altomare C, Torre E, Mostacciuolo G, Severi S, Porta A, De Ferrari GM, George AL, Schwartz PJ, Gnecchi M, Moretti A, Zaza A. Elucidating arrhythmogenic mechanisms of long-QT syndrome CALM1-F142L mutation in patient-specific induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 2017; 113:531-541. [PMID: 28158429 DOI: 10.1093/cvr/cvx006] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 01/15/2017] [Indexed: 12/29/2022] Open
Abstract
Aims Calmodulin (CaM) is a small protein, encoded by three genes (CALM1-3), exerting multiple Ca2+-dependent modulatory roles. A mutation (F142L) affecting only one of the six CALM alleles is associated with long QT syndrome (LQTS) characterized by recurrent cardiac arrests. This phenotypic severity is unexpected from the predicted allelic balance. In this work, the effects of heterozygous CALM1-F142L have been investigated in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from a LQTS patient carrying the F142L mutation, i.e. in the context of native allelic ratio and potential gene modifiers. Methods and Results Skin fibroblasts of the mutation carrier and two unrelated healthy subjects (controls) were reprogrammed to hiPSC and differentiated into hiPSC-CMs. Scanty IK1 expression, an hiPSC-CMs feature potentially biasing repolarization, was corrected by addition of simulated IK1 (Dynamic-Clamp). Abnormalities in repolarization rate-dependency (in single cells and cell aggregates), membrane currents and intracellular Ca2+ dynamics were evaluated as putative arrhythmogenic factors. CALM1-F142L prolonged repolarization, altered its rate-dependency and its response to isoproterenol. This was associated with severe impairment of Ca2+-dependent inactivation (CDI) of ICaL, resulting in augmented inward current during the plateau phase. As a result, the repolarization of mutant cells failed to adapt to high pacing rates, a finding well reproduced by using a recent hiPSC-CM action potential model. The mutation failed to affect IKs and INaL and changed If only marginally. Intracellular Ca2+ dynamics and Ca2+ store stability were not significantly modified. Mutation-induced repolarization abnormalities were reversed by verapamil. Conclusion The main functional derangement in CALM1-F142L was prolonged repolarization with altered rate-dependency and sensitivity to β-adrenergic stimulation. Impaired CDI of ICaL underlined the electrical abnormality, which was sensitive to ICaL blockade. High mutation penetrance was confirmed in the presence of the native genotype, implying strong dominance of effects.
Collapse
Affiliation(s)
- Marcella Rocchetti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Luca Sala
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy.,Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lisa Dreizehnter
- I. Medical Department - Cardiology, Klinikum Rechts der Isar- Technische Universität München, Munich, Germany
| | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Molecular Medicine - Unit of Cardiology, University of Pavia, Pavia, Italy
| | - Daniel Sinnecker
- I. Medical Department - Cardiology, Klinikum Rechts der Isar- Technische Universität München, Munich, Germany
| | - Manuela Mura
- Department of Molecular Medicine - Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Luna Simona Pane
- I. Medical Department - Cardiology, Klinikum Rechts der Isar- Technische Universität München, Munich, Germany
| | - Claudia Altomare
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Eleonora Torre
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Gaspare Mostacciuolo
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Stefano Severi
- Biomedical Engineering Laboratory D.E.I, University of Bologna, Cesena, Italy
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Gaetano M De Ferrari
- Department of Molecular Medicine - Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Massimiliano Gnecchi
- Department of Molecular Medicine - Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Alessandra Moretti
- I. Medical Department - Cardiology, Klinikum Rechts der Isar- Technische Universität München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
33
|
Walweel K, Oo YW, Laver DR. The emerging role of calmodulin regulation of RyR2 in controlling heart rhythm, the progression of heart failure and the antiarrhythmic action of dantrolene. Clin Exp Pharmacol Physiol 2017; 44:135-142. [PMID: 27626620 DOI: 10.1111/1440-1681.12669] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/27/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
Abstract
Cardiac output and rhythm depend on the release and the take-up of calcium from the sarcoplasmic reticulum (SR). Excessive diastolic calcium leak from the SR due to dysfunctional calcium release channels (RyR2) contributes to the formation of delayed after-depolarizations, which underlie the fatal arrhythmias that occur in heart failure and inherited syndromes. Calmodulin (CaM) is a calcium-binding protein that regulates target proteins and acts as a calcium sensor. CaM is comprised of two calcium-binding EF-hand domains and a flexible linker. CaM is an accessory protein that partially inhibits RyR2 channel activity. CaM is critical for normal cardiac function, and altered CaM binding and efficacy may contribute to defects in SR calcium release. The present paper reviews CaM binding to RyR2 and how it regulates RyR2 channel activity. It then goes on to review how mutations in the CaM amino acid sequence give rise to inherited syndromes such as Catecholaminergic Polymorphic Ventricular Tachychardia (CPVT) and long QT syndrome (LQTS). In addition, the role of reduced CaM binding to RyR2 that results from RyR2 phosphorylation or from oxidation of either RyR2 or CaM contributes to the progression of heart failure is reviewed. Finally, this manuscript reviews recent evidence that CaM binding to RyR2 is required for the inhibitory action of a pharmaceutical agent (dantrolene) on RyR2. Dantrolene is a clinically used muscle relaxant that has recently been found to exert antiarrhythmic effects against SR Ca2+ overload arrhythmias.
Collapse
Affiliation(s)
- Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Ye Win Oo
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, 2308, Australia
| |
Collapse
|
34
|
Liao J, Deng J, Qin Z, Tang J, Shu M, Ding C, Liu J, Hu C, Yuan M, Huang Y, Yang R, Zhou Y. Genome-Wide Identification and Analyses of Calmodulins and Calmodulin-like Proteins in Lotus japonicas. FRONTIERS IN PLANT SCIENCE 2017; 8:482. [PMID: 28424729 PMCID: PMC5380670 DOI: 10.3389/fpls.2017.00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/20/2017] [Indexed: 05/10/2023]
Abstract
L. japonicus, a model plant of legumes plants, is widely used in symbiotic nitrogen fixation. A large number of studies on it have been published based on the genetic, biochemical, structural studies. These results are secondhand reports that CaM is a key regulator during Rhizobial infection. In plants, there are multiple CaM genes encoding several CaM isoforms with only minor amino acid differences. Moreover, the regulation mechanism of this family of proteins during rhizobia infection is still unclear. In the current study, a family of genes encoding CaMs and CMLs that possess only the Ca2+-binding EF-hand motifs were analyzed. Using ML and BI tree based on amino acid sequence similarity, seven loci defined as CaMs and 19 CMLs, with at least 23% identity to CaM, were identified. The phylogenetics, gene structures, EF hand motif organization, and expression characteristics were evaluated. Seven CaM genes, encoding only 4 isoforms, were found in L. japonicus. According to qRT-PCR, four LjCaM isoforms are involved in different rhizobia infection stages. LjCaM1 might be involved in the early rhizobia infection epidermal cells stage. Furthermore, additional structural differences and expression behaviors indicated that LjCMLs may have different potential functions from LjCaMs.
Collapse
Affiliation(s)
- Jinqiu Liao
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Jiabin Deng
- School of Geography and Tourism, Guizhou Education UniversityGuiyang, China
| | - Zongzhi Qin
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural UniversityChengdu, China
| | - Maorong Shu
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Chunbang Ding
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Jing Liu
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Chao Hu
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Ruiwu Yang
- College of Life Sciences, Sichuan Agricultural UniversityYaan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural UniversityChengdu, China
| |
Collapse
|
35
|
Abstract
Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death.
Collapse
Affiliation(s)
- Ernesto Carafoli
- From the Venetian Institute of Molecular Medicine, University of Padova, 35131 Padova, Italy and
| | - Joachim Krebs
- the Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|
36
|
No plastidial calmodulin-like proteins detected by two targeted mass-spectrometry approaches and GFP fusion proteins. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.neps.2016.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Boczek NJ, Gomez-Hurtado N, Ye D, Calvert ML, Tester DJ, Kryshtal D, Hwang HS, Johnson CN, Chazin WJ, Loporcaro CG, Shah M, Papez AL, Lau YR, Kanter R, Knollmann BC, Ackerman MJ. Spectrum and Prevalence of CALM1-, CALM2-, and CALM3-Encoded Calmodulin Variants in Long QT Syndrome and Functional Characterization of a Novel Long QT Syndrome-Associated Calmodulin Missense Variant, E141G. ACTA ACUST UNITED AC 2016; 9:136-146. [PMID: 26969752 DOI: 10.1161/circgenetics.115.001323] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Calmodulin (CaM) is encoded by 3 genes, CALM1, CALM2, and CALM3, all of which harbor pathogenic variants linked to long QT syndrome (LQTS) with early and severe expressivity. These LQTS-causative variants reduce CaM affinity to Ca(2+) and alter the properties of the cardiac L-type calcium channel (CaV1.2). CaM also modulates NaV1.5 and the ryanodine receptor, RyR2. All these interactions may play a role in disease pathogenesis. Here, we determine the spectrum and prevalence of pathogenic CaM variants in a cohort of genetically elusive LQTS, and functionally characterize the novel variants. METHODS AND RESULTS Thirty-eight genetically elusive LQTS cases underwent whole-exome sequencing to identify CaM variants. Nonsynonymous CaM variants were over-represented significantly in this heretofore LQTS cohort (13.2%) compared with exome aggregation consortium (0.04%; P<0.0001). When the clinical sequelae of these 5 CaM-positive cases were compared with the 33 CaM-negative cases, CaM-positive cases had a more severe phenotype with an average age of onset of 10 months, an average corrected QT interval of 676 ms, and a high prevalence of cardiac arrest. Functional characterization of 1 novel variant, E141G-CaM, revealed an 11-fold reduction in Ca(2+)-binding affinity and a functionally dominant loss of inactivation in CaV1.2, mild accentuation in NaV1.5 late current, but no effect on intracellular RyR2-mediated calcium release. CONCLUSIONS Overall, 13% of our genetically elusive LQTS cohort harbored nonsynonymous variants in CaM. Genetic testing of CALM1-3 should be pursued for individuals with LQTS, especially those with early childhood cardiac arrest, extreme QT prolongation, and a negative family history.
Collapse
Affiliation(s)
- Nicole J Boczek
- Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | | | - Dan Ye
- Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - Melissa L Calvert
- Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - David J Tester
- Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN
| | - Dmytro Kryshtal
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Hyun Seok Hwang
- Department of Medicine, Vanderbilt University, Nashville, TN
| | - Christopher N Johnson
- Departments of Biochemistry & Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN
| | - Walter J Chazin
- Departments of Biochemistry & Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN
| | - Christina G Loporcaro
- Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN.,Mayo Medical School, Mayo Clinic, Rochester, MN
| | - Maully Shah
- Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andrew L Papez
- Department of Pediatric Cardiology, Phoenix Children's Hospital, Phoenix, AZ
| | - Yung R Lau
- Department of Pediatrics, Division of Pediatric Cardiology, University of Alabama at Birmingham, Birmingham, AL
| | - Ronald Kanter
- Division of Cardiology, Nicklaus Children's Hospital, Miami, FL
| | | | - Michael J Ackerman
- Department Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN.,Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN.,Department of Pediatrics, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
38
|
Astegno A, La Verde V, Marino V, Dell'Orco D, Dominici P. Biochemical and biophysical characterization of a plant calmodulin: Role of the N- and C-lobes in calcium binding, conformational change, and target interaction. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1864:297-307. [PMID: 26708477 DOI: 10.1016/j.bbapap.2015.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/29/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022]
Abstract
In plants, transient elevation of intracellular Ca(2+) concentration in response to abiotic stress is responsible for glutamate decarboxylase (GAD) activation via association with calmodulin (CaM), an EF-hand protein consisting of two homologous domains (N and C). An unusual 1:2 binding mode of CaM to CaM-binding domains of GAD has long been known, however the contribution of the two CaM domains in target recognition and activation remains to be clarified. Here, we explored the coupling between physicochemical properties of Arabidopsis CaM1 (AtCaM1) and Arabidopsis GAD1 activation, focusing on each AtCaM1 lobe. We found that the four EF-loops of AtCaM1 differently contribute to the ~20 μM apparent affinity for Ca(2+) and the C-lobe shows a ~6-fold higher affinity than N-lobe (Kd(app) 5.6 μM and 32 μM for C- and N-lobes, respectively). AtCaM1 responds structurally to Ca(2+) in a manner similar to vertebrate CaM based on comparison of Ca(2+)-induced changes in hydrophobicity exposure, secondary structure, and hydrodynamic behavior. Molecular dynamics simulations of AtCaM1 apo and Ca(2+)-bound reveal that the latter state is significantly less flexible, although regions of the N-lobe remain quite flexible; this suggests the importance of N-lobe for completing the transition to the extended structure of holoprotein, consistent with data from ANS fluorescence, CD spectroscopy, and SEC analysis. Moreover, enzymatic analysis reveal that mutations in the two lobes affect GAD1 activation in similar ways and only intact AtCaM1 can fully activate GAD1. Taken together, our data provide new insights into the CaM lobes role in interactions between CaM and plant GAD.
Collapse
Affiliation(s)
| | | | - Valerio Marino
- Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy
| | - Paola Dominici
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
39
|
Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U. ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. THE NEW PHYTOLOGIST 2016; 209:294-306. [PMID: 26315018 DOI: 10.1111/nph.13582] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/30/2015] [Indexed: 05/20/2023]
Abstract
Nonhost resistance (NHR) is the most prevalent form of plant immunity. In Arabidopsis, NHR requires membrane-localized ATP-binding cassette (ABC) transporter PENETRATION (PEN) 3. Upon perception of pathogen-associated molecular patterns, PEN3 becomes phosphorylated, suggestive of PEN3 regulation by post-translational modification. Here, we investigated the PEN3 protein interaction network. We probed the Arabidopsis protein microarray AtPMA-5000 with the N-terminal cytoplasmic domain of PEN3. Several of the proteins identified to interact with PEN3 in vitro represent cellular Ca(2+) sensors, including calmodulin (CaM) 3, CaM7 and several CaM-like proteins, pointing to the importance of Ca(2+) sensing to PEN3-mediated NHR. We demonstrated co-localization of PEN3 and CaM7, and we confirmed PEN3-CaM interaction in vitro and in vivo by PEN3 pull-down with CaM Sepharose, CaM overlay assay and bimolecular fluorescence complementation. We also show that just like in pen3, NHR to the nonadapted fungal pathogens Phakopsora pachyrhizi and Blumeria graminis f.sp. hordei is compromised in the Arabidopsis cam7 and pen3 cam7 mutants. Our study discloses CaM7 as a PEN3-interacting protein crucial to Arabidopsis NHR and emphasizes the importance of Ca(2+) sensing to plant immunity.
Collapse
Affiliation(s)
- Ruth Campe
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Franz Leissing
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - George V Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
- National Institute for Laser, Plasma & Radiation Physics, Str. Atomistilor, Nr. 409, Magurele, 077125, Bucharest, Romania
| | - Sorina C Popescu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853-1801, USA
| | - Katharina Goellner
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Gerold J M Beckers
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|
40
|
Virdi AS, Singh S, Singh P. Abiotic stress responses in plants: roles of calmodulin-regulated proteins. FRONTIERS IN PLANT SCIENCE 2015; 6:809. [PMID: 26528296 PMCID: PMC4604306 DOI: 10.3389/fpls.2015.00809] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 05/20/2023]
Abstract
Intracellular changes in calcium ions (Ca(2+)) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca(2+)-sensing proteins and has been shown to be involved in transduction of Ca(2+) signals. After interacting with Ca(2+), CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Amardeep S. Virdi
- Texture Analysis Laboratory, Department of Food Science & Technology, Guru Nanak Dev UniversityAmritsar, India
| | - Supreet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| | - Prabhjeet Singh
- Plant Molecular Biology Laboratory, Department of Biotechnology, Guru Nanak Dev UniversityAmritsar, India
| |
Collapse
|
41
|
Distinctive malfunctions of calmodulin mutations associated with heart RyR2-mediated arrhythmic disease. Biochim Biophys Acta Gen Subj 2015; 1850:2168-76. [PMID: 26164367 DOI: 10.1016/j.bbagen.2015.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/22/2015] [Accepted: 07/02/2015] [Indexed: 01/11/2023]
Abstract
Calmodulin (CaM) is a cytoplasmic calcium sensor that interacts with the cardiac ryanodine receptor (RyR2), a large Ca(2+) channel complex that mediates Ca(2+) efflux from the sarcoplasmic reticulum (SR) to activate cardiac muscle contraction. Direct CaM association with RyR2 is an important physiological regulator of cardiac muscle excitation-contraction coupling and defective CaM-RyR2 protein interaction has been reported in cases of heart failure. Recent genetic studies have identified CaM missense mutations in patients with a history of severe cardiac arrhythmogenic disorders that present divergent clinical features, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS) and idiopathic ventricular fibrillation (IVF). Herein, we describe how two CPVT- (N54I & N98S) and three LQTS-associated (D96V, D130G & F142L) CaM mutations result in alteration of their biochemical and biophysical properties. Ca(2+)-binding studies indicate that the CPVT-associated CaM mutations, N54I & N98S, exhibit the same or a 3-fold reduced Ca(2+)-binding affinity, respectively, versus wild-type CaM, whereas the LQTS-associated CaM mutants, D96V, D130G & F142L, display more profoundly reduced Ca(2+)-binding affinity. In contrast, all five CaM mutations confer a disparate RyR2 interaction and modulation of [(3)H]ryanodine binding to RyR2, regardless of CPVT or LQTS association. Our findings suggest that the clinical presentation of CPVT or LQTS associated with these five CaM mutations may involve both altered intrinsic Ca(2+)-binding as well as defective interaction with RyR2.
Collapse
|
42
|
FENG RUI, LIU YAN, SUN XUEFEI, WANG YAN, HU HUIYUAN, GUO FENG, ZHAO JINSHENG, HAO LIYING. Molecular cloning and expression of the calmodulin gene from guinea pig hearts. Exp Ther Med 2015; 9:2311-2318. [DOI: 10.3892/etm.2015.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/19/2015] [Indexed: 11/06/2022] Open
|
43
|
Makita N, Yagihara N, Crotti L, Johnson CN, Beckmann BM, Roh MS, Shigemizu D, Lichtner P, Ishikawa T, Aiba T, Homfray T, Behr ER, Klug D, Denjoy I, Mastantuono E, Theisen D, Tsunoda T, Satake W, Toda T, Nakagawa H, Tsuji Y, Tsuchiya T, Yamamoto H, Miyamoto Y, Endo N, Kimura A, Ozaki K, Motomura H, Suda K, Tanaka T, Schwartz PJ, Meitinger T, Kääb S, Guicheney P, Shimizu W, Bhuiyan ZA, Watanabe H, Chazin WJ, George AL. Novel calmodulin mutations associated with congenital arrhythmia susceptibility. ACTA ACUST UNITED AC 2014; 7:466-74. [PMID: 24917665 DOI: 10.1161/circgenetics.113.000459] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Genetic predisposition to life-threatening cardiac arrhythmias such as congenital long-QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT) represent treatable causes of sudden cardiac death in young adults and children. Recently, mutations in calmodulin (CALM1, CALM2) have been associated with severe forms of LQTS and CPVT, with life-threatening arrhythmias occurring very early in life. Additional mutation-positive cases are needed to discern genotype-phenotype correlations associated with calmodulin mutations. METHODS AND RESULTS We used conventional and next-generation sequencing approaches, including exome analysis, in genotype-negative LQTS probands. We identified 5 novel de novo missense mutations in CALM2 in 3 subjects with LQTS (p.N98S, p.N98I, p.D134H) and 2 subjects with clinical features of both LQTS and CPVT (p.D132E, p.Q136P). Age of onset of major symptoms (syncope or cardiac arrest) ranged from 1 to 9 years. Three of 5 probands had cardiac arrest and 1 of these subjects did not survive. The clinical severity among subjects in this series was generally less than that originally reported for CALM1 and CALM2 associated with recurrent cardiac arrest during infancy. Four of 5 probands responded to β-blocker therapy, whereas 1 subject with mutation p.Q136P died suddenly during exertion despite this treatment. Mutations affect conserved residues located within Ca(2+)-binding loops III (p.N98S, p.N98I) or IV (p.D132E, p.D134H, p.Q136P) and caused reduced Ca(2+)-binding affinity. CONCLUSIONS CALM2 mutations can be associated with LQTS and with overlapping features of LQTS and CPVT.
Collapse
|
44
|
Jamshidiha M, Ishida H, Sutherland C, Gifford JL, Walsh MP, Vogel HJ. Structural analysis of a calmodulin variant from rice: the C-terminal extension of OsCaM61 regulates its calcium binding and enzyme activation properties. J Biol Chem 2013; 288:32036-49. [PMID: 24052265 PMCID: PMC3814798 DOI: 10.1074/jbc.m113.491076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/02/2013] [Indexed: 02/04/2023] Open
Abstract
OsCaM61 is one of five calmodulins known to be present in Oryza sativa that relays the increase of cytosolic [Ca(2+)] to downstream targets. OsCaM61 bears a unique C-terminal extension with a prenylation site. Using nuclear magnetic resonance (NMR) spectroscopy we studied the behavior of the calmodulin (CaM) domain and the C-terminal extension of OsCaM61 in the absence and presence of Ca(2+). NMR dynamics data for OsCaM61 indicate that the two lobes of the CaM domain act together unlike the independent behavior of the lobes seen in mammalian CaM and soybean CaM4. Also, data demonstrate that the positively charged nuclear localization signal region in the tail in apo-OsCaM61 is helical, whereas it becomes flexible in the Ca(2+)-saturated protein. The extra helix in apo-OsCaM61 provides additional interactions in the C-lobe and increases the structural stability of the closed apo conformation. This leads to a decrease in the Ca(2+) binding affinity of EF-hands III and IV in OsCaM61. In Ca(2+)-OsCaM61, the basic nuclear localization signal cluster adopts an extended conformation, exposing the C-terminal extension for prenylation or enabling OsCaM61 to be transferred to the nucleus. Moreover, Ser(172) and Ala(173), residues in the tail, interact with different regions of the protein. These interactions affect the ability of OsCaM61 to activate different target proteins. Altogether, our data show that the tail is not simply a linker between the prenyl group and the protein but that it also provides a new regulatory mechanism that some plants have developed to fine-tune Ca(2+) signaling events.
Collapse
Affiliation(s)
- Mostafa Jamshidiha
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Hiroaki Ishida
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Cindy Sutherland
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1,Canada
| | - Jessica L. Gifford
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| | - Michael P. Walsh
- Smooth Muscle Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1,Canada
| | - Hans J. Vogel
- From the Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada and
| |
Collapse
|
45
|
Maubach G, Sokolova O, Wolfien M, Rothkötter HJ, Naumann M. Ca2+/calmodulin-dependent kinase II contributes to inhibitor of nuclear factor-kappa B kinase complex activation in Helicobacter pylori infection. Int J Cancer 2013; 133:1507-12. [PMID: 23463379 DOI: 10.1002/ijc.28148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/21/2013] [Indexed: 01/23/2023]
Abstract
Helicobacter pylori, a class I carcinogen, induces a proinflammatory response by activating the transcription factor nuclear factor-kappa B (NF-κB) in gastric epithelial cells. This inflammatory condition could lead to chronic gastritis, which is epidemiologically and biologically linked to the development of gastric cancer. So far, there exists no clear knowledge on how H. pylori induces the NF-κB-mediated inflammatory response. In our study, we investigated the role of Ca(2+) /calmodulin-dependent kinase II (CAMKII), calmodulin, protein kinases C (PKCs) and the CARMA3-Bcl10-MALT1 (CBM) complex in conjunction with H. pylori-induced activation of NF-κB via the inhibitor of nuclear factor-kappa B kinase (IKK) complex. We use specific inhibitors and/or RNA interference to assess the contribution of these components. Our results show that CAMKII and calmodulin contribute to IKK complex activation and thus to the induction of NF-κB in response to H. pylori infection, but not in response to TNF-α. Thus, our findings are specific for H. pylori infected cells. Neither the PKCs α, δ, θ, nor the CBM complex itself is involved in the activation of NF-κB by H. pylori. The contribution of CAMKII and calmodulin, but not PKCs/CBM to the induction of an inflammatory response by H. pylori infection augment the understanding of the molecular mechanism involved and provide potential new disease markers for the diagnosis of gastric inflammatory diseases including gastric cancer.
Collapse
Affiliation(s)
- Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Crotti L, Johnson CN, Graf E, De Ferrari GM, Cuneo BF, Ovadia M, Papagiannis J, Feldkamp MD, Rathi SG, Kunic JD, Pedrazzini M, Wieland T, Lichtner P, Beckmann BM, Clark T, Shaffer C, Benson DW, Kääb S, Meitinger T, Strom TM, Chazin WJ, Schwartz PJ, George AL. Calmodulin mutations associated with recurrent cardiac arrest in infants. Circulation 2013; 127:1009-17. [PMID: 23388215 DOI: 10.1161/circulationaha.112.001216] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Life-threatening disorders of heart rhythm may arise during infancy and can result in the sudden and tragic death of a child. We performed exome sequencing on 2 unrelated infants presenting with recurrent cardiac arrest to discover a genetic cause. METHODS AND RESULTS We ascertained 2 unrelated infants (probands) with recurrent cardiac arrest and dramatically prolonged QTc interval who were both born to healthy parents. The 2 parent-child trios were investigated with the use of exome sequencing to search for de novo genetic variants. We then performed follow-up candidate gene screening on an independent cohort of 82 subjects with congenital long-QT syndrome without an identified genetic cause. Biochemical studies were performed to determine the functional consequences of mutations discovered in 2 genes encoding calmodulin. We discovered 3 heterozygous de novo mutations in either CALM1 or CALM2, 2 of the 3 human genes encoding calmodulin, in the 2 probands and in 2 additional subjects with recurrent cardiac arrest. All mutation carriers were infants who exhibited life-threatening ventricular arrhythmias combined variably with epilepsy and delayed neurodevelopment. Mutations altered residues in or adjacent to critical calcium binding loops in the calmodulin carboxyl-terminal domain. Recombinant mutant calmodulins exhibited several-fold reductions in calcium binding affinity. CONCLUSIONS Human calmodulin mutations disrupt calcium ion binding to the protein and are associated with a life-threatening condition in early infancy. Defects in calmodulin function will disrupt important calcium signaling events in heart, affecting membrane ion channels, a plausible molecular mechanism for potentially deadly disturbances in heart rhythm during infancy.
Collapse
Affiliation(s)
- Lia Crotti
- Section of Cardiology, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen ZF, Wang H, Matsumura K, Qian PY. Expression of calmodulin and myosin light chain kinase during larval settlement of the Barnacle Balanus amphitrite. PLoS One 2012; 7:e31337. [PMID: 22348072 PMCID: PMC3278446 DOI: 10.1371/journal.pone.0031337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
Barnacles are one of the most common organisms in intertidal areas. Their life cycle includes seven free-swimming larval stages and sessile juvenile and adult stages. The transition from the swimming to the sessile stages, referred to as larval settlement, is crucial for their survivor success and subsequent population distribution. In this study, we focused on the involvement of calmodulin (CaM) and its binding proteins in the larval settlement of the barnacle, Balanus ( = Amphibalanus) amphitrite. The full length of CaM gene was cloned from stage II nauplii of B. amphitrite (referred to as Ba-CaM), encoding 149 amino acid residues that share a high similarity with published CaMs in other organisms. Quantitative real-time PCR showed that Ba-CaM was highly expressed in cyprids, the stage at which swimming larvae are competent to attach and undergo metamorphosis. In situ hybridization revealed that the expressed Ba-CaM gene was localized in compound eyes, posterior ganglion and cement glands, all of which may have essential functions during larval settlement. Larval settlement assays showed that both the CaM inhibitor compound 48/80 and the CaM-dependent myosin light chain kinase (MLCK) inhibitor ML-7 effectively blocked barnacle larval settlement, whereas Ca(2+)/CaM-dependent kinase II (CaMKII) inhibitors did not show any clear effects. The subsequent real-time PCR assay showed a higher expression level of Ba-MLCK gene in larval stages than in adults, suggesting an important role of Ba-MLCK gene in larval development and competency. Overall, the results suggest that CaM and CaM-dependent MLCK function during larval settlement of B. amphitrite.
Collapse
Affiliation(s)
- Zhang-Fan Chen
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hao Wang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
48
|
Zeng LG, Wang JH, Li YJ, Sheng JQ, Gu Q, Hong YJ. Molecular characteristics and expression of calmodulin cDNA from the freshwater pearl mussel, Hyriopsis schlegelii. GENETICS AND MOLECULAR RESEARCH 2012; 11:42-52. [DOI: 10.4238/2012.january.9.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Strehler EE. Emanuel Strehler’s work on calcium pumps and calcium signaling. World J Biol Chem 2011; 2:67-72. [PMID: 21537475 PMCID: PMC3083948 DOI: 10.4331/wjbc.v2.i4.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/16/2011] [Accepted: 03/23/2011] [Indexed: 02/05/2023] Open
Abstract
Cells are equipped with mechanisms to control tightly the influx, efflux and resting level of free calcium (Ca2+). Inappropriate Ca2+ signaling and abnormal Ca2+ levels are involved in many clinical disorders including heart disease, Alzheimer’s disease and stroke. Ca2+ also plays a major role in cell growth, differentiation and motility; disturbances in these processes underlie cell transformation and the progression of cancer. Accordingly, research in the Strehler laboratory is focused on a better understanding of the molecular “toolkit” needed to ensure proper Ca2+ homeostasis in the cell, as well as on the mechanisms of localized Ca2+ signaling. A long-term focus has been on the plasma membrane calcium pumps (PMCAs), which are linked to multiple disorders including hearing loss, neurodegeneration, and heart disease. Our work over the past 20 years or more has revealed a surprising complexity of PMCA isoforms with different functional characteristics, regulation, and cellular localization. Emerging evidence shows how specific PMCAs contribute not only to setting basal intracellular Ca2+ levels, but also to local Ca2+ signaling and vectorial Ca2+ transport. A second major research area revolves around the calcium sensor protein calmodulin and an enigmatic calmodulin-like protein (CALML3) that is linked to epithelial differentiation. One of the cellular targets of CALML3 is the unconventional motor protein myosin-10, which raises new questions about the role of CALML3 and myosin-10 in cell adhesion and migration in normal cell differentiation and cancer.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Emanuel E Strehler, Biochemistry and Molecular Biology, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, United States
| |
Collapse
|
50
|
|