1
|
P5C as an Interface of Proline Interconvertible Amino Acids and Its Role in Regulation of Cell Survival and Apoptosis. Int J Mol Sci 2021; 22:ijms222111763. [PMID: 34769188 PMCID: PMC8584052 DOI: 10.3390/ijms222111763] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Studies of cancer metabolism have focused on the production of energy and the interconversion of carbons between cell cycles. More recently, amino acid metabolism, especially non-essential amino acids (NEAAs), has been investigated, underlining their regulatory role. One of the important mediators in energy production and interconversion of carbons in the cell is Δ1-pyrroline-5-carboxylate (P5C)—the physiological intracellular intermediate of the interconversion of proline, ornithine, and glutamate. As a central component of these conversions, it links the tricarboxylic acid cycle (TCA), urea cycle (UC), and proline cycle (PC). P5C has a cyclic structure containing a tertiary nitrogen atom (N) and is in tautomeric equilibrium with the open-chain form of L-glutamate-γ-semialdehyde (GSAL). P5C is produced by P5C synthase (P5CS) from glutamate, and ornithine via ornithine δ-amino acid transferase (δOAT). It can also be converted to glutamate by P5C dehydrogenase (P5CDH). P5C is both a direct precursor of proline and a product of its degradation. The conversion of P5C to proline is catalyzed by P5C reductase (PYCR), while proline to P5C by proline dehydrogenase/oxidase (PRODH/POX). P5C-proline-P5C interconversion forms a functional redox couple. Their transformations are accompanied by the transfer of a reducing-oxidizing potential, that affect the NADP+/NADPH ratio and a wide variety of processes, e.g., the synthesis of phosphoribosyl pyrophosphate (PRPP), and purine ribonucleotides, which are crucial for DNA synthesis. This review focuses on the metabolism of P5C in the cell as an interconversion mediator of proline, glutamate, and ornithine and its role in the regulation of survival and death with particular emphasis on the metabolic context.
Collapse
|
2
|
Udupa S, Nguyen S, Hoang G, Nguyen T, Quinones A, Pham K, Asaka R, Nguyen K, Zhang C, Elgogary A, Jung JG, Xu Q, Fu J, Thomas AG, Tsukamoto T, Hanes J, Slusher BS, Cooper AJL, Le A. Upregulation of the Glutaminase II Pathway Contributes to Glutamate Production upon Glutaminase 1 Inhibition in Pancreatic Cancer. Proteomics 2019; 19:e1800451. [PMID: 31231915 PMCID: PMC6851409 DOI: 10.1002/pmic.201800451] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/07/2019] [Indexed: 12/18/2022]
Abstract
The targeting of glutamine metabolism specifically via pharmacological inhibition of glutaminase 1 (GLS1) has been translated into clinical trials as a novel therapy for several cancers. The results, though encouraging, show room for improvement in terms of tumor reduction. In this study, the glutaminase II pathway is found to be upregulated for glutamate production upon GLS1 inhibition in pancreatic tumors. Moreover, genetic suppression of glutamine transaminase K (GTK), a key enzyme of the glutaminase II pathway, leads to the complete inhibition of pancreatic tumorigenesis in vivo unveiling GTK as a new metabolic target for cancer therapy. These results suggest that current trials using GLS1 inhibition as a therapeutic approach targeting glutamine metabolism in cancer should take into account the upregulation of other metabolic pathways that can lead to glutamate production; one such pathway is the glutaminase II pathway via GTK.
Collapse
Affiliation(s)
- Sunag Udupa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Stephanie Nguyen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Giang Hoang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Tu Nguyen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Addison Quinones
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Khoa Pham
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ryoichi Asaka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kiet Nguyen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amira Elgogary
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jin G Jung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qingguo Xu
- Department of Ophthalmology and Wilmer Eye Institute Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jie Fu
- Department of Ophthalmology and Wilmer Eye Institute Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Takashi Tsukamoto
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Justin Hanes
- Department of Ophthalmology and Wilmer Eye Institute Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, 21218, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Abstract
SIGNIFICANCE It is increasingly clear that proline metabolism plays an important role in metabolic reprogramming, not only in cancer but also in related fields such as aging, senescence, and development. Although first focused on proline catabolism, recent studies from a number of laboratories have emphasized the regulatory effects of proline synthesis and proline cycling. Recent Advances: Although proline dehydrogenase/proline oxidase (PRODH/POX) has been known as a tumor protein 53 (P53)-activated source of redox signaling for initiating apoptosis and autophagy, senescence has been added to the responses. On the biosynthetic side, two well-recognized oncogenes, c-MYC and phosphoinositide 3-kinase (PI3K), markedly upregulate enzymes of proline synthesis; mechanisms affected include augmented redox cycling and maintenance of pyridine nucleotides. The reprogramming has been shown to shift in clonogenesis and/or metastasis. CRITICAL ISSUES Although PRODH/POX generates reactive oxygen species (ROS) for signaling, the cellular endpoint is variable and dependent on metabolic context; the switches for these responses remain unknown. On the synthetic side, the enzymes require more complete characterization in various cancers, and demonstration of coupling of proline metabolites to other pathways may require studies of protein-protein interactions, membrane transporters, and shuttles. FUTURE DIRECTIONS The proline metabolic axis can serve as a scaffold on which a variety of regulatory mechanisms are integrated. Once understood as a central mechanism in cancer metabolism, proline metabolism may be a good target for adjunctive cancer therapy.
Collapse
Affiliation(s)
- James M Phang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, NIH , Frederick, Maryland
| |
Collapse
|
4
|
Jeckelmann JM, Erni B. Carbohydrate Transport by Group Translocation: The Bacterial Phosphoenolpyruvate: Sugar Phosphotransferase System. Subcell Biochem 2019; 92:223-274. [PMID: 31214989 DOI: 10.1007/978-3-030-18768-2_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Bacterial Phosphoenolpyruvate (PEP) : Sugar Phosphotransferase System (PTS) mediates the uptake and phosphorylation of carbohydrates, and controls the carbon- and nitrogen metabolism in response to the availability of sugars. PTS occur in eubacteria and in a few archaebacteria but not in animals and plants. All PTS comprise two cytoplasmic phosphotransferase proteins (EI and HPr) and a species-dependent, variable number of sugar-specific enzyme II complexes (IIA, IIB, IIC, IID). EI and HPr transfer phosphorylgroups from PEP to the IIA units. Cytoplasmic IIA and IIB units sequentially transfer phosphates to the sugar, which is transported by the IIC and IICIID integral membrane protein complexes. Phosphorylation by IIB and translocation by IIC(IID) are tightly coupled. The IIC(IID) sugar transporters of the PTS are in the focus of this review. There are four structurally different PTS transporter superfamilies (glucose, glucitol, ascorbate, mannose) . Crystal structures are available for transporters of two superfamilies: bcIICmal (MalT, 5IWS, 6BVG) and bcIICchb (ChbC, 3QNQ) of B. subtilis from the glucose family, and IICasc (UlaA, 4RP9, 5ZOV) of E. coli from the ascorbate superfamily . They are homodimers and each protomer has an independent transport pathway which functions by an elevator-type alternating-access mechanism. bcIICmal and bcIICchb have the same fold, IICasc has a completely different fold. Biochemical and biophysical data accumulated in the past with the transporters for mannitol (IICBAmtl) and glucose (IICBglc) are reviewed and discussed in the context of the bcIICmal crystal structures. The transporters of the mannose superfamily are dimers of protomers consisting of a IIC and a IID protein chain. The crystal structure is not known and the topology difficult to predict. Biochemical data indicate that the IICIID complex employs a different transport mechanism . Species specific IICIID serve as a gateway for the penetration of bacteriophage lambda DNA across, and insertion of class IIa bacteriocins into the inner membrane. PTS transporters are inserted into the membrane by SecYEG translocon and have specific lipid requirements. Immunoelectron- and fluorescence microscopy indicate a non-random distribution and supramolecular complexes of PTS proteins.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland.
| | - Bernhard Erni
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012, Bern, Switzerland
| |
Collapse
|
5
|
Zaki MS, Bhat G, Sultan T, Issa M, Jung HJ, Dikoglu E, Selim L, G Mahmoud I, Abdel-Hamid MS, Abdel-Salam G, Marin-Valencia I, Gleeson JG. PYCR2 Mutations cause a lethal syndrome of microcephaly and failure to thrive. Ann Neurol 2016; 80:59-70. [PMID: 27130255 DOI: 10.1002/ana.24678] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 04/17/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE A study was undertaken to characterize the clinical features of the newly described hypomyelinating leukodystrophy type 10 with microcephaly. This is an autosomal recessive disorder mapped to chromosome 1q42.12 due to mutations in the PYCR2 gene, encoding an enzyme involved in proline synthesis in mitochondria. METHODS From several international clinics, 11 consanguineous families were identified with PYCR2 mutations by whole exome or targeted sequencing, with detailed clinical and radiological phenotyping. Selective mutations from patients were tested for effect on protein function. RESULTS The characteristic clinical presentation of patients with PYCR2 mutations included failure to thrive, microcephaly, craniofacial dysmorphism, progressive psychomotor disability, hyperkinetic movements, and axial hypotonia with variable appendicular spasticity. Patients did not survive beyond the first decade of life. Brain magnetic resonance imaging showed global brain atrophy and white matter T2 hyperintensities. Routine serum metabolic profiles were unremarkable. Both nonsense and missense mutations were identified, which impaired protein multimerization. INTERPRETATION PYCR2-related syndrome represents a clinically recognizable condition in which PYCR2 mutations lead to protein dysfunction, not detectable on routine biochemical assessments. Mutations predict a poor outcome, probably as a result of impaired mitochondrial function. Ann Neurol 2016;80:59-70.
Collapse
Affiliation(s)
- Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Center, Cairo, Egypt
| | - Gifty Bhat
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
- Division of Pediatric Genetics, Children's Hospital at Montefiore, Bronx, NY
| | - Tipu Sultan
- Pediatric Neurology, Institute of Child Health, Children Hospital, Lahore, Pakistan
| | - Mahmoud Issa
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Center, Cairo, Egypt
| | - Hea-Jin Jung
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
| | - Esra Dikoglu
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
| | - Laila Selim
- Cairo University Children's Hospital, Division of Neurology and Metabolic Disease, Cairo, Egypt
| | - Imam G Mahmoud
- Cairo University Children's Hospital, Division of Neurology and Metabolic Disease, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Division, National Research Center, Cairo, Egypt
| | - Ghada Abdel-Salam
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Center, Cairo, Egypt
| | - Isaac Marin-Valencia
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, Howard Hughes Medical Institute, Rockefeller University, New York, NY
| |
Collapse
|
6
|
Mantilla BS, Paes LS, Pral EMF, Martil DE, Thiemann OH, Fernández-Silva P, Bastos EL, Silber AM. Role of Δ1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi. J Biol Chem 2015; 290:7767-90. [PMID: 25623067 PMCID: PMC4367278 DOI: 10.1074/jbc.m114.574525] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 12/30/2014] [Indexed: 01/03/2023] Open
Abstract
Proline is crucial for energizing critical events throughout the life cycle of Trypanosoma cruzi, the etiological agent of Chagas disease. The proline breakdown pathway consists of two oxidation steps, both of which produce reducing equivalents as follows: the conversion of proline to Δ(1)-pyrroline-5-carboxylate (P5C), and the subsequent conversion of P5C to glutamate. We have identified and characterized the Δ(1)-pyrroline-5-carboxylate dehydrogenase from T. cruzi (TcP5CDH) and report here on how this enzyme contributes to a central metabolic pathway in this parasite. Size-exclusion chromatography, two-dimensional gel electrophoresis, and small angle x-ray scattering analysis of TcP5CDH revealed an oligomeric state composed of two subunits of six protomers. TcP5CDH was found to complement a yeast strain deficient in PUT2 activity, confirming the enzyme's functional role; and the biochemical parameters (Km, kcat, and kcat/Km) of the recombinant TcP5CDH were determined, exhibiting values comparable with those from T. cruzi lysates. In addition, TcP5CDH exhibited mitochondrial staining during the main stages of the T. cruzi life cycle. mRNA and enzymatic activity levels indicated the up-regulation (6-fold change) of TcP5CDH during the infective stages of the parasite. The participation of P5C as an energy source was also demonstrated. Overall, we propose that this enzymatic step is crucial for the viability of both replicative and infective forms of T. cruzi.
Collapse
Affiliation(s)
- Brian S Mantilla
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Lisvane S Paes
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Elizabeth M F Pral
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Daiana E Martil
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Otavio H Thiemann
- the Laboratório de Biologia Estrutural, Instituto de Física de São Carlos, and
| | - Patricio Fernández-Silva
- the Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, 50013 Zaragoza Spain
| | - Erick L Bastos
- Instituto de Química, Departamento de Química Fundamental, Universidade de São Paulo, 13560-590 São Paulo, Brazil, and
| | - Ariel M Silber
- From the Instituto de Ciências Biomédicas, Departamento de Parasitologia, Universidade de São Paulo, 05508-000 São Paulo, Brazil,
| |
Collapse
|
7
|
Miller G, Honig A, Stein H, Suzuki N, Mittler R, Zilberstein A. Unraveling delta1-pyrroline-5-carboxylate-proline cycle in plants by uncoupled expression of proline oxidation enzymes. J Biol Chem 2009; 284:26482-92. [PMID: 19635803 PMCID: PMC2785336 DOI: 10.1074/jbc.m109.009340] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 07/18/2009] [Indexed: 01/17/2023] Open
Abstract
The two-step oxidation of proline in all eukaryotes is performed at the inner mitochondrial membrane by the consecutive action of proline dehydrogenase (ProDH) that produces Delta(1)-pyrroline-5-carboxylate (P5C) and P5C dehydrogenase (P5CDH) that oxidizes P5C to glutamate. This catabolic route is down-regulated in plants during osmotic stress, allowing free Pro accumulation. We show here that overexpression of MsProDH in tobacco and Arabidopsis or impairment of P5C oxidation in the Arabidopsis p5cdh mutant did not change the cellular Pro to P5C ratio under ambient and osmotic stress conditions, indicating that P5C excess was reduced to Pro in a mitochondrial-cytosolic cycle. This cycle, involving ProDH and P5C reductase, exists in animal cells and now demonstrated in plants. As a part of the cycle, Pro oxidation by the ProDH-FAD complex delivers electrons to the electron transport chain. Hyperactivity of the cycle, e.g. when an excess of exogenous l-Pro is provided, generates mitochondrial reactive oxygen species (ROS) by delivering electrons to O(2), as demonstrated by the mitochondria-specific MitoSox staining of superoxide ions. Lack of P5CDH activity led to higher ROS production under dark and light conditions in the presence of Pro excess, as well as rendered plants hypersensitive to heat stress. Balancing mitochondrial ROS production during increased Pro oxidation is therefore critical for avoiding Pro-related toxic effects. Hence, normal oxidation of P5C to Glu by P5CDH is key to prevent P5C-Pro intensive cycling and avoid ROS production from electron run-off.
Collapse
Affiliation(s)
- Gad Miller
- From the Department of Plant Science, Tel Aviv University, Tel-Aviv 69978, Israel
- the Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557 and
| | - Arik Honig
- From the Department of Plant Science, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Hanan Stein
- From the Department of Plant Science, Tel Aviv University, Tel-Aviv 69978, Israel
| | - Nobuhiro Suzuki
- the Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557 and
| | - Ron Mittler
- the Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557 and
- the Department of Plant Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Aviah Zilberstein
- From the Department of Plant Science, Tel Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
8
|
Ravikumar H, Devaraju KS, Shetty KT. Effect of pH on spectral characteristics of P5C-ninhydrin derivative: Application in the assay of ornithine amino transferase activity from tissue lysate. Indian J Clin Biochem 2008; 23:117-22. [PMID: 23105736 DOI: 10.1007/s12291-008-0028-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Currently available method(s) for assaying pyrroline-5-carboxylate (P5C), an important intermediate metabolite of ornithine, proline and glutamate metabolic pathways, are cumbersome or not sensitive enough for microanalysis. The present study involving the synthesis of P5C followed by purity check, molecular mass (amu =113.1) determination by mass spectrometry and spectral characterization of P5C-ninhydrin derivative (λ max: 510 nm) confirmed the authenticity of the preparation. Studies on the effect of pH on spectral characteristics of P5C ninhydrin derivative demonstrated a significant change with respect to λ max (620 nm) and several ∼ 12 fold increase in molar extinction coefficient (ε: 1.96 × 10(5)) in alkaline conditions (pH:7.0-8.0) as compared to the reported Molar ε of 1.65 × 10(4) at max λ 510 nm in ethanolic solution. The modified method, with the improved sensitivity, is adopted for the assay of ornithine amino transferase activity in WBC's/platelets lysate(s) from human blood.
Collapse
Affiliation(s)
- H Ravikumar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029 Karnataka India
| | | | | |
Collapse
|
9
|
Zhu W, Gincherman Y, Docherty P, Spilling CD, Becker DF. Effects of proline analog binding on the spectroscopic and redox properties of PutA. Arch Biochem Biophys 2002; 408:131-6. [PMID: 12485611 DOI: 10.1016/s0003-9861(02)00535-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The PutA flavoprotein regulates proline metabolism in Escherichia coli by performing two distinct functions. First, in the cytoplasm, PutA represses transcription of the put (proline utilization) regulon. Second, PutA associates with the membrane to oxidize proline to glutamate using discrete proline dehydrogenase and Delta(1)-pyrroline-5-carboxylate dehydrogenase domains. Here, we identify a proline analog that will be useful for testing the role substrate binding has in regulating PutA functions. L-Tetrahydro-2-furoic acid (L-THFA) was found to display simple competitive inhibition of proline dehydrogenase activity in PutA (apparent K(i)=0.2mM) and to perturb the flavin adenine dinucleotide (FAD) absorbance spectrum upon complexation to PutA. At pH 7.5, a reduction potential (E(m)) of -0.089V for the FAD/FADH(2) couple in L-THFA-complexed PutA was determined by potentiometric titrations. The E(m) value for L-THFA-complexed PutA is 12mV more negative than the E(m) for uncomplexed PutA (E(m)=-0.077V, pH 7.5) and corresponds to just a twofold increase in the dissociation constant of L-THFA with PutA upon reduction of FAD.
Collapse
Affiliation(s)
- Weidong Zhu
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 8001 Natural Bridge Rd, St. Louis, MO 63121, USA
| | | | | | | | | |
Collapse
|
10
|
Becker DF, Thomas EA. Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA-DNA interactions. Biochemistry 2001; 40:4714-21. [PMID: 11294639 DOI: 10.1021/bi0019491] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The PutA flavoprotein from Escherichia coli is both a transcriptional repressor and a membrane-associated proline dehydrogenase. PutA represses transcription of the putA and putP genes by binding to the control region DNA of the put regulon (put intergenic DNA). Previous work has shown that FAD has a role in regulating the transcriptional repressor and membrane binding functions of the PutA protein. To test the influence of the FAD redox state on PutA--DNA interactions, we characterized the redox properties of the PutA flavoprotein from E. coli. At pH 7.5, an E(m)(E--FAD/E--FADH(2)) of --0.076 V for the two-electron reduction of PutA-bound FAD was determined by potentiometric titrations. Stabilization of semiquinone species was not observed during potentiometric measurements. Dithionite reduction of PutA, however, caused formation of red anionic semiquinone. The E(m) value for the proline/Delta(1)-pyrroline-5-carboxylate couple was determined to be --0.123 V, demonstrating the reduction of PutA by proline is favored by a potential difference (Delta E degrees ') of more than 0.045 V. Characterization of the PutA redox properties in the presence of put intergenic DNA revealed an E(m)(E(DNA)--FAD/E(DNA)--FADH(2)) of --0.086 V. The 10 mV negative shift in E(m) corresponds to just a 2.3-fold increase in the dissociation constant of PutA with the DNA upon reduction of FAD. Thus, it appears the FAD redox state has little influence on the overall PutA--DNA interactions.
Collapse
Affiliation(s)
- D F Becker
- Department of Chemistry, University of Missouri--St. Louis, St. Louis, Missouri 63121, USA.
| | | |
Collapse
|
11
|
Berlin NI. The metabolism service. Cancer Invest 1995; 13:637-45. [PMID: 7583716 DOI: 10.3109/07357909509024935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Metabolism Branch, originally the Metabolism Service, created by Mider and Zubrod largely in the image that Mider had projected, has had two leaders: Berlin (1956-1971) and Waldmann (1971-present). The original design of a comparatively small senior staff of five Senior Investigators and 10 Clinical Associates (fellows), together with an 11-bed patient care unit in close proximity to the offices and laboratories, has in essence continued to the present with a comparatively small expansion under Waldmann. This unit has served as a training ground. Among its present members and alumni there are 18 members of the Association of American Physicians (AAP) and 22 members of the American Society of Clinical Investigation (ASCI). In 1994, two of the presidents of the clinical research societies, Rosenberg of the AAP and Berzofsky of the ASCI, are from the Service's ranks. This model, some would say paradigm, for the organization and function of clinical research units could be an answer to what Ahrens has called a crisis. The Metabolism Branch had the benefit of strong leadership from the NCI, particularly Endicott, The Director in the 1960s, and Mider and Zubrod, the Scientific Directors. There can be no doubt that the Branch benefited substantially, some would say enormously, from the doctor draft of the 1950s and 1960s and from the funding of the intramural research program as an integral part of the funding of each of the National Institutes.
Collapse
Affiliation(s)
- N I Berlin
- Sylvester Comprehensive Cancer Center, University of Miami, Florida, USA
| |
Collapse
|
12
|
Clerici F, Gelmi ML, Pocar D, Rondena R. 5(4H)-Oxazolones. Part VIII.1 An Efficient Synthesis of Δ1-Pyrroline-2-carboxylic Acid derivatives through Michael and Wittig condensation. Tetrahedron 1995. [DOI: 10.1016/0040-4020(95)00571-o] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Brown E, Wood J. Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42384-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Dougherty KM, Brandriss MC, Valle D. Cloning human pyrroline-5-carboxylate reductase cDNA by complementation in Saccharomyces cerevisiae. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48364-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Semon BA, Phang JM. Accumulation of pyrroline 5-carboxylic acid in conditioned medium of cultured fibroblast: stimulatory effects of serum, insulin, and IGF-1. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1991; 27A:665-9. [PMID: 1917783 DOI: 10.1007/bf02631111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pyrroline 5-carboxylate, an intermediate of amino acid metabolism, is released into medium by cultured normal human fibroblasts. With cells made quiescent by serum starvation, the addition of 10% fetal bovine serum augmented the release of pyrroline 5-carboxylate into medium by 2.5-fold. Although platelet-derived growth factor was without effect, both insulin and insulinlike growth factor-1 nearly reproduced the serum effect. The dose-dependence of insulin and insulinlike growth factor 1 effects suggested their mediation by their own respective receptors. Although the mechanism for the stimulatory effect remains unknown, these effects of insulin and insulinlike growth factor 1 on pyrroline 5-carboxylate suggest hormonal regulation of pyrroline 5-carboxylate release.
Collapse
Affiliation(s)
- B A Semon
- Laboratory of Nutritional and Molecular Regulation, National Cancer Institute, Frederick Cancer Research and Development Center, Maryland 21702
| | | |
Collapse
|
16
|
Chilson OP, Kelly-Chilson AE, Siegel NR. Pyrroline-5-carboxylate reductase in soybean nodules: isolation/partial primary structure/evidence for isozymes. Arch Biochem Biophys 1991; 288:350-7. [PMID: 1898034 DOI: 10.1016/0003-9861(91)90206-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Electrophoretic evidence was obtained for two forms of pyrroline-5-carboxylate reductase (P5CR) in soybean nodules. One form was purified over 2300-fold. The apparent sizes of the polypeptides comprising the pyrroline-5-carboxylate reductases from soybean cytosol (29,700) and Escherichia coli (28,000) were consistent with those predicted from the sequences of the genes encoding them (Deutch et al., 1982 Nucleic Acid Res. 10, 7701-7714; Delauney and Verma, 1990 Mol. Gen. Genet. 221, 299-305). Primary structural analysis of the intact soybean P5CR subunit indicated that the amino-terminal residue is blocked. Analyses of a 12-mer and a 21-mer isolated from a cyanogen bromide digest were consistent with the proposition that the soybean P5CR isolated in these studies is very similar, although perhaps not identical, to the polypeptide predicted for the recently cloned soybean reductase (Delauney and Verma, 1990 Mol. Gen. Genet. 221, 299-305).
Collapse
Affiliation(s)
- O P Chilson
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | | |
Collapse
|
17
|
Mixson AJ, Phang JM. Structural analogues of pyrroline 5-carboxylate specifically inhibit its uptake into cells. J Membr Biol 1991; 121:269-77. [PMID: 1865491 DOI: 10.1007/bf01951560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pyrroline 5-carboxylate, a naturally occurring intermediate, is a potent activator of redox-dependent metabolic pathways. The effect of pyrroline 5-carboxylate is due, at least in part, to the special mechanism mediating its entry into cells. Using Chinese hamster ovary cells we recently characterized the cellular uptake of pyrroline 5-carboxylate as a process transferring oxidizing potential pari passu with cell entry, a process consistent with group translocation. We sought to identify specific inhibitors to probe this unique uptake mechanism, to blockade the metabolic effects of pyrroline 5-carboxylate, and to provide strategies to identify the putative carrier protein. Because pyrroline 5-carboxylate, a ring structure with a tertiary nitrogen, is in spontaneous equilibrium with glutamic-gamma-semialdehyde, an open-chain structure, we tested analogues of both. Most open-chain aldehydes at 10 mM had little effect on the uptake of pyrroline 5-carboxylate. Although succinic semialdehyde did inhibit, its effect was nonspecific in that the uptake of alpha(methylamino) isobutyric acid was inhibited as much as the uptake of pyrroline 5-carboxylate. In contrast, pyrroline 2-carboxylate and other cyclic compounds with tertiary nitrogens, e.g., pyridines, were specific inhibitors of pyrroline 5-carboxylate uptake. Respective potencies of pyridine derivatives depended on the nature and location of constituent groups. Kinetics studies showed that these inhibitors were competitive with pyrroline 5-carboxylate and the most potent inhibitor, 2,6-pyridinedicarboxaldehyde, exhibited a K12 of 0.27 +/- 0.05 mM.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A J Mixson
- Endocrinology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
18
|
Mixson AJ, Granger AN, Phang JM. An Assay for Pyrroline 5-Carboxylate Based on its Interaction with Cysteine. ANAL LETT 1991. [DOI: 10.1080/00032719108052931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Rotoli BM, Bussolati O, Dall'Asta V, Gazzola GC. Membrane potential and amino acid transport in a mutant Chinese hamster ovary cell line. J Cell Physiol 1991; 146:417-24. [PMID: 2022695 DOI: 10.1002/jcp.1041460312] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The bioenergetics of amino acid transport system A was studied in two Chinese hamster ovary (CHO) cell lines, the parent line CHO-PEOT/1 and CHY-1, a mutant of the former exhibiting a low activity of the same transport system. The steady-state transmembrane distribution ratio of the cationic amino acid L-arginine (RARG) was employed as an indicator of membrane potential (delta psi). Evidence for the reliability of RARG to measure delta psi can be summarized as follows: (1) L-arginine transmembrane distribution increased under conditions of cell hyperpolarization and decreased under conditions of cell depolarization; (2) L-arginine distribution conformed closely to that expected for a probe of delta psi in conditions in which delta psi depends largely on the transmembrane potassium gradient; and (3) the value of delta psi obtained through a valinomycin null point experiment (-72.7 mV) was very similar to the value calculated from L-arginine distribution using the Nernst equation (-73.4 mV). The transmembrane gradient of sodium electrochemical potential (delta mu Na), the driving force for the operation of system A, was slightly higher in the mutant cell line CHY-1. In the same line, the intracellular level of the specific system A substrate MeAIB at steady state was also higher. Studies of the rheogenicity of system A in the two lines indicated that the depolarization associated with the entry of substrates of system A was proportional to the amount of amino acid taken up by the cells. Kinetic analysis showed that the low activity of system A in the mutant cell line was referrable to a decrease in transport Vmax. It is concluded that neither a decrease in energy available for the operation of system A nor a decreased efficiency of coupling of the system to delta psi is responsible for the defect observed in the mutant line.
Collapse
Affiliation(s)
- B M Rotoli
- Istituto di Patologia Generale, Università di Parma, Italy
| | | | | | | |
Collapse
|
20
|
Flynn MP, Martin MC, Moore PT, Stafford JA, Fleming GA, Phang JM. Type II hyperprolinaemia in a pedigree of Irish travellers (nomads). Arch Dis Child 1989; 64:1699-707. [PMID: 2624476 PMCID: PMC1792896 DOI: 10.1136/adc.64.12.1699] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe a study of 312 subjects in 71 families near related to a proband with type II hyperprolinaemia. The subjects were Irish travellers (nomads) among whom consanguineous marriage and high fertility are common. Thirteen additional cases of type II hyperprolinaemia were discovered; all were offspring of consanguineous unions. A further 50 subjects were found to have mild hyperprolinaemia. We found a strong association between type II hyperprolinaemia and seizures during childhood but no significant association with mental handicap. Most adults with type II hyperprolinaemia enjoyed normal health and there was no evidence that maternal hyperprolinaemia compromised fetal development. The documented association between type II hyperprolinaemia and seizures may be related to the neuromodulatory or reducing-oxidising effects of proline and pyrroline-5-carboxylate, respectively, that has been shown in vitro. Alternatively, another genetic defect closely linked to the type II hyperprolinaemia allele could be the explanation.
Collapse
Affiliation(s)
- M P Flynn
- Midland Health Board, Mullingar, Ireland
| | - M C Martin
- Midland Health Board, Mullingar, Ireland
| | - P T Moore
- Midland Health Board, Mullingar, Ireland
| | | | | | - J M Phang
- Midland Health Board, Mullingar, Ireland
| |
Collapse
|
21
|
|