1
|
Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol 2016; 428:3408-28. [PMID: 27019298 PMCID: PMC5125930 DOI: 10.1016/j.jmb.2016.03.018] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
2
|
Abstract
This review summarizes research performed over the last 23 years on the genetics, enzyme structures and functions, and regulation of the expression of the genes encoding functions involved in adenosylcobalamin (AdoCbl, or coenzyme B12) biosynthesis. It also discusses the role of coenzyme B12 in the physiology of Salmonella enterica serovar Typhimurium LT2 and Escherichia coli. John Roth's seminal contributions to the field of coenzyme B12 biosynthesis research brought the power of classical and molecular genetic, biochemical, and structural approaches to bear on the extremely challenging problem of dissecting the steps of what has turned out to be one of the most complex biosynthetic pathways known. In E. coli and serovar Typhimurium, uro'gen III represents the first branch point in the pathway, where the routes for cobalamin and siroheme synthesis diverge from that for heme synthesis. The cobalamin biosynthetic pathway in P. denitrificans was the first to be elucidated, but it was soon realized that there are at least two routes for cobalamin biosynthesis, representing aerobic and anaerobic variations. The expression of the AdoCbl biosynthetic operon is complex and is modulated at different levels. At the transcriptional level, a sensor response regulator protein activates the transcription of the operon in response to 1,2-Pdl in the environment. Serovar Typhimurium and E. coli use ethanolamine as a source of carbon, nitrogen, and energy. In addition, and unlike E. coli, serovar Typhimurium can also grow on 1,2-Pdl as the sole source of carbon and energy.
Collapse
|
3
|
Nielsen MT, Madsen KM, Seppälä S, Christensen U, Riisberg L, Harrison SJ, Møller BL, Nørholm MHH. Assembly of highly standardized gene fragments for high-level production of porphyrins in E. coli. ACS Synth Biol 2015; 4:274-82. [PMID: 24905856 DOI: 10.1021/sb500055u] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Standardization of molecular cloning greatly facilitates advanced DNA engineering, parts sharing, and collaborative efforts such as the iGEM competition. All of these attributes facilitate exploitation of the wealth of genetic information made available by genome and RNA sequencing. Standardization also comes at the cost of reduced flexibility. We addressed this paradox by formulating a set of design principles aimed at maximizing standardization while maintaining high flexibility in choice of cloning technique and minimizing the impact of standard sequences. The design principles were applied to formulate a molecular cloning pipeline and iteratively assemble and optimize a six-gene pathway for protoporphyrin IX synthesis in Escherichia coli. State of the art production levels were achieved through two simple cycles of engineering and screening. The principles defined here are generally applicable and simplifies the experimental design of projects aimed at biosynthetic pathway construction or engineering.
Collapse
Affiliation(s)
- Morten T. Nielsen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Karina M. Madsen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Susanna Seppälä
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Ulla Christensen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Lone Riisberg
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Scott J. Harrison
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Birger Lindberg Møller
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Morten H. H. Nørholm
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| |
Collapse
|
4
|
Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12. Biotechnol Adv 2012; 30:1533-42. [PMID: 22537876 DOI: 10.1016/j.biotechadv.2012.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/29/2012] [Accepted: 04/10/2012] [Indexed: 02/07/2023]
Abstract
δ-aminolevulinate (ALA) is an important intermediate involved in tetrapyrrole synthesis (precursor for vitamin B12, chlorophyll and heme) in vivo. It has been widely applied in agriculture and medicine. On account of many disadvantages of its chemical synthesis, microbial production of ALA has been received much attention as an alternative because of less expensive raw materials, low pollution, and high productivity. Vitamin B12, one of ALA derivatives, which plays a vital role in prevention of anaemia has also attracted intensive works. In this review, recent advances on the production of ALA and vitamin B12 with novel approaches such as whole-cell enzyme-transformation and metabolic engineering are described. Furthermore, the direction for future research and perspective are also summarized.
Collapse
Affiliation(s)
- Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | |
Collapse
|
5
|
de Armas-Ricard M, Levicán G, Katz A, Moser J, Jahn D, Orellana O. Cellular levels of heme affect the activity of dimeric glutamyl-tRNA reductase. Biochem Biophys Res Commun 2011; 405:134-9. [PMID: 21219871 DOI: 10.1016/j.bbrc.2011.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/04/2011] [Indexed: 01/25/2023]
Abstract
Glutamyl-tRNA reductase (GluTR) is the first enzyme committed to tetrapyrrole biosynthesis by the C(5)-pathway. This enzyme transforms glutamyl-tRNA into glutamate-1-semi-aldehyde, which is then transformed into 5-amino levulinic acid by the glutamate-1-semi-aldehyde 2,1-aminomutase. Binding of heme to GluTR seems to be relevant to regulate the enzyme function. Recombinant GluTR from Acidithiobacillus ferrooxidans an acidophilic bacterium that participates in bioleaching of minerals was expressed in Escherichia coli and purified as a soluble protein containing type b heme. Upon control of the cellular content of heme in E. coli, GluTR with different levels of bound heme was obtained. An inverse correlation between the activity of the enzyme and the level of bound heme to GluTR suggested a control of the enzyme activity by heme. Heme bound preferentially to dimeric GluTR. An intact dimerization domain was essential for the enzyme to be fully active. We propose that the cellular levels of heme might regulate the activity of GluTR and ultimately its own biosynthesis.
Collapse
Affiliation(s)
- Merly de Armas-Ricard
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
6
|
Heinemann IU, Jahn M, Jahn D. The biochemistry of heme biosynthesis. Arch Biochem Biophys 2008; 474:238-51. [PMID: 18314007 DOI: 10.1016/j.abb.2008.02.015] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 02/14/2008] [Accepted: 02/14/2008] [Indexed: 02/03/2023]
Abstract
Heme is an integral part of proteins involved in multiple electron transport chains for energy recovery found in almost all forms of life. Moreover, heme is a cofactor of enzymes including catalases, peroxidases, cytochromes of the P(450) class and part of sensor molecules. Here the step-by-step biosynthesis of heme including involved enzymes, their mechanisms and detrimental health consequences caused by their failure are described. Unusual and challenging biochemistry including tRNA-dependent reactions, radical SAM enzymes and substrate derived cofactors are reported.
Collapse
Affiliation(s)
- Ilka U Heinemann
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
7
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
8
|
Lee YY, Shearer N, Spiro S. Transcription factor NNR from Paracoccus denitrificans is a sensor of both nitric oxide and oxygen: isolation of nnr* alleles encoding effector-independent proteins and evidence for a haem-based sensing mechanism. MICROBIOLOGY-SGM 2006; 152:1461-1470. [PMID: 16622062 DOI: 10.1099/mic.0.28796-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nitrite reductase and nitric oxide reductase regulator (NNR) from Paracoccus denitrificans activates transcription in response to nitric oxide (NO). The mechanism of NO sensing has not been elucidated for NNR, or for any of its orthologues from the FNR/CRP family of transcriptional regulators. Using regulated expression of the nnr gene in Escherichia coli, evidence has now been obtained to indicate that activation of NNR by NO does not require de novo synthesis of the NNR polypeptide. In anaerobic cultures, NNR is inactivated slowly following removal of the source of NO. In contrast, exposure of anaerobically grown cultures to oxygen causes rapid inactivation of NNR, suggesting that the protein is inactivated directly by oxygen. By random and site-directed mutagenesis, two variants of NNR were isolated (with substitutions of arginine at position 80) that show high levels of activity in anaerobic cultures in the absence of NO. These proteins remain substantially inactive in aerobic cultures, suggesting that the substitutions uncouple the NO- and oxygen-signalling mechanisms, thus providing further evidence that NNR senses both molecules. Structural modelling suggested that Arg-80 is close to the C-helix that forms the monomer-monomer interface in other members of the FNR/CRP family and plays an important role in transducing the activating signal between the regulatory and DNA binding domains. Assays of NNR activity in a haem-deficient mutant of E. coli provided preliminary evidence to indicate that NNR activity is haem dependent.
Collapse
Affiliation(s)
- Yi-Ying Lee
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Neil Shearer
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Stephen Spiro
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332-0230, USA
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
9
|
Srivastava A, Beale SI. Glutamyl-tRNA reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. J Bacteriol 2005; 187:4444-50. [PMID: 15968053 PMCID: PMC1151790 DOI: 10.1128/jb.187.13.4444-4450.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 03/10/2005] [Indexed: 11/20/2022] Open
Abstract
delta-Aminolevulinic acid, the biosynthetic precursor of tetrapyrroles, is synthesized from glutamate via the tRNA-dependent five-carbon pathway in the green sulfur bacterium Chlorobium vibrioforme. The enzyme glutamyl-tRNA reductase (GTR), encoded by the hemA gene, catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. To characterize the GTR protein, the hemA gene from C. vibrioforme was cloned into expression plasmids that added an N-terminal His(6) tag to the expressed protein. The His-tagged GTR protein was purified using Ni affinity column chromatography. GTR was observable as a 49-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. The native molecular mass, as determined by gel filtration chromatography, appeared to be approximately 40 kDa, indicating that native GTR is a monomer. However, when the protein was mixed with 5% (vol/vol) glycerol, the product had an apparent molecular mass of 95 kDa, indicating that the protein is a dimer under these conditions. Purified His(6)-GTR was catalytically active in vitro when it was incubated with Escherichia coli glutamyl-tRNA(Glu) and purified recombinant Chlamydomonas reinhardtii glutamate-1-semialdehyde aminotransferase. The expressed GTR contained 1 mol of tightly bound heme per mol of pep tide subunit. The heme remained bound to the protein throughout purification and was not removed by anion- or cation-exchange column chromatography. However, the bound heme was released during SDS-PAGE if the protein was denatured in the presence of beta-mercaptoethanol. Added heme did not inhibit the activity of purified expressed GTR in vitro. However, when the GTR was expressed in the presence of 3-amino-2,3- dihydrobenzoic acid (gabaculine), an inhibitor of heme synthesis, the purified GTR had 60 to 70% less bound heme than control GTR, and it was inhibited by hemin in vitro.
Collapse
Affiliation(s)
- Alaka Srivastava
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
10
|
Srivastava A, Lake V, Nogaj LA, Mayer SM, Willows RD, Beale SI. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-trna reductase: structure of the gene and properties of the expressed enzyme. PLANT MOLECULAR BIOLOGY 2005; 58:643-58. [PMID: 16158240 DOI: 10.1007/s11103-005-6803-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 04/29/2005] [Indexed: 05/04/2023]
Abstract
Plants, algae, cyanobacteria and many other bacteria synthesize the tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate by means of a tRNAGlu-mediated pathway. The enzyme glutamyl-tRNA reductase (GTR) catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. Chlamydomonas reinhardtii mRNA encoding gtr was sequenced from a cDNA and genomic libraries. The 3179-bp gtr cDNA contains a 1566-bp open reading frame that encodes a 522-amino acid polypeptide. After removal of the predicted transit peptide, the mature 480-residue GTR has a calculated molecular weight of 52,502. The deduced C. reinhardtii mature GTR amino acid sequence has more than 55% identity to a GTR sequence of Arabidopsis thaliana, and significant similarity to GTR proteins of other plants and prokaryotes. Southern blot analysis of C. reinhardtii genomic DNA indicates that C. reinhardtii has only one gtr gene. Genomic DNA sequencing revealed the presence of a small intron near the putative transit peptide cleavage site. Expression constructs for the full-length initial gtr translation product, the mature protein after transit peptide removal, and the coding sequence of the second exon were cloned into expression vector that also introduced a C-terminal His6 tag. All of these constructs were expressed in E. coli, and both the mature protein and the exon 2 translation product complemented a hemA mutation. The expressed proteins were purified by Ni-affinity column chromatography to yield active GTR. Purified mature GTR was not inhibited by heme, but heme inhibition was restored upon addition of C. reinhardtii soluble proteins.
Collapse
Affiliation(s)
- Alaka Srivastava
- Division of Biology and Medicine, Brown University, 02912, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
11
|
Schauer S, Lüer C, Moser J. Large scale production of biologically active Escherichia coli glutamyl-tRNA reductase from inclusion bodies. Protein Expr Purif 2004; 31:271-5. [PMID: 14550647 DOI: 10.1016/s1046-5928(03)00184-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glutamyl-tRNA reductase catalyzes the initial step of tetrapyrrole biosynthesis in plants and prokaryotes. Recombinant Escherichia coli glutamyl-tRNA reductase was purified to apparent homogeneity from an overproducing E. coli strain by a two-step procedure yielding 5.6 mg of enzyme per gram of wet cells with a specific activity of 0.47 micromol min(-1)mg(-1). After recombinant production, denatured glutamyl-tRNA reductase from inclusion bodies was renatured by an on-column refolding procedure. Residual protein aggregates were removed using Superdex 200 gel-filtration chromatography. Solubility, specific activity, and long-term storage properties were improved compared to previous protocols. Obtained enzyme amounts of high purity now allow the research on the recognition mechanism of tRNAGlu and high-throughput inhibitor screening.
Collapse
Affiliation(s)
- Stefan Schauer
- Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | |
Collapse
|
12
|
O'Brian MR, Thöny-Meyer L. Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 2002; 46:257-318. [PMID: 12073655 DOI: 10.1016/s0065-2911(02)46006-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Haems are involved in many cellular processes in prokaryotes and eukaryotes. The biosynthetic pathway leading to haem formation is, with few exceptions, well-conserved, and is controlled in accordance with cellular function. Here, we review the biosynthesis of haem and its regulation in prokaryotes. In addition, we focus on a modification of haem for cytochrome c biogenesis, a complex process that entails both transport between cellular compartments and a specific thioether linkage between the haem moiety and the apoprotein. Finally, a whole genome analysis from 63 prokaryotes indicates intriguing exceptions to the universality of the haem biosynthetic pathway and helps define new frontiers for future study.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
13
|
Schauer S, Chaturvedi S, Randau L, Moser J, Kitabatake M, Lorenz S, Verkamp E, Schubert WD, Nakayashiki T, Murai M, Wall K, Thomann HU, Heinz DW, Inokuchi H, Söll D, Jahn D. Escherichia coli glutamyl-tRNA reductase. Trapping the thioester intermediate. J Biol Chem 2002; 277:48657-63. [PMID: 12370189 DOI: 10.1074/jbc.m206924200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the first step of tetrapyrrole biosynthesis in Escherichia coli, glutamyl-tRNA reductase (GluTR, encoded by hemA) catalyzes the NADPH-dependent reduction of glutamyl-tRNA to glutamate-1-semialdehyde. Soluble homodimeric E. coli GluTR was made by co-expressing the hemA gene and the chaperone genes dnaJK and grpE. During Mg(2+)-stimulated catalysis, the reactive sulfhydryl group of Cys-50 in the E. coli enzyme attacks the alpha-carbonyl group of the tRNA-bound glutamate. The resulting thioester intermediate was trapped and detected by autoradiography. In the presence of NADPH, the end product, glutamate-1-semialdehyde, is formed. In the absence of NADPH, E. coli GluTR exhibited substrate esterase activity. The in vitro synthesized unmodified glutamyl-tRNA was an acceptable substrate for E. coli GluTR. Eight 5-aminolevulinic acid auxotrophic E. coli hemA mutants were genetically selected, and the corresponding mutations were determined. Most of the recombinant purified mutant GluTR enzymes lacked detectable activity. Based on the Methanopyrus kandleri GluTR structure, the positions of the amino acid exchanges are close to the catalytic domain (G7D, E114K, R314C, S22L/S164F, G44C/S105N/A326T, G106N, S145F). Only GluTR G191D (affected in NADPH binding) revealed esterase but no reductase activity.
Collapse
Affiliation(s)
- Stefan Schauer
- Institute of Microbiology, Technical University Braunschweig, Spielmannstrasse 7, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Moser J, Lorenz S, Hubschwerlen C, Rompf A, Jahn D. Methanopyrus kandleri glutamyl-tRNA reductase. J Biol Chem 1999; 274:30679-85. [PMID: 10521455 DOI: 10.1074/jbc.274.43.30679] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The initial reaction of tetrapyrrole formation in archaea is catalyzed by a NADPH-dependent glutamyl-tRNA reductase (GluTR). The hemA gene encoding GluTR was cloned from the extremely thermophilic archaeon Methanopyrus kandleri and overexpressed in Escherichia coli. Purified recombinant GluTR is a tetrameric enzyme with a native M(r) = 190,000 +/- 10,000. Using a newly established enzyme assay, a specific activity of 0.75 nmol h(-1) mg(-1) at 56 degrees C with E. coli glutamyl-tRNA as substrate was measured. A temperature optimum of 90 degrees C and a pH optimum of 8.1 were determined. Neither heme cofactor, nor flavin, nor metal ions were required for GluTR catalysis. Heavy metal compounds, Zn(2+), and heme inhibited the enzyme. GluTR inhibition by the newly synthesized inhibitor glutamycin, whose structure is similar to the 3' end of the glutamyl-tRNA substrate, revealed the importance of an intact chemical bond between glutamate and tRNA(Glu) for substrate recognition. The absolute requirement for NADPH in the reaction of GluTR was demonstrated using four NADPH analogues. Chemical modification and site-directed mutagenesis studies indicated that a single cysteinyl residue and a single histidinyl residue were important for catalysis. It was concluded that during GluTR catalysis the highly reactive sulfhydryl group of Cys-48 acts as a nucleophile attacking the alpha-carbonyl group of tRNA-bound glutamate with the formation of an enzyme-localized thioester intermediate and the concomitant release of tRNA(Glu). In the presence of NADPH, direct hydride transfer to enzyme-bound glutamate, possibly facilitated by His-84, leads to glutamate-1-semialdehyde formation. In the absence of NADPH, a newly discovered esterase activity of GluTR hydrolyzes the highly reactive thioester of tRNA(Glu) to release glutamate.
Collapse
Affiliation(s)
- J Moser
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, D-79104 Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
15
|
Wang L, Wilson S, Elliott T. A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J Bacteriol 1999; 181:6033-41. [PMID: 10498716 PMCID: PMC103631 DOI: 10.1128/jb.181.19.6033-6041.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The HemA enzyme (glutamyl-tRNA reductase) catalyzes the first committed step in heme biosynthesis in the enteric bacteria. HemA is mainly regulated by conditional protein stability; it is stable and, consequently, more abundant in heme-limited cells but unstable and less abundant in normally growing cells. Both the Lon and ClpAP energy-dependent proteases contribute to HemA turnover in vivo. Here we report that the addition of two positively charged lysine residues to the third and fourth positions at the HemA N terminus resulted in complete stabilization of the protein. By contrast, the addition of an N-terminal myc epitope tag did not affect turnover. This result confirms the importance of the N-terminal sequence for proteolysis of HemA. This region of the protein also contains a proline flanked by hydrophobic residues, a motif that has been suggested to be important for Lon-mediated proteolysis of UmuD. However, mutation of this motif did not affect the turnover of HemA protein. Cells expressing the stabilized HemA[KK] mutant protein display substantial defects in heme regulation.
Collapse
Affiliation(s)
- L Wang
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, USA
| | | | | |
Collapse
|
16
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
17
|
Rompf A, Hungerer C, Hoffmann T, Lindenmeyer M, Römling U, Gross U, Doss MO, Arai H, Igarashi Y, Jahn D. Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Mol Microbiol 1998; 29:985-97. [PMID: 9767567 DOI: 10.1046/j.1365-2958.1998.00980.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oxidative decarboxylation of coproporphyrinogen III catalysed by an oxygen-dependent oxidase (HemF) and an oxygen-independent dehydrogenase (HemN) is one of the key regulatory points of haem biosynthesis in Pseudomonas aeruginosa. To investigate the oxygen-dependent regulation of hemF and hemN, the corresponding genes were cloned from the P. aeruginosa chromosome. Recognition sequences for the Fnr-type transcriptional regulator Anr were detected -44.5 bp from the 5' end of the hemF mRNA transcript and at an optimal distance of -41.5 bp with respect to the transcriptional start of hemN. An approximately 10-fold anaerobic induction of hemN gene expression was mediated by the dual action of Anr and a second Fnr-type regulator, Dnr. Regulation by both proteins required the Anr recognition sequence. Surprisingly, aerobic expression of hemN was dependent only on Anr. An anr mutant did not contain detectable amounts of hemN mRNA and accumulated coproporphyrin III both aerobically and anaerobically, indicating the importance of HemN for aerobic and anaerobic haem formation. Mutation of hemN and hemF did not abolish aerobic or anaerobic growth, indicating the existence of an additional HemN-type enzyme, which was termed HemZ. Expression of hemF was induced approximately 20-fold during anaerobic growth and, as was found for hemN, both Anr and Dnr were required for anaerobic induction. Paradoxically, oxygen is necessary for HemF catalysis, suggesting the existence of an additional physiological function for the P. aeruginosa HemF protein.
Collapse
Affiliation(s)
- A Rompf
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vothknecht UC, Kannangara CG, von Wettstein D. Barley glutamyl tRNAGlu reductase: mutations affecting haem inhibition and enzyme activity. PHYTOCHEMISTRY 1998; 47:513-519. [PMID: 9461671 DOI: 10.1016/s0031-9422(97)00538-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutamyl tRNA(Glu) reductase converts glutamate molecules that are ligated at their alpha-carboxyl groups to tRNA(Glu) into glutamate 1-semialdehyde, an intermediate in the synthesis of 5-aminolevulinate, chlorophyll and haem. The mature plant enzymes contain a highly conserved extension of 31-34 amino acids at the N-terminus not present in bacterial enzymes. It is shown that barley glutamyl tRNAGlu reductases with a deletion of the 30 N-terminal amino acids have the same high specific activity as the untruncated enzymes, but are highly resistant to feed-back inhibition by haem. This peptide domain thus interacts directly or indirectly with haem and the toxicity of the 30 amino acid peptide for Escherichia coli experienced in mutant rescue and overexpression experiments can be explained by extensive haem removal from the metabolic pools that cannot be tolerated by the cell. Induced missense mutations identify nine amino acids in the 451 residue long C-terminal part of the barley glutamyl tRNA(Glu) reductase which upon substitution curtail drastically, but do not eliminate entirely the catalytic activity of the enzyme. These amino acids are thus important for the catalytic reaction or tRNA binding.
Collapse
Affiliation(s)
- U C Vothknecht
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| | | | | |
Collapse
|
19
|
Verderber E, Lucast LJ, Van Dehy JA, Cozart P, Etter JB, Best EA. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis. J Bacteriol 1997; 179:4583-90. [PMID: 9226269 PMCID: PMC179295 DOI: 10.1128/jb.179.14.4583-4590.1997] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We initiated these studies to help clarify the roles of heme, delta-aminolevulinic acid (ALA), hemA, and hemM in Escherichia coli heme synthesis. Using recombinant human hemoglobin (rHb1.1) as a tool for increasing E. coli's heme requirements, we demonstrated that heme is a feedback inhibitor of heme synthesis. Cooverexpression of rHb1.1 and the hemA-encoded glutamyl-tRNA (GTR) reductase increased intracellular levels of ALA and heme and increased the rate of rHb1.1 formation. These results support the conclusion that heme synthesis is limited by ALA (S. Hino and A. Ishida, Enzyme 16:42-49, 1973; W. K. Philipp-Dormston and M. Doss, Enzyme 16:57-64, 1973) and that the hemA-encoded GTR reductase is a rate-limiting enzyme in the pathway (J.-M. Li, C. S. Russell, and S. D. Cosloy, Gene 82:2099-217, 1989). Increasing the copy number of hemM, whose product is believed to be required for efficient ALA formation (W. Chen, C. S. Russell, Y. Murooka, and S. D. Cosloy, J. Bacteriol. 176:2743-2746, 1994; M. Ikemi, K. Murakami, M. Hashimoto, and Y. Murooka, Gene 121:127-132, 1992), had no effect on either ALA pools or the rate of rHb1.1 accumulation. The hemA-encoded GTR reductase was found to be regulated by ALA. Some of our results differ from those reported by Hart and coworkers (R. A. Hart, P. T. Kallio, and J. E. Bailey, Appl. Environ. Microbiol. 60:2431-2437, 1994), who concluded that ALA formation is not the rate-limiting step in E. coli cells expressing Vitreoscilla hemoglobin.
Collapse
Affiliation(s)
- E Verderber
- Somatogen, Inc., Boulder, Colorado 80301-2857, USA
| | | | | | | | | | | |
Collapse
|
20
|
Wang LY, Brown L, Elliott M, Elliott T. Regulation of heme biosynthesis in Salmonella typhimurium: activity of glutamyl-tRNA reductase (HemA) is greatly elevated during heme limitation by a mechanism which increases abundance of the protein. J Bacteriol 1997; 179:2907-14. [PMID: 9139907 PMCID: PMC179053 DOI: 10.1128/jb.179.9.2907-2914.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Salmonella typhimurium and Escherichia coli, the hemA gene encodes the enzyme glutamyl-tRNA reductase, which catalyzes the first committed step in heme biosynthesis. We report that when heme limitation is imposed on cultures of S. typhimurium, glutamyl-tRNA reductase (HemA) enzyme activity is increased 10- to 25-fold. Heme limitation was achieved by a complete starvation for heme in hemB, hemE, and hemH mutants or during exponential growth of a hemL mutant in the absence of heme supplementation. Equivalent results were obtained by both methods. To determine the basis for this induction, we developed a panel of monoclonal antibodies reactive with HemA, which can detect the small amount of protein present in a wild-type strain. Western blot (immunoblot) analysis with these antibodies reveals that the increase in HemA enzyme activity during heme limitation is mediated by an increase in the abundance of the HemA protein. Increased HemA protein levels were also observed in heme-limited cells of a hemL mutant in two different E. coli backgrounds, suggesting that the observed regulation is conserved between E. coli and S. typhimurium. In S. typhimurium, the increase in HemA enzyme and protein levels was accompanied by a minimal (less than twofold) increase in the expression of hemA-lac operon fusions; thus HemA regulation is mediated either at a posttranscriptional step or through modulation of protein stability.
Collapse
Affiliation(s)
- L Y Wang
- Department of Microbiology and Immunology, West Virginia University Health Sciences Center, Morgantown 26506, USA
| | | | | | | |
Collapse
|
21
|
Jahn D, Hungerer C, Troup B. Ungew�hnliche Wege und umweltregulierte Gene der bakteriellen H�mbiosynthese. Naturwissenschaften 1996. [DOI: 10.1007/bf01142065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Hungerer C, Weiss DS, Thauer RK, Jahn D. The hemA gene encoding glutamyl-tRNA reductase from the archaeon Methanobacterium thermoautotrophicum strain Marburg. Bioorg Med Chem 1996; 4:1089-95. [PMID: 8831980 DOI: 10.1016/0968-0896(96)00098-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In archaea the first general tetrapyrrole precursor 5-aminolevulinic acid (ALA) is formed via the tRNA-dependent five-carbon pathway from glutamate. We have cloned the hemA gene encoding the central enzyme of the pathway glutamyl-tRNA reductase from the methanogenic archaeon Methanobacterium thermoautotrophicum by complementation of an Escherichia coli hemA mutant to ALA prototrophy. An 1194 bp open reading frame that encodes a 398 amino acid polypeptide with the calculated M, 44,509 was detected. The deduced amino acid sequence showed 20-35% amino acid identity to bacterial HemAs with the highest identity score to the Pseudomonas aeruginosa HemA. An identity of approximately 22% was found to plant HemAs. Glutamyl-tRNA reductase activity was shown for the M. thermoautotrophicum HemA after overexpression in E. coli and partial purification. The enzymatic reaction catalyzed by the partially purified enzyme revealed a temperature optimum of 65 degrees C at an optimal pH of 7.0. The reductase utilized preferentially NADPH for the reduction of the activated carboxyl group. The presence of ATP and GTP showed no obvious influence on catalysis.
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie des Fachbereich Biologie der Philipps-Universität, Marburg, Germany
| | | | | | | |
Collapse
|
23
|
O'Brian MR. Heme synthesis in the rhizobium-legume symbiosis: a palette for bacterial and eukaryotic pigments. J Bacteriol 1996; 178:2471-8. [PMID: 8626311 PMCID: PMC177968 DOI: 10.1128/jb.178.9.2471-2478.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- M R O'Brian
- Department of Biochemistry, State University of New York at Buffalo 14214, USA
| |
Collapse
|
24
|
Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:323-43. [PMID: 8647070 DOI: 10.1111/j.1432-1033.1996.00323.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
All living organisms contain tetrapyrroles. In plants, chlorophyll (chlorophyll a plus chlorophyll b) is the most abundant and probably most important tetrapyrrole. It is involved in light absorption and energy transduction during photosynthesis. Chlorophyll is synthesized from the intact carbon skeleton of glutamate via the C5 pathway. This pathway takes place in the chloroplast. It is the aim of this review to summarize the current knowledge on the biochemistry and molecular biology of the C5-pathway enzymes, their regulated expression in response to light, and the impact of chlorophyll biosynthesis on chloroplast development. Particular emphasis will be placed on the key regulatory steps of chlorophyll biosynthesis in higher plants, such as 5-aminolevulinic acid formation, the production of Mg(2+)-protoporphyrin IX, and light-dependent protochlorophyllide reduction.
Collapse
Affiliation(s)
- S Reinbothe
- Department of Genetics, Swiss Federal Institute of Technology Zurich (ETH), Switzerland
| | | |
Collapse
|
25
|
Choi P, Wang L, Archer CD, Elliott T. Transcription of the glutamyl-tRNA reductase (hemA) gene in Salmonella typhimurium and Escherichia coli: role of the hemA P1 promoter and the arcA gene product. J Bacteriol 1996; 178:638-46. [PMID: 8550494 PMCID: PMC177706 DOI: 10.1128/jb.178.3.638-646.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In Salmonella typhimurium and Escherichia coli, the hemA gene encodes the enzyme glutamyl-tRNA reductase, which catalyzes the first committed step in the heme biosynthetic pathway. It has recently been reported that a lac operon fusion to the hemA promoter of E. coli is induced 20-fold after starvation for heme. Induction was dependent on the transcriptional regulator ArcA, with a second transcriptional regulator, FNR, playing a negative role specifically under anaerobic conditions (S. Darie and R. P. Gunsalus, J. Bacteriol. 176:5270-5276, 1994). We have investigated the generality of this effect by examining the response to heme starvation of a number of lac operon fusions to the hemA promoters of both E. coli and S. typhimurium. We confirmed that such fusions are induced during starvation of a hemA auxotroph, but the level of induction observed was maximally sixfold and for S. typhimurium fusions it was only two- to fourfold. Sequences required for high-level expression of hemA lie within 129 bp upstream of the major (P1) promoter transcriptional start site. Mutants defective in the P1 promoter had greatly reduced hemA-lac expression both in the presence and in the absence of ALA. Mutations in arcA had no effect on hemA-lac expression in E. coli during normal growth, although the increase in expression during starvation for ALA was half that seen in an arcA+ strain. Overexpression of the arcA gene had no effect on hemA-lac expression. Primer extension analysis showed that RNA 5' ends mapping to the hemA P1 and P2 promoters were not expressed at significantly higher levels in induced cultures. These results differ from those previously reported.
Collapse
Affiliation(s)
- P Choi
- Department of Microbiology and Immunology, West Virginia University, Health Sciences Center, Morgantown 26506, USA
| | | | | | | |
Collapse
|
26
|
Hungerer C, Troup B, Römling U, Jahn D. Cloning, mapping and characterization of the Pseudomonas aeruginosa hemL gene. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:375-80. [PMID: 7565600 DOI: 10.1007/bf02191605] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The rate-limiting step in the biosynthesis of tetrapyrroles is the formation of 5-aminolevulinic acid (ALA). In Pseudomonas aeruginosa ALA is synthesized via a two-step reaction from aminoacylated tRNA(Glu) by the action of glutamyl-tRNA reductase and glutamate-1-semialdehyde-2,1-amino mutase. To initiate an investigation of the regulation of the second step in ALA formation, the hemL gene was cloned from P. aeruginosa by complementation of an Escherichia coli hemL mutant. An open reading frame of 1284 bp encoding a protein of 427 amino acids with a calculated molecular mass of 45,404 Da was identified. The hemL gene was mapped to the SpeI fragment Z and the DpnI fragment J1 of the P. aeruginosa chromosome corresponding approximately to min 0.3-0.9. One transcription start site was located 280 bp upstream of the translational start site of the hemL gene. No classical sigma 70-dependent promoter was detected. Oxygen stress induced by the addition of H2O2 to the growth medium led to an approximately 3.5-fold increase in hemL expression as determined by mRNA dot blot assays. Anaerobic denitrifying growth led to a 2-fold stimulation of hemL transcription. Two additional open reading frames were detected downstream of the hemL gene. One open reading frame (orf1) of 549 bp encodes a protein of 182 amino acids with a calculated molecular mass of 19,638 Da.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
27
|
Troup B, Hungerer C, Jahn D. Cloning and characterization of the Escherichia coli hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase. J Bacteriol 1995; 177:3326-31. [PMID: 7768836 PMCID: PMC177029 DOI: 10.1128/jb.177.11.3326-3331.1995] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coproporphyrinogen III oxidase, an enzyme involved in heme biosynthesis, catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Genetic and biochemical studies suggested the presence of two different coproporphyrinogen III oxidases, one for aerobic (HemF) and one for anaerobic (HemN) conditions. Here we report the cloning of the hemN gene encoding the oxygen-independent coproporphyrinogen III oxidase from Escherichia coli by complementation of a Salmonella typhimurium hemF hemN double mutant. An open reading frame of 1,371 bp encoding a protein of 457 amino acids with a calculated molecular mass of 52.8 kDa was identified. Sequence comparisons revealed 92% amino acid sequence identity to the recently cloned S. typhimurium hemN gene and 35% identity to the Rhodobacter sphaeroides gene. The hemN gene was mapped to 87.3 min of the E. coli chromosome and found identical to open reading frame o459 previously discovered during the genome sequencing project. Complementation of S. typhimurium hemF hemN double mutants with the E. coli hemN gene was detected under aerobic and anaerobic conditions, indicating an aerobic function for HemN. The previously cloned E. coli hemF gene encoding the oxygen-dependent enzyme complemented exclusively under aerobic conditions. Primer extension experiments revealed a strong transcription initiation site 102 bp upstream of the translational start site. DNA sequences with homology to a sigma 70-dependent promoter were detected. Expression of the hemN gene in response to changing environmental conditions was evaluated by using lacZ reporter gene fusions. Under anaerobic conditions, hemN expression was threefold greater than under aerobic growth conditions. Removal of iron from the growth medium resulted in an approximately fourfold decrease of aerobic hemN expression. Subsequent addition of iron restored normal expression.
Collapse
Affiliation(s)
- B Troup
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | |
Collapse
|
28
|
Avissar YJ, Moberg PA. The common origins of the pigments of life-early steps of chlorophyll biosynthesis. PHOTOSYNTHESIS RESEARCH 1995; 44:221-242. [PMID: 24307093 DOI: 10.1007/bf00048596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1994] [Accepted: 03/30/1995] [Indexed: 06/02/2023]
Abstract
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.
Collapse
Affiliation(s)
- Y J Avissar
- Department of Biology, Rhode Island College, 02908, Providence, RI, USA
| | | |
Collapse
|
29
|
Frustaci JM, Sangwan I, O'Brian MR. gsa1 is a universal tetrapyrrole synthesis gene in soybean and is regulated by a GAGA element. J Biol Chem 1995; 270:7387-93. [PMID: 7706283 DOI: 10.1074/jbc.270.13.7387] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of plant tetrapyrroles is high in photosynthetic tissues and in legume root nodules in the form of chlorophyll and heme, respectively. The universal tetrapyrrole precursor delta-aminolevulinic acid (ALA) is synthesized from glutamate 1-semialdehyde (GSA) by GSA aminotransferase in plants, which is encoded by gsa. Immunoblot analysis showed that GSA aminotransferase was expressed in soybean leaves and nodules, but not in roots, and that protein correlated with enzyme activity. These observations indicate that GSA aminotransferase expression is controlled in tetrapyrrole formation and argue against significant activity of an enzyme other than the well described aminotransferase for GSA-dependent ALA formation. gas mRNA and protein were induced in soybean nodules, and their activation was temporally intermediate between those of the respective early and late genes endo2 and lb. A GSA aminotransferase gene, designated gsa1, was isolated and appears to be one of two gsa genes in the soybean genome. gsa1 mRNA accumulated to high levels in leaves and nodules, but not in uninfected roots as discerned with a gsa1-specific probe. Message levels were higher in leaves from etiolated plantlets than in mature plants, and expression in the former was slightly elevated by light. The expression pattern of gsa1 mRNA was qualitatively similar to that of total gsa. The data strongly suggest that gsa1 is a universal tetrapyrrole synthesis gene and that a gsa gene specific for a tissue, tetrapyrrole, or light condition is unlikely. The gsa1 promoter contained a genetic element found in numerous Drosophila melanogaster genes; the so-called GAGA element displayed single-stranded character in vitro and formed a complex with nuclear factors from nodules and leaves but not from roots. From these observations we infer that the GAGA element is involved in the transcriptional control of gsa1.
Collapse
Affiliation(s)
- J M Frustaci
- Department of Biochemistry, State University of New York, Buffalo 14214, USA
| | | | | |
Collapse
|
30
|
Hungerer C, Troup B, Römling U, Jahn D. Regulation of the hemA gene during 5-aminolevulinic acid formation in Pseudomonas aeruginosa. J Bacteriol 1995; 177:1435-43. [PMID: 7883699 PMCID: PMC176757 DOI: 10.1128/jb.177.6.1435-1443.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The general tetrapyrrole precursor 5-aminolevulinic acid is formed in bacteria via two different biosynthetic pathways. Members of the alpha group of the proteobacteria use 5-aminolevulinic acid synthase for the condensation of succinyl-coenzyme A and glycine, while other bacteria utilize a two-step pathway from aminoacylated tRNA(Glu). The tRNA-dependent pathway, involving the enzymes glutamyl-tRNA reductase (encoded by hemA) and glutamate-1-semialdehyde-2,1-aminomutase (encoded by hemL), was demonstrated to be used by Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas stutzeri, Comamonas testosteroni, Azotobacter vinelandii, and Acinetobacter calcoaceticus. To study the regulation of the pathway, the glutamyl-tRNA reductase gene (hemA) from P. aeruginosa was cloned by complementation of an Escherichia coli hemA mutant. The hemA gene was mapped to the SpeI A fragment and the DpnIL fragment of the P. aeruginosa chromosome corresponding to min 24.1 to 26.8. The cloned hemA gene, coding for a protein of 423 amino acids with a calculated molecular mass of 46,234 Da, forms an operon with the gene for protein release factor 1 (prf1). This translational factor mediates the termination of the protein chain at the ribosome at amber and ochre codons. Since the cloned hemA gene did not possess one of the appropriate stop codons, an autoregulatory mechanism such as that postulated for the enterobacterial system was ruled out. Three open reading frames of unknown function transcribed in the opposite direction to the hemA gene were found. hemM/orf1 and orf2 were found to be homologous to open reading frames located in the 5' region of enterobacterial hemA genes. Utilization of both transcription start sites was changed in a P. aeruginosa mutant missing the oxygen regulator Anr (Fnr analog), indicating the involvement of the transcription factor in hemA expression. DNA sequences homologous to one half of an Anr binding site were detected at one of the determined transcription start sites.
Collapse
Affiliation(s)
- C Hungerer
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
31
|
Pontoppidan B, Kannangara CG. Purification and partial characterisation of barley glutamyl-tRNA(Glu) reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:529-37. [PMID: 7957167 DOI: 10.1111/j.1432-1033.1994.00529.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
5-Aminolevulinic acid for chlorophyll synthesis in greening barley is formed from glutamate. One of the steps involved in the conversion of glutamate to 5-aminolevulinic acid involves a reduction of glutamyl-tRNA(Glu) to glutamate 1-semialdehyde and tRNA(Glu). An enzyme catalysing this reduction was purified from the stroma of greening barley chloroplasts. An approximately 270-kDa protein composed of 54-kDa identical subunits was identified as the barley glutamyl-tRNA(Glu) reductase after purification by Sephacryl S-300, Cibacron Blue-Sepharose, 2'-5'-ADP-Sepharose, Mono S, Mini Q and Superose 12 chromatography. The sequence of 18 amino acids from the N-terminus of the reductase is 50% identical to a cDNA-deduced domain of the Arabidopsis thaliana hemA protein and encoded in a barley hemA cDNA sequence. This is an unequivocal demonstration that the glutamyl-tRNA(Glu) reductase subunit of higher plants is encoded in a hemA gene of the nuclear genome. Heme at 4 microM concentration or glutamate 1-semialdehyde at 200 microM caused a 50% inhibition of the reductase activity. Micromolar concentrations of Zn2+, Cu2+ and Cd2+ also inhibited barley glutamyl-tRNA(Glu) reductase.
Collapse
Affiliation(s)
- B Pontoppidan
- Carlsberg Laboratory, Department of Physiology, Copenhagen-Valby, Denmark
| | | |
Collapse
|
32
|
Darie S, Gunsalus RP. Effect of heme and oxygen availability on hemA gene expression in Escherichia coli: role of the fnr, arcA, and himA gene products. J Bacteriol 1994; 176:5270-6. [PMID: 8071201 PMCID: PMC196710 DOI: 10.1128/jb.176.17.5270-5276.1994] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
While many organisms synthesize delta-aminolevulinate, the precursor of heme, by condensing succinyl-coenzyme A and glycine, others use a glutamate-dependent pathway in which glutamyl-tRNA dehydrogenase catalyzes the rate-determining step. The hemeA gene that encodes this latter enzyme in Escherichia coli has been cloned and sequenced. To examine how its expression is regulated, we constructed hemA-lacZ operon and gene fusions and inserted them into the chromosome in single copy. The effect of aerobic and anaerobic growth conditions and the availability of electron acceptors and various carbon substrates were documented. Use of different types of cell culture medium resulted in a fivefold variation in hemA-lacZ expression during aerobic cell growth. Anaerobic growth resulted in 2.5-fold-higher hemA-lacZ expression than aerobic growth. This control is mediated by the fnr and arcA gene products. Fnr functions as a repressor of hemA transcription during anaerobic cell growth only, whereas the arcA gene product activates hemA gene expression under both aerobic and anaerobic conditions. Integration host factor protein was also shown to be required for control of hemA gene regulation. To determine whether an intermediate or a product of the heme biosynthetic pathway is involved in hemA regulation, hemA-lacZ expression was analyzed in a hemA mutant. Expression was elevated by 20-fold compared with that in a wild-type strain, while the addition of the heme pathway intermediate delta-aminolevulinate to the culture medium restored expression to wild-type levels. These results suggest that the heme pathway is feedback regulated at the level of hemA gene expression, to supply heme as it is required during different modes of cell growth.
Collapse
Affiliation(s)
- S Darie
- Department of Microbiology and Molecular Genetics, University of California, Los Angeles 90024
| | | |
Collapse
|
33
|
Chen W, Russell CS, Murooka Y, Cosloy SD. 5-Aminolevulinic acid synthesis in Escherichia coli requires expression of hemA. J Bacteriol 1994; 176:2743-6. [PMID: 8169226 PMCID: PMC205417 DOI: 10.1128/jb.176.9.2743-2746.1994] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
hemA and hemM, which are 213 bp apart and divergently transcribed, were separately cloned. We found that hemA is required for 5-aminolevulinic acid (ALA) synthesis in two ALA- auxotrophs. Overexpression of hemM alone did not produce ALA. More ALA was produced by strains harboring a plasmid with both hemA and hemM than by those with hemA alone. We conclude that hemA alone is required for ALA synthesis but hemA and hemM are required for maximal ALA synthesis.
Collapse
Affiliation(s)
- W Chen
- Department of Biochemistry, City College of City University of New York, New York 10031
| | | | | | | |
Collapse
|
34
|
Troup B, Jahn M, Hungerer C, Jahn D. Isolation of the hemF operon containing the gene for the Escherichia coli aerobic coproporphyrinogen III oxidase by in vivo complementation of a yeast HEM13 mutant. J Bacteriol 1994; 176:673-80. [PMID: 8300522 PMCID: PMC205104 DOI: 10.1128/jb.176.3.673-680.1994] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Coproporphyrinogen III oxidase, an enzyme involved in heme biosynthesis, catalyzes the oxidative decarboxylation of coproporphyrinogen III to form protoporphyrinogen IX. Genetic and biochemical studies suggested the presence of two different coproporphyrinogen III oxidases, one for aerobic and one for anaerobic conditions. Here we report the cloning of the hemF gene, encoding the aerobic coproporphyrinogen III oxidase from Escherichia coli, by functional complementation of a Saccharomyces cerevisiae HEM13 mutant. An open reading frame of 897 bp encoding a protein of 299 amino acids with a calculated molecular mass of 34.3 kDa was identified. Sequence comparisons revealed 43% amino acid sequence identity with the product of the S. cerevisiae HEM13 gene and 90% identity with the product of the recently cloned Salmonella typhimurium hemF gene, while a structural relationship to the proposed anaerobic enzyme from Rhodobacter sphaeroides was not obvious. The hemF gene is in an operon with an upstream open reading frame (orf1) encoding a 31.7-kDa protein with homology to an amidase involved in cell wall metabolism. The hemF gene was mapped to 52.6 min of the E. coli chromosome. Primer extension experiments revealed a strong transcription initiation site upstream of orf1. A weak signal, possibly indicative of a second promoter, was also identified just upstream of the hemF gene. A region containing bent DNA (Bent 111), previously mapped to 52.6 min of the E. coli chromosome, was discovered in the 5' region of orf1. Two potential integration host factor binding sites were found, one close to each transcription start site. An open reading frame (orf3) transcribed in a direction opposite that of the hemF gene was found downstream of the hemF gene. It encodes a protein of 40.2 kDa that showed significant homology to proteins of the XylS/AraC family of transcriptional regulators.
Collapse
Affiliation(s)
- B Troup
- Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität Marburg, Germany
| | | | | | | |
Collapse
|
35
|
Frustaci JM, O'Brian MR. The Escherichia coli visA gene encodes ferrochelatase, the final enzyme of the heme biosynthetic pathway. J Bacteriol 1993; 175:2154-6. [PMID: 8458858 PMCID: PMC204334 DOI: 10.1128/jb.175.7.2154-2156.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An Escherichia coli mutant with a disrupted visA gene was defective in ferrochelatase activity but expressed wild-type levels of protoporphyrinogen oxidase activity. The visA coding region was placed under the transcriptional control of T7 RNA polymerase in an E. coli expression system, and the product was expressed as a 38-kDa protein. The overexpressed protein was purified to near homogeneity and was found to contain ferrochelatase activity. The data show that the visA gene encodes ferrochelatase, and we propose that it be renamed hemH to reflect that conclusion.
Collapse
Affiliation(s)
- J M Frustaci
- Department of Biochemistry, State University of New York, Buffalo 14214
| | | |
Collapse
|
36
|
|
37
|
Jahn D. Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during the tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas reinhardtii. FEBS Lett 1992; 314:77-80. [PMID: 1451806 DOI: 10.1016/0014-5793(92)81465-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The formation of a stable complex between glutamyl-tRNA synthetase and the first enzyme of chlorophyll biosynthesis glutamyl-tRNA reductase was investigated in the green alga Chlamydomonas reinhardtii. Apparently homogenous enzymes, purified after previously established purification protocols were incubated in various combinations with ATP, glutamate, tRNA(Glu) and NADPH and formed complexes were isolated via glycerol gradient centrifugation. Stable complexes were detected only after the preincubation of glutamyl-tRNA synthetase, glutamyl-tRNA reductase with either glutamyl-tRNA or free tRNA(Glu), ATP and glutamate, indicating the obligatory requirement of aminoacylated tRNA(Glu) for complex formation. The further addition of NADPH resulting in the reduction of the tRNA-bound glutamate to glutamate 1-semialdehyde led to the dissociation of the complex. Once complexed to the two enzymes tRNA(Glu) was found to be partially protected from ribonuclease digestion. Escherichia coli, Bacillus subtilis and Synechocystis 6803 tRNA(Glu) were efficiently incorporated into the protein-RNA complex. The detected complexes provide the chloroplast with a potential channeling mechanism for Glu-tRNA(Glu) into chlorophyll synthesis in order to compete with the chloroplastic protein synthesis machinery.
Collapse
Affiliation(s)
- D Jahn
- Laboratorium für Mikrobiologie im Fachbereich Biologie, Philipps-Universität Marburg, Germany
| |
Collapse
|
38
|
Jahn D. Expression of the Chlamydomonas reinhardtii chloroplast tRNA(Glu) gene in a homologous in vitro transcription system is independent of upstream promoter elements. Arch Biochem Biophys 1992; 298:505-13. [PMID: 1416980 DOI: 10.1016/0003-9861(92)90442-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chloroplast tRNA(Glu) is a bifunctional molecule involved in both the early steps of chlorophyll synthesis and chloroplast protein biosynthesis. Recently the enzymes involved in these processes have been characterized from the green alga Chlamydomonas reinhardtii. In order to investigate whether transcription of the gene for the tRNA(Glu) cofactor would be a possible point of regulation for the biosynthesis of chlorophyll, a homologous in vitro transcription system for C. reinhardtii chloroplast RNA polymerase was developed. The enzymatic activity was partially purified by ion-exchange chromatography to separate it from nuclear RNA polymerases. The highest rate of synthesis was found at pH 7.9, 40 mM KCl, 9 mM MgCl2 and with 25 micrograms plasmid DNA containing the chloroplast tRNA gene per milliliter. The activity was not sensitive to high amounts of alpha-amanitin (500 micrograms/ml) and rifampicin, but was clearly inhibited by heparin. This system was used to undertake a promoter analysis of one of the two identical tRNA(Glu) gene copies found in the C. reinhardtii chloroplast genome (trnE1). The analyzed tRNA gene behaved like a single transcription unit driven by its own promoter. The transcript terminated in a run of four consecutive T residues downstream of the gene. The nucleotide sequence in the 5' region of the gene revealed several potential promoter elements with homology to known chloroplast promoters of the "-10 and -35 region" and the "Euglena promoter" types. Surprisingly, deletion of the complete 5' region did not affect in vitro transcription, while partial deletions of the 5' and 3' coding region totally abolished transcription. This indicates the presence of an internal control region previously found for genes transcribed by nuclear RNA polymerase III. Protein binding studies with the coding region of trnE1 using gel retardation assays demonstrated the formation of two differently sized complexes. In vitro transcription of the tRNA(Glu) gene in extracts prepared from light and dark grown algae failed to demonstrate any significant influence of light on the transcription reaction.
Collapse
Affiliation(s)
- D Jahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
39
|
Jahn D, Verkamp E, Söll D. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 1992; 17:215-8. [PMID: 1502723 DOI: 10.1016/0968-0004(92)90380-r] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In green plants, archaebacteria and many eubacteria, the porphyrin ring that is common to both chlorophyll and heme is synthesized from 5-aminolevulinic acid (ALA) via an interesting pathway. This two-step process involves the unusual enzymes glutamyl-tRNA reductase and glutamate-1-semialdehyde 2,1-aminomutase. Interest in this pathway has increased since it was discovered that a tRNA cofactor was required for the formation of ALA. This tRNA(Glu) is common to the biosyntheses of both porphyrins and proteins.
Collapse
Affiliation(s)
- D Jahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
40
|
Verkamp E, Jahn M, Jahn D, Kumar A, Söll D. Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803. Gene structure and expression. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42438-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Javor GT, Febre EF. Enzymatic basis of thiol-stimulated secretion of porphyrins by Escherichia coli. J Bacteriol 1992; 174:1072-5. [PMID: 1732201 PMCID: PMC206203 DOI: 10.1128/jb.174.3.1072-1075.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
1-Thioglycerol (TG) stimulates the synthesis of porphyrin in aerobically growing Escherichia coli. Here the levels of delta-aminolevulinate biosynthetic enzymes in untreated and TG-treated E. coli THU and PUC2 (a mutant of THU which overproduces porphyrins in the presence of thiols) cells were determined. TG treatment elevated the activity of glutamyl-tRNA reductase in both strains. The increased activity was not caused by activation of preexisting enzymes by thiols or by oxidizing agents but was dependent on new protein synthesis.
Collapse
Affiliation(s)
- G T Javor
- Department of Biochemistry and Microbiology, Loma Linda University School of Medicine, California 92350
| | | |
Collapse
|
42
|
Ilag LL, Jahn D, Eggertsson G, Söll D. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J Bacteriol 1991; 173:3408-13. [PMID: 2045363 PMCID: PMC207952 DOI: 10.1128/jb.173.11.3408-3413.1991] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
delta-Aminolevulinic acid (ALA), the first committed precursor of porphyrin biosynthesis, is formed in Escherichia coli by the C5 pathway in a three-step, tRNA-dependent transformation from glutamate. The first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase, are known in E. coli (J. Lapointe and D. Söll, J. Biol. Chem. 247:4966-4974, 1972; D. Jahn, U. Michelsen, and D. Söll, J. Biol. Chem. 266:2542-2548, 1991). Here we present the mapping and cloning of the gene for the third enzyme, glutamate 1-semialdehyde (GSA) aminotransferase, and an initial characterization of the purified enzyme. Ethylmethane sulfonate-induced mutants of E. coli AB354 which required ALA for growth were isolated by selection for respiration-defective strains resistant to the aminoglycoside antibiotic kanamycin. Two mutations were mapped to min 4 at a locus named hemL. Map positions and resulting phenotypes suggest that hemL may be identical with the earlier described porphyrin biosynthesis mutation popC. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding clone pLC4-43 of the Clarke-Carbon bank (L. Clarke and J. Carbon, Cell 9:91-99, 1976) allowed the isolation of the gene. Physical mapping showed that hemL mapped clockwise next to fhuB. The hemL gene product was overexpressed and purified to apparent homogeneity. The pure protein efficiently converted GSA to ALA. The reaction was stimulated by the addition of pyridoxal 5' -phosphate or pyridoxamine 5' -phosphate and inhibited by gabaculine or aminooxyacetic acid. The molecular mass of the purified GSA aminotransferase under denaturing conditions was 40,000 Da, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has apparent native molecular mass of approximately 80,000 Da, as determined by rate zonal sedimentation on glycerol gradients and molecular sieving through Superose 12, which indicates a homodimeric alpha2, structure of the protein.
Collapse
Affiliation(s)
- L L Ilag
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- G P O'Neill
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|