1
|
Abstract
Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity at 10q, are commonly observed in most human tumors, including prostate, breast, and kidney cancers. The ANXA7-GTPase is a tumor suppressor, which is frequently inactivated by genomic alterations at 10q21. In the last few years, considerable amounts of data have accumulated describing inactivation of ANXA7-GTPase in a variety of human malignancies and demonstrating the tumor suppressor potential of ANXA7-GTPase. ANXA7-GTPase contains a calcium binding domain that classifies it as a member of the annexin family. The cancer-specific expression of ANXA7-GTPase, coupled with its importance in regulating cell death, cell motility, and invasion, makes it a useful diagnostic marker of cancer and a potential target for cancer treatment. Recently, emerging evidence suggests that ANXA7-GTPase is a critical factor associated with the metastatic state of several cancers and can be used as a risk biomarker for HER2 negative breast cancer patients. Cross talk between ANXA7, PTEN, and EGFR leads to constitutive activation of PI3K-AKT signaling, a central pathway of tumor cell survival and proliferation. This review focuses on the recent progress in understanding the tumor suppressor functions of ANXA7-GTPase emphasizing the role of this gene in Ca2+ metabolism, and exploring opportunities for function as an example of a calcium binding GTPase acting as a tumor suppressor and opportunities for ANXA7-GTPase gene cancer therapy.
Collapse
|
2
|
Lu D, Shang G, Zhang H, Yu Q, Cong X, Yuan J, He F, Zhu C, Zhao Y, Yin K, Chen Y, Hu J, Zhang X, Yuan Z, Xu S, Hu W, Cang H, Gu L. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex fromPseudomonas aeruginosareveal a calcium-dependent membrane-binding mechanism. Mol Microbiol 2014; 92:1092-112. [DOI: 10.1111/mmi.12616] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Defen Lu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
- The Liver Centre of Fujian Province; MengChao Hepatobiliary Hospital of Fujian Medical University; Fuzhou 350025 Fujian China
| | - Guijun Shang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Heqiao Zhang
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
- School of Life Sciences; Tsinghua University; Beijing 100084 China
| | - Qian Yu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Xiaoyan Cong
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Jupeng Yuan
- Institute of Medical Genetics; Shandong University School of Medicine; Jinan 250012 Shandong China
| | - Fengjuan He
- Institute of Medical Genetics; Shandong University School of Medicine; Jinan 250012 Shandong China
| | - Chunyuan Zhu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Yanyu Zhao
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Kun Yin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Yuanyuan Chen
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
| | - Junqiang Hu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Xiaodan Zhang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Wei Hu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| | - Huaixing Cang
- Institute of Biophysics; Chinese Academy of Sciences; Beijing 100101 China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 Shandong China
| |
Collapse
|
3
|
Meers P, Company TL, Princeton NJ. Liposome-based studies of human neutrophil degranulation and protein-lipid interactions in membrane fusion. J Liposome Res 2008. [DOI: 10.3109/08982109509012680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Ozerova SG, Minin AA. A study of proteins of annexin group in early fish development. IV. Identification of calcium-binding proteins in zebrafish egg by mass spectrometry. Russ J Dev Biol 2008. [DOI: 10.1134/s1062360408030065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Voges D, Berendes R, Demange P, Benz J, Göttig P, Liemann S, Huber R, Burger A. Structure and function of the ion channel model system annexin V. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 71:209-39. [PMID: 8644490 DOI: 10.1002/9780470123171.ch4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D Voges
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Stephenson SA, Stephens CM, Maclean DJ, Manners JM. CgDN24: A gene involved in hyphal development in the fungal phytopathogen Colletotrichum gloeosporioides. Microbiol Res 2005; 160:389-97. [PMID: 16255144 DOI: 10.1016/j.micres.2005.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A cDNA corresponding to a transcript induced in culture by N starvation, was identified in Colletotrichum gloeosporioides by a differential hybridisation strategy. The cDNA comprised 905 bp and predicted a 215 aa protein; the gene encoding the cDNA was termed CgDN24. No function for CgDN24 could be predicted by database homology searches using the cDNA sequence and no homologues were found in the sequenced fungal genomes. Transcripts of CgDN24 were detected in infected leaves of Stylosanthes guianensis at stages of infection that corresponded with symptom development. The CgDN24 gene was disrupted by homologous recombination and this led to reduced radial growth rates and the production of hyphae with a hyperbranching phenotype. Normal sporulation was observed, and following conidial inoculation of S. guianensis, normal disease development was obtained. These results demonstrate that CgDN24 is necessary for normal hyphal development in axenic culture but dispensable for phytopathogenicity.
Collapse
MESH Headings
- Colletotrichum/genetics
- Colletotrichum/growth & development
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- Gene Dosage
- Genes, Fungal
- Hyphae/genetics
- Hyphae/growth & development
- Molecular Sequence Data
- Morphogenesis/genetics
- Morphogenesis/physiology
- Mutagenesis, Insertional
- Open Reading Frames
- Plant Leaves/microbiology
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Sequence Analysis, DNA
- Sequence Homology
- Spores, Fungal
Collapse
Affiliation(s)
- Sally-Anne Stephenson
- Cooperative Research Centre for Tropical Plant Pathology, The University of Queensland, Brisbane 4072, Australia
| | | | | | | |
Collapse
|
7
|
Naidu DG, Raha A, Chen XL, Spitzer AR, Chander A. Partial truncation of the NH2-terminus affects physical characteristics and membrane binding, aggregation, and fusion properties of annexin A7. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:152-68. [PMID: 15904872 DOI: 10.1016/j.bbalip.2005.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/21/2005] [Accepted: 03/28/2005] [Indexed: 11/22/2022]
Abstract
Annexin A7 (synexin, annexin VII), a member of the annexin family of proteins, causes aggregation of membranes in a Ca2+-dependent manner and has been suggested to promote membrane fusion during exocytosis of lung surfactant, catecholamines, and insulin. Although annexin A7 (A7) was one of the first annexin proteins described, limited studies of its physical characteristics or of structural domains affecting any of its proposed functions have been conducted. As postulated for other annexin proteins, the unique NH2-domain possibly determines the functional specificity of A7. Therefore, we evaluated the effects of segmental deletions in the NH2-terminus on several characteristics associated with the COOH-terminus of A7. The COOH-terminus contains the only tryptophan residue, and all potential trypsin sites, and the Ca2+ and phospholipid binding sites. Recombinant rat A7 and its deletion mutants were expressed using constructs based on the cDNA sequence obtained by screening a rat lung cDNA library. Ca2+ increased the tryptophan fluorescence of A7 and caused a small red shift in the emission maximum (lambdamax), which was further increased in presence of phospholipid vesicles (PLV). NH2-terminal deletions of 29, 51, and 109 residues affected the peak width of fluorescence and lambdamax, surface-exposure of tryptophan residue, and caused a smaller Ca2+-dependent red shift in lambdamax of membrane-bound protein in comparison to A7. Limited proteolysis with trypsin showed that Ca2+ increased the proteolysis of all proteins, but the deletions also affected the pattern of proteolysis. The presence of PLV protected against Ca2+-dependent increase in proteolysis of all proteins. The deletion of first 29 residues also caused decreased membrane binding, aggregation, and fusion, when compared with A7. Collectively, these results suggest that specific NH2-terminus domains can alter those properties of A7 that are normally associated with the COOH-terminus. We speculate that interactions between the NH2- and COOH-termini are required for membrane binding, and aggregation and fusion properties of annexin A7.
Collapse
Affiliation(s)
- Devendra G Naidu
- Department of Pediatrics, Division of Neonatology, Stony Brook University School of Medicine, Health Sciences Center, T-11, Room 051, Stony Brook, NY 11794-8111, USA
| | | | | | | | | |
Collapse
|
8
|
Srivastava M, Atwater I, Glasman M, Leighton X, Goping G, Caohuy H, Miller G, Pichel J, Westphal H, Mears D, Rojas E, Pollard HB. Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(+/-) knockout mouse. Proc Natl Acad Sci U S A 1999; 96:13783-8. [PMID: 10570150 PMCID: PMC24142 DOI: 10.1073/pnas.96.24.13783] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The mammalian anx7 gene codes for a Ca(2+)-activated GTPase, which supports Ca(2+)/GTP-dependent secretion events and Ca(2+) channel activities in vitro and in vivo. To test whether anx7 might be involved in Ca(2+) signaling in secreting pancreatic beta cells, we knocked out the anx7 gene in the mouse and tested the insulin-secretory properties of the beta cells. The nullizygous anx7 (-/-) phenotype is lethal at embryonic day 10 because of cerebral hemorrhage. However, the heterozygous anx7 (+/-) mouse, although expressing only low levels of ANX7 protein, is viable and fertile. The anx7 (+/-) phenotype is associated with a substantial defect in insulin secretion, although the insulin content of the islets, is 8- to 10-fold higher in the mutants than in the normal littermate control. We infer from electrophysiological studies that both glucose-stimulated secretion and voltage-dependent Ca(2+) channel functions are normal. However, electrooptical recordings indicate that the (+/-) mutation has caused a change in the ability of inositol 1,4,5-trisphosphate (IP(3))-generating agonists to release intracellular calcium. The principle molecular consequence of lower anx7 expression is a profound reduction in IP(3) receptor expression and function in pancreatic islets. The profound increase in islets, beta cell number, and size may be a means of compensating for less efficient insulin secretion by individual defective pancreatic beta cells. This is a direct demonstration of a connection between glucose-activated insulin secretion and Ca(2+) signaling through IP(3)-sensitive Ca(2+) stores.
Collapse
Affiliation(s)
- M Srivastava
- Department of Anatomy, Institute for Molecular Medicine, Uniformed Services University School of Medicine, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Osterloh D, Wittbrodt J, Gerke V. Characterization and developmentally regulated expression of four annexins in the killifish medaka. DNA Cell Biol 1998; 17:835-47. [PMID: 9809745 DOI: 10.1089/dna.1998.17.835] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Annexins are Ca2+-regulated membrane binding proteins implicated in a wide range of membrane-related and signal transduction events, including the endocytosis of membrane receptors and Ca2+-regulated as well as constitutive secretion. To date, 10 unique members of this multigene family have been identified in a variety of cell types and tissues of higher vertebrates, with different members showing distinct tissue distributions in the adult organisms. To establish whether annexins also function in embryonic development, we analyzed the expression pattern during vertebrate morphogenesis using the medaka fish Oryzias latipes as a model system. From a larval medaka cDNA library, we isolated four types of clones, which were shown by sequence analysis to encode four different annexins (herein referred to as max 1-4). A comparison with known annexin sequences in the databases revealed that two medaka annexins (max 1 and 2) are highly similar in sequence to mammalian annexins V and IV, respectively, whereas the other two medaka annexins (max 3 and 4) are probably novel members of the family most closely related to mammalian annexins I and XI. Using whole-mount RNA in situ hybridization, we showed that the expression of the different medaka annexins during embryogenesis was strictly regulated at both the spatial and the temporal level. High levels of max 1, 2, and 3 transcripts were present in the developing stomach, gut, liver, air-bladder, and rectum during somitogenesis, thus identifying the digestive tract as the prime region of annexin expression. Interestingly, two structures playing crucial roles in neuronal patterning showed a distinct expression of annexins. The mesendoderm of the anterior prechordal plate of neurula-stage embryos was a site of max 4 transcription, and the floor plate of somitogenesis-stage embryos showed expression of max 2 and 3 to differing rostrocaudal extends along the brain and spinal cord. These results suggest specific functions of different annexins during vertebrate morphogenesis.
Collapse
Affiliation(s)
- D Osterloh
- Institute for Medical Biochemistry, ZMBE, University of Münster, Germany
| | | | | |
Collapse
|
10
|
Creutz CE, Tomsig JL, Snyder SL, Gautier MC, Skouri F, Beisson J, Cohen J. The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans. J Biol Chem 1998; 273:1393-402. [PMID: 9430674 DOI: 10.1074/jbc.273.3.1393] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In an attempt to identify proteins that might underlie membrane trafficking processes in ciliates, calcium-dependent, phospholipid-binding proteins were isolated from extracts of Paramecium tetraurelia. The major protein obtained, named copine, had a mass of 55 kDa, bound phosphatidylserine but not phosphatidylcholine at micromolar levels of calcium but not magnesium, and promoted lipid vesicle aggregation. The sequence of a 920-base pair partial cDNA revealed that copine is a novel protein that contains a C2 domain likely to be responsible for its membrane active properties. Paramecium was found to have two closely related copine genes, CPN1 and CPN2. Current sequence data bases indicate the presence of multiple copine homologs in green plants, nematodes, and humans. The full-length sequences reveal that copines consist of two C2 domains at the N terminus followed by a domain similar to the A domain that mediates interactions between integrins and extracellular ligands. A human homolog, copine I, was expressed in bacteria as a fusion protein with glutathione S-transferase. This recombinant protein exhibited calcium-dependent phospholipid binding properties similar to those of Paramecium copine. An antiserum raised against a fragment of human copine I was used to identify chromobindin 17, a secretory vesicle-binding protein, as a copine. This association with secretory vesicles, as well the general ability of copines to bind phospholipid bilayers in a calcium-dependent manner, suggests that these proteins may function in membrane trafficking.
Collapse
Affiliation(s)
- C E Creutz
- Department of Pharmacology, University of Virginia, Charlottesville 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Liemann S, Bringemeier I, Benz J, Göttig P, Hofmann A, Huber R, Noegel AA, Jacob U. Crystal structure of the C-terminal tetrad repeat from synexin (annexin VII) of Dictyostelium discoideum. J Mol Biol 1997; 270:79-88. [PMID: 9231902 DOI: 10.1006/jmbi.1997.1091] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Synexin (annexin VII) is a cytosolic Ca(2+)-binding protein that promotes membrane fusion and forms voltage-regulated ion channels in artificial and natural membranes. The crystal structure of the C-terminal tetrad repeat from recombinant synexin (annexin VII) of Dictyostelium discoideum was solved to 2.45 A resolution. The protein crystallized in a dimeric form with two molecules joined face-to-face by their convex sides. Mainly hydrogen bonds and van der Waals contacts are involved in dimer formation, while not Ca2+ is bound to the conserved Ca(2+)-binding sites. The truncated N terminus is folded into a short antiparallel beta-sheet, from which the side-chain of Tyr111 penetrates sideways into the central, hydrophilic pore and may directly affect the ion channel activity. In order to investigate the structure of the missing N-terminal domain, we synthesized a 37-membered peptide of the N-terminal tail, (GYPPQQ)6G. CD and NMR studies showed a random coil conformation of the peptide in solution, suggesting for the synexin N terminus the lack of a well-ordered, three-dimensional fold.
Collapse
Affiliation(s)
- S Liemann
- Abteilungen für Strukturforschung, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Okafuji T, Abe F, Maeda Y. Antisense-mediated regulation of Annexin VII gene expression during the transition from growth to differentiation in Dictyostelium discoideum. Gene 1997; 189:49-56. [PMID: 9161411 DOI: 10.1016/s0378-1119(96)00832-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Annexin VII is believed to be required for proper Ca(2+)-homeostasis in Dictyostelium discoideum cells. As was previously reported, the expression of Annexin VII gene increased during the transition of D. discoideum Ax-2 cells from growth to differentiation. We have casually cloned an interesting gene, Quit3, by the differential plaque hybridization. Quit3 had no coding region, and was expressed more predominantly in the growth phase than in the differentiation phase. Unexpectedly, this gene was found to encode the complementary sequence of Annexin VII. Therefore, it is most likely that the Quit3 mRNA may regulate the Annexin VII synthesis by the natural antisense transcript via an antisense RNA-RNA interaction, thus resulting in striking increase of Annexin VII production in the phase-shift of cells from growth to differentiation. Since Annexin VII is known to be coded for by a single gene in Dictyostelium, the antisense RNA seemed to be encoded in the same genetic locus as the Annexin VII mRNA.
Collapse
Affiliation(s)
- T Okafuji
- Biological Institute, Graduate School of Science, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
13
|
Knochel M, Kissmehl R, Wissmann JD, Momayezi M, Hentschel J, Plattner H, Burgoyne RD. Annexins in Paramecium cells. Involvement in site-specific positioning of secretory organelles. Histochem Cell Biol 1996; 105:269-81. [PMID: 9072184 DOI: 10.1007/bf01463930] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Annexins were isolated from Paramecium cell homogenates by standard ethylene glycol tetraacetic acid (EGTA) extraction and 100 000-g centrifugation. Two different antibodies (Abs) against synthetic peptides were used, Call-15 and B15, which in mammalian cells recognize a sequence of annexin II or a common sequence occurring in several annexins (except for annexin II), respectively. With anti-Call-15 Abs, western blots from EGTA extracts showed strongly reactive bands of 44.5 and 46 kDa and of higher values. Some of these bands bound to the 100 000-g pellet fraction when Ca(2+) was added. Immuno- and affinity labelling revealed selective, Ca(2+)-dependent labelling of the cell cortex, with enrichment around trichocyst docking sites (facing subplasmalemmal Ca(2+) stores). Cortical fluorescence labelling decreased in wild-type (7S) cells when trichocyst ghosts were detached after synchronous exocytosis. Similarly, cortical labelling was reduced when intact trichocysts were detached from the cell surface of non-discharge mutant cells (nd9-28 degrees C, showing identical bands on blots), which then contained numerous heavily labelled phagolysosomes. This strongly suggests annexin downregulation. All together, the dynamic labelling of cortical structures we observed strongly supports involvement of calpactin-like annexins in trichocyst docking. Anti-B15 Abs recognized a band of 51 kDa and some of higher values. These Abs selectively labelled the outlines of the cytoproct, the site of spent phagolysosome exocytosis. In conclusion, our data indicate involvement of specific sets of annexins in site-specific positioning and attachment of widely different secretory organelles at the cell surface in Paramecium cells.
Collapse
Affiliation(s)
- M Knochel
- Faculty of Biology, University of Konstanz, Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Döring V, Veretout F, Albrecht R, Mühlbauer B, Schlatterer C, Schleicher M, Noegel AA. The in vivo role of annexin VII (synexin): characterization of an annexin VII-deficient Dictyostelium mutant indicates an involvement in Ca(2+)-regulated processes. J Cell Sci 1995; 108 ( Pt 5):2065-76. [PMID: 7657724 DOI: 10.1242/jcs.108.5.2065] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum cells harbor two annexin VII isoforms of 47 and 51 kDa which are present throughout development. In immunofluorescence and cell fractionation studies annexin VII was found in the cytoplasm and on the plasma membrane. In gene disruption mutants lacking both annexin VII isoforms growth, pinocytosis, phagocytosis, chemotaxis and motility were not significantly impaired under routine laboratory conditions, and the cells were able to complete the developmental cycle on bacterial plates. On non-nutrient agar plates development was delayed by three to four hours and a significant number of aggregates was no longer able to form fruiting bodies. Exocytosis as determined by measuring extracellular cAMP phosphodiesterase, alpha-fucosidase and alpha-mannosidase activity was unaltered, the total amounts of these enzymes were however lower in the mutant than in the wild type. The mutant cells were markedly impaired when they were exposed to low Ca2+ concentrations by adding EGTA to the nutrient medium. Under these conditions growth, motility and chemotaxis were severely affected. The Ca2+ concentrations were similar in mutant and wild-type cells both under normal and Ca2+ limiting conditions; however, the distribution was altered under low Ca2+ conditions in SYN-cells. The data suggest that annexin VII is not required for membrane fusion events but rather contributes to proper Ca2+ homeostasis in the cell.
Collapse
Affiliation(s)
- V Döring
- Max-Planck-Institut für Biochemie, Martinsried, FRG
| | | | | | | | | | | | | |
Collapse
|
15
|
Bonfils C, Greenwood M, Tsang A. Expression and characterization of a Dictyostelium discoideum annexin. Mol Cell Biochem 1994; 139:159-66. [PMID: 7862106 DOI: 10.1007/bf01081739] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The annexins are calcium-dependent phospholipid-binding proteins. Recently the gene encoding the homologue of a mammalian annexin has been identified in Dictyostelium discoideum. Analysis of cDNA and genomic clones showed that the transcript for Dictyostelium annexin is alternatively spliced (Greenwood, M. and Tsang, A. (1991) Biochim. Biophys. Acta 1088, 429-432; Döring, V., Schleicher, M and Noegel, A. (1991) J. Biol. Chem. 266, 17509-17515). Here, we showed that the Dictyostelium annexin DNA hybridized to two populations of transcripts. We used a recombinant annexin polypeptide to raise polyclonal antibody. Immunoblot analysis revealed that the antibody recognized two polypeptides of 48 kDa and 54 kDa in developing D. discoideum cells. The molecular sizes of these polypeptides correspond well with the expected sizes of the alternatively spliced products. The 48-kDa and 54-kDa polypeptides were purified by isoelectric focusing to more than 70% homogeneity. The partially purified proteins were found to associate with phosphatidylserine vesicles in a calcium-dependent manner. These results suggest that the 48- and 54-kDa polypeptides are the products of alternative splicing of the annexin transcripts. During development the two polypeptides accumulate at different rates to about 60 times the level detected in vegetative cells. On the other hand, RNA blot analysis showed that the level of the annexin transcripts in multicellular aggregates was about 5 times that of vegetative cells.
Collapse
Affiliation(s)
- C Bonfils
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
16
|
Ivanenkov VV, Weber K, Gerke V. The expression of different annexins in the fish embryo is developmentally regulated. FEBS Lett 1994; 352:227-30. [PMID: 7925978 DOI: 10.1016/0014-5793(94)00956-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The expression of annexins, a family of Ca2+/phospholipid-binding proteins, was analyzed by biochemical and immunological criteria in the fish Misgurnus fossilis (loach), which is a good model system to study embryonic events. Five different annexins (loach annexins A to E) are present as a maternal pool in the unfertilized eggs. Only annexin E is newly synthesized in the early embryo. Its synthesis, already apparent at mid-blastula, decreases in later stages when two additional annexins (F and G) appear. They are present among the newly synthesized polypeptides of mid-gastrula and later embryonic stages and are also found in loach larvae. The developmentally controlled expression of several annexins indicates a specific role of these proteins at certain embryonic stages.
Collapse
Affiliation(s)
- V V Ivanenkov
- Max Planck Institute for Biophysical Chemistry, Department of Biochemistry, Goettingen, Germany
| | | | | |
Collapse
|
17
|
Raju U, Nunez-Regueiro M, Cook R, Kaetzel MA, Yeung SC, Eskin A. Identification of an annexin-like protein and its possible role in the Aplysia eye circadian system. J Neurochem 1993; 61:1236-45. [PMID: 8376982 DOI: 10.1111/j.1471-4159.1993.tb13614.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Light and serotonin regulate the phase of the circadian rhythm of the isolated eye of Aplysia. To screen for possible protein components of the eye circadian oscillator, we identified a number of proteins whose synthesis was altered in opposite ways by light and serotonin. The cellular function of one of these proteins was investigated by obtaining a partial amino acid sequence of it and by examining its immunoreactivity. A 38-amino acid sequence was obtained from a 40-kDa (isoelectric point 5.6) protein. A greater than 60% amino acid identity existed between this sequence and sequences of a family of calcium/phospholipid-binding proteins called annexins. Furthermore, the 40-kDa protein reacted with antibodies generated against a conserved amino acid sequence of annexins and with antibodies raised against human annexin I. The identification of the 40-kDa, light- and serotonin-regulated protein as an annexin led us to hypothesize that arachidonic acid metabolism plays a role in the Aplysia eye circadian system. To test this hypothesis, we examined the ability of an inhibitor of the arachidonic acid metabolic pathway to perturb the eye rhythm. Pulse treatments of isolated eyes with a lipoxygenase inhibitor, nordihydroguaiaretic acid, phase shifted the rhythm. The phase-shifting ability of nordihydroguaiaretic acid suggests that arachidonic acid and some of its metabolites may play a role in the eye circadian system. The results of our studies raise the possibility that links may exist between the 40-kDa annexin-like protein, arachidonic acid metabolism, and the circadian oscillator.
Collapse
Affiliation(s)
- U Raju
- Department of Biochemical and Biophysical Sciences, University of Houston, TX 77204-5934
| | | | | | | | | | | |
Collapse
|
18
|
Chen JM, Sheldon A, Pincus MR. Structure-function correlations of calcium binding and calcium channel activities based on 3-dimensional models of human annexins I, II, III, V and VII. J Biomol Struct Dyn 1993; 10:1067-89. [PMID: 8395183 DOI: 10.1080/07391102.1993.10508696] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The annexins are a family of calcium-dependent phospholipid-binding proteins which share a high degree of primary sequence similarity. Using a model of the crystal structure of annexin V as a template, 3-dimensional models of human annexins I, II, III and VII were constructed by homology modeling (J. Greer, J. Mol. Biol. 153, 1027-1042, 1981; J.M. Chen, G. Lee, R.B. Murphy, R.P. Carty, P.W. Brant-Rauf, E. Friedman and M.R. Pincus, J. Biomolec. Str. Dyn. 6, 859-87, 1989) for the 316 amino acid portions corresponding to the annexin V structure published by Huber et al. (J. Mol. Biol. 223, 683-704, 1992). These methods were used to study structure-function correlations for calcium ion binding and calcium channel activity. Published experimental data are specifically shown to be consistent with the annexin models. Possible intramolecular disulfide bridges were identified in annexin I (between Cys297 and Cys316) and in annexins II and VII (between Cys115 and Cys243). Each of the annexin models have 3 postulated calcium binding sites, usually via a Gly-Xxx-Gly-Thr loop with an acidic Glu or Asp residue 42 positions C-terminal to the first Gly. Despite a nonconserved binding site sequence, annexins I and II are able to coordinate calcium in domain 3 since the residue in the second loop position is directed toward the solvent away from the binding pocket. This finding also suggests a mechanism for a conformational change upon binding calcium. Highly conserved Arg and acidic sidechains stabilize the channel pore structure; annexin channels probably exist in a closed state normally. Arg271 may be involved in channel opening upon activation: basic residue 254 can stabilize Glu112, which allows Arg271 to interact with residue 95 instead of Glu112. Residue 267, found on the convex surface at the pore opening, may also be important in modifying channel activity.
Collapse
Affiliation(s)
- J M Chen
- Department of Chemistry, OsteoArthritis Sciences, Inc., Cambridge, MA 02139
| | | | | |
Collapse
|
19
|
McKanna JA. Optic chiasm and infundibular decussation sites in the developing rat diencephalon are defined by glial raphes expressing p35 (lipocortin 1, annexin I). Dev Dyn 1992; 195:75-86. [PMID: 1297458 DOI: 10.1002/aja.1001950202] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
p35, a Ca(++)-phospholipid-binding protein that serves as a substrate for the EGF receptor tyrosine kinase, is expressed by primitive glial ependymal cells to define a raphe occupying the ventral midline in the spinal cord and hindbrain of rat embryos (McKanna and Cohen, Science 243:1477-1479, 1989). p35 appears transiently in the median one-third (80 microns) of the floor plate at precisely the time and place where axons cross to form the ventral commissure. We postulated that if p35 is involved with commissure development, homologous p35 raphes might be found at decussation sites rostral to the floor plate, including the optic chiasm. The present report describes two developmentally regulated p35 raphes in the diencephalon. One raphe is present for 2-3 days at the rostral lip of the nascent infundibulum, the reported decussation site of axons running from the supraoptic nucleus to the neurohypophysis; the other raphe appears in the rostral two-thirds of the optic chiasm, the site traversed by the optic axons. p35 is never expressed in the caudal one-third of the chiasm that accommodates non-retinal axons. To the best of our knowledge, this is the first identification of a specific marker for the retinal component of the optic chiasm. Because the p35 is gone by embryonic day 18.5, it is absent during final stages of chiasm formation when axons from the temporal retina decussate. Thus, p35 also may contribute to the "barrier" perceived by fibers that remain ipsilateral. Our data suggest that the p35 raphe contributes to the midline's role in commisure morphogenesis. Putative lipocortin activities including regulating PLA2, eicosanoids, or intracellular Ca++ could be involved in altering cue specificity as decussating axon growth cones traverse the p35 compartment.
Collapse
Affiliation(s)
- J A McKanna
- Department of Cell Biology, Vanderbilt Univeristy, School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
20
|
Towle C, Treadwell B. Identification of a novel mammalian annexin. cDNA cloning, sequence analysis, and ubiquitous expression of the annexin XI gene. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42782-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Huber R, Berendes R, Burger A, Schneider M, Karshikov A, Luecke H, Römisch J, Paques E. Crystal and molecular structure of human annexin V after refinement. Implications for structure, membrane binding and ion channel formation of the annexin family of proteins. J Mol Biol 1992; 223:683-704. [PMID: 1311770 DOI: 10.1016/0022-2836(92)90984-r] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two crystal forms (P6(3) and R3) of human annexin V have been crystallographically refined at 2.3 A and 2.0 A resolution to R-values of 0.184 and 0.174, respectively, applying very tight stereochemical restraints with deviations from ideal geometry of 0.01 A and 2 degrees. The three independent molecules (2 in P6(3), 1 in R3) are similar, with deviations in C alpha positions of 0.6 A. The polypeptide chain of 320 amino acid residues is folded into a planar cyclic arrangement of four repeats. The repeats have similar structures of five alpha-helical segments wound into a right-handed compact superhelix. Three calcium ion sites in repeats I, II and IV and two lanthanum ion sites in repeat I have been found in the R3 crystals. They are located at the convex face of the molecule opposite the N terminus. Repeat III has a different conformation at this site and no calcium bound. The calcium sites are similar to the phospholipase A2 calcium-binding site, suggesting analogy also in phospholipid interaction. The center of the molecule is formed by a channel of polar charged residues, which also harbors a chain of ordered water molecules conserved in the different crystal forms. Comparison with amino acid sequences of other annexins shows a high degree of similarity between them. Long insertions are found only at the N termini. Most conserved are the residues forming the metal-binding sites and the polar channel. Annexins V and VII form voltage-gated calcium ion channels when bound to membranes in vitro. We suggest that annexins bind with their convex face to membranes, causing local disorder and permeability of the phospholipid bilayers. Annexins are Janus-faced proteins that face phospholipid and water and mediate calcium transport.
Collapse
Affiliation(s)
- R Huber
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Döring V, Schleicher M, Noegel A. Dictyostelium annexin VII (synexin). cDNA sequence and isolation of a gene disruption mutant. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)47401-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|