1
|
Clone and functional analysis of Seryl-tRNA synthetase and Tyrosyl-tRNA synthetase from silkworm, Bombyx mori. Sci Rep 2017; 7:41563. [PMID: 28134300 PMCID: PMC5278501 DOI: 10.1038/srep41563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022] Open
Abstract
Aminoacyl-tRNA synthetases are the key enzymes for protein synthesis. Glycine, alanine, serine and tyrosine are the major amino acids composing fibroin of silkworm. Among them, the genes of alanyl-tRNA synthetase (AlaRS) and glycyl-tRNA synthetase (GlyRS) have been cloned. In this study, the seryl-tRNA synthetase (SerRS) and tyrosyl-tRNA synthetase (TyrRS) genes from silkworm were cloned. Their full length are 1709 bp and 1868 bp and contain open reading frame (ORF) of 1485 bp and 1575 bp, respectively. RT-PCR examination showed that the transcription levels of SerRS, TyrRS, AlaRS and GlyRS are significantly higher in silk gland than in other tissues. In addition, their transcription levels are much higher in middle and posterior silk gland than in anterior silk gland. Moreover, treatment of silkworms with phoxim, an inhibitor of silk protein synthesis, but not TiO2 NP, an enhancer of silk protein synthesis, significantly reduced the transcription levels of aaRS and content of free amino acids in posterior silk gland, therefore affecting silk protein synthesis, which may be the mechanism of phoxim-silking disorders. Furthermore, low concentration of TiO2 NPs showed no effect on the transcription of aaRS and content of free amino acids, suggesting that TiO2 NPs promotes silk protein synthesis possibly by increasing the activity of fibroin synthase in silkworm.
Collapse
|
2
|
Chang CY, Chien CI, Chang CP, Lin BC, Wang CC. A WHEP Domain Regulates the Dynamic Structure and Activity of Caenorhabditis elegans Glycyl-tRNA Synthetase. J Biol Chem 2016; 291:16567-75. [PMID: 27298321 DOI: 10.1074/jbc.m116.730812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Indexed: 11/06/2022] Open
Abstract
WHEP domains exist in certain eukaryotic aminoacyl-tRNA synthetases and play roles in tRNA or protein binding. We present evidence herein that cytoplasmic and mitochondrial forms of Caenorhabditis elegans glycyl-tRNA synthetase (CeGlyRS) are encoded by the same gene (CeGRS1) through alternative initiation of translation. The cytoplasmic form possessed an N-terminal WHEP domain, whereas its mitochondrial isoform possessed an extra N-terminal sequence consisting of an mitochondrial targeting signal and an appended domain. Cross-species complementation assays showed that CeGRS1 effectively rescued the cytoplasmic and mitochondrial defects of a yeast GRS1 knock-out strain. Although both forms of CeGlyRS efficiently charged the cytoplasmic tRNAs(Gly) of C. elegans, the mitochondrial form was much more efficient than its cytoplasmic counterpart in charging the mitochondrial tRNA(Gly) isoacceptor, which carries a defective TψC hairpin. Despite the WHEP domain per se lacking tRNA binding activity, deletion of this domain reduced the catalytic efficiency of the enzyme. Most interestingly, the deletion mutant possessed a higher thermal stability and a somewhat lower structural flexibility. Our study suggests a role for the WHEP domain as a regulator of the dynamic structure and activity of the enzyme.
Collapse
Affiliation(s)
- Chih-Yao Chang
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chin-I Chien
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chia-Pei Chang
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Bo-Chun Lin
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Chien-Chia Wang
- From the Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
3
|
Vanderwaltozyma polyspora possesses two glycyl-tRNA synthetase genes: one constitutive and one inducible. Fungal Genet Biol 2015; 76:47-56. [PMID: 25683380 DOI: 10.1016/j.fgb.2015.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 11/22/2022]
Abstract
Aminoacyl-tRNA synthetases are housekeeping enzymes essential for protein synthesis. We herein present evidence that the yeast Vanderwaltozyma polyspora possesses two paralogous glycyl-tRNA synthetase (GlyRS) genes-GRS1 and GRS2. Paradoxically, GRS1 provided functions in both the cytoplasm and mitochondria, while GRS2 was essentially silent under normal growth conditions. Expression of GRS2 could be activated by stresses such as high pH or ethanol and most effectively by high temperature. The expressed GlyRS2 protein was exclusively found in the cytoplasm and more stable under heat-shock conditions (37°C) than under normal growth conditions (30°C) in vivo. In addition, GRS2 effectively rescued the cytoplasmic defect of a Saccharomyces cerevisiae GRS1 knockout strain when expressed from a constitutive promoter. Moreover, the purified GlyRS2 enzyme was fairly active at both 30°C and 37°C in glycylation of yeast tRNA in vitro. However, unexpectedly, the purified GlyRS2 enzyme was practically inactive at temperature above 40°C in vitro. Our study suggests that GRS2 is an inducible gene that acts under stress conditions where GlyRS1 may be insufficient, unavailable, or rendered inactive.
Collapse
|
4
|
Gadakh B, Smaers S, Rozenski J, Froeyen M, Van Aerschot A. 5'-(N-aminoacyl)-sulfonamido-5'-deoxyadenosine: attempts for a stable alternative for aminoacyl-sulfamoyl adenosines as aaRS inhibitors. Eur J Med Chem 2015; 93:227-36. [PMID: 25686591 DOI: 10.1016/j.ejmech.2015.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
Synthesis of aminoacyl-sulfamoyl adenosines (aaSAs) and their peptidyl conjugates as aminoacyl tRNA synthetase (aaRS) inhibitors remains problematic due to the low yield of the aminoacylation and the subsequent conjugation reaction causing concomitant formation of a cyclic adenosine derivative. In an effort to reduce this undesirable side reaction, we aimed to prepare the corresponding aminoacyl sulfonamide (aaSoA) analogues as more stable alternatives for aaSA derivatives. Deletion of the 5'-oxygen in aaSA analogues should render the C-5' less electrophilic and therefore improve the stability of the aminoacyl sulfamate analogues. We therefore synthesized six sulfonamides and compared their activity against the respective aaSA analogues. However, except for the aspartyl derivative, the new compounds are not able to inhibit the corresponding aaRS. Possible reasons for this loss of activity are discussed by modeling and comparison of the newly synthesized aaSoA derivatives with their parent aaSA analogues.
Collapse
Affiliation(s)
- Bharat Gadakh
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Simon Smaers
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Jef Rozenski
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Mathy Froeyen
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Arthur Van Aerschot
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
5
|
Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme. PLoS One 2014; 9:e94659. [PMID: 24743154 PMCID: PMC3990555 DOI: 10.1371/journal.pone.0094659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/18/2014] [Indexed: 12/03/2022] Open
Abstract
Two oligomeric types of glycyl-tRNA synthetase (GlyRS) are found in nature: a α2 type and a α2β2 type. The former has been identified in all three kingdoms of life and often pairs with tRNAGly that carries an A73 discriminator base, while the latter is found only in bacteria and chloroplasts and is almost always coupled with tRNAGly that contains U73. In the yeast Saccharomyces cerevisiae, a single GlyRS gene, GRS1, provides both the cytoplasmic and mitochondrial functions, and tRNAGly isoacceptors in both compartments possess A73. We showed herein that Homo sapiens and Arabidopsis thaliana cytoplasmic GlyRSs (both α2-type enzymes) can rescue both the cytoplasmic and mitochondrial defects of a yeast grs1- strain, while Escherichia coli GlyRS (a α2β2-type enzyme) and A. thaliana organellar GlyRS (a (αβ)2-type enzyme) failed to rescue either defect of the yeast mull allele. However, a head-to-tail αβ fusion of E. coli GlyRS effectively supported the mitochondrial function. Our study suggests that a α2-type eukaryotic GlyRS may be functionally substituted with a α2β2-type bacterial cognate enzyme despite their remote evolutionary relationships.
Collapse
|
6
|
An insertion peptide in yeast glycyl-tRNA synthetase facilitates both productive docking and catalysis of cognate tRNAs. Mol Cell Biol 2013; 33:3515-23. [PMID: 23816885 DOI: 10.1128/mcb.00122-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Saccharomyces cerevisiae possesses two distinct glycyl-tRNA synthetase (GlyRS) genes: GRS1 and GRS2. GRS1 is dually functional, encoding both cytoplasmic and mitochondrial activities, while GRS2 is dysfunctional and not required for growth. The protein products of these two genes, GlyRS1 and GlyRS2, are much alike but are distinguished by an insertion peptide of GlyRS1, which is absent from GlyRS2 and other eukaryotic homologues. We show that deletion or mutation of the insertion peptide modestly impaired the enzyme's catalytic efficiency in vitro (with a 2- to 3-fold increase in Km and a 5- to 8-fold decrease in kcat). Consistently, GRS2 can be conveniently converted to a functional gene via codon optimization, and the insertion peptide is dispensable for protein stability and the rescue activity of GRS1 at 30°C in vivo. A phylogenetic analysis further showed that GRS1 and GRS2 are paralogues that arose from a gene duplication event relatively recently, with GRS1 being the predecessor. These results indicate that GlyRS2 is an active enzyme essentially resembling the insertion peptide-deleted form of GlyRS1. Our study suggests that the insertion peptide represents a novel auxiliary domain, which facilitates both productive docking and catalysis of cognate tRNAs.
Collapse
|
7
|
Tan K, Zhou M, Zhang R, Anderson WF, Joachimiak A. The crystal structures of the α-subunit of the α(2)β (2) tetrameric Glycyl-tRNA synthetase. ACTA ACUST UNITED AC 2012; 13:233-9. [PMID: 23054484 DOI: 10.1007/s10969-012-9142-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/11/2012] [Indexed: 11/25/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) are ligases (EC.6.1.1.-) that catalyze the acylation of amino acids to their cognate tRNAs in the process of translating genetic information from mRNA to protein. Their amino acid and tRNA specificity are crucial for correctly translating the genetic code. Glycine is the smallest amino acid and the glycyl-tRNA synthetase (GlyRS) belongs to Class II AARSs. The enzyme is unusual because it can assume different quaternary structures. In eukaryotes, archaebacteria and some bacteria, it forms an α(2) homodimer. In some bacteria, GlyRS is an α(2)β(2) heterotetramer and shows a distant similarity to α(2) GlyRSs. The human pathogen eubacterium Campylobacter jejuni GlyRS (CjGlyRS) is an α(2)β(2) heterotetramer and is similar to Escherichia coli GlyRS; both are members of Class IIc AARSs. The two-step aminoacylation reaction of tetrameric GlyRSs requires the involvement of both α- and β-subunits. At present, the structure of the GlyRS α(2)β(2) class and the details of the enzymatic mechanism of this enzyme remain unknown. Here we report the crystal structures of the catalytic α-subunit of CjGlyRS and its complexes with ATP, and ATP and glycine. These structures provide detailed information on substrate binding and show evidence for a proposed mechanism for amino acid activation and the formation of the glycyl-adenylate intermediate for Class II AARSs.
Collapse
Affiliation(s)
- Kemin Tan
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
8
|
Chen SJ, Wu YH, Huang HY, Wang CC. Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene. PLoS One 2012; 7:e33363. [PMID: 22438917 PMCID: PMC3306390 DOI: 10.1371/journal.pone.0033363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/13/2012] [Indexed: 12/04/2022] Open
Abstract
Aminoacyl-tRNA synthetases are a large family of housekeeping enzymes that are pivotal in protein translation and other vital cellular processes. Saccharomyces cerevisiae possesses two distinct nuclear glycyl-tRNA synthetase (GlyRS) genes, GRS1 and GRS2. GRS1 encodes both cytoplasmic and mitochondrial activities, while GRS2 is essentially silent and dispensable under normal conditions. We herein present evidence that expression of GRS2 was drastically induced upon heat shock, ethanol or hydrogen peroxide addition, and high pH, while expression of GRS1 was somewhat repressed under those conditions. In addition, GlyRS2 (the enzyme encoded by GRS2) had a higher protein stability and a lower KM value for yeast tRNAGly under heat shock conditions than under normal conditions. Moreover, GRS2 rescued the growth defect of a GRS1 knockout strain when highly expressed by a strong promoter at 37°C, but not at the optimal temperature of 30°C. These results suggest that GRS2 is actually an inducible gene that may function to rescue the activity of GRS1 under stress conditions.
Collapse
Affiliation(s)
| | | | | | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jung-li, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Oberthür D, Eichert A, Erdmann VA, Fürste JP, Betzel C, Förster C. The crystal structure of a Thermus thermophilus tRNA(Gly) acceptor stem microhelix at 1.6 Å resolution. Biochem Biophys Res Commun 2011; 404:245-249. [PMID: 21114959 DOI: 10.1016/j.bbrc.2010.11.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 05/30/2023]
Abstract
tRNAs are aminoacylated with the correct amino acid by the cognate aminoacyl-tRNA synthetase. The tRNA/synthetase systems can be divided into two classes: class I and class II. Within class I, the tRNA identity elements that enable the specificity consist of complex sequence and structure motifs, whereas in class II the identity elements are assured by few and simple determinants, which are mostly located in the tRNA acceptor stem. The tRNA(Gly)/glycyl-tRNA-synthetase (GlyRS) system is a special case regarding evolutionary aspects. There exist two different types of GlyRS, namely an archaebacterial/human type and an eubacterial type, reflecting the evolutionary divergence within this system. We previously reported the crystal structures of an Escherichia coli and of a human tRNA(Gly) acceptor stem microhelix. Here we present the crystal structure of a thermophilic tRNA(Gly) aminoacyl stem from Thermus thermophilus at 1.6Å resolution and provide insight into the RNA geometry and hydration.
Collapse
Affiliation(s)
- D Oberthür
- Institute of Biochemistry and Molecular Biology, Laboratory for Structural Biology of Infection and Inflammation, University of Hamburg, c/o DESY, 22603 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Eichert A, Perbandt M, Schreiber A, Fürste JP, Betzel C, Erdmann VA, Förster C. Crystal structure of the human tRNAGly microhelix isoacceptor G9990 at 1.18A resolution. Biochem Biophys Res Commun 2009; 380:503-507. [PMID: 19284994 DOI: 10.1016/j.bbrc.2009.01.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/19/2009] [Indexed: 05/27/2023]
Abstract
The tRNA(Gly)/Glycyl-tRNA synthetase system belongs to the so called 'class II' in which tRNA identity elements consist of relative few and simple motifs, as compared to 'class I' where the tRNA determinants are more complicated and spread over different parts of the tRNA, mostly including the anticodon. The determinants from 'class II' although, are located in the aminoacyl stem and sometimes include the discriminator base. There exist predominant structure differences for the Glycyl-tRNA-synthetases and for the tRNA(Gly) identity elements comparing eucaryotic/archaebacterial and eubacterial systems. We focus on comparative X-ray structure analysis of tRNA(Gly) acceptor stem microhelices from different organisms. Here, we report the X-ray structure of the human tRNA(Gly) microhelix isoacceptor G9990 at 1.18A resolution. Superposition experiments to another human tRNA(Gly) microhelix and a detailed comparison of the RNA hydration patterns show a great number of water molecules with identical positions in both RNAs. This is the first structure comparison of hydration layers from two isoacceptor tRNA microhelices with a naturally occurring base pair exchange.
Collapse
Affiliation(s)
- André Eichert
- Institute of Chemistry and Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Förster C, Mankowska M, Fürste J, Perbandt M, Betzel C, Erdmann V. Crystal structure of a human tRNAGly microhelix at 1.2Å resolution. Biochem Biophys Res Commun 2008; 368:996-1001. [DOI: 10.1016/j.bbrc.2008.01.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
|
12
|
Förster C, Brauer ABE, Perbandt M, Lehmann D, Fürste JP, Betzel C, Erdmann VA. Crystal structure of an Escherichia coli tRNAGly microhelix at 2.0Å resolution. Biochem Biophys Res Commun 2007; 363:621-5. [PMID: 17888869 DOI: 10.1016/j.bbrc.2007.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 09/06/2007] [Indexed: 11/22/2022]
Abstract
tRNA identity elements determine the correct aminoacylation by the cognate aminoacyl-tRNA synthetase. In class II aminoacyl tRNA synthetase systems, tRNA specificity is assured by rather few and simple recognition elements, mostly located in the acceptor stem of the tRNA. Here we present the crystal structure of an Escherichia coli tRNA(Gly) aminoacyl stem microhelix at 2.0 A resolution. The tRNA(Gly) microhelix crystallizes in the space group P3(2)21 with the cell constants a=b=35.35 A, c=130.82 A, gamma=120 degrees . The helical parameters, solvent molecules and a potential magnesium binding site are discussed.
Collapse
Affiliation(s)
- C Förster
- Institute of Chemistry and Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Das A, Boldogh I, Lee JW, Harrigan JA, Hegde ML, Piotrowski J, de Souza Pinto N, Ramos W, Greenberg MM, Hazra TK, Mitra S, Bohr VA. The human Werner syndrome protein stimulates repair of oxidative DNA base damage by the DNA glycosylase NEIL1. J Biol Chem 2007; 282:26591-602. [PMID: 17611195 DOI: 10.1074/jbc.m703343200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian DNA glycosylase, NEIL1, specific for repair of oxidatively damaged bases in the genome via the base excision repair pathway, is activated by reactive oxygen species and prevents toxicity due to radiation. We show here that the Werner syndrome protein (WRN), a member of the RecQ family of DNA helicases, associates with NEIL1 in the early damage-sensing step of base excision repair. WRN stimulates NEIL1 in excision of oxidative lesions from bubble DNA substrates. The binary interaction between NEIL1 and WRN (K(D) = 60 nM) involves C-terminal residues 288-349 of NEIL1 and the RecQ C-terminal (RQC) region of WRN, and is independent of the helicase activity WRN. Exposure to oxidative stress enhances the NEIL-WRN association concomitant with their strong nuclear co-localization. WRN-depleted cells accumulate some prototypical oxidized bases (e.g. 8-oxoguanine, FapyG, and FapyA) indicating a physiological function of WRN in oxidative damage repair in mammalian genomes. Interestingly, WRN deficiency does not have an additive effect on in vivo damage accumulation in NEIL1 knockdown cells suggesting that WRN participates in the same repair pathway as NEIL1.
Collapse
Affiliation(s)
- Aditi Das
- Department of Biochemistry and Molecular Biology and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Das A, Hazra TK, Boldogh I, Mitra S, Bhakat KK. Induction of the human oxidized base-specific DNA glycosylase NEIL1 by reactive oxygen species. J Biol Chem 2005; 280:35272-80. [PMID: 16118226 DOI: 10.1074/jbc.m505526200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NEIL1, a mammalian DNA glycosylase and ortholog of Escherichia coli Nei/Fpg, is involved in the repair of oxidatively damaged bases in mammalian cells. Exposure of HCT116 human colon carcinoma cells to reactive oxygen species, generated by glucose oxidase (GO), enhanced the levels of NEIL1 mRNA and polypeptide by 2-4-fold by 6 h after GO treatment. A similar oxidative stress-induced increase in human NEIL1 (hNEIL1) promoter-dependent luciferase expression in HCT116 cells indicates that reactive oxygen species activates NEIL1 transcription. The transcriptional start site of hNEIL1 was mapped, and the upstream promoter sequence was characterized via luciferase reporter assay. Two identical CRE/AP-1-binding sites were identified in the promoter that binds transcription factors c-Jun and CREB/ATF2. This binding was significantly enhanced in extracts of cells treated with GO. Furthermore, a simultaneous increase in the level of phosphorylated c-Jun suggests its involvement in up-regulating the NEIL1 promoter. Oxidative stress-induced activation of NEIL1 appears to be involved in the feedback regulation of cellular repair activity needed to handle an increase in the level of oxidative base damage.
Collapse
Affiliation(s)
- Aditi Das
- Sealy Center for Molecular Science and Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555, USA
| | | | | | | | | |
Collapse
|
15
|
Turner RJ, Lovato M, Schimmel P. One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J Biol Chem 2000; 275:27681-8. [PMID: 10874035 DOI: 10.1074/jbc.m003416200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, two genes (GRS1 and GRS2) encode glycyl-tRNA synthetase (GlyRS1 and GlyRS2, respectively). 59% of the sequence of GlyRS2 is identical to that of GlyRS1. Others have proposed that GRS1 and GRS2 encode the cytoplasmic and mitochondrial enzymes, respectively. In this work, we show that GRS1 encodes both functions, whereas GRS2 is dispensable. In addition, both cytoplasmic and mitochondrial phenotypes of the knockout allele of GRS1 in S. cerevisiae are complemented by the expression of the only known gene for glycyl-tRNA synthetase in Schizosaccharomyces pombe. Thus, a single gene for glycyl-tRNA synthetase likely encodes both cytoplasmic and mitochondrial activities in most or all yeast. Phylogenetic analysis shows that GlyRS2 is a predecessor of all yeast GlyRS homologues. Thus, GRS1 appears to be the result of a duplication of GRS2, which itself is pseudogene-like.
Collapse
Affiliation(s)
- R J Turner
- Skaggs Institute for Chemical Biology and Departments of Molecular Biology and Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
16
|
Arnez JG, Dock-Bregeon AC, Moras D. Glycyl-tRNA synthetase uses a negatively charged pit for specific recognition and activation of glycine. J Mol Biol 1999; 286:1449-59. [PMID: 10064708 DOI: 10.1006/jmbi.1999.2562] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The crystal structures of glycyl-tRNA synthetase (GlyRS) from Thermus thermophilus, a homodimeric class II enzyme, were determined in the enzyme-substrate and enzyme-product states corresponding to the first step of aminoacylation. GlyRS was cocrystallized with glycine and ATP, which were transformed by the enzyme into glycyl-adenylate and thus gave the enzyme-product complex. To trap the enzyme-substrate complex, the enzyme was combined with the glycine analog ethanolamine and ATP. The ligands are bound in fixed orientations in the substrate-binding pocket of the N-terminal active site domain, which contains the classical class II aminoacyl-tRNA synthetase (aaRS) fold. Since glycine does not possess a side-chain, much of the specificity of the enzyme is directed toward excluding any additional atoms beyond the alpha-carbon atom. Several carboxylate residues of GlyRS line the glycine binding pocket; two of them interact directly with the alpha-ammonium group. In addition, the enzyme utilizes the acidic character of the pro-L alpha-hydrogen atom by contacting it via a glutamate carboxylic oxygen atom. A guanidino eta-nitrogen atom of the class II aaRS-conserved motif 2 arginine interacts with the substrate carbonyl oxygen atom. These features serve to attract the small amino acid substrate into the active site and to position it in the correct orientation. GlyRS uses class II-conserved residues to interact with the ATP and the adenosine-phosphate moiety of glycyl-adenylate. On the basis of this similarity, we propose that GlyRS utilizes the same general mechanism as that employed by other class II aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- J G Arnez
- Laboratoire de Biologie Structurale, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, 67404, France
| | | | | |
Collapse
|
17
|
Rho SB, Lee JS, Jeong EJ, Kim KS, Kim YG, Kim S. A multifunctional repeated motif is present in human bifunctional tRNA synthetase. J Biol Chem 1998; 273:11267-73. [PMID: 9556618 DOI: 10.1074/jbc.273.18.11267] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tandem repeats located in the human bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) have been found in many different eukaryotic tRNA synthetases and were previously shown to interact with another distinct repeated motifs in human isoleucyl-tRNA synthetase. Nuclear magnetic resonance and differential scanning calorimetry analyses of an isolated EPRS repeat showed that it consists of a helix-turn-helix with a melting temperature of 59 degrees C. Specific interaction of the EPRS repeats with those of isoleucyl-tRNA synthetase was confirmed by in vitro binding assays and shown to have a dissociation constant of approximately 2.9 microM. The EPRS repeats also showed the binding activity to the N-terminal motif of arginyl-tRNA synthetase as well as to various nucleic acids, including tRNA. Results of the present work suggest that the region comprising the repeated motifs of EPRS provides potential sites for interactions with various biological molecules and thus plays diverse roles in the cell.
Collapse
Affiliation(s)
- S B Rho
- Department of Biology, Sung Kyun Kwan University, 300 Chunchundong, Jangangu, Suwon, Kyunggido 440-746, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Mudge SJ, Williams JH, Eyre HJ, Sutherland GR, Cowan PJ, Power DA. Complex organisation of the 5'-end of the human glycine tRNA synthetase gene. Gene 1998; 209:45-50. [PMID: 9524218 DOI: 10.1016/s0378-1119(98)00007-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycine tRNA synthetase (glyRS) catalyses the addition of the amino acid glycine to its cognate tRNA molecules. In the silk moth worm Bombyx mori, this gene is subject to complex transcriptional regulation because of the predominance of glycine in silk. In vertebrates, glycine is a major constituent of collagen but there have been no studies of glyRS regulation. In this study we have isolated and mapped a genomic clone containing the 5'-end of glyRS. Primer extension studies identified only one transcriptional start point (TSP) in three different cell lines. Expression of the transcript identified may be regulated translationally because it contains five potential initiation codons, three of which are in good context for initiation. The most 3' of the potential initiation codons has previously been predicted to be the initiating codon for cytoplasmic glyRS. Two of the upstream codons are in-frame with this codon, and both are predicted to extend the N-terminus of glyRS to include a mitochondrial targeting sequence. Sequencing of genomic DNA surrounding the TSP showed features common to the promoters of housekeeping genes, as well as a canonical TATA box at the unusual position of +9. Surprisingly, promoter activity in vitro was not specified by a 1.9 kb genomic fragment containing the TSP and TATA box, but by a contiguous 0.4 kb fragment immediately downstream. These studies suggest that the transcription of glyRS from a single start point requires downstream promoter elements.
Collapse
Affiliation(s)
- S J Mudge
- Department of Clinical Immunology, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, Vic. 3065, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Shiba K, Stello T, Motegi H, Noda T, Musier-Forsyth K, Schimmel P. Human lysyl-tRNA synthetase accepts nucleotide 73 variants and rescues Escherichia coli double-defective mutant. J Biol Chem 1997; 272:22809-16. [PMID: 9278442 DOI: 10.1074/jbc.272.36.22809] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleotide 73 (N73) "discriminator" base in the acceptor stem is a key element for efficient and specific aminoacylation of tRNAs and of microhelix substrates derived from tRNA acceptor stems. This nucleotide was possibly one of the first to be used for differentiating among groups of early RNA substrates by tRNA synthetases. In contrast to many other synthetases, we report here that the class II human lysyl-tRNA synthetase is relatively insensitive to the nature of N73. We cloned, sequenced, and expressed the enzyme, which is a close homologue of the class II yeast aspartyl-tRNA synthetase whose co-crystal structure (with tRNAAsp) is known. The latter enzyme has a strong requirement for G73, which interacts with 4 of the 14 residues within the "motif 2" loop of the enzyme. Even though eukaryotic lysine tRNAs also encode G73, the motif 2 loop sequence of lysyl-tRNA synthetase differs at multiple positions from that of the aspartate enzyme. Indeed, the recombinant human lysine enzyme shows little preference for G, and even charges human tRNA transcripts encoding the A73 found in E. coli lysine tRNAs. Moreover, while the lysine enzyme is the only one in E. coli to be encoded by two separate genes, a double mutant that disables both genes is complemented by a cDNA expressing the human protein. Thus, the sequence of the loop of motif 2 of human lysyl-tRNA synthetase specifies a structural variation that accommodates nucleotide degeneracy at position 73. This sequence might be used as a starting point for obtaining highly specific interactions with any given N73 by simple amino acid replacements.
Collapse
Affiliation(s)
- K Shiba
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Corporation, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
20
|
Nameki N, Tamura K, Asahara H, Hasegawa T. Recognition of tRNA(Gly) by three widely diverged glycyl-tRNA synthetases. J Mol Biol 1997; 268:640-7. [PMID: 9171287 DOI: 10.1006/jmbi.1997.0993] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glycyl-tRNA synthetase (GlyRS) is an unusual aminoacyl-tRNA synthetase because it varies in its quarternary structure between organisms; Escherichia coli GlyRS is an alpha2beta2 tetramer, whereas those of Thermus thermophilus and yeast are alpha2 dimers. In contrast, the tRNA(Gly) sequence is virtually identical in E. coli and T. thermophilus but very different in yeast. In this study, we examined the molecular recognition of tRNA(Gly) by three widely diverged GlyRSs using in vitro tRNA transcripts. Mutation studies showed that the discriminator base at position 73, the second base-pair, C2 x G71, in the acceptor stem, and the anticodon nucleotides, C35 and C36, contribute to the specific aminoacylation of all three GlyRSs, the discriminator base differing between prokaryotes (U73) and eukaryotes (A73). However, we found differences between yeast and two bacteria around the second base-pair in the acceptor stem. The first base-pair, G1 x C72, is important for glycylation in E. coli and T. thermophilus, whereas the third base-pair, G3 x C70, is important for glycylation in yeast. These findings indicate that despite such large differences of the two prokaryotic GlyRSs, tRNA(Gly) identity has been essentially conserved in prokaryotes, and that there are also differences in the acceptor stem recognition between prokaryotes and yeast. The clear separation between prokaryotes and yeast is retained in the identity element location, whereas the apparent diversity of the two prokaryotic enzymes does not reflect on the tRNA recognition.
Collapse
Affiliation(s)
- N Nameki
- Department of Biology, Faculty of Science, Hirosaki University, Japan
| | | | | | | |
Collapse
|
21
|
Mazauric MH, Reinbolt J, Lorber B, Ebel C, Keith G, Giegé R, Kern D. An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:814-26. [PMID: 8944770 DOI: 10.1111/j.1432-1033.1996.00814.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycyl-tRNA synthetase (Gly-tRNA synthetase) from Thermus thermophilus was purified to homogeneity and with high yield using a five-step purification procedure in amounts sufficient to solve its crystallographic structure [Logan, D.T., Mazauric, M.-H., Kern, D. & Moras, D. (1995) EMBO J. 14, 4156-4167]. Molecular-mass determinations of the native and denatured protein indicate an oligomeric structure of the alpha 2 type consistent with that found for eukaryotic Gly-tRNA synthetases (yeast and Bombyx mori), but different from that of Gly-tRNA synthetases from mesophilic prokaryotes (Escherichia coli and Bacillus brevis) which are alpha 2 beta 2 tetramers. N-terminal sequencing of the polypeptide chain reveals significant identity, reaching 50% with those of the eukaryotic enzymes (B. mori, Homo sapiens, yeast and Caenorhabditis elegans) but no significant identity was found with both alpha and beta chains of the prokaryotic enzymes (E. coli, Haemophilus influenzae and Coxiella burnetii) albeit the enzyme is deprived of the N-terminal extension characterizing eukaryotic synthetases. Thus, the thermophilic Gly-tRNA synthetase combines strong structural homologies of eukaryotic Gly-tRNA synthetases with a feature of prokaryotic synthetases. Heat-stability measurements show that this synthetase keeps its ATP-PPi exchange and aminoacylation activities up to 70 degrees C. Glycyladenylate strongly protects the enzyme against thermal inactivation at higher temperatures. Unexpectedly, tRNA(Gly) does not induce protection. Cross-aminoacylations reveal that the thermophilic Gly-tRNA synthetase charges heterologous E. coli tRNA(gly(GCC)) and tRNA(Gly(GCC)) and yeast tRNA(Gly(GCC)) as efficiently as T. thermophilus tRNA(Gly). All these aminoacylation reactions are characterized by similar activation energies as deduced from Arrhenius plots. Therefore, contrary to the E. coli and H. sapiens Gly-tRNA synthetases, the prokaryotic thermophilic enzyme does not possess a strict species specificity. The results are discussed in the context of the three-dimensional structure of the synthetase and in the view of the particular evolution of the glycinylation systems.
Collapse
Affiliation(s)
- M H Mazauric
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
A series of new crystal structures of aminoacyl-tRNA synthetases sheds light on the evolution of specificity in this ancient family of enzymes.
Collapse
Affiliation(s)
- S Cusack
- European Molecular Biology Laboratory, Grenoble, France
| |
Collapse
|
23
|
Abstract
Aminoacyl-tRNA synthetases specifically charge tRNAs with their cognate amino acids. A prototype for the most complex aminoacyl-tRNA synthetases is the four-subunit glycyl-tRNA synthetase from Escherichia coli, encoded by two open reading frames. We examined the glycyl-tRNA synthetase gene from Chlamydia trachomatis, a genetically isolated bacterium, and identified only a single open reading frame for the chlamydial homolog (glyQS). This is the first report of a prokaryotic glycyl-tRNA synthetase encoded by a single gene.
Collapse
Affiliation(s)
- E A Wagar
- Department of Pathology, UCLA School of Medicine 90095, USA
| | | | | | | |
Collapse
|
24
|
Hartman H. Speculations on the evolution of the genetic code IV. The evolution of the aminoacyl-tRNA synthetases. ORIGINS LIFE EVOL B 1995; 25:265-9. [PMID: 11536677 DOI: 10.1007/bf01581589] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An evolutionary scheme is postulated in which a primitive code, involving only guanine and cytosine, would code for glycine(GG.), alanine(GC.), arginine(CG.) and proline(CC.). There evolves from this primitive code families of related amino acids as the code expands. The evolution of the aminoacyl-tRNA synthetases are considered to be indicators for the evolution of the genetic code. The postulated model for the evolution of the genetic code is used to give an evolutionary interpretation to the recent work on the structure and sequences of the aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- H Hartman
- Institute for Advanced Studies in Biology, Berkeley, CA 94707, USA
| |
Collapse
|
25
|
Ge Q, Trieu E, Targoff I. Primary structure and functional expression of human Glycyl-tRNA synthetase, an autoantigen in myositis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61975-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Shiba K, Schimmel P, Motegi H, Noda T. Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43986-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
27
|
A motif in human histidyl-tRNA synthetase which is shared among several aminoacyl-tRNA synthetases is a coiled-coil that is essential for enzymatic activity and contains the major autoantigenic epitope. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51078-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Ting S, Dignam J. Post-transcriptional regulation of glutamyl-prolyl-tRNA synthetase in rat salivary gland. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37066-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Kisselev LL, Wolfson AD. Aminoacyl-tRNA synthetases from higher eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:83-142. [PMID: 7938555 DOI: 10.1016/s0079-6603(08)60854-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- L L Kisselev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
30
|
Abstract
The combined use of molecular and structural biology techniques has proved very efficient in elucidating structure-function relationships in aminoacyl-tRNA synthetases. Our present understanding of this family of enzymes is based on two main unifying principles: (i) division into two different classes, corresponding to two different modes of ATP binding and attachment of the activated amino acid to the last nucleotide of tRNA (either 2'OH or 3'OH of the ribose) by two different catalytic mechanisms and two structural domains with completely different folding, and (ii) the modular organization into separate and additional domains that we are just beginning to understand. Sequence analysis complements very nicely existing structural, biochemical and genetic results and makes them more general, leading to verifiable predictions.
Collapse
Affiliation(s)
- M Delarue
- Laboratoire de Biologie Structurale, IBMC du CNRS, Strasbourg, France
| | | |
Collapse
|
31
|
Cusack S. Sequence, structure and evolutionary relationships between class 2 aminoacyl-tRNA synthetases: an update. Biochimie 1993; 75:1077-81. [PMID: 8199242 DOI: 10.1016/0300-9084(93)90006-e] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The seven class 2 aminoacyl-tRNA synthetases that are alpha 2 dimers have previously been divided by sequence homology into class 2a (seryl-, threonyl-, prolyl- and histidyl-) and class 2b (aspartyl-, asparaginyl- and lysyl-). It has been more difficult to classify the glycyl-, phenylalanyl- and alanyl-tRNA synthetases which have different subunit stoichiometries and which did not apparently contain all three canonical class 2 motifs. New sequence and structural information relating to the three problematic synthetases will be discussed permitting a step forward to be taken in the understanding of the evolutionary relationships between the class 2 synthetases.
Collapse
Affiliation(s)
- S Cusack
- EMBL Grenoble Outstation c/o ILL, France
| |
Collapse
|