1
|
Bustamante HA, Albornoz N, Morselli E, Soza A, Burgos PV. Novel insights into the non-canonical roles of PSMD14/POH1/Rpn11 in proteostasis and in the modulation of cancer progression. Cell Signal 2023; 101:110490. [PMID: 36241058 DOI: 10.1016/j.cellsig.2022.110490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
PSMD14/POH1/Rpn11 plays a crucial role in cellular homeostasis. PSMD14 is a structural subunit of the lid subcomplex of the proteasome 19S regulatory particle with constitutive deubiquitinase activity. Canonically, PSMD14 removes the full ubiquitin chains with K48-linkages by hydrolyzing the isopeptide bond between the substrate and the C-terminus of the first ubiquitin, a crucial step for the entry of substrates into the catalytic barrel of the 20S proteasome and their subsequent degradation, all in context of the 26S proteasome. However, more recent discoveries indicate PSMD14 DUB activity is not only coupled to the translocation of substrates into the core of 20S proteasome. During the assembly of the lid, activity of PSMD14 has been detected in the context of the heterodimer with PSMD7. Additionally, assembly of the lid subcomplex occurs as an independent event of the base subcomplex and 20S proteasome. This feature opens the possibility that the regulatory particle, free lid subcomplex or the heterodimer PSMD14-PSMD7 might play other physiological roles including a positive function on protein stability through deubiquitination. Here we discuss scenarios that could enhance this PSMD14 non-canonical pathway, the potential impact in preventing degradation of substrates by autophagy highlighting the main findings that support this hypothesis. Finally, we discuss why this information should be investigated in biomedicine specifically with focus on cancer progression to design new therapeutic strategies against the lid subcomplex and the heterodimer PSMD14-PSMD7, highlighting PSMD14 as a druggable target for cancer therapy.
Collapse
Affiliation(s)
- Hianara A Bustamante
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile.
| | - Nicolás Albornoz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile; Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile.
| | - Eugenia Morselli
- Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile; Centro de Investigación en Autofagia, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile; Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile; Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile.
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile; Centro de Investigación en Autofagia, Santiago, Chile; Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago 8331150, Chile; Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 7780272, Chile.
| |
Collapse
|
2
|
Spataro V, Buetti-Dinh A. POH1/Rpn11/PSMD14: a journey from basic research in fission yeast to a prognostic marker and a druggable target in cancer cells. Br J Cancer 2022; 127:788-799. [PMID: 35501388 PMCID: PMC9428165 DOI: 10.1038/s41416-022-01829-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
POH1/Rpn11/PSMD14 is a highly conserved protein in eukaryotes from unicellular organisms to human and has a crucial role in cellular homoeostasis. It is a subunit of the regulatory particle of the proteasome, where it acts as an intrinsic deubiquitinase removing polyubiquitin chains from substrate proteins. This function is not only coupled to the translocation of substrates into the core of the proteasome and their subsequent degradation but also, in some instances, to the stabilisation of ubiquitinated proteins through their deubiquitination. POH1 was initially discovered as a functional homologue of the fission yeast gene pad1+, which confers drug resistance when overexpressed. In translational studies, expression of POH1 has been found to be increased in several tumour types relative to normal adjacent tissue and to correlate with tumour progression, higher tumour grade, decreased sensitivity to cytotoxic drugs and poor prognosis. Proteasome inhibitors targeting the core particle of the proteasome are highly active in the treatment of myeloma, and recently developed POH1 inhibitors, such as capzimin and thiolutin, have shown promising anticancer activity in cell lines of solid tumours and leukaemia. Here we give an overview of POH1 function in the cell, of its potential role in oncogenesis and of recent progress in developing POH1-targeting drugs.
Collapse
Affiliation(s)
- Vito Spataro
- Service of Medical Oncology, Oncology Institute of Southern Switzerland (IOSI), Ospedale San Giovanni, Via Gallino, 6500, Bellinzona, Switzerland.
| | - Antoine Buetti-Dinh
- Institute of Microbiology, Department of Environmental Constructions and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), via Mirasole 22a, 6500, Bellinzona, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015, Lausanne, Switzerland
| |
Collapse
|
3
|
Historical perspective and progress on protein ubiquitination at glutamatergic synapses. Neuropharmacology 2021; 196:108690. [PMID: 34197891 DOI: 10.1016/j.neuropharm.2021.108690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Transcription-translation coupling leads to the production of proteins that are key for controlling essential neuronal processes that include neuronal development and changes in synaptic strength. Although these events have been a prevailing theme in neuroscience, the regulation of proteins via posttranslational signaling pathways are equally relevant for these neuronal processes. Ubiquitin is one type of posttranslational modification that covalently attaches to its targets/substrates. Ubiquitination of proteins play a key role in multiple signaling pathways, the predominant being removal of its substrates by a large molecular machine called the proteasome. Here, I review 40 years of progress on ubiquitination in the nervous system at glutamatergic synapses focusing on axon pathfinding, synapse formation, presynaptic release, dendritic spine formation, and regulation of postsynaptic glutamate receptors. Finally, I elucidate emerging themes in ubiquitin biology that may challenge our current understanding of ubiquitin signaling in the nervous system.
Collapse
|
4
|
Baker TA, Bach HH, Gamelli RL, Love RB, Majetschak M. Proteasomes in lungs from organ donors and patients with end-stage pulmonary diseases. Physiol Res 2014; 63:311-9. [PMID: 24564596 DOI: 10.33549/physiolres.932607] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteasomes appear to be involved in the pathophysiology of various acute and chronic lung diseases. Information on the human lung proteasome in health and disease, however, is sparse. Therefore, we studied whether end-stage pulmonary diseases are associated with alterations in lung 20S/26S proteasome content, activity and 20S subunit composition. Biopsies were obtained from donor lungs (n=7) and explanted lungs from patients undergoing lung transplantation because of end stage chronic obstructive pulmonary disease (COPD; n=7), idiopathic pulmonary fibrosis (IPF, n=7) and pulmonary sarcoidosis (n=5). 20S/26S proteasomes in lung extracts were quantified by ELISA, chymotrypsin-like proteasome peptidase activities measured and 20S proteasome beta subunits analyzed by Western blot. As compared with donor lungs, proteasome content was increased in IPF and sarcoidosis, but not in COPD. The relative distribution of free 20S and 26S proteasomes was similar; 20S proteasome was predominant in all extracts. Proteasome peptidase activities in donor and diseased lungs were indistinguishable. All extracts contained a mixed composition of inducible 20S beta immuno-subunits and their constitutive counterparts; a disease associated distribution could not be identified. A higher content of lung proteasomes in IPF and pulmonary sarcoidosis may contribute to the pathophysiology of human fibrotic lung diseases.
Collapse
Affiliation(s)
- T A Baker
- Loyola University Chicago, Maywood, IL, USA.
| | | | | | | | | |
Collapse
|
5
|
Luo X, Wang B, Tang F, Zhang J, Zhao Y, Li H, Jin Y. Wwp2 targets SRG3, a scaffold protein of the SWI/SNF-like BAF complex, for ubiquitination and degradation. Biochem Biophys Res Commun 2013; 443:1048-53. [PMID: 24365151 DOI: 10.1016/j.bbrc.2013.12.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 12/25/2022]
Abstract
SRG3 plays essential roles both in early mouse embryogenesis and in extra-embryonic vascular development. As one of the core components of the SWI/SNF-like BAF complex, SRG3 serves as the scaffold protein and its protein level controls the stability of the BAF complex, which controls diverse physiological processes through transcriptional regulation. However, little is known about how the protein level of SRG3 is regulated in mammalian cells. Previously, we identified a murine ubiquitin ligase (Wwp2) and demonstrated that it interacts with pluripotency-associated key transcription factor Oct4 and RNA polymerase II large subunit Rpb1, promoting their ubiquitination and degradation. Here, we report that Wwp2 acts as a ubiquitin ligase of SRG3. Our results show that Wwp2 and SRG3 form protein complexes and co-localize in the nucleus in mammalian cells. The interaction is mediated through the WW domain of Wwp2 and the PPPY motif of SRG3, respectively. Importantly, Wwp2 promotes ubiquitination and degradation of SRG3 through the ubiquitin-proteasome system. The expression of a catalytically inactive mutant of Wwp2 abolishes SRG3 ubiquitination. Collectively, our study opens up a new avenue to understand how the protein level of SRG3 is regulated in mammalian cells.
Collapse
Affiliation(s)
- Xinlong Luo
- Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Beibei Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fan Tang
- Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Junmei Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yingming Zhao
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hui Li
- Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ying Jin
- Shanghai Stem Cell Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
6
|
Xie M, Wang SH, Lu ZM, Pan Y, Chen QC, Liao XM. UCH-L1 Inhibition Involved in CREB Dephosphorylation in Hippocampal Slices. J Mol Neurosci 2013; 53:59-68. [DOI: 10.1007/s12031-013-0197-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|
7
|
Proteasome inhibition prolongs survival during lethal hemorrhagic shock in rats. J Trauma Acute Care Surg 2013; 74:499-507. [PMID: 23354244 DOI: 10.1097/ta.0b013e31827d5db2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Several lines of evidence suggest that proteasomes, the major nonlysosomal proteases in eukaryotes, are involved in the pathophysiology of various disease processes, including ischemia-reperfusion injury and trauma. Recently, we demonstrated that 26S proteasome activity is negatively regulated by adenosine triphosphate (ATP) and that proteasome activation during ischemia contributes to myocardial injury. The regulation of tissue proteasome activity by ATP and the potential of proteasomes as drug targets during hemorrhagic shock, however, are unknown. Thus, we evaluated the regulation of tissue proteasome peptidase activity and the effects of the proteasome inhibitor bortezomib in rat models of hemorrhagic shock. METHODS Series 1 includes animals (n = 20) hemorrhaged to a mean arterial blood pressure of 30 mm Hg for up to 45 minutes. Series 2 includes animals hemorrhaged to a mean arterial blood pressure of 30 mm Hg for 30 minutes, followed by bortezomib (0.4 mg/kg) or vehicle administration (n =5 per group) and fluid resuscitation until 75 minutes. Series 3 includes animals that underwent 40% blood volume hemorrhage, followed by 2% blood volume hemorrhage every 15 minutes until death. Bortezomib (0.4 mg/kg) or vehicle were administered 15 minutes after the onset of hemorrhage (n = 6-7 per group). Vital signs were continuously monitored. The heart, lung, and pectoral muscle were analyzed for proteasome peptidase activities and levels of ATP, ubiquitin-protein conjugates, and cytokines (tumor necrosis factor α, interleukin 6, and interleukin 10). RESULTS In Series 1, proteasome peptidase activities in tissue extracts increased proportional to the decrease in tissue ATP concentrations during hemorrhagic shock. Activation of proteasome peptidase activity with decreases of the ATP assay concentration was also detectable in normal tissue extracts. In Series 2, systemic administration of bortezomib inhibited tissue proteasome activities but did not affect the physiologic response. In Series 3, bortezomib inhibited tissue proteasome activities, increased endogenous ubiquitin-protein conjugates, and prolonged survival time from treatment from 48.5 minutes in the control group to 85 minutes (p = 0.0012). Bortezomib treatment did not affect tissue cytokine levels. CONCLUSION Proteasome activation contributes to the pathophysiology of severe hemorrhagic shock. Pharmacologic inhibition of the proteasome may provide a survival advantage during lethal hemorrhagic shock.
Collapse
|
8
|
Lander GC, Martin A, Nogales E. The proteasome under the microscope: the regulatory particle in focus. Curr Opin Struct Biol 2013; 23:243-51. [PMID: 23498601 DOI: 10.1016/j.sbi.2013.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
Abstract
Since first imaged by electron microscopy, much effort has been placed into determining the structure and mechanism of the 26S proteasome. While the proteolytic core is understood in atomic detail, how substrates are engaged and transported to this core remains elusive. Substrate delivery is accomplished by a 19-subunit regulatory particle that binds to ubiquitinated substrates, detaches ubiquitin tags, unfolds the substrate, and translocates it into the peptidase in an ATP-dependent fashion. Recently, several labs have determined subnanometer cryoEM structures of the 26S proteasome, shedding light on the architecture of the regulatory complex. We discuss the biological insights into substrate processing provided by these structures, and the technical hurdles ahead to achieve an atomic resolution structure of the 26 proteasome.
Collapse
Affiliation(s)
- Gabriel C Lander
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
9
|
Structure characterization of the 26S proteasome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1809:67-79. [PMID: 20800708 DOI: 10.1016/j.bbagrm.2010.08.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 01/27/2023]
Abstract
In all eukaryotic cells, 26S proteasome plays an essential role in the process of ATP-dependent protein degradation. In this review, we focus on structure characterization of the 26S proteasome. Although the progress towards a high-resolution structure of the 26S proteasome has been slow, the recently solved structures of various proteasomal subcomplexes have greatly enhanced our understanding of this large machinery. In addition to having an ATP-dependent proteolytic function, the 26S proteasome is also involved in many non-proteolytic cellular activities, which are often mediated by subunits in its 19S regulatory complex. Thus, we include a detailed discussion of the structures of 19S subunits, including proteasomal ATPases, ubiquitin receptors, deubiquitinating enzymes and subunits that contain PCI domain. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
|
10
|
Abstract
The objective of the study is to test whether circulating proteasomes are increased in burn patients and to assess whether possible alterations are associated with severity of injury, organ failure, and/or clinically relevant outcomes. In this study, plasma was obtained from burn patients on days 0 (admission, n = 50), 1 (n = 36), 3 (n = 35), 5 (n = 28), 7 (n=34), and 30 (n = 10) (controls: 40 volunteers). The 20S/26S proteasome levels were measured by enzyme-linked immunosorbent assay. Proteasome peptidase activity was assessed using a chymotryptic-like peptide substrate in combination with epoxomicin (specific proteasome inhibitor). Percentage of TBSA burned, presence of inhalation injury, development of sepsis/multiple organ failure, and sequential organ failure assessment scores were documented. On admission, plasma proteasome activity was higher in patients than in controls (P = .011). 26S proteasomes were not detectable. The 20S proteasome concentrations (median [25th/75th percentile]) peaked on day 0 (673 [399/1566] ng/mL; control: 195 [149/249] ng/mL, P < .001), gradually declined within 7 days, and fully returned to baseline at day 30 (116.5 [78/196] ng/mL). Elevated 20S proteasomes were associated with the presence of inhalation injury and correlated linearly with %TBSA in patients without inhalation injury. Initial 20S proteasome concentrations discriminated the presence of inhalation injury in patients with (sensitivity 0.88 and specificity 0.71) and without (sensitivity 0.83 and specificity 0.97) cutaneous burns but did not discriminate sepsis/multiple organ failure development or survival. Circulating 20S proteasome is a biomarker of tissue damage. The 20S proteasome plasma concentrations in patients with burns and/or inhalation injury are unlikely to predict outcomes but may be useful for the diagnosis of inhalation injury.
Collapse
|
11
|
Geng Q, Romero J, Saini V, Baker TA, Picken MM, Gamelli RL, Majetschak M. A subset of 26S proteasomes is activated at critically low ATP concentrations and contributes to myocardial injury during cold ischemia. Biochem Biophys Res Commun 2010; 390:1136-41. [PMID: 19944202 DOI: 10.1016/j.bbrc.2009.10.067] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/13/2009] [Indexed: 12/24/2022]
Abstract
Molecular mechanisms leading to myocardial injury during warm or cold ischemia are insufficiently understood. Although proteasomes are thought to contribute to myocardial ischemia-reperfusion injury, their roles during the ischemic period remain elusive. Because donor hearts are commonly exposed to prolonged global cold ischemia prior to cardiac transplantation, we evaluated the role and regulation of the proteasome during cold ischemic storage of rat hearts in context of the myocardial ATP content. When measured at the actual tissue ATP concentration, cardiac proteasome peptidase activity increased by 225% as ATP declined during cold ischemic storage of hearts in University of Wisconsin (UW) solution for up to 48h. Addition of the specific proteasome inhibitor epoxomicin to the UW solution inhibited proteasome activity in the cardiac extracts, significantly reduced edema formation and preserved the ultrastructural integrity of the cardiomyocyte. Utilizing purified 20S/26S proteasome enzyme preparations, we demonstrate that this activation can be attributed to a subset of 26S proteasomes which are stable at ATP concentrations far below physiological levels, that ATP negatively regulates its activity and that maximal activation occurs at ATP concentrations in the low mumol/L range. These data suggest that proteasome activation is a pathophysiologically relevant mechanism of cold ischemic myocardial injury. A subset of 26S proteasomes appears to be a cell-destructive protease that is activated as ATP levels decline. Proteasome inhibition during cold ischemia preserves the ultrastructural integrity of the cardiomyocyte.
Collapse
Affiliation(s)
- Qing Geng
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Chicago Stritch School of Medicine, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Seliger B, Handke D, Schabel E, Bukur J, Lichtenfels R, Dammann R. Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma. J Transl Med 2009; 7:90. [PMID: 19857250 PMCID: PMC2775027 DOI: 10.1186/1479-5876-7-90] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/26/2009] [Indexed: 12/12/2022] Open
Abstract
Background The ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) gene involved in the regulation of cellular ubiquitin levels plays an important role in different cellular processes including cell growth and differentiation. Aberrant expression of UCHL1 has been found in a number of human solid tumors including renal cell carcinoma (RCC). In RCC, UCHL1 overexpression is associated with tumor progression and an altered von Hippel Lindau gene expression. Methods To determine the underlying mechanisms for the heterogeneous UCHL1 expression pattern in RCC the UCHL1 promoter DNA methylation status was determined in 17 RCC cell lines as well as in 32 RCC lesions and corresponding tumor adjacent kidney epithelium using combined bisulfite restriction analysis as well as bisulfite DNA sequencing. Results UCHL1 expression was found in all 32 tumor adjacent kidney epithelium samples. However, the lack of or reduced UCHL1 mRNA and/or protein expression was detected in 13/32 RCC biopsies and 7/17 RCC cell lines and due to either a total or partial methylation of the UCHL1 promoter DNA. Upon 2'-deoxy-5-azacytidine treatment an induction of UCHL1 mRNA and protein expression was found in 9/17 RCC cell lines, which was linked to the demethylation degree of the UCHL1 promoter DNA. Conclusion Promoter hypermethylation represents a mechanism for the silencing of the UCHL1 gene expression in RCC and supports the concept of an epigenetic control for the expression of UCHL1 during disease progression.
Collapse
Affiliation(s)
- Barbara Seliger
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, Halle, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Manning EW, Patel MB, Garcia-Covarrubias L, Rahnemai-Azar AA, Pham SM, Majetschak M. Proteasome peptidase activities parallel histomorphological and functional consequences of ischemia-reperfusion injury in the lung. Exp Lung Res 2009; 35:284-95. [PMID: 19415546 DOI: 10.1080/01902140802668823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several lines of evidence suggest that the proteasome contributes to ischemia-reperfusion injury (I-RI) of organs. Although I-RI contributes to multiple disease processes in the lung, the regulation of proteasome activities during pulmonary I-RI is unknown. Thus, the authors performed a pilot study to define time-related changes of lung proteasome peptidase activities and to evaluate if possible alterations correspond to morphological and functional consequences of I-RI using a rat model. Animals underwent 120 minutes of unilateral lung ischemia. Ischemic and contralateral lungs were harvested at multiple time points for up to 168 hours of reperfusion (I-R30 min-168 h). Chymotryptic-like (CT-L) and tryptic-like (T-L) proteasome peptidase activities were measured in lung extracts. An early I-R-associated inactivation of proteasome activities paralleled impairment of oxygenation, edema formation, and degree of histopathology, and resolved with restoration of function within 24 to 72 hours. Although functional and histomorphological baseline conditions were still not fully achieved at I-R168h, proteasome activities increased continuously 1.4-fold (CT-L) and 5.7-fold (T-L) until I-R168h. Apparent K(M) values for the CT-L/T-L substrates were not influenced by I-R. This pilot study establishes an initial link between proteasome activities and physiological relevant consequences of lung I-RI, and further points towards a possible role of the proteasome during the postischemic tissue repair process.
Collapse
Affiliation(s)
- Eddie W Manning
- Division of Cardiothoracic Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | | |
Collapse
|
14
|
Majetschak M, Sorell LT. Immunological methods to quantify and characterize proteasome complexes: development and application. J Immunol Methods 2008; 334:91-103. [PMID: 18343400 DOI: 10.1016/j.jim.2008.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 02/06/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
The ubiquitin-proteasome pathway plays major roles in all aspects of biology and contributes to various disease processes. Due to the lack of assays that permit proteasome quantification in crude cell extracts, its concentrations in health and disease states as well as the relationship between free 20S core particles (20S) and 26S proteasomes (26S) that consist of 20S singly or doubly capped with 19S regulator complexes (19S) are still largely unknown. Thus, we established a 20S ELISA for the detection of total 20S, and developed a specific 26S ELISA. The latter utilizes the ATP/Mg2+ requirement for 26S stability and shows no cross-reactivity with 20S. Both ELISAs demonstrate intra- and inter-assay variations between 4.9% and 9.4% and recoveries of 105%-109%. Initial application showed that maintenance of the physiological ATP concentration is essential for accurate 26S assessment. Measurements in erythrocyte and peripheral blood mononuclear cell (PBMNC) extracts revealed that the concentrations of 20S were 15-fold and of 26S 130-fold higher in PBMNCs, and suggested that the 26S is the physiological relevant form in PBMNCs (molar ratio 20S/26S 1.1+/-0.4), whereas free 20S is predominant in erythrocytes (molar ratio 20S/26S: 11.5+/-4.0). During storage of packed red blood cell units spontaneous 26S assembly was detectable while specific 26S enzyme activities decreased, indicating that these assays are useful to assess the dynamic interplay between the 20S and 19S. During 26S assay development we further observed that solid phase affinity immobilization (SPAI) of 26S enables quantification of its dissociation into 20S and 19S. Utilizing the SPAI-26S method in combination with the non-hydrolyzable analogue ATP[beta,gamma-NH] and Mg2+ depletion, we provided evidence that ATP binding without hydrolysis via a high affinity binding site (Kd 4-6 microM) as well as ATP binding with hydrolysis via a low affinity binding site that is virtually not saturable under physiological conditions is required to fully stabilize the 26S. Application of these immunological techniques is expected to facilitate proteasome analyses, and may help to better understand its roles in health and disease processes.
Collapse
Affiliation(s)
- Matthias Majetschak
- DeWitt Daughtry Family Department of Surgery, Division of Trauma and Surgical Critical Care-Trauma Research, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | |
Collapse
|
15
|
Cardiac proteasome dysfunction during cold ischemic storage and reperfusion in a murine heart transplantation model. Biochem Biophys Res Commun 2008; 365:882-8. [DOI: 10.1016/j.bbrc.2007.11.092] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/19/2007] [Indexed: 11/18/2022]
|
16
|
Shabek N, Iwai K, Ciechanover A. Ubiquitin is degraded by the ubiquitin system as a monomer and as part of its conjugated target. Biochem Biophys Res Commun 2007; 363:425-31. [PMID: 17870054 DOI: 10.1016/j.bbrc.2007.08.185] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
An important problem concerning regulation of the ubiquitin-proteasome system (UPS) relates to the stability of its own components and the mechanisms of their degradation. It has been demonstrated that monomeric ubiquitin is relatively stable and is probably degraded by the proteasome. It has also been shown that it is destabilized following inactivation of deubiquitinating enzymes, suggesting that failure to release it, results in its concomitant degradation along with its target. Here, we demonstrate that conjugation of monomeric ubiquitin requires both its internal lysines and N-terminal residue. Interestingly however, the degradation of the monomeric species requires also a short C-terminal extension, implying that unlike conjugation, entry into the proteasomal chamber requires a tail that can be generated in the cell via several distinct mechanisms. We further show that accelerated intracellular degradation induced by stress results in depletion of ubiquitin, supporting the notion that ubiquitin is also degraded as part of the chain conjugated to its target substrate.
Collapse
Affiliation(s)
- Nitzan Shabek
- Center for Vascular and Tumor Biology, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Efron Street, Bat Galim, P.O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
17
|
Abstract
Regulation of protein function by posttranslational modification plays an important role in many biological pathways. The most well known among such modifications is protein phosphorylation performed by highly specific protein kinases. In the past decade, however, covalent linkage of the low-molecular-weight protein ubiquitin to substrate proteins (protein ubiquitination) has proven to be yet another widely used mechanism of protein regulation playing a crucial role in virtually all aspects of cellular functions. This review highlights some of the recently discovered and provocative roles for ubiquitination in the regulation of the life cycle and signal transduction properties of 7-transmembrane receptors that serve to integrate many biological functions and play fundamental roles in cardiovascular homeostasis.
Collapse
Affiliation(s)
- Sudha K Shenoy
- Duke University Medical Center, Departments of Medicine and Cell Biology, Durham, NC 27710, USA.
| |
Collapse
|
18
|
Seliger B, Fedorushchenko A, Brenner W, Ackermann A, Atkins D, Hanash S, Lichtenfels R. Ubiquitin COOH-Terminal Hydrolase 1: A Biomarker of Renal Cell Carcinoma Associated with Enhanced Tumor Cell Proliferation and Migration[?Q1: Running head: UCHL1, a Biomarker of RCC. Short title OK?Q1]. Clin Cancer Res 2007; 13:27-37. [PMID: 17200335 DOI: 10.1158/1078-0432.ccr-06-0824] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Renal cell carcinoma (RCC) accounts for 2% to 3% of all malignancies. It represents one of the most radiation- and chemotherapy-resistant tumors and surgical resections are only effective in organ-defined disease. However, RCC is an immunogenic tumor with response rates to immunotherapies between 10% and 20% of the treated patients. Due to the currently inefficient therapies and the low 5-year survival rates of RCC patients, novel diagnostic, prognostic, and therapeutic markers are urgently needed for this disease. EXPERIMENTAL DESIGN Proteome-based approaches were used to identify (a) differentially expressed proteins in RCC compared with normal kidney epithelium and (b) proteins that are able to induce an antibody response in RCC patients. Based on these experiments, a promising candidate was subsequently validated by reverse transcription-PCR, Western blot analyses, and immunohistochemistry. In addition, functional assays were done in generated transfectants. RESULTS The ubiquitin COOH-terminal hydrolase L1 (UCHL1) was found to be differentially expressed in both RCC lesions and RCC cell lines and immunoreactive using patients' sera. UCHL1 expression was often down-regulated in primary RCC when compared with normal kidney epithelium but dependent on the RCC subtype, the von Hippel-Lindau phenotype, and the tumor grading. Moreover, the frequency and the level of UCHL1 expression were higher in metastases when compared with primary RCC lesions. Gain-of-function transfectants exhibited a significant higher proliferation and migration rate than UCHL1-negative RCC cells. CONCLUSIONS UCHL1 expression seems to be associated with the metastatic phenotype of RCC and therefore might serve as potential biomarker for the diagnosis and prognosis of RCC patients.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Schmidt M, Hanna J, Elsasser S, Finley D. Proteasome-associated proteins: regulation of a proteolytic machine. Biol Chem 2005; 386:725-37. [PMID: 16201867 DOI: 10.1515/bc.2005.085] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The proteasome is a compartmentalized, ATP-dependent protease composed of more than 30 subunits that recognizes and degrades polyubiquitinated substrates. Despite its physiological importance, many aspects of the proteasome's structural organization and regulation remain poorly understood. In addition to the proteins that form the proteasome holocomplex, there is increasing evidence that proteasomal function is affected by a wide variety of associating proteins. A group of ubiquitin-binding proteins assist in delivery of substrates to the proteasome, whereas proteasome-associated ubiquitin ligases and deubiquitinating enzymes may alter the dynamics of ubiquitin chains already associated with the proteasome. Some proteins appear to influence the overall stability of the complex, and still others have the capacity to activate or inhibit the hydrolytic activity of the core particle. The increasing number of interacting proteins identified suggests that proteasomes, as they exist in the cell, are larger and more diverse in composition than previously assumed. Thus, the study of proteasome-associated proteins will lead to new perspectives on the dynamics of this uniquely complex proteolytic machine.
Collapse
Affiliation(s)
- Marion Schmidt
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
20
|
Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1695:189-207. [PMID: 15571815 DOI: 10.1016/j.bbamcr.2004.10.003] [Citation(s) in RCA: 732] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attachment of ubiquitin to proteins is a crucial step in many cellular regulatory mechanisms and contributes to numerous biological processes, including embryonic development, the cell cycle, growth control, and prevention of neurodegeneration. In these diverse regulatory settings, the most widespread mechanism of ubiquitin action is probably in the context of protein degradation. Polyubiquitin attachment targets many intracellular proteins for degradation by the proteasome, and (mono)ubiquitination is often required for down-regulating plasma membrane proteins by targeting them to the vacuole (lysosome). Ubiquitin-protein conjugates are highly dynamic structures. While an array of enzymes directs the conjugation of ubiquitin to substrates, there are also dozens of deubiquitinating enzymes (DUBs) that can reverse the process. Several lines of evidence indicate that DUBs are important regulators of the ubiquitin system. These enzymes are responsible for processing inactive ubiquitin precursors, proofreading ubiquitin-protein conjugates, removing ubiquitin from cellular adducts, and keeping the 26S proteasome free of inhibitory ubiquitin chains. The present review focuses on recent discoveries that have led to a better understanding the mechanisms and physiological roles of this diverse and still poorly understood group of enzymes. We also discuss briefly some of the proteases that act on ubiquitin-like protein (UBL) conjugates and compare them to DUBs.
Collapse
Affiliation(s)
- Alexander Y Amerik
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, PO Box 208114, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|
21
|
Bonin M, Poths S, Osaka H, Wang YL, Wada K, Riess O. Microarray expression analysis of gad mice implicates involvement of Parkinson's disease associated UCH-L1 in multiple metabolic pathways. ACTA ACUST UNITED AC 2004; 126:88-97. [PMID: 15207921 DOI: 10.1016/j.molbrainres.2004.03.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2004] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is thought to be caused by environmental and genetic factors. Mutations in four genes, alpha-synuclein, parkin, DJ-1, and UCH-L1, have been identified in autosomal inherited forms of PD. The pathogenetic cause for the loss of neuronal cells in PD patients, however, remains to be determined. Due to the rarity of mutations in humans with PD, the analysis of animal models might help to further gain insights into the pathogenesis of familial PD. For UCH-L1, deficiency has been described in gad mice leading to axonal degeneration and formation of spheroid bodies in nerve terminals. Here, we investigated the gene expression pattern of the brain of 3-month-old Uch-l1-deficient gracile axonal dystrophy (gad) mice by microarray analysis. A total of 146 genes were differentially regulated by at least a 1.4-fold change with 103 being up-regulated and 43 being down-regulated compared with age and sex matched wildtype littermate mice. The gene products with altered expression are involved in protein degradation, cell cycle, vesicle transport, cellular structure, signal transduction, and transcription regulation. Most of the genes were modestly regulated, which is in agreement that severe alteration of these pathways might be lethal. Among the genes most significantly down-regulated is the brain-derived neurotrophic factor which might be one aspect of the pathogenesis in gad mice. Interestingly, several subunits of the transcription factor CCAAT/enhancer binding protein are up-regulated, which plays a central role in most altered pathways.
Collapse
Affiliation(s)
- M Bonin
- Department of Medical Genetics, University of Tübingen, Calwerstrasse 7, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Tran HJTT, Allen MD, Löwe J, Bycroft M. Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry 2003; 42:11460-5. [PMID: 14516197 DOI: 10.1021/bi035033g] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 26S proteasome is responsible for the degradation of polyubiquitinated proteins. During this process the polyubiquitin chain is removed. The identity of the proteasomal component that is responsible for this activity has not been clear, as it contains no subunits that resemble known deubiquitinating enzymes. The Jab1/MPN domain is a widespread 120 amino acid protein module found in archaea, bacteria, and eukaryotes. In eukaryotes the Jab1/MPN domain is found in subunits of several multiprotein complexes including the proteasome. Recently it has been proposed that the Jab1/MPN domain of the proteasomal subunit Rpn11 is responsible for the removal of the polyubiquitin chain from substrate proteins. Here we report the crystal structure and characterization of AF2198, a Jab1/MPN domain protein from Archaeoglobolus fulgidus. The structure reveals a fold that resembles that of cytidine deaminase and places the Jab1/MPN domain in a superfamily of metal dependent hydrolases.
Collapse
|
24
|
Guterman A, Glickman MH. Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J Biol Chem 2003; 279:1729-38. [PMID: 14581483 DOI: 10.1074/jbc.m307050200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrates destined for degradation by the 26 S proteasome are labeled with polyubiquitin chains. These chains can be dismantled by deubiquitinating enzymes (DUBs). A number of reports have identified different DUBs that can hydrolyze ubiquitin from substrates bound to the proteasome. We measured deubiquitination by both isolated lid and base-core particle subcomplexes, suggesting that at least two different DUBs are intrinsic components of 26 S proteasome holoenzymes. In agreement, we find that highly purified proteasomes contain both Rpn11 and Ubp6, situated within the lid and base subcomplexes, respectively. To study their relative contributions, we purified proteasomes from a mutant in the putative metalloprotease domain of Rpn11 and from a ubp6 null. Interestingly, in both preparations we observed slower deubiquitination rates, suggesting that Rpn11 and Ubp6 serve complementary roles. In accord, the double mutant is synthetically lethal. In contrast to WT proteasomes, proteasomes lacking the lid subcomplex or those purified from the rpn11 mutant are less sensitive to metal chelators, supporting the prediction that Rpn11 may be a metalloprotein. Treatment of proteasomes with ubiquitin-aldehyde or with cysteine modifiers also inhibited deubiquitination but simultaneously promoted degradation of a monoubiquitinated substrate along with the ubiquitin tag. Degradation is unique to 26 S proteasome holoenzymes; we could not detect degradation of a ubiquitinated protein by "lidless" proteasomes, although they were competent for deubiquitination. The fascinating observation that a single ubiquitin moiety is sufficient for targeting an otherwise stable substrate to proteasomes exposes how rapid deubiquitination of poorly ubiquitinated substrates may counteract degradation.
Collapse
Affiliation(s)
- Adi Guterman
- Department of Biology and the Institute for Catalysis Science and Technology, The Technion, 32000 Haifa, Israel
| | | |
Collapse
|
25
|
Flierman D, Ye Y, Dai M, Chau V, Rapoport TA. Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane. J Biol Chem 2003; 278:34774-82. [PMID: 12813030 DOI: 10.1074/jbc.m303360200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polyubiquitination is required for retrotranslocation of proteins from the endoplasmic reticulum back into the cytosol, where they are degraded by the proteasome. We have tested whether the release of a polypeptide chain into the cytosol is caused by a ratcheting mechanism in which the attachment of polyubiquitin prevents the chain from moving back into the endoplasmic reticulum. Using a permeabilized cell system in which major histocompatibility complex class I heavy chains are retrotranslocated under the influence of the human cytomegalovirus protein US11, we demonstrate that polyubiquitination alone is insufficient to provide the driving force for retrotranslocation. Substrate release into the cytosol requires an additional ATP-dependent step. Release requires a lysine 48 linkage of ubiquitin chains. It does not occur when polyubiquitination of the substrate is carried out with glutathione S-transferase (GST)-ubiquitin, and this correlates with poly-GST-ubiquitin not being recognized by a ubiquitin-binding domain in the Ufd1-Npl4 cofactor of the ATPase p97. These data suggest that polyubiquitin does not serve as a ratcheting molecule. Rather, it may serve as a recognition signal for the p97-Ufd1-Npl4 complex, a component implicated in the movement of substrate into the cytosol.
Collapse
Affiliation(s)
- Dennis Flierman
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Ren L, Emery D, Kaboord B, Chang E, Qoronfleh MW. Improved immunomatrix methods to detect protein:protein interactions. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2003; 57:143-57. [PMID: 12915006 DOI: 10.1016/s0165-022x(03)00105-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immunoprecipitation (IP) and coimmunoprecipitation (co-IP) are key techniques for studying protein-protein interactions. These methods utilize immobilized Protein A or Protein G to isolate antibody-bound target antigens. The main disadvantage of traditional IP and co-IP is that the conditions used to elute the precipitated antigen also release the antibody thus contaminating the antigen and destroying the antibody support. To overcome these problems, we describe two methods to generate a reusable antibody support by cross-linking the antibody to immobilized Protein A or Protein G, or by coupling it directly to the resin (see Scheme 1). Antibody cross-linking can be done in 1 h while antibody coupling requires 4 h. IP or co-IP is accomplished by incubating the antibody resin with the protein sample. Washes and elutions are carried out in a spin column to reduce resin loss and decrease assay time. Target proteins are eluted with 0.1 M glycine (pH 2.8) and the resin-bound antibody is re-equilibrated in phosphate-buffered saline (PBS) for reuse. Our studies have demonstrated that the immobilization efficiency for the antibody coupling method was similar for several species of antibody. Furthermore, we illustrate that using both methods of antibody immobilization yield IP and co-IP results similar to traditional protocols but eliminate the antibody heavy and light chain contamination.
Collapse
Affiliation(s)
- Ling Ren
- Perbio Science, Bioresearch Division, 2202 North Bartlett Avenue, Milwaukee, WI 53202-1009, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
Insulin-degrading enzyme (IDE) is a metalloprotease implicated in insulin degradation and suggested to have a variety of additional functions, including the clearance of amyloid beta peptides of Alzheimer's disease. Little is known about endogenous proteins that may interact with and modulate IDE's activity in the cell. We purified and characterized two proteins from mouse leukemic splenocytes that interact with IDE and inhibit its insulin-degrading activity. A protein of 14 kDa was similar to a competitive IDE inhibitor reported previously. The major inhibitor was identified by amino acid sequencing as ubiquitin, a protein that is post-translationally covalently attached to other intracellular proteins and regulates diverse cellular processes. Ubiquitin inhibited insulin-degrading activity of IDE and diminished crosslinking of 125I-insulin to IDE in a specific, concentration-dependent, reversible, and ATP-independent manner. Ubiquitin did not affect the crosslinking of 125I-insulin to insulin receptors or of 125I-atrial natriuretic peptide (ANP) to its receptor guanylate cyclase-A. These findings suggest a novel role for ubiquitin or perhaps proteins with ubiquitin-like domains in regulating the function of IDE.
Collapse
Affiliation(s)
- Tomo Saric
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|
28
|
Abstract
The isopeptide bonds formed by ubiquitin or its relatives are cleaved by hydrolases with active site cysteines. Recent studies have revealed that similar metalloprotease motifs--JAMMs--in the Rpn11 subunit of the 26S proteasome lid and in the Csn5 subunit of the COP9 signalosome are involved in deubiquitination and deneddylation, respectively.
Collapse
Affiliation(s)
- Christoph Berndt
- Department of Surgery, Division of Molecular Biology, Monbijoustrasse 2, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
30
|
Verma R, Aravind L, Oania R, McDonald WH, Yates JR, Koonin EV, Deshaies RJ. Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 2002; 298:611-5. [PMID: 12183636 DOI: 10.1126/science.1075898] [Citation(s) in RCA: 796] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The 26S proteasome mediates degradation of ubiquitin-conjugated proteins. Although ubiquitin is recycled from proteasome substrates, the molecular basis of deubiquitination at the proteasome and its relation to substrate degradation remain unknown. The Rpn11 subunit of the proteasome lid subcomplex contains a highly conserved Jab1/MPN domain-associated metalloisopeptidase (JAMM) motif-EX(n)HXHX(10)D. Mutation of the predicted active-site histidines to alanine (rpn11AXA) was lethal and stabilized ubiquitin pathway substrates in yeast. Rpn11(AXA) mutant proteasomes assembled normally but failed to either deubiquitinate or degrade ubiquitinated Sic1 in vitro. Our findings reveal an unexpected coupling between substrate deubiquitination and degradation and suggest a unifying rationale for the presence of the lid in eukaryotic proteasomes.
Collapse
Affiliation(s)
- Rati Verma
- Department of Biology and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Yao T, Cohen RE. A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 2002; 419:403-7. [PMID: 12353037 DOI: 10.1038/nature01071] [Citation(s) in RCA: 576] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 08/16/2002] [Indexed: 11/09/2022]
Abstract
The 26S proteasome is responsible for most intracellular proteolysis in eukaryotes. Efficient substrate recognition relies on conjugation of substrates with multiple ubiquitin molecules and recognition of the polyubiquitin moiety by the 19S regulatory complex--a multisubunit assembly that is bound to either end of the cylindrical 20S proteasome core. Only unfolded proteins can pass through narrow axial channels into the central proteolytic chamber of the 20S core, so the attached polyubiquitin chain must be released to allow full translocation of the substrate polypeptide. Whereas unfolding is rate-limiting for the degradation of some substrates and appears to involve chaperone-like activities associated with the proteasome, the importance and mechanism of degradation-associated deubiquitination has remained unclear. Here we report that the POH1 (also known as Rpn11 in yeast) subunit of the 19S complex is responsible for substrate deubiquitination during proteasomal degradation. The inability to remove ubiquitin can be rate-limiting for degradation in vitro and is lethal to yeast. Unlike all other known deubiquitinating enzymes (DUBs) that are cysteine proteases, POH1 appears to be a Zn(2+)-dependent protease.
Collapse
Affiliation(s)
- Tingting Yao
- Department of Biochemistry, University of Iowa, 51 Newton Road, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
32
|
|
33
|
Affiliation(s)
- Olivier Coux
- CRBM-CNRS, IFR 24, 1919, Route de Mende, 34293 Montpellier, France
| |
Collapse
|
34
|
Strayhorn WD, Wadzinski BE. A novel in vitro assay for deubiquitination of I kappa B alpha. Arch Biochem Biophys 2002; 400:76-84. [PMID: 11913973 DOI: 10.1006/abbi.2002.2760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ubiquitin-proteasome pathway (UPP) controls a wide range of signal transduction cascades by targeting key regulatory proteins for 26S proteasome-mediated degradation. Several observations suggest that protein deubiquitination may modulate this process; however, few experiments have been performed to test this idea. An excellent model system for studying the regulatory role of the UPP is signal transduction via the nuclear factor-kappa B (NF-kappa B) family of transcription factors. The principal inhibitor of NF-kappa B, I kappa B alpha, is polyubiquitinated and degraded in response to diverse stimuli. In this study, we sought to determine whether I kappa B alpha deubiquitination also occurs. We established an in vitro deubiquitination assay using polyubiquitinated I kappa B alpha as the substrate. Our data provide evidence of an I kappa B alpha-directed deubiquitinating activity present in lysates of several cell lines. This activity was inhibited by ubiquitin aldehyde, a specific inhibitor of deubiquitinating enzymes, as well as by alkylating reagents or heat, but was unaffected by the inhibition of several other classes of proteases. Cell lysates and the deubiquitinating enzyme, UCH-L3, hydrolyzed ubiquitin 7-amido-4-methylcoumarin, a model substrate for assaying deubiquitinating activities. However, UCH-L3 had no detectable activity toward ubiquitinated I kappa B alpha, thus suggesting a degree of enzymatic specificity in the deubiquitination of I kappa B alpha. This assay will be useful for the study of I kappa B alpha deubiquitination. Moreover, this assay can be adapted to monitor the deubiquitination of other proteins modified by ubiquitin conjugation.
Collapse
Affiliation(s)
- W David Strayhorn
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | |
Collapse
|
35
|
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82:373-428. [PMID: 11917093 DOI: 10.1152/physrev.00027.2001] [Citation(s) in RCA: 3111] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Between the 1960s and 1980s, most life scientists focused their attention on studies of nucleic acids and the translation of the coded information. Protein degradation was a neglected area, considered to be a nonspecific, dead-end process. Although it was known that proteins do turn over, the large extent and high specificity of the process, whereby distinct proteins have half-lives that range from a few minutes to several days, was not appreciated. The discovery of the lysosome by Christian de Duve did not significantly change this view, because it became clear that this organelle is involved mostly in the degradation of extracellular proteins, and their proteases cannot be substrate specific. The discovery of the complex cascade of the ubiquitin pathway revolutionized the field. It is clear now that degradation of cellular proteins is a highly complex, temporally controlled, and tightly regulated process that plays major roles in a variety of basic pathways during cell life and death as well as in health and disease. With the multitude of substrates targeted and the myriad processes involved, it is not surprising that aberrations in the pathway are implicated in the pathogenesis of many diseases, certain malignancies, and neurodegeneration among them. Degradation of a protein via the ubiquitin/proteasome pathway involves two successive steps: 1) conjugation of multiple ubiquitin moieties to the substrate and 2) degradation of the tagged protein by the downstream 26S proteasome complex. Despite intensive research, the unknown still exceeds what we currently know on intracellular protein degradation, and major key questions have remained unsolved. Among these are the modes of specific and timed recognition for the degradation of the many substrates and the mechanisms that underlie aberrations in the system that lead to pathogenesis of diseases.
Collapse
Affiliation(s)
- Michael H Glickman
- Faculty of Biology and the Institute for Catalysis Science and Technology, Haifa, Israel.
| | | |
Collapse
|
36
|
Yan N, Doelling JH, Falbel TG, Durski AM, Vierstra RD. The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. PLANT PHYSIOLOGY 2000; 124:1828-43. [PMID: 11115897 PMCID: PMC59878 DOI: 10.1104/pp.124.4.1828] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Accepted: 09/26/2000] [Indexed: 05/18/2023]
Abstract
Ubiquitin-specific proteases (UBPs) are a family of unique hydrolases that specifically remove polypeptides covalently linked via peptide or isopeptide bonds to the C-terminal glycine of ubiquitin. UBPs help regulate the ubiquitin/26S proteolytic pathway by generating free ubiquitin monomers from their initial translational products, recycling ubiquitins during the breakdown of ubiquitin-protein conjugates, and/or by removing ubiquitin from specific targets and thus presumably preventing target degradation. Here, we describe a family of 27 UBP genes from Arabidopsis that contain both the conserved cysteine (Cys) and histidine boxes essential for catalysis. They can be clustered into 14 subfamilies based on sequence similarity, genomic organization, and alignments with their closest relatives from other organisms, with seven subfamilies having two or more members. Recombinant AtUBP2 functions as a bona fide UBP: It can release polypeptides attached to ubiquitins via either alpha- or epsilon-amino linkages by an activity that requires the predicted active-site Cys within the Cys box. From the analysis of T-DNA insertion mutants, we demonstrate that the AtUBP1 and 2 subfamily helps confer resistance to the arginine analog canavanine. This phenotype suggests that the AtUBP1 and 2 enzymes are needed for abnormal protein turnover in Arabidopsis.
Collapse
Affiliation(s)
- N Yan
- Cellular and Molecular Biology Program and the Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
37
|
Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 2000; 68:1015-68. [PMID: 10872471 DOI: 10.1146/annurev.biochem.68.1.1015] [Citation(s) in RCA: 1394] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In eukaryotic cells, most proteins in the cytosol and nucleus are degraded via the ubiquitin-proteasome pathway. The 26S proteasome is a 2.5-MDa molecular machine built from approximately 31 different subunits, which catalyzes protein degradation. It contains a barrel-shaped proteolytic core complex (the 20S proteasome), capped at one or both ends by 19S regulatory complexes, which recognize ubiquitinated proteins. The regulatory complexes are also implicated in unfolding and translocation of ubiquitinated targets into the interior of the 20S complex, where they are degraded to oligopeptides. Structure, assembly and enzymatic mechanism of the 20S complex have been elucidated, but the functional organization of the 19S complex is less well understood. Most subunits of the 19S complex have been identified, however, specific functions have been assigned to only a few. A low-resolution structure of the 26S proteasome has been obtained by electron microscopy, but the precise arrangement of subunits in the 19S complex is unclear.
Collapse
Affiliation(s)
- D Voges
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
38
|
Hölzl H, Kapelari B, Kellermann J, Seemüller E, Sümegi M, Udvardy A, Medalia O, Sperling J, Müller SA, Engel A, Baumeister W. The regulatory complex of Drosophila melanogaster 26S proteasomes. Subunit composition and localization of a deubiquitylating enzyme. J Cell Biol 2000; 150:119-30. [PMID: 10893261 PMCID: PMC2185576 DOI: 10.1083/jcb.150.1.119] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2000] [Accepted: 05/30/2000] [Indexed: 01/08/2023] Open
Abstract
Drosophila melanogaster embryos are a source for homogeneous and stable 26S proteasomes suitable for structural studies. For biochemical characterization, purified 26S proteasomes were resolved by two-dimensional (2D) gel electrophoresis and subunits composing the regulatory complex (RC) were identified by amino acid sequencing and immunoblotting, before corresponding cDNAs were sequenced. 17 subunits from Drosophila RCs were found to have homologues in the yeast and human RCs. An additional subunit, p37A, not yet described in RCs of other organisms, is a member of the ubiquitin COOH-terminal hydrolase family (UCH). Analysis of EM images of 26S proteasomes-UCH-inhibitor complexes allowed for the first time to localize one of the RC's specific functions, deubiquitylating activity. The masses of 26S proteasomes with either one or two attached RCs were determined by scanning transmission EM (STEM), yielding a mass of 894 kD for a single RC. This value is in good agreement with the summed masses of the 18 identified RC subunits (932 kD), indicating that the number of subunits is complete.
Collapse
MESH Headings
- Animals
- Drosophila melanogaster/enzymology
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Embryo, Nonmammalian/enzymology
- Macromolecular Substances
- Microscopy, Electron, Scanning Transmission
- Models, Molecular
- Molecular Sequence Data
- Molecular Weight
- Peptide Hydrolases/chemistry
- Peptide Hydrolases/genetics
- Peptide Hydrolases/isolation & purification
- Peptide Hydrolases/ultrastructure
- Proteasome Endopeptidase Complex
- Protein Structure, Tertiary
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Thiolester Hydrolases/genetics
- Thiolester Hydrolases/metabolism
- Ubiquitin Thiolesterase
- Ubiquitins/metabolism
Collapse
Affiliation(s)
- Harald Hölzl
- Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Barbara Kapelari
- Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Josef Kellermann
- Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Erika Seemüller
- Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Máté Sümegi
- Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Andor Udvardy
- Biological Research Center of the Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | - Ohad Medalia
- Department of Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Joseph Sperling
- Department of Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shirley A. Müller
- Maurice E. Müller Institute, Biocenter, University of Basel, CH-4056 Basel, Switzerland
| | - Andreas Engel
- Maurice E. Müller Institute, Biocenter, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
39
|
Layfield R, Franklin K, Landon M, Walker G, Wang P, Ramage R, Brown A, Love S, Urquhart K, Muir T, Baker R, Mayer RJ. Chemically synthesized ubiquitin extension proteins detect distinct catalytic capacities of deubiquitinating enzymes. Anal Biochem 1999; 274:40-9. [PMID: 10527495 DOI: 10.1006/abio.1999.4234] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used solid-phase chemistry to synthesize proteins equivalent to a human ubiquitin precursor (ubiquitin-52-amino-acid ribosomal protein fusion; UBICEP52) and representative of isopeptide-linked ubiquitin-protein conjugates [ubiquitin-(epsilonN)-lysine]; these proteins were precisely cleaved by a purified recombinant Drosophila deubiquitinating enzyme (DUB), UCH-D. Along with the previously synthesized ubiquitin-(alphaN)-valine, these synthetic proteins were used as substrates to assess the catalytic capacities of a number of diverse DUBs expressed in Escherichia coli: human HAUSP; mouse Unp; and yeast Ubps 1p, 2p, 3p, 6p, 11p, and 15p and Yuh1p. Distinct specificities of these enzymes were detected; notably, in addition to UCH-D, isopeptidase activity [ubiquitin-(epsilonN)-lysine cleavage] was only associated with Yuh1p, Unp, Ubp1p, and Ubp2p. Additionally, human placental 26S proteasomes were only able to cleave UBICEP52 and ubiquitin-(epsilonN)-lysine, suggesting that 26S proteasome-associated DUBs are class II-like. This work demonstrates that the synthetic approach offers an alternative to recombinant methods for the production of small proteins in vitro.
Collapse
Affiliation(s)
- R Layfield
- Laboratory of Intracellular Proteolysis, School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Sensitization of defensive reflexes in Aplysia is a simple behavioral paradigm for studying both short- and long-term memory. In the marine mollusk, as in other animals, memory has at least two phases: a short-term phase lasting minutes and a long-term phase lasting several days or longer. Short-term memory is produced by covalent modification of pre-existing proteins. In contrast, long-term memory needs gene induction, synthesis of new protein, and the growth of new synapses. The switch from short-term (STF) to long-term facilitation (LTF) in Aplysia sensory neurons requires not only positive regulation through gene induction, but also the specific removal of several inhibitory proteins. One important inhibitory protein is the regulatory (R) subunit of the cAMP-dependent protein kinase (PKA). Degradation of R subunits, which is essential for initiating long-term stable memory, occurs through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- D G Chain
- Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
41
|
Zwickl P, Voges D, Baumeister W. The proteasome: a macromolecular assembly designed for controlled proteolysis. Philos Trans R Soc Lond B Biol Sci 1999; 354:1501-11. [PMID: 10582236 PMCID: PMC1692663 DOI: 10.1098/rstb.1999.0494] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic cells, the vast majority of proteins in the cytosol and nucleus are degraded via the proteasome-ubiquitin pathway. The 26S proteasome is a huge protein degradation machine of 2.5 MDa, built of approximately 35 different subunits. It contains a proteolytic core complex, the 20S proteasome and one or two 19S regulatory complexes which associate with the termini of the barrel-shaped 20S core. The 19S regulatory complex serves to recognize ubiquitylated target proteins and is implicated to have a role in their unfolding and translocation into the interior of the 20S complex where they are degraded into oligopeptides. While much progress has been made in recent years in elucidating the structure, assembly and enzymatic mechanism of the 20S complex, our knowledge of the functional organization of the 19S regulator is rather limited. Most of its subunits have been identified, but specific functions can be assigned to only a few of them.
Collapse
Affiliation(s)
- P Zwickl
- Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
42
|
Papa FR, Amerik AY, Hochstrasser M. Interaction of the Doa4 deubiquitinating enzyme with the yeast 26S proteasome. Mol Biol Cell 1999; 10:741-56. [PMID: 10069815 PMCID: PMC25199 DOI: 10.1091/mbc.10.3.741] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
e Saccharomyces cerevisiae Doa4 deubiquitinating enzyme is required for the rapid degradation of protein substrates of the ubiquitin-proteasome pathway. Previous work suggested that Doa4 functions late in the pathway, possibly by deubiquitinating (poly)-ubiquitin-substrate intermediates associated with the 26S proteasome. We now provide evidence for physical and functional interaction between Doa4 and the proteasome. Genetic interaction is indicated by the mutual enhancement of defects associated with a deletion of DOA4 or a proteasome mutation when the two mutations are combined. Physical association of Doa4 and the proteasome was investigated with a new yeast 26S proteasome purification procedure, by which we find that a sizeable fraction of Doa4 copurifies with the protease. Another yeast deubiquitinating enzyme, Ubp5, which is related in sequence to Doa4 but cannot substitute for it even when overproduced, does not associate with the proteasome. DOA4-UBP5 chimeras were made by a novel PCR/yeast recombination method and used to identify an N-terminal 310-residue domain of Doa4 that, when appended to the catalytic domain of Ubp5, conferred Doa4 function, consistent with Ubp enzymes having a modular architecture. Unlike Ubp5, a functional Doa4-Ubp5 chimera associates with the proteasome, suggesting that proteasome binding is important for Doa4 function. Together, these data support a model in which Doa4 promotes proteolysis through removal of ubiquitin from proteolytic intermediates on the proteasome before or after initiation of substrate breakdown.
Collapse
Affiliation(s)
- F R Papa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
43
|
Abstract
Ubiquitination of key cellular proteins involved in signal transduction, gene transcription and cell-cycle regulation usually condemns those proteins to proteasomal or lysosomal degradation. Additionally, cycles of reversible ubiquitination regulate the function of certain proteins in a manner analogous to phosphorylation. In this short review we describe the current methodology for measuring ubiquitin and ubiquitination, provide examples which illustrate how various techniques have been used to study protein ubiquination, alert the readers of pitfalls to avoid, and offer guidelines to investigators newly interested in this novel post-translational protein modification.
Collapse
Affiliation(s)
- E G Mimnaugh
- Tumor Cell Biology Section, Medicine Branch, National Cancer Institute, National Institutes of Health, Key West Center, Rockville, MD 20850, USA.
| | | | | |
Collapse
|
44
|
Xiong X, Chong E, Skach WR. Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane. J Biol Chem 1999; 274:2616-24. [PMID: 9915789 DOI: 10.1074/jbc.274.5.2616] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome pathway has been implicated in the degradation of newly synthesized, misfolded and unassembled proteins in the endoplasmic reticulum (ER). Using a cell-free reticulocyte lysate system we have examined the relationship between biosynthesis and ER-associated degradation of the cystic fibrosis transmembrane conductance regulator (CFTR), a polytopic protein with 12 predicted transmembrane segments. Our results provide direct evidence that full-length, glycosylated and membrane-integrated CFTR is a substrate for degradation and that degradation involves polyubiquitination and cytosolic proteolytic activity. CFTR ubiquitination was both temperature- and ATP-dependent. Degradation was significantly inhibited by EDTA, apyrase, and the proteasome inhibitors hemin and MG132. Degradation was inhibited to a lesser extent by clasto-lactacystin beta-lactone, ALLN, and Nalpha-tosyl-L-phenylalanine chloromethyl ketone and was relatively unaffected by lactacystin and N-tosyl lysyl chloromethyl ketone. In the presence of hemin, polyubiquitinated CFTR remained tightly associated with ER microsomes. However, membrane-bound ubiquitinated CFTR could be subsequently degraded into trichloroacetic acid-soluble fragments upon incubation in hemin-free, ATP-containing lysate. Thus ER-associated degradation of CFTR occurs via a membrane-bound, rather than cytosolic, intermediate and likely involves recruitment of degradation machinery to the ER membrane. Our data suggest a model in which the degradation of polytopic proteins such as CFTR is coupled to retrograde translocation and removal of the polypeptide from the lipid bilayer.
Collapse
Affiliation(s)
- X Xiong
- Department of Molecular and Cellular Engineering and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
45
|
Chain DG, Casadio A, Schacher S, Hegde AN, Valbrun M, Yamamoto N, Goldberg AL, Bartsch D, Kandel ER, Schwartz JH. Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 1999; 22:147-56. [PMID: 10027297 DOI: 10.1016/s0896-6273(00)80686-8] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The formation of a persistently active cAMP-dependent protein kinase (PKA) is critical for establishing long-term synaptic facilitation (LTF) in Aplysia. The injection of bovine catalytic (C) subunits into sensory neurons is sufficient to produce protein synthesis-dependent LTF. Early in the LTF induced by serotonin (5-HT), an autonomous PKA is generated through the ubiquitin-proteasome-mediated proteolysis of regulatory (R) subunits. The degradation of R occurs during an early time window and appears to be a key function of proteasomes in LTF. Lactacystin, a specific proteasome inhibitor, blocks the facilitation induced by 5-HT, and this block is rescued by injecting C subunits. R is degraded through an allosteric mechanism requiring an elevation of cAMP coincident with the induction of a ubiquitin carboxy-terminal hydrolase.
Collapse
Affiliation(s)
- D G Chain
- Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.
Collapse
Affiliation(s)
- A Hershko
- Unit of Biochemistry, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
47
|
Mykles DL. Intracellular proteinases of invertebrates: calcium-dependent and proteasome/ubiquitin-dependent systems. INTERNATIONAL REVIEW OF CYTOLOGY 1998; 184:157-289. [PMID: 9697313 DOI: 10.1016/s0074-7696(08)62181-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytosolic proteinases carry out a variety of regulatory functions by controlling protein levels and/or activities within cells. Calcium-dependent and ubiquitin/proteasome-dependent pathways are common to all eukaryotes. The former pathway consists of a diverse group of Ca(2+)-dependent cysteine proteinases (CDPs; calpains in vertebrate tissues). The latter pathway is highly conserved and consists of ubiquitin, ubiquitin-conjugating enzymes, deubiquitinases, and the proteasome. This review summarizes the biochemical properties and genetics of invertebrate CDPs and proteasomes and their roles in programmed cell death, stress responses (heat shock and anoxia), skeletal muscle atrophy, gametogenesis and fertilization, development and pattern formation, cell-cell recognition, signal transduction and learning, and photoreceptor light adaptation. These pathways carry out bulk protein degradation in the programmed death of the intersegmental and flight muscles of insects and of individuals in a colonial ascidian; molt-induced atrophy of crustacean claw muscle; and responses of brine shrimp, mussels, and insects to environmental stress. Selective proteolysis occurs in response to specific signals, such as in modulating protein kinase A activity in sea hare and fruit fly associated with learning; gametogenesis, differentiation, and development in sponge, echinoderms, nematode, ascidian, and insects; and in light adaptation of photoreceptors in the eyes of squid, insects, and crustaceans. Proteolytic activities and specificities are regulated through proteinase gene expression (CDP isozymes and proteasomal subunits), allosteric regulators, and posttranslational modifications, as well as through specific targeting of protein substrates by a diverse assemblage of ubiquitin-conjugases and deubiquitinases. Thus, the regulation of intracellular proteolysis approaches the complexity and versatility of transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- D L Mykles
- Department of Biology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
48
|
Coux O, Goldberg AL. Enzymes catalyzing ubiquitination and proteolytic processing of the p105 precursor of nuclear factor kappaB1. J Biol Chem 1998; 273:8820-8. [PMID: 9535861 DOI: 10.1074/jbc.273.15.8820] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor kappaB1 (NF-kappaB) is a heterodimeric complex that regulates transcription of many genes involved in immune and inflammatory responses. Its 50-kDa subunit (p50) is generated by the ubiquitin-proteasome pathway from a 105-kDa precursor (p105). We have reconstituted this proteolytic process in HeLa cell extracts and purified the responsible enzymes. Ubiquitination of p105 requires E1, and either of two types of E2s, E2-25K (for which p105 is the first proven substrate) or a member of the UBCH5 (UBC4) family. It also requires a new E3 of 50 kDa, which we call E3kappaB. This set of enzymes differs from the E2s and E3 reported by others to catalyze p105 ubiquitination in reticulocytes. The ubiquitinating enzymes purified here, together with 26S proteasomes, allowed formation of p50. Thus, the 26S proteasome provides all the proteolytic activities necessary for p105 processing. Interestingly, in the reconstituted system, as observed in cells, the C-terminally truncated form of p105, p97, was processed into p50 more efficiently than normal p105, even when both species were ubiquitinated to a similar extent. Therefore, some additional mechanism involving the C-terminal region of p105 influences the proteolytic processing of the ubiquitinated precursor.
Collapse
Affiliation(s)
- O Coux
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
49
|
Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, Finley D, Vierstra RD. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J Biol Chem 1998; 273:1970-81. [PMID: 9442033 DOI: 10.1074/jbc.273.4.1970] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 26 S proteasome is a multisubunit proteolytic complex responsible for degrading eukaryotic proteins targeted by ubiquitin modification. Substrate recognition by the complex is presumed to be mediated by one or more common receptor(s) with affinity for multiubiquitin chains, especially those internally linked through lysine 48. We have identified previously a candidate for one such receptor from diverse species, designated here as Mcb1 for Multiubiquitin chain-binding protein, based on its ability to bind Lys48-linked multiubiquitin chains and its location within the 26 S proteasome complex. Even though Mcb1 is likely not the only receptor in yeast, it is necessary for conferring resistance to amino acid analogs and for degrading a subset of ubiquitin pathway substrates such as ubiquitin-Pro-beta-galactosidase (Ub-Pro-beta-gal) (van Nocker, S., Sadis, S., Rubin, D.M., Glickman, M., Fu, H., Coux, O., Wefes, I., Finley, D., and Vierstra, R. D. (1996) Mol. Cell. Biol. 16, 6020-28). To further define the role of Mcb1 in substrate recognition by the 26 S proteasome, a structure/function analysis of various deletion and site-directed mutants of yeast and Arabidopsis Mcb1 was performed. From these studies, we identified a single stretch of conserved hydrophobic amino acids (LAM/LALRL/V (ScMcb1 228-234 and At-Mcb1 226-232)) within the C-terminal half of each polypeptide that is necessary for interaction with Lys48-linked multiubiquitin chains. Unexpectedly, this domain was not essential for either Ub-Pro-beta-gal degradation or conferring resistance to amino acid analogs. The domain responsible for these two activities was mapped to a conserved region near the N terminus. Yeast and Arabidopsis Mcb1 derivatives containing an intact multiubiquitin-binding site but missing the N-terminal region failed to promote Ub-Pro-beta-gal degradation and even accentuated the sensitivity of the yeast delta mcb1 strain to amino acid analogs. This hypersensitivity was not caused by a gross defect in 26 S proteasome assembly as mutants missing either the N-terminal domain or the multiubiquitin chain-binding site could still associate with 26 S proteasome and generate a complex indistinguishable in size from that present in wild-type yeast. Together, these data indicate that residues near the N terminus, and not the multiubiquitin chain-binding site, are most critical for Mcb1 function in vivo.
Collapse
Affiliation(s)
- H Fu
- Cellular and Molecular Biology Program, University of Wisconsin-Madison 53706, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
The 19S Regulatory Complex of the 26S Proteasome. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1569-2558(08)60460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|