1
|
Chechik M, Greive SJ, Antson AA, Jenkins HT. Structural basis for DNA recognition by a viral genome-packaging machine. Proc Natl Acad Sci U S A 2024; 121:e2406138121. [PMID: 39116131 PMCID: PMC11331095 DOI: 10.1073/pnas.2406138121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
DNA recognition is critical for assembly of double-stranded DNA viruses, particularly for the initiation of packaging the viral genome into the capsid. The key component that recognizes viral DNA is the small terminase protein. Despite prior studies, the molecular mechanism for DNA recognition remained elusive. Here, we address this question by identifying the minimal site in the bacteriophage HK97 genome specifically recognized by the small terminase and determining the structure of this complex by cryoEM. The circular small terminase employs an entirely unexpected mechanism in which DNA transits through the central tunnel, and sequence-specific recognition takes place as it emerges. This recognition stems from a substructure formed by the N- and C-terminal segments of two adjacent protomers which are unstructured when DNA is absent. Such interaction ensures continuous engagement of the small terminase with DNA, enabling it to slide along the DNA while simultaneously monitoring its sequence. This mechanism allows locating and instigating packaging initiation and termination precisely at the specific cos sequence.
Collapse
Affiliation(s)
- Maria Chechik
- York Structural Biology Laboratory, Department of Chemistry, University of York, YorkYO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, YorkYO10 5NG, United Kingdom
| | - Sandra J. Greive
- York Structural Biology Laboratory, Department of Chemistry, University of York, YorkYO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, YorkYO10 5NG, United Kingdom
| | - Alfred A. Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, YorkYO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, YorkYO10 5NG, United Kingdom
| | - Huw T. Jenkins
- York Structural Biology Laboratory, Department of Chemistry, University of York, YorkYO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, YorkYO10 5NG, United Kingdom
| |
Collapse
|
2
|
Prokhorov NS, Davis C, Maruthi K, Yang Q, Sherman M, Woodson M, White M, Miller LM, Jarrold M, Catalano C, Morais M. Biophysical and structural characterization of a multifunctional viral genome packaging motor. Nucleic Acids Res 2024; 52:831-843. [PMID: 38084901 PMCID: PMC10810279 DOI: 10.1093/nar/gkad1135] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 01/26/2024] Open
Abstract
The large dsDNA viruses replicate their DNA as concatemers consisting of multiple covalently linked genomes. Genome packaging is catalyzed by a terminase enzyme that excises individual genomes from concatemers and packages them into preassembled procapsids. These disparate tasks are catalyzed by terminase alternating between two distinct states-a stable nuclease that excises individual genomes and a dynamic motor that translocates DNA into the procapsid. It was proposed that bacteriophage λ terminase assembles as an anti-parallel dimer-of-dimers nuclease complex at the packaging initiation site. In contrast, all characterized packaging motors are composed of five terminase subunits bound to the procapsid in a parallel orientation. Here, we describe biophysical and structural characterization of the λ holoenzyme complex assembled in solution. Analytical ultracentrifugation, small angle X-ray scattering, and native mass spectrometry indicate that 5 subunits assemble a cone-shaped terminase complex. Classification of cryoEM images reveals starfish-like rings with skewed pentameric symmetry and one special subunit. We propose a model wherein nuclease domains of two subunits alternate between a dimeric head-to-head arrangement for genome maturation and a fully parallel arrangement during genome packaging. Given that genome packaging is strongly conserved in both prokaryotic and eukaryotic viruses, the results have broad biological implications.
Collapse
Affiliation(s)
- Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Christal R Davis
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kashyap Maruthi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Qin Yang
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Michael Woodson
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Mark A White
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Lohra M Miller
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Carlos E Catalano
- Program in Structural Biology and Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Campus, Aurora, CO 80045, USA
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Sealy Center for Structural Biology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Abstract
Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.
Collapse
Affiliation(s)
- Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States.
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
4
|
Wangchuk J, Chatterjee A, Patil S, Madugula SK, Kondabagil K. The coevolution of large and small terminases of bacteriophages is a result of purifying selection leading to phenotypic stabilization. Virology 2021; 564:13-25. [PMID: 34598064 DOI: 10.1016/j.virol.2021.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Genome packaging in many dsDNA phages requires a series of precisely coordinated actions of two phage-coded proteins, namely, large terminase (TerL) and small terminase (TerS) with DNA and ATP, and with each other. Despite the strict functional conservation, TerL and TerS homologs exhibit large sequence variations. We investigated the sequence variability across eight phage types and observed a coevolutionary framework wherein the genealogy of TerL homologs mirrored that of the corresponding TerS homologs. Furthermore, a high purifying selection observed (dN/dS«1) indicated strong structural constraints on both TerL and TerS, and identify coevolving residues in TerL and TerS of phage T4 and lambda. Using the highly coevolving (correlation coefficient of 0.99) TerL and TerS of phage N4, we show that their biochemical features are similar to the phylogenetically divergent phage λ terminases. We also demonstrate using the Surface Plasma Resonance (SPR) technique that phage N4 TerL transiently interacts with TerS.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Supriya Patil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Santhosh Kumar Madugula
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
5
|
Yang Q, Catalano CE. ATP serves as a nucleotide switch coupling the genome maturation and packaging motor complexes of a virus assembly machine. Nucleic Acids Res 2020; 48:5006-5015. [PMID: 32255177 PMCID: PMC7229814 DOI: 10.1093/nar/gkaa205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 11/29/2022] Open
Abstract
The assembly of double-stranded DNA viruses, from phages to herpesviruses, is strongly conserved. Terminase enzymes processively excise and package monomeric genomes from a concatemeric DNA substrate. The enzymes cycle between a stable maturation complex that introduces site-specific nicks into the duplex and a dynamic motor complex that rapidly translocates DNA into a procapsid shell, fueled by ATP hydrolysis. These tightly coupled reactions are catalyzed by terminase assembled into two functionally distinct nucleoprotein complexes; the maturation complex and the packaging motor complex, respectively. We describe the effects of nucleotides on the assembly of a catalytically competent maturation complex on viral DNA, their effect on maturation complex stability and their requirement for the transition to active packaging motor complex. ATP plays a major role in regulating all of these activities and may serve as a 'nucleotide switch' that mediates transitions between the two complexes during processive genome packaging. These biological processes are recapitulated in all of the dsDNA viruses that package monomeric genomes from concatemeric DNA substrates and the nucleotide switch mechanism may have broad biological implications with respect to virus assembly mechanisms.
Collapse
Affiliation(s)
- Qin Yang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carlos E Catalano
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Wangchuk J, Prakash P, Bhaumik P, Kondabagil K. Bacteriophage N4 large terminase: expression, purification and X-ray crystallographic analysis. Acta Crystallogr F Struct Biol Commun 2018; 74:198-204. [PMID: 29633967 PMCID: PMC5894105 DOI: 10.1107/s2053230x18003084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
Genome packaging is a critical step in the assembly of dsDNA bacteriophages and is carried out by a powerful molecular motor known as the large terminase. To date, wild-type structures of only two large terminase proteins are available, and more structural information is needed to understand the genome-packaging mechanism. Towards this goal, the large and small terminase proteins from bacteriophage N4, which infects the Escherichia coli K12 strain, have been cloned, expressed and purified. The purified putative large terminase protein hydrolyzes ATP, and this is enhanced in the presence of the small terminase. The large terminase protein was crystallized using the sitting-drop vapour-diffusion method and the crystal diffracted to 2.8 Å resolution using a home X-ray source. Analysis of the X-ray diffraction data showed that the crystal belonged to space group P212121, with unit-cell parameters a = 53.7, b = 93.6, c = 124.9 Å, α = β = γ = 90°. The crystal had a solvent content of 50.2% and contained one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Jigme Wangchuk
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Prem Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Prasenjit Bhaumik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| |
Collapse
|
7
|
Lambert S, Yang Q, De Angeles R, Chang JR, Ortega M, Davis C, Catalano CE. Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins. Biochemistry 2017; 56:767-778. [DOI: 10.1021/acs.biochem.6b00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shannon Lambert
- Department
of Medicinal Chemistry, School of Pharmacy, University of Washington, Box 357610, Seattle, Washington 98195, United States
| | - Qin Yang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Mail Stop C238, Aurora, Colorado 80045, United States
| | - Rolando De Angeles
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Mail Stop C238, Aurora, Colorado 80045, United States
| | - Jenny R. Chang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Mail Stop C238, Aurora, Colorado 80045, United States
| | - Marcos Ortega
- Department
of Biology, Macalester College, St. Paul, Minnesota 55105, United States
| | - Christal Davis
- Program
in Structural Biology and Biochemistry, University of Colorado, Anschutz Medical Campus, Mail Stop C290, Aurora, Colorado 80045, United States
| | - Carlos Enrique Catalano
- Department
of Medicinal Chemistry, School of Pharmacy, University of Washington, Box 357610, Seattle, Washington 98195, United States
| |
Collapse
|
8
|
Pi F, Zhao Z, Chelikani V, Yoder K, Kvaratskhelia M, Guo P. Development of Potent Antiviral Drugs Inspired by Viral Hexameric DNA-Packaging Motors with Revolving Mechanism. J Virol 2016; 90:8036-46. [PMID: 27356896 PMCID: PMC5008075 DOI: 10.1128/jvi.00508-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular parasitic nature of viruses and the emergence of antiviral drug resistance necessitate the development of new potent antiviral drugs. Recently, a method for developing potent inhibitory drugs by targeting biological machines with high stoichiometry and a sequential-action mechanism was described. Inspired by this finding, we reviewed the development of antiviral drugs targeting viral DNA-packaging motors. Inhibiting multisubunit targets with sequential actions resembles breaking one bulb in a series of Christmas lights, which turns off the entire string. Indeed, studies on viral DNA packaging might lead to the development of new antiviral drugs. Recent elucidation of the mechanism of the viral double-stranded DNA (dsDNA)-packaging motor with sequential one-way revolving motion will promote the development of potent antiviral drugs with high specificity and efficiency. Traditionally, biomotors have been classified into two categories: linear and rotation motors. Recently discovered was a third type of biomotor, including the viral DNA-packaging motor, beside the bacterial DNA translocases, that uses a revolving mechanism without rotation. By analogy, rotation resembles the Earth's rotation on its own axis, while revolving resembles the Earth's revolving around the Sun (see animations at http://rnanano.osu.edu/movie.html). Herein, we review the structures of viral dsDNA-packaging motors, the stoichiometries of motor components, and the motion mechanisms of the motors. All viral dsDNA-packaging motors, including those of dsDNA/dsRNA bacteriophages, adenoviruses, poxviruses, herpesviruses, mimiviruses, megaviruses, pandoraviruses, and pithoviruses, contain a high-stoichiometry machine composed of multiple components that work cooperatively and sequentially. Thus, it is an ideal target for potent drug development based on the power function of the stoichiometries of target complexes that work sequentially.
Collapse
Affiliation(s)
- Fengmei Pi
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Zhengyi Zhao
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Venkata Chelikani
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, New Zealand
| | - Kristine Yoder
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mamuka Kvaratskhelia
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, Department of Physiology and Cell Biology, College of Medicine, and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Thermodynamic Interrogation of the Assembly of a Viral Genome Packaging Motor Complex. Biophys J 2016; 109:1663-75. [PMID: 26488657 DOI: 10.1016/j.bpj.2015.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 11/21/2022] Open
Abstract
Viral terminase enzymes serve as genome packaging motors in many complex double-stranded DNA viruses. The functional motors are multiprotein complexes that translocate viral DNA into a capsid shell, powered by a packaging ATPase, and are among the most powerful molecular motors in nature. Given their essential role in virus development, the structure and function of these biological motors is of considerable interest. Bacteriophage λ-terminase, which serves as a prototypical genome packaging motor, is composed of one large catalytic subunit tightly associated with two DNA recognition subunits. This protomer assembles into a functional higher-order complex that excises a unit length genome from a concatemeric DNA precursor (genome maturation) and concomitantly translocates the duplex into a preformed procapsid shell (genome packaging). While the enzymology of λ-terminase has been well described, the nature of the catalytically competent nucleoprotein intermediates, and the mechanism describing their assembly and activation, is less clear. Here we utilize analytical ultracentrifugation to determine the thermodynamic parameters describing motor assembly and define a minimal thermodynamic linkage model that describes the effects of salt on protomer assembly into a tetrameric complex. Negative stain electron microscopy images reveal a symmetric ring-like complex with a compact stem and four extended arms that exhibit a range of conformational states. Finally, kinetic studies demonstrate that assembly of the ring tetramer is directly linked to activation of the packaging ATPase activity of the motor, thus providing a direct link between structure and function. The implications of these results with respect to the assembly and activation of the functional packaging motor during a productive viral infection are discussed.
Collapse
|
10
|
Abstract
During progeny assembly, viruses selectively package virion genomes from a nucleic acid pool that includes host nucleic acids. For large dsDNA viruses, including tailed bacteriophages and herpesviruses, immature viral DNA is recognized and translocated into a preformed icosahedral shell, the prohead. Recognition involves specific interactions between the viral packaging enzyme, terminase, and viral DNA recognition sites. Generally, viral DNA is recognized by terminase’s small subunit (TerS). The large terminase subunit (TerL) contains translocation ATPase and endonuclease domains. In phage lambda, TerS binds a sequence repeated three times in cosB, the recognition site. TerS binding to cosB positions TerL to cut the concatemeric DNA at the adjacent nicking site, cosN. TerL introduces staggered nicks in cosN, generating twelve bp cohesive ends. Terminase separates the cohesive ends and remains bound to the cosB-containing end, in a nucleoprotein structure called Complex I. Complex I docks on the prohead’s portal vertex and translocation ensues. DNA topology plays a role in the TerSλ-cosBλ interaction. Here we show that a site, I2, located between cosN and cosB, is critically important for an early DNA packaging step. I2 contains a complex static bend. I2 mutations block DNA packaging. I2 mutant DNA is cut by terminase at cosN in vitro, but in vivo, no cos cleavage is detected, nor is there evidence for Complex I. Models for what packaging step might be blocked by I2 mutations are presented.
Collapse
|
11
|
Epstein-Barr virus BALF3 has nuclease activity and mediates mature virion production during the lytic cycle. J Virol 2014; 88:4962-75. [PMID: 24554665 DOI: 10.1128/jvi.00063-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Epstein-Barr virus (EBV) lytic replication involves complex processes, including DNA synthesis, DNA cleavage and packaging, and virion egress. These processes require many different lytic gene products, but the mechanisms of their actions remain unclear, especially for DNA cleavage and packaging. According to sequence homology analysis, EBV BALF3, encoded by the third leftward open reading frame of the BamHI-A fragment in the viral genome, is a homologue of herpes simplex virus type 1 UL28. This gene product is believed to possess the properties of a terminase, such as nucleolytic activity on newly synthesized viral DNA and translocation of unit length viral genomes into procapsids. In order to characterize EBV BALF3, the protein was produced by and purified from recombinant baculoviruses and examined in an enzymatic reaction in vitro, which determined that EBV BALF3 acts as an endonuclease and its activity is modulated by Mg(2+), Mn(2+), and ATP. Moreover, in EBV-positive epithelial cells, BALF3 was expressed and transported from the cytoplasm into the nucleus following induction of the lytic cycle, and gene silencing of BALF3 caused a reduction of DNA packaging and virion release. Interestingly, suppression of BALF3 expression also decreased the efficiency of DNA synthesis. On the basis of these results, we suggest that EBV BALF3 is involved simultaneously in DNA synthesis and packaging and is required for the production of mature virions. IMPORTANCE Virus lytic replication is essential to produce infectious virions, which is responsible for virus survival and spread. This work shows that an uncharacterized gene product of the human herpesvirus Epstein-Barr virus (EBV), BALF3, is expressed during the lytic cycle. In addition, BALF3 mediates an endonucleolytic reaction and is involved in viral DNA synthesis and packaging, leading to influence on the production of mature virions. According to sequence homology and physical properties, the lytic gene product BALF3 is considered a terminase in EBV. These findings identify a novel viral gene with an important role in contributing to a better understanding of the EBV life cycle.
Collapse
|
12
|
Andrews BT, Catalano CE. The enzymology of a viral genome packaging motor is influenced by the assembly state of the motor subunits. Biochemistry 2012; 51:9342-53. [PMID: 23134123 DOI: 10.1021/bi300890y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Terminase enzymes are responsible for the excision of a single genome from a concatemeric precursor (genome maturation) and concomitant packaging of DNA into the capsid shell. Here, we demonstrate that lambda terminase can be purified as a homogeneous "protomer" species, and we present a kinetic analysis of the genome maturation and packaging activities of the protomeric enzyme. The protomer assembles into a distinct maturation complex at the cos sequence of a concatemer. This complex rapidly nicks the duplex to form the mature left end of the viral genome, which is followed by procapsid binding, activation of the packaging ATPase, and translocation of the duplex into the capsid interior by the terminase motor complex. Genome packaging by the protomer shows high fidelity with only the mature left end of the duplex inserted into the capsid shell. In sum, the data show that the terminase protomer exhibits catalytic activity commensurate with that expected of a bone fide genome maturation and packaging complex in vivo and that both catalytically competent complexes are composed of four terminase protomers assembled into a ringlike structure that encircles duplex DNA. This work provides mechanistic insight into the coordinated catalytic activities of terminase enzymes in virus assembly that can be generalized to all of the double-stranded DNA viruses.
Collapse
Affiliation(s)
- Benjamin T Andrews
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98195-7610, United States
| | | |
Collapse
|
13
|
Cornilleau C, Atmane N, Jacquet E, Smits C, Alonso JC, Tavares P, Oliveira L. The nuclease domain of the SPP1 packaging motor coordinates DNA cleavage and encapsidation. Nucleic Acids Res 2012; 41:340-54. [PMID: 23118480 PMCID: PMC3592435 DOI: 10.1093/nar/gks974] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The large terminase subunit is a central component of the genome packaging motor from tailed bacteriophages and herpes viruses. This two-domain enzyme has an N-terminal ATPase activity that fuels DNA translocation during packaging and a C-terminal nuclease activity required for initiation and termination of the packaging cycle. Here, we report that bacteriophage SPP1 large terminase (gp2) is a metal-dependent nuclease whose stability and activity are strongly and preferentially enhanced by Mn(2+) ions. Mutation of conserved residues that coordinate Mn(2+) ions in the nuclease catalytic site affect the metal-induced gp2 stabilization and impair both gp2-specific cleavage at the packaging initiation site pac and unspecific nuclease activity. Several of these mutations block also DNA encapsidation without affecting ATP hydrolysis or gp2 C-terminus binding to the procapsid portal vertex. The data are consistent with a mechanism in which the nuclease domain bound to the portal switches between nuclease activity and a coordinated action with the ATPase domain for DNA translocation. This switch of activities of the nuclease domain is critical to achieve the viral chromosome packaging cycle.
Collapse
Affiliation(s)
- Charlène Cornilleau
- Unité de Virologie Moléculaire et Structurale, UPR 3296 CNRS, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Medina E, Nakatani E, Kruse S, Catalano CE. Thermodynamic characterization of viral procapsid expansion into a functional capsid shell. J Mol Biol 2012; 418:167-80. [PMID: 22365932 DOI: 10.1016/j.jmb.2012.02.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 02/14/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
The assembly of "complex" DNA viruses such as the herpesviruses and many tailed bacteriophages includes a DNA packaging step where the viral genome is inserted into a preformed procapsid shell. Packaging triggers a remarkable capsid expansion transition that results in thinning of the shell and an increase in capsid volume to accept the full-length genome. This transition is considered irreversible; however, here we demonstrate that the phage λ procapsid can be expanded with urea in vitro and that the transition is fully reversible. This provides an unprecedented opportunity to evaluate the thermodynamic features of this fascinating and essential step in virus assembly. We show that urea-triggered expansion is highly cooperative and strongly temperature dependent. Thermodynamic analysis indicates that the free energy of expansion is influenced by magnesium concentration (3-13 kcal/mol in the presence of 0.2-10 mM Mg(2+)) and that significant hydrophobic surface area is exposed in the expanded shell. Conversely, Mg(2+) drives the expanded shell back to the procapsid conformation in a highly cooperative transition that is also temperature dependent and strongly influenced by urea. We demonstrate that the gpD decoration protein adds to the urea-expanded capsid, presumably at hydrophobic patches exposed at the 3-fold axes of the expanded capsid lattice. The decorated capsid is biologically active and sponsors packaging of the viral genome in vitro. The roles of divalent metal and hydrophobic interactions in controlling packaging-triggered expansion of the procapsid shell are discussed in relation to a general mechanism for DNA-triggered procapsid expansion in the complex double-stranded DNA viruses.
Collapse
Affiliation(s)
- Elizabeth Medina
- Department of Medicinal Chemistry, University of Washington School of Pharmacy, H172 Health Science Building,Campus Box 357610, Seattle, WA, 98195-7610, USA
| | | | | | | |
Collapse
|
15
|
Chang JR, Andrews BT, Catalano CE. Energy-independent helicase activity of a viral genome packaging motor. Biochemistry 2011; 51:391-400. [PMID: 22191393 DOI: 10.1021/bi201604b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The assembly of complex double-stranded DNA viruses includes a genome packaging step where viral DNA is translocated into the confines of a preformed procapsid shell. In most cases, the preferred packaging substrate is a linear concatemer of viral genomes linked head-to-tail. Viral terminase enzymes are responsible for both excision of an individual genome from the concatemer (DNA maturation) and translocation of the duplex into the capsid (DNA packaging). Bacteriophage λ terminase site-specifically nicks viral DNA at the cos site in a concatemer and then physically separates the nicked, annealed strands to mature the genome in preparation for packaging. Here we present biochemical studies on the so-called helicase activity of λ terminase. Previous studies reported that ATP is required for strand separation, and it has been presumed that ATP hydrolysis is required to drive the reaction. We show that ADP and nonhydrolyzable ATP analogues also support strand separation at low (micromolar) concentrations. In addition, the Escherichia coli integration host factor protein (IHF) strongly stimulates the reaction in a nucleotide-independent manner. Finally, we show that elevated concentrations of nucleotide inhibit both ATP- and IHF-stimulated strand separation by λ terminase. We present a model where nucleotide and IHF interact with the large terminase subunit and viral DNA, respectively, to engender a site-specifically bound, catalytically competent genome maturation complex. In contrast, binding of nucleotide to the low-affinity ATP binding site in the small terminase subunit mediates a conformational switch that down-regulates maturation activities and activates the DNA packaging activity of the enzyme. This affords a motor complex that binds tightly, but nonspecifically, to DNA as it translocates the duplex into the capsid shell. These studies have yielded mechanistic insight into the assembly of the maturation complex on viral DNA and its transition to a mobile packaging motor that may be common to all of the complex double-stranded DNA viruses.
Collapse
Affiliation(s)
- Jenny R Chang
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington 98195-7610, United States
| | | | | |
Collapse
|
16
|
Tsay JM, Sippy J, delToro D, Andrews BT, Draper B, Rao V, Catalano CE, Feiss M, Smith DE. Mutations altering a structurally conserved loop-helix-loop region of a viral packaging motor change DNA translocation velocity and processivity. J Biol Chem 2010; 285:24282-9. [PMID: 20525695 PMCID: PMC2911301 DOI: 10.1074/jbc.m110.129395] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 06/03/2010] [Indexed: 11/06/2022] Open
Abstract
Many double-stranded DNA viruses employ ATP-driven motors to translocate their genomes into small, preformed viral capsids against large forces resisting confinement. Here, we show via direct single-molecule measurements that a mutation T194M downstream of the Walker B motif in the phage lambda gpA packaging motor causes an 8-fold reduction in translocation velocity without substantially changing processivity or force dependence, whereas the mutation G212S in the putative C (coupling) motif causes a 3-fold reduction in velocity and a 6-fold reduction in processivity. Meanwhile a T194M pseudorevertant (T194V) showed a near restoration of the wild-type dynamics. Structural comparisons and modeling show that these mutations are in a loop-helix-loop region that positions the key residues of the catalytic motifs, Walker B and C, in the ATPase center and is structurally homologous with analogous regions in chromosome transporters and SF2 RNA helicases. Together with recently published studies of SpoIIIE chromosome transporter and Ded1 RNA helicase mutants, these findings suggest the presence of a structurally conserved region that may be a part of the mechanism that determines motor velocity and processivity in several different types of nucleic acid translocases.
Collapse
Affiliation(s)
- James M. Tsay
- From the Department of Physics, University of California at San Diego, La Jolla, California 92093
| | - Jean Sippy
- the Department of Microbiology, University of Iowa, Iowa City, Iowa 52242
| | - Damian delToro
- From the Department of Physics, University of California at San Diego, La Jolla, California 92093
| | - Benjamin T. Andrews
- the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, and
| | - Bonnie Draper
- the Department of Biology, Catholic University of America, Washington, D. C. 20064
| | - Venigalla Rao
- the Department of Biology, Catholic University of America, Washington, D. C. 20064
| | - Carlos E. Catalano
- the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, and
| | - Michael Feiss
- the Department of Microbiology, University of Iowa, Iowa City, Iowa 52242
| | - Douglas E. Smith
- From the Department of Physics, University of California at San Diego, La Jolla, California 92093
| |
Collapse
|
17
|
Packaging of a unit-length viral genome: the role of nucleotides and the gpD decoration protein in stable nucleocapsid assembly in bacteriophage lambda. J Mol Biol 2008; 383:1037-48. [PMID: 18801370 DOI: 10.1016/j.jmb.2008.08.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 08/14/2008] [Accepted: 08/20/2008] [Indexed: 11/23/2022]
Abstract
The developmental pathways for a variety of eukaryotic and prokaryotic double-stranded DNA viruses include packaging of viral DNA into a preformed procapsid structure, catalyzed by terminase enzymes and fueled by ATP hydrolysis. In most instances, a capsid expansion process accompanies DNA packaging, which significantly increases the volume of the capsid to accommodate the full-length viral genome. "Decoration" proteins add to the surface of the expanded capsid lattice, and the terminase motors tightly package DNA, generating up to approximately 20 atm of internal capsid pressure. Herein we describe biochemical studies on genome packaging using bacteriophage lambda as a model system. Kinetic analysis suggests that the packaging motor possesses at least four ATPase catalytic sites that act cooperatively to effect DNA translocation, and that the motor is highly processive. While not required for DNA translocation into the capsid, the phage lambda capsid decoration protein gpD is essential for the packaging of the penultimate 8-10 kb (15-20%) of the viral genome; virtually no DNA is packaged in the absence of gpD when large DNA substrates are used, most likely due to a loss of capsid structural integrity. Finally, we show that ATP hydrolysis is required to retain the genome in a packaged state subsequent to condensation within the capsid. Presumably, the packaging motor continues to "idle" at the genome end and to maintain a positive pressure towards the packaged state. Surprisingly, ADP, guanosine triphosphate, and the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) similarly stabilize the packaged viral genome despite the fact that they fail to support genome packaging. In contrast, the poorly hydrolyzed ATP analog ATP-gammaS only partially stabilizes the nucleocapsid, and a DNA is released in "quantized" steps. We interpret the ensemble of data to indicate that (i) the viral procapsid possesses a degree of plasticity that is required to accommodate the packaging of large DNA substrates; (ii) the gpD decoration protein is required to stabilize the fully expanded capsid; and (iii) nucleotides regulate high-affinity DNA binding interactions that are required to maintain DNA in the packaged state.
Collapse
|
18
|
Nemecek D, Gilcrease EB, Kang S, Prevelige PE, Casjens S, Thomas GJ. Subunit conformations and assembly states of a DNA-translocating motor: the terminase of bacteriophage P22. J Mol Biol 2007; 374:817-36. [PMID: 17945256 PMCID: PMC2204089 DOI: 10.1016/j.jmb.2007.08.070] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/27/2007] [Accepted: 08/28/2007] [Indexed: 12/01/2022]
Abstract
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42-kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an alpha/beta fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly alpha-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wild-type gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy, and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112-->Thr) that forms a 10-subunit ring, despite a subunit fold indistinguishable from wild type. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA-binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages.
Collapse
Affiliation(s)
- Daniel Nemecek
- School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
19
|
Ortega ME, Gaussier H, Catalano CE. The DNA maturation domain of gpA, the DNA packaging motor protein of bacteriophage lambda, contains an ATPase site associated with endonuclease activity. J Mol Biol 2007; 373:851-65. [PMID: 17870092 PMCID: PMC2082050 DOI: 10.1016/j.jmb.2007.07.067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 12/17/2022]
Abstract
Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in Escherichia coli. Biochemical characterization of gpA-DeltaN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A "P-loop" sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme, DNA maturation and DNA packaging, are discussed.
Collapse
Affiliation(s)
- Marcos E. Ortega
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO
| | - Helene Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
| | - Carlos E. Catalano
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO
| |
Collapse
|
20
|
Maluf NK, Gaussier H, Bogner E, Feiss M, Catalano CE. Assembly of bacteriophage lambda terminase into a viral DNA maturation and packaging machine. Biochemistry 2006; 45:15259-68. [PMID: 17176048 DOI: 10.1021/bi0615036] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terminase enzymes are common to complex double-stranded DNA viruses and function to package viral DNA into the capsid. We recently demonstrated that the bacteriophage lambda terminase gpA and gpNu1 proteins assemble into a stable heterotrimer with a molar ratio gpA1/gpNu1(2). This terminase protomer possesses DNA maturation and packaging activities that are dependent on the E. coli integration host factor protein (IHF). Here, we show that the protomer further assembles into a homogeneous tetramer of protomers of composition (gpA1/gpNu1(2))4. Electron microscopy shows that the tetramer forms a ring structure large enough to encircle duplex DNA. In contrast to the heterotrimer, the ring tetramer can mature and package viral DNA in the absence of IHF. We propose that IHF induced bending of viral DNA facilitates the assembly of four terminase protomers into a ring tetramer that represents the catalytically competent DNA maturation and packaging complex in vivo. This work provides, for the first time, insight into the functional assembly state of a viral DNA packaging motor.
Collapse
Affiliation(s)
- Nasib Karl Maluf
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue C238, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
21
|
Ortega ME, Catalano CE. Bacteriophage lambda gpNu1 and Escherichia coli IHF proteins cooperatively bind and bend viral DNA: implications for the assembly of a genome-packaging motor. Biochemistry 2006; 45:5180-9. [PMID: 16618107 DOI: 10.1021/bi052284b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminase enzymes are common to both prokaryotic and eukaryotic double-stranded DNA viruses and are responsible for packaging viral DNA into the confines of an empty procapsid shell. In all known cases, the holoenzymes are heteroligomers composed of a large subunit that possesses the catalytic activities required for genome packaging and a small subunit that is responsible for specific recognition of viral DNA. In bacteriophage lambda, the DNA recognition protein is gpNu1. The gpNu1 subunit interacts with multiple recognition elements within cos, the packaging initiation site in viral DNA, to site-specifically assemble the packaging machinery. Motor assembly is modulated by the Escherichia coli integration host factor protein (IHF), which binds to a consensus sequence also located within cos. On the basis of a variety of biochemical data and the recently solved NMR structure of the DNA binding domain of gpNu1, we proposed a novel DNA binding mode that predicts significant bending of duplex DNA by gpNu1 (de Beer et al. (2002) Mol. Cell 9, 981-991). We further proposed that gpNu1 and IHF cooperatively bind and bend viral DNA to regulate the assembly of the packaging motor. Here, we characterize cooperative gpNu1 and IHF binding to the cos site in lambda DNA using a quantitative electrophoretic mobility shift (EMS) assay. These studies provide direct experimental support for the long presumed cooperative assembly of gpNu1 and IHF at the cos sequence of lambda DNA. Further, circular permutation experiments demonstrate that the viral and host proteins each introduce a strong bend in cos-containing DNA, but not nonspecific DNA substrates. Thus, specific recognition of viral DNA by the packaging apparatus is mediated by both DNA sequence information and by structural alteration of the duplex. The relevance of these results with respect to the assembly of a viral DNA-packaging motor is discussed.
Collapse
Affiliation(s)
- Marcos E Ortega
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
22
|
Gaussier H, Yang Q, Catalano CE. Building a virus from scratch: assembly of an infectious virus using purified components in a rigorously defined biochemical assay system. J Mol Biol 2006; 357:1154-66. [PMID: 16476446 DOI: 10.1016/j.jmb.2006.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/27/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
The assembly of double-stranded DNA (dsDNA) viruses such as poxvirus, the herpesviruses and many bacteriophages is a complex process that requires the coordinated activities of numerous proteins of both viral and host origin. Here, we report the assembly of an infectious wild-type lambda virus using purified proteins and commercially available DNA, and optimization of the assembly reaction in a rigorously defined biochemical system. Seven proteins, purified procapsids and tails, and mature lambda DNA are necessary and sufficient for efficient virus assembly in vitro. Analysis of the reaction suggests that (i) virus assembly in vitro is optimal under conditions that faithfully mimic the intracellular environment within an Escherichia coli cell, (ii) concatemeric DNA is required for the successful completion of virus assembly, (iii) several of the protein components oligomerize concomitant with their step-wise addition to the nascent virus particle and (iv) tail addition is the rate-limiting step in virus assembly. Importantly, the assembled virus may enter either of the developmental pathways (lytic or lysogenic) expected of a lambda virion. Thus, we demonstrate for the first time that a wild-type, complex DNA virus may be assembled from purified components under defined biochemical conditions. This system provides a powerful tool to characterize, at the molecular level, the step-by-step processes required to assemble an infectious virus particle. Given the remarkable similarities between dsDNA bacteriophage and eukaryotic dsDNA viruses, characterization of the lambda system has broad biological implications in our understanding of virus development at a global level.
Collapse
Affiliation(s)
- Hélène Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue C238, Denver, CO 80262, USA
| | | | | |
Collapse
|
23
|
Gaussier H, Ortega ME, Maluf NK, Catalano CE. Nucleotides regulate the conformational state of the small terminase subunit from bacteriophage lambda: implications for the assembly of a viral genome-packaging motor. Biochemistry 2005; 44:9645-56. [PMID: 16008350 DOI: 10.1021/bi050333e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Terminase enzymes are responsible for "packaging" of viral DNA into a preformed procapsid. Bacteriophage lambda terminase is composed of two subunits, gpA and gpNu1, in a gpA(1).gpNu1(2) holoenzyme complex. The larger gpA subunit is responsible for preparation of viral DNA for packaging, and is central to the packaging motor complex. The smaller gpNu1 subunit is required for site-specific assembly of the packaging motor on viral DNA. Terminase assembly at the packaging initiation site is regulated by ATP binding and hydrolysis at the gpNu1 subunit. Characterization of the catalytic and structural interactions between the DNA and nucleotide binding sites of gpNu1 is thus central to our understanding of the packaging motor at the molecular level. The high-resolution structure of the DNA binding domain of gpNu1 (gpNu1-DBD) was recently determined in our lab [de Beer, T., et al. (2002) Mol. Cell 9, 981-991]. The structure reveals the presence of a winged-helix-turn-helix DNA binding motif, but the location of the ATPase catalytic site in gpNu1 remains unknown. In this work, nucleotide binding to the gpNu1-DBD was probed using acrylamide fluorescence quenching and fluorescence-monitored ligand binding studies. The data indicate that the minimal DBD dimer binds both ATP and ADP at two equivalent but highly cooperative binding sites. The data further suggest that ATP and ADP induce distinct conformations of the dimer but do not affect DNA binding affinity. The implications of these results with respect to the assembly and function of a terminase DNA-packaging motor are discussed.
Collapse
Affiliation(s)
- Hélène Gaussier
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | |
Collapse
|
24
|
Maluf NK, Yang Q, Catalano CE. Self-association properties of the bacteriophage lambda terminase holoenzyme: implications for the DNA packaging motor. J Mol Biol 2005; 347:523-42. [PMID: 15755448 DOI: 10.1016/j.jmb.2005.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/01/2005] [Accepted: 01/06/2005] [Indexed: 11/23/2022]
Abstract
Terminases are enzymes common to complex double-stranded DNA viruses and are required for packaging of viral DNA into a protective capsid. Bacteriophage lambda terminase holoenzyme is a hetero-oligomer composed of the A and Nu1 lambda gene products; however, the self-association properties of the holoenzyme have not been investigated systematically. Here, we report the results of sedimentation velocity, sedimentation equilibrium, and gel-filtration experiments studying the self-association properties of the holoenzyme. We find that purified, recombinant lambda terminase forms a homogeneous, heterotrimeric structure, consisting of one gpA molecule associated with two gpNu1 molecules (114.2 kDa). We further show that lambda terminase adopts a heterogeneous mixture of higher-order structures, with an average molecular mass of 528(+/-34) kDa. Both the heterotrimer and the higher-order species possess site-specific cos cleavage activity, as well as DNA packaging activity; however, the heterotrimer is dependent upon Escherichia coli integration host factor (IHF) for these activities. Furthermore, the ATPase activity of the higher-order species is approximately 1000-fold greater than that of the heterotrimer. These data suggest that IHF bending of the duplex at the cos site in viral DNA promotes the assembly of the heterotrimer into a biologically active, higher-order packaging motor. We propose that a single, higher-order hetero-oligomer of gpA and gpNu1 functions throughout lambda development.
Collapse
Affiliation(s)
- Nasib K Maluf
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Ave, C238, Denver, CO 80262, USA
| | | | | |
Collapse
|
25
|
Garufi G, Minenkova O, Lo Passo C, Pernice I, Felici F. Display libraries on bacteriophage lambda capsid. BIOTECHNOLOGY ANNUAL REVIEW 2005; 11:153-90. [PMID: 16216777 DOI: 10.1016/s1387-2656(05)11005-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phage display is an established technology that has been successfully applied, in the last fifteen years, to projects aimed at deciphering biological processes and/or at the isolation of molecules of practical value in several diverse applications. Bacteriophage lambda, representing a molecular cloning and expression tool widely utilized since decades, has also been exploited to develop vectors for the display of libraries on its capsid. In the last few years, lambda display approach has been consistently offering new enthralling perspectives of technological application, such as domain mapping, antigen discovery, and protein interaction studies or, more generally, in functional genomics.
Collapse
Affiliation(s)
- Gabriella Garufi
- Department of Microbiological, Genetic and Molecular Sciences, University of Messina, Italy
| | | | | | | | | |
Collapse
|
26
|
Sippy J, Feiss M. Initial cos cleavage of bacteriophage lambda concatemers requires proheads and gpFI in vivo. Mol Microbiol 2004; 52:501-13. [PMID: 15066036 DOI: 10.1111/j.1365-2958.2004.03990.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The development of bacteriophage lambda and double-stranded DNA viruses in general involves the convergence of two separate pathways: DNA replication and head assembly. Clearly, packaging will proceed only if an empty capsid shell, the prohead, is present to receive the DNA, but genetic evidence suggests that proheads play another role in the packaging process. For example, lambda phages with an amber mutation in any head gene or in FI, the gene encoding the accessory packaging protein gpFI, are able to produce normal amounts of DNA concatemers but they are not cut, or matured, into unit length chromosomes for packaging. Similar observations have been made for herpes simplex 1 virus. In the case of lambda, a negative model proposes that in the amber phages, unassembled capsid components are inhibitory to maturation, and a positive model suggests that assembled proheads are required for cutting. We tested the negative model by using a deletion mutant devoid of all prohead genes and FI in an in vivo cos cleavage assay; in this deleted phage, the cohesive ends were not cut. When lambda proheads and gpFI were provided in vivo via a second prophage, cutting was restored, and gpFI was required, results that support the positive model. Phage 21 is a sister phage of lambda, and although its capsid proteins share approximately 60% residue identity with lambda's, phage 21 proheads did not restore cutting, even when provided with the accessory protein gpFI. Models for the role of proheads and gpFI in cos cutting are discussed.
Collapse
Affiliation(s)
- Jean Sippy
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
27
|
Yang Q, Catalano CE. Biochemical characterization of bacteriophage lambda genome packaging in vitro. Virology 2003; 305:276-87. [PMID: 12573573 DOI: 10.1006/viro.2002.1602] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage lambda has been extensively studied, and the abundance of genetic and biochemical information available makes this an ideal model system to study virus DNA packaging at the molecular level. Limited in vitro packaging efficiency has hampered progress toward this end, however. It has been suggested that limited packaging efficiency is related to poor activity of purified procapsids. We describe the construction of a vector that expresses lambda procapsids with a yield that is 40-fold greater than existing systems. Consistent with previous studies, packaging of a mature lambda genome is very inefficient in vitro, with only 4% of the input procapsids utilized. Concatemeric DNA is the preferred packaging substrate in vivo, and procapsids interact with a nucleoprotein complex known as complex I to initiate genome packaging. When complex I is used as a packaging substrate in vitro, capsid utilization is extremely efficient, and 40% of the input DNA is packaged. Finally, we provide evidence for a packaging-stimulated ATPase activity, and kinetically characterize this reaction quantifying the energetic cost of DNA packaging in bacteriophage lambda.
Collapse
Affiliation(s)
- Qin Yang
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
28
|
Shibata A, Masutani M, Nozaki T, Kamada N, Fujihara H, Masumura K, Nakagama H, Sugimura T, Kobayashi S, Suzuki H, Nohmi T. Improvement of the Spi- assay for mutations in gpt delta mice by including magnesium ions during plaque formation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2003; 41:370-372. [PMID: 12802808 DOI: 10.1002/em.10159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Affiliation(s)
- A Shibata
- Biochemistry Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
de Beer T, Fang J, Ortega M, Yang Q, Maes L, Duffy C, Berton N, Sippy J, Overduin M, Feiss M, Catalano CE. Insights into specific DNA recognition during the assembly of a viral genome packaging machine. Mol Cell 2002; 9:981-91. [PMID: 12049735 DOI: 10.1016/s1097-2765(02)00537-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Terminase enzymes mediate genome "packaging" during the reproduction of DNA viruses. In lambda, the gpNu1 subunit guides site-specific assembly of terminase onto DNA. The structure of the dimeric DNA binding domain of gpNu1 was solved using nuclear magnetic resonance spectroscopy. Its fold contains a unique winged helix-turn-helix (wHTH) motif within a novel scaffold. Surprisingly, a predicted P loop ATP binding motif is in fact the wing of the DNA binding motif. Structural and genetic analysis has identified determinants of DNA recognition specificity within the wHTH motif and the DNA recognition sequence. The structure reveals an unexpected DNA binding mode and provides a mechanistic basis for the concerted action of gpNu1 and Escherichia coli integration host factor during assembly of the packaging machinery.
Collapse
Affiliation(s)
- Tonny de Beer
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hang JQ, Catalano CE, Feiss M. The functional asymmetry of cosN, the nicking site for bacteriophage lambda DNA packaging, is dependent on the terminase binding site, cosB. Biochemistry 2001; 40:13370-7. [PMID: 11683647 DOI: 10.1021/bi011126r] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
cosN is the site at which terminase, the DNA packaging enzyme of phage lambda, introduces staggered nicks into viral concatemeric DNA to initiate genome packaging. Although the nick positions and many of the base pairs of cosN show 2-fold rotational symmetry, cosN is functionally asymmetric. That is, the cosN G2C mutation in the left half-site (cosNL) causes a strong virus growth defect whereas the symmetrically disposed cosN C11G mutation in the right half-site (cosNR) does not affect virus growth. The experiments reported here test the proposal that the genetic asymmetry of cosN results from terminase interactions with cosB, a binding site to the right of cosN. In the presence of cosB, the left half-site mutation, cosN G2C, strongly affected the cos cleavage reaction, while the symmetric right half-site mutation, cosN C11G, had little effect. In the absence of cosB, the two mutations moderately reduced the rate of cos cleavage by the same amount. The results indicated that the functional asymmetry of cosNdepends on the presence of cosB. A model is discussed in which terminase-cosN interactions in the nicking complex are assisted by anchoring of terminase to cosB.
Collapse
Affiliation(s)
- J Q Hang
- Molecular Biology Program and Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
31
|
Bain DL, Berton N, Ortega M, Baran J, Yang Q, Catalano CE. Biophysical characterization of the DNA binding domain of gpNu1, a viral DNA packaging protein. J Biol Chem 2001; 276:20175-81. [PMID: 11279084 DOI: 10.1074/jbc.m100517200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Terminase enzymes are common to double-stranded DNA viruses. These enzymes "package" the viral genome into a pre-formed capsid. Terminase from bacteriophage lambda is composed of gpA (72.4 kDa) and gpNu1 (20.4 kDa) subunits. We have described the expression and biochemical characterization of gpNu1DeltaK100, a construct comprising the N-terminal 100 amino acids of gpNu1 (Yang, Q., de Beer, T., Woods, L., Meyer, J., Manning, M., Overduin, M., and Catalano, C. E. (1999) Biochemistry 38, 465-477). Here we present a biophysical characterization of this construct. Thermally induced loss of secondary and tertiary structures is fully reversible. Surprisingly, although loss of tertiary structure is cooperative, loss of secondary structure is non-cooperative. NMR and limited proteolysis data suggest that approximately 30 amino acids of gpNu1DeltaK100 are solvent-exposed and highly flexible. We therefore constructed gpNu1DeltaE68, a protein consisting of the N-terminal 68 residues of gpNu1. gpNu1DeltaE68 is a dimer with no evidence of dissociation or further aggregation. Thermally induced unfolding of gpNu1DeltaE68 is reversible, with concomitant loss of both secondary and tertiary structure. The melting temperature increases with increasing protein concentration, suggesting that dimerization and folding are, at least in part, coupled. The data suggest that gpNu1DeltaE68 represents the minimal DNA binding domain of gpNu1. We further suggest that the C-terminal approximately 30 residues in gpNu1DeltaK100 adopt a pseudo-stable alpha-helix that extends from the folded core of the protein. A model describing the role of this helix in the assembly of the packaging apparatus is discussed.
Collapse
Affiliation(s)
- D L Bain
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
32
|
Hwang Y, Hang JQ, Neagle J, Duffy C, Feiss M. Endonuclease and helicase activities of bacteriophage lambda terminase: changing nearby residue 515 restores activity to the gpA K497D mutant enzyme. Virology 2000; 277:204-14. [PMID: 11062051 DOI: 10.1006/viro.2000.0591] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminase, the DNA packaging enzyme of bacteriophage lambda, is a heteromultimer of gpNu1 and gpA subunits. In an earlier investigation, a lethal mutation changing gpA residue 497 from lysine to aspartic acid (K497D) was found to cause a mild change in the high-affinity ATPase that resides in gpA and a severe defect in the endonuclease activity of terminase. The K497D terminase efficiently sponsored packaging of mature lambda DNA into proheads. In the present work, K497D terminase was found to have a severe defect in the cohesive end separation, or helicase, activity. Plaque-forming pseudorevertants of lambda A K497D were found to carry mutations in A that suppressed the lethality of the A K497D mutation. The two suppressor mutations identified, A E515G and A E515K, affected residue 515, which is located near the putative P-loop of gpA. A codon substitution study of codon 515 showed that hydrophobic and basic residues suppress the K497D defect, but hydrophilic and acidic residues do not. The E515G change was demonstrated to reverse the endonuclease and helicase defects caused by the K497D change. Moreover, the gpA K497D E515G enzyme was found to have kinetic constants for the high-affinity ATPase center similar to those of the wild type enzyme, and the endonuclease activity of the K497D E515G enzyme was stimulated by ATP to an extent similar to the ATP stimulation of the endonuclease activity of the wild type enzyme.
Collapse
Affiliation(s)
- Y Hwang
- Department of Microbiology, College of Medicine, Iowa City, Iowa, 52242, USA
| | | | | | | | | |
Collapse
|
33
|
Gual A, Camacho AG, Alonso JC. Functional analysis of the terminase large subunit, G2P, of Bacillus subtilis bacteriophage SPP1. J Biol Chem 2000; 275:35311-9. [PMID: 10930407 DOI: 10.1074/jbc.m004309200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The terminase of bacteriophage SPP1, constituted by a large (G2P) and a small (G1P) subunit, is essential for the initiation of DNA packaging. A hexa-histidine G2P (H6-G2P), which is functional in vivo, possesses endonuclease, ATPase, and double-stranded DNA binding activities. H6-G2P introduces a cut with preference at the 5'-RCGG downward arrowCW-3' sequence. Distamycin A, which is a minor groove binder that mimics the architectural structure generated by G1P at pac, enhances the specific cut at both bona fide 5'-CTATTGCGG downward arrowC-3' sequences within pacC of SPP1 and SF6 phages. H6-G2P hydrolyzes rATP or dATP to the corresponding rADP or dADP and P(i). H6-G2P interacts with two discrete G1P domains (I and II). Full-length G1P and G1PDeltaN62 (lacking domain I) stimulate 3.5- and 1.9-fold, respectively, the ATPase activity of H6-G2P. The results presented suggest that a DNA structure, artificially promoted by distamycin A or facilitated by the assembly of G1P at pacL and/or pacR, stimulates H6-G2P cleavage at both target sites within pacC. In the presence of two G1P decamers per H6-G2P monomer, the H6-G2P endonuclease is repressed, and the ATPase activity stimulated. Based on these results, we propose a model that can account for the role of terminase in headful packaging.
Collapse
Affiliation(s)
- A Gual
- Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
34
|
Hang JQ, Tack BF, Feiss M. ATPase center of bacteriophage lambda terminase involved in post-cleavage stages of DNA packaging: identification of ATP-interactive amino acids. J Mol Biol 2000; 302:777-95. [PMID: 10993723 DOI: 10.1006/jmbi.2000.4086] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminase is the enzyme that mediates lambda DNA packaging into the viral prohead. The large subunit of terminase, gpA (641 amino acid residues), has a high-affinity ATPase activity (K(m)=5 microM). To directly identify gpA's ATP-interacting amino acids, holoterminase bearing a His(6)-tag at the C terminus of gpA was UV-crosslinked with 8-N(3)-[alpha-(32)P]ATP. Tryptic peptides from the photolabeled terminase were purified by affinity chromatography and reverse-phase HPLC. Two labeled peptides of gpA were identified. Amino acid sequencing failed to show the tyrosine residue of the first peptide, E(43)SAY(46)QEGR(50), or the lysine of the second peptide, V(80)GYSK(84)MLL(87), indicating that Y(46) and K(84) were the 8-N(3)-ATP-modified amino acids. To investigate their roles in lambda DNA packaging, Y(46) was changed to E, A, and F, and K(84) was changed to E and A. Purified His(6)-tagged terminases with changes at residues 46 and 84 lacked the gpA high-affinity ATPase activity, though the cos cleavage and cohesive end separation activities were near to those of the wild-type enzyme. In virion assembly reactions using virion DNA as a packaging substrate, the mutant terminases showed severe defects. In summary, the results indicate that Y(46) and K(84) are part of the high-affinity ATPase center of gpA, and show that this ATPase activity is involved in the post-cos cleavage stages of lambda DNA packaging.
Collapse
Affiliation(s)
- J Q Hang
- College of Medicine, The Molecular Biology Program and Department of Microbiology, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
35
|
Hwang Y, Feiss M. A mutation correcting the DNA interaction defects of a mutant phage lambda terminase, gpNu1 K35A terminase. Virology 1999; 265:196-205. [PMID: 10600592 DOI: 10.1006/viro.1999.0055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Terminase, the DNA packaging enzyme of bacteriophage lambda, is a heteromultimer composed of gpNu1 (181 aa) and gpA (641 aa) subunits, encoded by the lambda Nu1 and A genes, respectively. Similarity between the deduced amino acid sequences of gpNu1 and gpA and the nucleotide binding site consensus sequence suggests that each terminase subunit has an ATP reactive center. Terminase has been shown to have two distinct ATPase activities. The gpNu1 subunit has a low-affinity ATPase stimulated by nonspecific DNA and gpA has a high-affinity ATPase. In previous work, a mutant terminase, gpNu1 K35A holoterminase, had a mild defect in interactions with DNA, such that twofold increased DNA concentrations were required both for full stimulation of the low-affinity ATPase and for saturation of the cos cleavage reaction. In addition, the gpNu1 K35A terminase exhibited a post-cleavage defect in DNA packaging that accounted for the lethality of the Nu1 K35A mutation [Y. Hwang and M. Feiss (1997) Virology 231, 218-230]. In the work reported here, a mutation in the turn of the putative helix-turn-helix DNA binding domain has been isolated as a suppressor of the gpNu1 K35A change. This suppressor mutation causes the change A14V in gpNu1. A14V reverses the DNA-binding defects of gpNu1 K35A terminase, both for stimulation of the low-affinity ATPase and for saturation of the cos cleavage defect. A14V suppresses the post-cleavage DNA packaging defect caused by the gpNu1 K35A change.
Collapse
Affiliation(s)
- Y Hwang
- College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
36
|
Woods L, Catalano CE. Kinetic characterization of the GTPase activity of phage lambda terminase: evidence for communication between the two "NTPase" catalytic sites of the enzyme. Biochemistry 1999; 38:14624-30. [PMID: 10545186 DOI: 10.1021/bi990866l] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The terminase enzyme from bacteriophage lambda is responsible for the insertion of viral DNA into the confined space within the capsid. The enzyme is composed of the virally encoded proteins gpA (73.3 kDa) and gpNu1 (20.4 kDa) isolated as a gpA(1).gpNu1(2) holoenzyme complex. Lambda terminase possesses a site-specific nuclease activity, an ATP-dependent DNA strand-separation activity, and an ATPase activity that must work in concert to effect genome packaging. We have previously characterized the ATPase activity of the holoenzyme and have identified catalytic active sites in each enzyme subunit [Tomka and Catalano (1993) Biochemistry 32, 11992-11997; Hwang et al. (1996) Biochemistry 35, 2796-2803]. We have noted that GTP stimulates the ATPase activity of the enzyme, and terminase-mediated GTP hydrolysis has been observed. The studies presented here describe a kinetic analysis of the GTPase activity of lambda terminase. GTP hydrolysis by the enzyme requires divalent metal, is optimal at alkaline pH, and is strongly inhibited by salt. Interestingly, while GTP can bind to the enzyme in the absence of DNA, GTP hydrolysis is strictly dependent on the presence of polynucleotide. Unlike ATP hydrolysis that occurs at both subunits of the holoenzyme, a single catalytic site is observed in the steady-state kinetic analysis of GTPase activity (k(cat) approximately 37 min(-)(1); K(m) approximately 500 microM). Moreover, while GTP stimulates ATP hydrolysis (apparent K(D) approximately 135 microM for GTP binding), all of the adenosine nucleotides examined strongly inhibit the GTPase activity of the enzyme. The data presented here suggest that the two "NTPase" catalytic sites in terminase holoenzyme communicate, and we propose a model describing allosteric interactions between the two sites. The biological significance of this interaction with respect to the assembly and disassembly of the multiple nucleoprotein packaging complexes required for virus assembly is discussed.
Collapse
Affiliation(s)
- L Woods
- Department of Pharmaceutical Sciences and Molecular Biology Program, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | |
Collapse
|
37
|
Yang Q, Berton N, Manning MC, Catalano CE. Domain structure of gpNu1, a phage lambda DNA packaging protein. Biochemistry 1999; 38:14238-47. [PMID: 10571997 DOI: 10.1021/bi991408f] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The terminase enzyme from bacteriophage lambda is responsible for the insertion of a dsDNA genome into the confines of the viral capsid. The holoenzyme is composed of gpA and gpNu1 subunits in a gpA(1) x gpNu1(2) stoichiometry. While genetic studies have described regions within the two proteins responsible for DNA binding, capsid binding, and subunit interactions in the holoenzyme complex, biochemical characterization of these domains is limited. We have previously described the cloning, expression, and biochemical characterization of a soluble DNA binding domain of the terminase gpNu1 subunit (Met1 to Lys100) and suggested that the hydrophobic region spanning Lys100 to Pro141 defines a domain responsible for self-association interactions, and that is important for cooperative DNA binding [Yang et al. (1999) Biochemistry 38, 465-477]. We further suggested that the genetically defined gpA-interactive domain in the C-terminal half of the protein is limited to the C-terminal approximately 40 amino acids of gpNu1. Here we describe the cloning, expression, and biochemical characterization of gpNu1DeltaP141, a deletion mutant of gpNu1 that comprises the DNA binding domain and the putative hydrophobic self-assembly domain of the full-length protein. Purified gpNu1DeltaP141 shows a strong tendency to aggregate in solution; However, the protein remains soluble in 0.4 M guanidine hydrochloride, and circular dichroism (CD) and fluorescence spectroscopic studies demonstrate that the protein is folded under these conditions. Moreover, CD spectroscopy and thermally induced unfolding studies suggest that the DNA binding domain and the self-association domain represent independent folding domains of gpNu1DeltaP141. The mutant protein interacts weakly with the gpA subunit, but does not form a catalytically competent holoenzyme complex, suggesting that the C-terminal 40 residues are important for appropriate subunit interactions. Importantly, gpNu1DeltaP141 binds DNA tightly, but with less specificity than does full-length protein, and the data suggest that the C-terminal residues are further required for specific DNA binding activity. The implications of these results in the assembly of a functional holoenzyme complex are discussed.
Collapse
Affiliation(s)
- Q Yang
- Department of Pharmaceutical Sciences, Molecular Biology Program, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
38
|
Hang Q, Woods L, Feiss M, Catalano CE. Cloning, expression, and biochemical characterization of hexahistidine-tagged terminase proteins. J Biol Chem 1999; 274:15305-14. [PMID: 10336415 DOI: 10.1074/jbc.274.22.15305] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The terminase enzyme from bacteriophage lambda is composed of two viral proteins (gpA, 73.2 kDa; gpNu1, 20.4 kDa) and is responsible for packaging viral DNA into the confines of an empty procapsid. We are interested in the genetic, biochemical, and biophysical properties of DNA packaging in phage lambda and, in particular, the nucleoprotein complexes involved in these processes. These studies require the routine purification of large quantities of wild-type and mutant proteins in order to probe the molecular mechanism of DNA packaging. Toward this end, we have constructed a hexahistidine (hexa-His)-tagged terminase holoenzyme as well as hexa-His-tagged gpNu1 and gpA subunits. We present a simple, one-step purification scheme for the purification of large quantities of the holoenzyme and the individual subunits directly from the crude cell lysate. Importantly, we have developed a method to purify the highly insoluble gpNu1 subunit from inclusion bodies in a single step. Hexa-His terminase holoenzyme is functional in vivo and possesses steady-state and single-turnover ATPase activity that is indistinguishable from wild-type enzyme. The nuclease activity of the modified holoenzyme is near wild type, but the reaction exhibits a greater dependence on Escherichia coli integration host factor, a result that is mirrored in vivo. These results suggest that the hexa-His-tagged holoenzyme possesses a mild DNA-binding defect that is masked, at least in part, by integration host factor. The mild defect in hexa-His terminase holoenzyme is more significant in the isolated gpA-hexa-His subunit that does not appear to bind DNA. Moreover, whereas the hexa-His-tagged gpNu1 subunit may be reconstituted into a holoenzyme complex with wild-type catalytic activities, gpA-hexa-His is impaired in its interactions with the gpNu1 subunit of the enzyme. The results reported here underscore that a complete biochemical characterization of the effects of purification tags on enzyme function must be performed prior to their use in mechanistic studies.
Collapse
Affiliation(s)
- Q Hang
- Molecular Biology Program, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
39
|
Yang Q, de Beer T, Woods L, Meyer JD, Manning MC, Overduin M, Catalano CE. Cloning, expression, and characterization of a DNA binding domain of gpNu1, a phage lambda DNA packaging protein. Biochemistry 1999; 38:465-77. [PMID: 9890930 DOI: 10.1021/bi981271d] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Terminase is an enzyme from bacteriophage lambda that is required for insertion of the viral genome into an empty pro-capsid. This enzyme is composed of the viral proteins gpNu1 (20.4 kDa) and gpA (73.3 kDa) in a holoenzyme complex. Current models for terminase assembly onto DNA suggest that gpNu1 binds to three repeating elements within a region of the lambda genome known as cosB which, in turn, stimulates the assembly of a gpA dimer at the cosN subsite. This prenicking complex is the first of several stable nucleoprotein intermediates required for DNA packaging. We have noted a hydrophobic region within the primary amino acid sequence of the terminase gpNu1 subunit and hypothesized that this region constitutes a protein-protein interaction domain required for cooperative assembly at cosB and that is also responsible for the observed aggregation behavior of the isolated protein. We therefore constructed a mutant of gpNu1 in which this hydrophobic "domain" has been deleted in order to test these hypotheses. The deletion mutant protein, gpNu1DeltaK, is fully soluble and, unlike full-length protein, shows no tendency toward aggregation; However, the protein is a dimer under all experimental conditions examined as determined by gel permeation and sedimentation equilibrium analysis. The truncated protein is folded with evidence of secondary and tertiary structural elements by circular dichroism and NMR spectroscopy. While physical and biological assays demonstrate that gpNu1DeltaK does not interact with the terminase gpA subunit, the deletion mutant binds with specificity to cos-containing DNA. We have thus constructed a deletion mutant of the phage lambda terminase gpNu1 subunit which constitutes a highly soluble DNA binding domain of the protein. We further propose that the hydrophobic amino acids found between Lys100 and Pro141 define a self-association domain that is required for the assembly of stable nucleoprotein packaging complexes and that the C-terminal tail of the protein defines a distinct gpA-binding site that is responsible for terminase holoenzyme formation.
Collapse
Affiliation(s)
- Q Yang
- Department of Pharmaceutical Sciences, Molecular Biology Program, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Arens JS, Hang Q, Hwang Y, Tuma B, Max S, Feiss M. Mutations that extend the specificity of the endonuclease activity of lambda terminase. J Bacteriol 1999; 181:218-24. [PMID: 9864333 PMCID: PMC103552 DOI: 10.1128/jb.181.1.218-224.1999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1998] [Accepted: 10/20/1998] [Indexed: 11/20/2022] Open
Abstract
Terminase, an enzyme encoded by the Nu1 and A genes of bacteriophage lambda, is crucial for packaging concatemeric DNA into virions. cosN, a 22-bp segment, is the site on the virus chromosome where terminase introduces staggered nicks to cut the concatemer to generate unit-length virion chromosomes. Although cosN is rotationally symmetric, mutations in cosN have asymmetric effects. The cosN G2C mutation (a G-to-C change at position 2) in the left half of cosN reduces the phage yield 10-fold, whereas the symmetric mutation cosN C11G, in the right half of cosN, does not affect the burst size. The reduction in phage yield caused by cosN G2C is correlated with a defect in cos cleavage. Three suppressors of the cosN G2C mutation, A-E515G, A-N509K, and A-R504C, have been isolated that restore the yield of lambda cosN G2C to the wild-type level. The suppressors are missense mutations that alter amino acids located near an ATPase domain of gpA. lambda A-E515G, A-N509K, and A-R504C phages, which are cosN+, also had wild-type burst sizes. In vitro cos cleavage experiments on cosN G2C C11G DNA showed that the rate of cleavage for A-E515G terminase is three- to fourfold higher than for wild-type terminase. The A-E515G mutation changes residue 515 of gpA from glutamic acid to glycine. Uncharged polar and hydrophobic residues at position 515 suppressed the growth defect of lambda cosN G2C C11G. In contrast, basic (K, R) and acidic (E, D) residues at position 515 failed to suppress the growth defect of lambda cosN G2C C11G. In a lambda cosN+ background, all amino acids tested at position 515 were functional. These results suggest that A-E515G plays an indirect role in extending the specificity of the endonuclease activity of lambda terminase.
Collapse
Affiliation(s)
- J S Arens
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242,
| | | | | | | | | | | |
Collapse
|
41
|
Cue D, Feiss M. Termination of packaging of the bacteriophage lambda chromosome: cosQ is required for nicking the bottom strand of cosN. J Mol Biol 1998; 280:11-29. [PMID: 9653028 DOI: 10.1006/jmbi.1998.1841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Termination of packaging of the lambda chromosome involves completion of translocation of the DNA into the head shell, and conversion of the translocation complex into a cleavage complex. The cleavage reaction introduces staggered nicks into the downstream cosN to generate the right cohesive end of the chromosome. cosQ, a site adjacent to cosN, was found to be required for nicking the bottom strand of cosN; bottom strand nicking was also sequence-specific for bps at the nick site. Nicking of the top strand of cosN (cosNL) was stimulated by cosQ, but fidelity and efficiency of cosNL nicking were largely dictated by other cos subsites (i.e. cosB and I2). Aberrant top-strand cleavage within cosQ was observed in the absence of I2, and nicking at a site 8 nt 5' to the normal cosNL nick site occurred in the absence of cosB. The presence of cosQ was found to be insufficient to arrest DNA translocation in vivo, indicating that cosQ, per se, is not a packaging stop signal. A model is presented in which the role of cosQ is to depolarize the asymmetric arrangement of terminase protomers in the translocation complex so that protomers are configured to match the 2-fold rotational symmetry of cosN.
Collapse
Affiliation(s)
- D Cue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
42
|
Meyer JD, Hanagan A, Manning MC, Catalano CE. The phage lambda terminase enzyme: 1. Reconstitution of the holoenzyme from the individual subunits enhances the thermal stability of the small subunit. Int J Biol Macromol 1998; 23:27-36. [PMID: 9644594 DOI: 10.1016/s0141-8130(98)00009-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The terminase enzyme from bacteriophage lambda is a hetero-trimeric complex composed of the viral gpA and gpNu1 proteins (gpA1.gpNu1(2)) and is responsible for packaging a single genome within the viral capsid. Current expression systems for these proteins require thermal induction which may be responsible for the formation of insoluble aggregates observed in E. coli. We report the re-cloning of the terminase subunits into vectors which allow low temperature induction. While this has resulted in increased solubility of the large gpA subunit of the enzyme, the small gpNu1 subunit remains insoluble under all conditions examined. This paper describes the solublization of gpNu1 with guanidinium hydrochloride and purification of the protein to homogeneity. Reconstitution of the enzyme from the individually purified subunits yields a catalytically-competent complex which exhibits activity identical to wild-type enzyme. Thermal denaturation of the proteins was monitored by circular dichroism (CD) spectroscopy and demonstrates that while unfolding of gpA is irreversible, the gpNu1 subunit refolds into a conformation which is essentially identical to the pre-heated protein. Moreover, while denaturation of gpA is highly cooperative, the small subunit unfolds over a wide temperature range and with thermodynamic parameters lower than expected for a small globular protein. Thermally-induced denaturation of the enzyme reconstituted from the individual subunits is highly cooperative with no evidence of multiple transitions. Our data demonstrate that the terminase subunits directly interact in solution, and that this interaction alters the thermal stability of the smaller gpNu1 subunit. The implication of these results with respect to assembly of a catalytically competent enzyme complex are discussed.
Collapse
Affiliation(s)
- J D Meyer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
43
|
Hanagan A, Meyer JD, Johnson L, Manning MC, Catalano CE. The phage lambda terminase enzyme: 2. Refolding of the gpNu1 subunit from the detergent-denatured and guanidinium hydrochloride-denatured state yields different oligomerization states and altered protein stabilities. Int J Biol Macromol 1998; 23:37-48. [PMID: 9644595 DOI: 10.1016/s0141-8130(98)00010-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The terminase enzyme from bacteriophage lambda is responsible for packaging a single genome within the viral capsid. Gold and co-workers have developed a scheme for the solubilization of the small terminase subunit (gpNu1) from inclusion bodies using the strong detergent sarkosyl and purification of the protein to homogeneity (gpNu1SRK) (Parris et al., J Biol Chem 1994;269:13564-13574). We have developed a similar purification scheme except that guanidinium hydrochloride was used to denature the insoluble protein (gpNu1GDN). The circular dichroism (CD) spectra of both protein preparations suggest that they are predominantly alpha-helical when purified and stored in Tris buffers. Moreover, thermal denaturation of the proteins thus purified yielded similar thermodynamic parameters for unfolding (T(m), delta Hm and delta Sm of unfolding of approximately 306 K, approximately 22 kcal/mol and approximately 70 cal/mol.K, respectively). Interestingly, however, when the proteins were purified and stored in imidazole buffers, the gpNu1SRK preparation lost a significant amount of secondary structure and was more stable to both thermally-induced and guanidinium HCl-induced denaturation than was gpNu1GDN. The purified gpNu1 monomers oligomerize into apparent tetramers and hexamers in solution and the distribution between these two oligomeric states and into higher order aggregates depends upon buffer composition, salt concentration and protein concentration. Moreover, differences in the oligomerization state of gpNu1SRK and gpNu1GDN under identical buffer conditions were observed. The significance of these results with respect to the biological role of the phage lambda gpNu1 protein are discussed.
Collapse
Affiliation(s)
- A Hanagan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
44
|
Yang Q, Catalano CE. Kinetic characterization of the strand separation ("helicase") activity of the DNA packaging enzyme from bacteriophage lambda. Biochemistry 1997; 36:10638-45. [PMID: 9271494 DOI: 10.1021/bi970689t] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacteriophage lambda is assembled from preformed viral capsids (proheads), tails, and genomes that are excised from a concatemeric DNA precursor. The enzyme responsible for insertion of the genome into the precapsid is known as terminase. This enzyme possesses site-specific endonuclease, ATPase, and DNA strand separation ("helicase") catalytic activities, which work in concert to excise and package a single viral genome during phage assembly. We have previously characterized the endonuclease [Tomka, M. A., & Catalano, C. E. (1993) J. Biol. Chem. 268, 3056-3065] and ATPase [Tomka, M. A., & Catalano, C. E. (1993) Biochemistry 32, 11992-11997] catalytic activities of lambda terminase and present here similar studies on the strand separation activity of the enzyme. Strand separation requires terminase, divalent metal, and adenosine nucleotides with a hydrolyzable beta,gamma-phosphate bond. Two apparent binding sites for ATP-mediated strand separation were identified, one of which appears to be distinct from the high- and low-affinity sites previously observed for ATP hydrolysis [Hwang, Y., Catalano, C. E., & Feiss, M. (1995) Biochemistry 35, 2796-2803]. Salt stimulates the reaction at low concentrations but is strongly inhibitory at elevated concentrations, presumably due to impaired DNA binding. The above results are identical with either a complex DNA mixture (a nicked, annealed DNA duplex in the presence of excess nonspecific DNA) or a purified DNA substrate; however, a kinetic analysis of the reaction revealed that the observed rate was approximately 5-fold greater with the purified DNA substrate. Moreover, while Escherichia coli integration host factor (IHF) stimulates terminase-mediated strand separation with both substrates, the observed stimulation is more pronounced with the complex DNA mixture (10-fold rate increase) than the purified DNA substrate (5-fold rate increase). Our data are consistent with a model where IHF binding to the terminase assembly site forms a binary protein.DNA complex readily distinguishable from bulk DNA. The implications of these results to the process of DNA packaging in bacteriophage lambda are discussed.
Collapse
Affiliation(s)
- Q Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262, USA
| | | |
Collapse
|
45
|
Woods L, Terpening C, Catalano CE. Kinetic analysis of the endonuclease activity of phage lambda terminase: assembly of a catalytically competent nicking complex is rate-limiting. Biochemistry 1997; 36:5777-85. [PMID: 9153418 DOI: 10.1021/bi963044m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The terminase enzyme from bacteriophage lambda is responsible for excision of a single genome from a concatameric DNA precursor and its insertion into an empty viral procapsid. The enzyme possesses a site-specific endonuclease activity which is responsible for excision of the viral genome and the formation of the 12 base-pair single-stranded "sticky" ends of mature lambda DNA. We have previously reported a kinetic analysis of the endonuclease activity of lambda terminase which showed an enzyme concentration-dependent change in the kinetic time course of the reaction [Tomka, M. A., & Catalano, C. E. (1993b) J. Biol. Chem. 268, 3056-3065]. We presented a model which suggested that the rate-limiting step in the nuclease reaction was the assembly of a catalytically competent prenicking complex. Here, we provide additional evidence for a slow assembly step in the nuclease reaction and demonstrate that the observed rate is affected by protein concentration, but not by the length of the DNA substrate. Consistent with our model, preincubation of terminase with DNA also yields an observable fast phase of the reaction, but only when large (> or = 3 kb) DNA substrates are used. Finally, we present data which demonstrate that phage lambda terminase can efficiently utilize DNA from the closely related phage phi21 as an endonuclease substrate and that the enzyme binds efficiently to the cosB region of both phage genomes. The implications of these results with respect to the assembly of a catalytically competent nucleoprotein complex required to initiate genome packaging are discussed.
Collapse
Affiliation(s)
- L Woods
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
46
|
Hwang Y, Feiss M. Mutations affecting lysine-35 of gpNu1, the small subunit of bacteriophage lambda terminase, alter the strength and specificity of holoterminase interactions with DNA. Virology 1997; 231:218-30. [PMID: 9168884 DOI: 10.1006/viro.1997.8542] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The small subunit of lambda terminase, gpNu1, contains a low-affinity ATPase activity that is stimulated by nonspecific dsDNA. The location of the gpNu1 ATPase center is suggested by a sequence match between gpNu1 (29-VLRGGGKG-36) and the phosphate-binding loop, or P-loop (GXXXXGKT/S), of known ATPase. The proposed P-loop of gpNu1 is just downstream of a putative helix-turn-helix DNA-binding motif, located between residues 5 and 24. Published work has shown that changing lysine-35 of the proposed P-loop of gpNu1 alters the response of the ATPase activity to DNA, as follows. The changes gpNu1 k35A and gpNu1 K35D increase the level of DNA required for maximal stimulation of the gpNu1 ATPase by factors of 2- and 10-fold, respectively. The maximally stimulated ATPase activities of the mutant enzymes are indistinguishable from that of the wild-type enzyme. In the present work, the effects of changing lysine-35 on the cos-cleavage and DNA-packaging activities of terminase were examined. In vitro, the gpNu1 K35A enzyme cleaved cos as efficiently as the wild-type enzyme, but required a 2-fold increased level of substrate DNA for saturation, suggesting a slight reduction in DNA affinity. In a crude DNA-packaging system using cleaved lambda DNA as substrate, the gpNu1 K35A enzyme had a 10-fold defect. In vivo, lambda Nu1 K35A showed a 2-fold reduction in cos cleavage, but no packaged DNA was detected. The primary defect of the gpNu1 K35A enzyme was concluded to be in a post-cos-cleavage step of DNA packaging. In in vitro cos-cleavage experiments, the gpNu1 K35D enzyme had a 10-fold increased requirement for saturation by substrate DNA. Furthermore, the cos-cleavage activity of gpNu1 K35D enzyme was strongly inhibited by the presence of nonspecific DNA, indicating that the gpNu1 K35D enzyme is unable to discriminate effectively between cos and nonspecific DNA. No cos cleavage was observed in vivo for lambda Nu1 K35D, a result consistent with the discrimination defect found in vitro for the gpNu1 K35D enzyme. In a crude packaging system the gpNu1 K35D enzyme had a 200-fold defect; in a purified packaging system, the gpNu1 K35D enzyme was found to be unable to discriminate between lambda DNA and nonspecific phage T7 DNA, a result indicating that the gpNu1 K35D enzyme is also defective in discriminating between lambda DNA and nonspecific DNA during DNA packaging.
Collapse
Affiliation(s)
- Y Hwang
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
47
|
Cai ZH, Hwang Y, Cue D, Catalano C, Feiss M. Mutations in Nu1, the gene encoding the small subunit of bacteriophage lambda terminase, suppress the postcleavage DNA packaging defect of cosB mutations. J Bacteriol 1997; 179:2479-85. [PMID: 9098042 PMCID: PMC178993 DOI: 10.1128/jb.179.8.2479-2485.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The linear double-stranded DNA molecules in lambda virions are generated by nicking of concatemeric intracellular DNA by terminase, the lambda DNA packaging enzyme. Staggered nicks are introduced at cosN to generate the cohesive ends of virion DNA. After nicking, the cohesive ends are separated by terminase; terminase bound to the left end of the DNA to be packaged then binds the empty protein shell, i.e., the prohead, and translocation of DNA into the prohead occurs. cosB, a site adjacent to cosN, is a terminase binding site. cosB facilitates the rate and fidelity of the cosN cleavage reaction by serving as an anchoring point for gpNu1, the small subunit of terminase. cosB is also crucial for the formation of a stable terminase-DNA complex, called complex I, formed after cosN cleavage. The role of complex I is to bind the prohead. Mutations in cosB affect both cosB functions, causing mild defects in cosN cleavage and severe packaging defects. The lethal cosB R3- R2- R1- mutation contains a transition mutation in each of the three gpNu1 binding sites of cosB. Pseudorevertants of lambda cosB R3- R2- R1- DNA contain suppressor mutations affecting gpNu1. Results of experiments that show that two such suppressors, Nu1ms1 and Nu1ms3, do not suppress the mild cosN cleavage defect caused by the cosB R3- R2- R1- mutation but strongly suppress the DNA packaging defect are presented. It is proposed that the suppressing terminases, unlike the wild-type enzyme, are able to assemble a stable complex I with cosB R3- R2- R1- DNA. Observations on the adenosine triphosphatase activities and protease susceptibilities of gpNu1 of the Nu1ms1 and Nu1ms3 terminases indicate that the conformation of gpNu1 is altered in the suppressing terminases.
Collapse
Affiliation(s)
- Z H Cai
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | | | |
Collapse
|
48
|
Yang Q, Hanagan A, Catalano CE. Assembly of a nucleoprotein complex required for DNA packaging by bacteriophage lambda. Biochemistry 1997; 36:2744-52. [PMID: 9062101 DOI: 10.1021/bi9622682] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A critical step in the assembly of bacteriophage lambda is the excision of a single genome from a concatemeric DNA precursor and insertion of genomic DNA into an empty viral capsid. DNA packaging is mediated by the lambda proteins gpNu1 and gpA, which form an enzyme complex known as terminase. Initiation of the packaging process requires assembly of the terminase subunits onto cos, the lambda DNA packaging sequence, and nicking of the duplex, thus forming the 12-base-pair "sticky" ends of the mature genome. We have utilized gel-retardation techniques to examine the interaction of gpNu1, gpA, and terminase holoenzyme with DNA. Our data demonstrate that gpNu1 interacts specifically with cos-containing DNA, forming three gel-retarded complexes. Similarly, the larger gpA subunit binds to DNA, forming two complexes; however, this subunit forms similar complexes with DNA substrates of random sequence. All of the nucleoprotein complexes examined are disrupted by elevated concentrations of NaCl and we suggest that altered DNA binding is responsible for the extreme salt sensitivity of the endonuclease activity of the enzyme [Tomka, M. A., & Catalano, C. E. (1993) J. Biol. Chem. 268, 3056-3065]. DNA binding by each subunit is strongly affected by the presence of the other, with 10- and 3-fold increases in the affinity of gpNu1 and gpA, respectively, for DNA. Moreover, our data suggest that the terminase subunits interact in solution prior to DNA binding. Finally, we provide evidence that complex I, the first stable intermediate in the packaging pathway, is composed of the mature left genome end bound to the terminase subunits and demonstrate that dissociation of the complex is quite slow (t1/2 > 8 h). The significance of these data with respect to terminase-mediated genome packaging is discussed.
Collapse
Affiliation(s)
- Q Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | |
Collapse
|
49
|
Hwang Y, Catalano CE, Feiss M. Kinetic and mutational dissection of the two ATPase activities of terminase, the DNA packaging enzyme of bacteriophage Chi. Biochemistry 1996; 35:2796-803. [PMID: 8611586 DOI: 10.1021/bi952322z] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Terminase the DNA packaging enzyme of bacteriophage chi, is a heteromultimer of gpNul (21 kDa) and gpA (74 kDa) subunits, encoded by the chi Nul and A genes, respectively. Sequence comparisons indicate that both gpNu1 and gpA have a match to the P-loop motif of ATPase centers, which is a glycine-rich segment followed by a lysine. By site-specific mutagenesis, we changed the lysines of the putative P-loops of gpNul (k35) and gpA (K497) to arginine, alanine, or aspartic acid, and studied the mutant enzymes by kinetic analysis and photochemical cross-linking with 8-azido-ATP. Both the gpNul and gpA subunits of wild-type terminase were covalently modified with 8-N3[32P] ATP in the presence of UV light. Saturation occurred with apparent dissociation constants of 508 and 3.5 microM for gpNul and gpA, resepctively. ATPase assays showed two activities: a low-affinity activity (Km=469 microM), and a high-affinity activity (Km=4.6 microM). The gpNul K35A and gpNul K35D mutant terminases showed decreased activity in the low-affinity ATPase activity. The reduced activities of these enzymes were recovered when 10 times more DNA was added, suggesting that the primary defect of the enzymes is alteration of the nonspecific, double-stranded DNA binding activity of terminase. ATPase assays and photolabeling of the gpA K497A and gpA K497D mutant terminases showed reduced affinity for ATP at the high-affinity site which was not restored by increased DNA. In summary, the results indicate the presence of a low-affinity, DNA-stimulated ATPase center in gpNul, and a high-affinity site in gpA.
Collapse
Affiliation(s)
- Y Hwang
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
50
|
Black LW. DNA packaging and cutting by phage terminases: control in phage T4 by a synaptic mechanism. Bioessays 1995; 17:1025-30. [PMID: 8634063 DOI: 10.1002/bies.950171206] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phage DNA packaging occurs by DNA translocation into a prohead. Terminases are enzymes which initiate DNA packaging by cutting the DNA concatemer, and they are closely fitted structurally to the portal vertex of the prohead to form a 'packasome'. Analysis among a number of phages supports an active role of the terminases in coupling ATP hydrolysis to DNA translocation through the portal. In phage T4 the small terminase subunit promotes a sequence-specific terminase gene amplification within the chromosome. This link between recombination and packaging suggests a DNA synapsis mechanism by the terminase to control packaging initiation, formally homologous to eukaryotic chromosome segregation.
Collapse
Affiliation(s)
- L W Black
- Department of Biological Chemistry, University of Maryland Medical School, Baltimore 21201, USA
| |
Collapse
|