1
|
Naguleswaran A, Fernandes P, Bevkal S, Rehmann R, Nicholson P, Roditi I. Developmental changes and metabolic reprogramming during establishment of infection and progression of Trypanosoma brucei brucei through its insect host. PLoS Negl Trop Dis 2021; 15:e0009504. [PMID: 34543277 PMCID: PMC8483307 DOI: 10.1371/journal.pntd.0009504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/30/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Trypanosoma brucei ssp., unicellular parasites causing human and animal trypanosomiasis, are transmitted between mammals by tsetse flies. Periodic changes in variant surface glycoproteins (VSG), which form the parasite coat in the mammal, allow them to evade the host immune response. Different isolates of T. brucei show heterogeneity in their repertoires of VSG genes and have single nucleotide polymorphisms and indels that can impact on genome editing. T. brucei brucei EATRO1125 (AnTaR1 serodeme) is an isolate that is used increasingly often because it is pleomorphic in mammals and fly transmissible, two characteristics that have been lost by the most commonly used laboratory stocks. We present a genome assembly of EATRO1125, including contigs for the intermediate chromosomes and minichromosomes that serve as repositories of VSG genes. In addition, de novo transcriptome assemblies were performed using Illumina sequences from tsetse-derived trypanosomes. Reads of 150 bases enabled closely related members of multigene families to be discriminated. This revealed that the transcriptome of midgut-derived parasites is dynamic, starting with the expression of high affinity hexose transporters and glycolytic enzymes and then switching to proline uptake and catabolism. These changes resemble the transition from early to late procyclic forms in culture. Further metabolic reprogramming, including upregulation of tricarboxylic acid cycle enzymes, occurs in the proventriculus. Many transcripts upregulated in the salivary glands encode surface proteins, among them 7 metacyclic VSGs, multiple BARPs and GCS1/HAP2, a marker for gametes. A novel family of transmembrane proteins, containing polythreonine stretches that are predicted to be O-glycosylation sites, was also identified. Finally, RNA-Seq data were used to create an optimised annotation file with 5’ and 3’ untranslated regions accurately mapped for 9302 genes. We anticipate that this will be of use in identifying transcripts obtained by single cell sequencing technologies. Trypanosoma brucei ssp. are single-celled parasites that cause two tropical diseases: sleeping sickness in humans and nagana in domestic animals. Parasites survive in the host bloodstream because they periodically change their surface coats and also because they can switch from slender dividing forms to stumpy non-dividing forms. The latter can be transmitted to their second host, the tsetse fly. Although closely related, different geographical isolates differ in their repertoire of surface coats and have small, but important differences in their DNA sequences. In addition, laboratory strains that are transferred between mammals by needle passage lose the ability to produce stumpy forms and to infect flies. The isolate T. b. brucei EATRO1125 is often used for research as it produces stumpy forms and is fly transmissible. We provide an assembly of the genome of this isolate, including part of the repertoire of coat proteins, and a detailed analysis of the genes that the parasites express as they establish infection and progress through the fly. This has provided new insights into trypanosome biology. The combined genomic (DNA) and transcriptomic (RNA) data will be useful resources for the trypanosome research community.
Collapse
Affiliation(s)
| | - Paula Fernandes
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Shubha Bevkal
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
2
|
Kelly S, Ivens A, Mott GA, O'Neill E, Emms D, Macleod O, Voorheis P, Tyler K, Clark M, Matthews J, Matthews K, Carrington M. An Alternative Strategy for Trypanosome Survival in the Mammalian Bloodstream Revealed through Genome and Transcriptome Analysis of the Ubiquitous Bovine Parasite Trypanosoma (Megatrypanum) theileri. Genome Biol Evol 2018; 9:2093-2109. [PMID: 28903536 PMCID: PMC5737535 DOI: 10.1093/gbe/evx152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2017] [Indexed: 12/19/2022] Open
Abstract
There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long-term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, has a restricted host range of cattle and other Bovinae, and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modeled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - G Adam Mott
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Ellis O'Neill
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - David Emms
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Olivia Macleod
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Kevin Tyler
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Matthew Clark
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Jacqueline Matthews
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Keith Matthews
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, United Kingdom
| |
Collapse
|
3
|
Ramaswamy R, Goomeshi Nobary S, Eyford BA, Pearson TW, Boulanger MJ. Structural characterization reveals a novel bilobed architecture for the ectodomains of insect stage expressed Trypanosoma brucei PSSA-2 and Trypanosoma congolense ISA. Protein Sci 2016; 25:2297-2302. [PMID: 27671214 PMCID: PMC5119560 DOI: 10.1002/pro.3053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 11/12/2022]
Abstract
African trypanosomiasis, caused by parasites of the genus Trypanosoma, is a complex of devastating vector-borne diseases of humans and livestock in sub-Saharan Africa. Central to the pathogenesis of African trypanosomes is their transmission by the arthropod vector, Glossina spp. (tsetse fly). Intriguingly, the efficiency of parasite transmission through the vector is reduced following depletion of Trypanosoma brucei Procyclic-Specific Surface Antigen-2 (TbPSSA-2). To investigate the underlying molecular mechanism of TbPSSA-2, we determined the crystal structures of its ectodomain and that of its homolog T. congolense Insect Stage Antigen (TcISA) to resolutions of 1.65 Å and 2.45 Å, respectively using single wavelength anomalous dispersion. Both proteins adopt a novel bilobed architecture with the individual lobes displaying rotational flexibility around the central tether that suggest a potential mechanism for coordinating a binding partner. In support of this hypothesis, electron density consistent with a bound peptide was observed in the inter-lob cleft of a TcISA monomer. These first reported structures of insect stage transmembrane proteins expressed by African trypanosomes provide potentially valuable insight into the interface between parasite and tsetse vector.
Collapse
Affiliation(s)
- Raghavendran Ramaswamy
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanadaV8W 3P6
| | - Sarah Goomeshi Nobary
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanadaV8W 3P6
| | - Brett A. Eyford
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanadaV8W 3P6
- Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBCCanadaV6T 1Z4
| | - Terry W. Pearson
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanadaV8W 3P6
| | - Martin J. Boulanger
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCCanadaV8W 3P6
| |
Collapse
|
4
|
Molecular Characterization of a Novel Family of Trypanosoma cruzi Surface Membrane Proteins (TcSMP) Involved in Mammalian Host Cell Invasion. PLoS Negl Trop Dis 2015; 9:e0004216. [PMID: 26565791 PMCID: PMC4643927 DOI: 10.1371/journal.pntd.0004216] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/15/2015] [Indexed: 12/03/2022] Open
Abstract
Background The surface coat of Trypanosoma cruzi is predominantly composed of glycosylphosphatidylinositol-anchored proteins, which have been extensively characterized. However, very little is known about less abundant surface proteins and their role in host-parasite interactions. Methodology/ Principal Findings Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), which are conserved among different T. cruzi lineages and have orthologs in other Trypanosoma species. TcSMP genes are densely clustered within the genome, suggesting that they could have originated by tandem gene duplication. Several lines of evidence indicate that TcSMP is a membrane-spanning protein located at the cellular surface and is released into the extracellular milieu. TcSMP exhibited the key elements typical of surface proteins (N-terminal signal peptide or signal anchor) and a C-terminal hydrophobic sequence predicted to be a trans-membrane domain. Immunofluorescence of live parasites showed that anti-TcSMP antibodies clearly labeled the surface of all T. cruzi developmental forms. TcSMP peptides previously found in a membrane-enriched fraction were identified by proteomic analysis in membrane vesicles as well as in soluble forms in the T. cruzi secretome. TcSMP proteins were also located intracellularly likely associated with membrane-bound structures. We demonstrated that TcSMP proteins were capable of inhibiting metacyclic trypomastigote entry into host cells. TcSMP bound to mammalian cells and triggered Ca2+ signaling and lysosome exocytosis, events that are required for parasitophorous vacuole biogenesis. The effects of TcSMP were of lower magnitude compared to gp82, the major adhesion protein of metacyclic trypomastigotes, suggesting that TcSMP may play an auxiliary role in host cell invasion. Conclusion/Significance We hypothesized that the productive interaction of T. cruzi with host cells that effectively results in internalization may depend on diverse adhesion molecules. In the metacyclic forms, the signaling induced by TcSMP may be additive to that triggered by the major surface molecule gp82, further increasing the host cell responses required for infection. Trypanosoma cruzi is the etiologic agent of Chagas’ disease, which infects 6–7 million people worldwide, mostly in Latin America. Currently, there are no vaccines available, and the drugs used for treatment are toxic and are not fully effective. To infect mammalian hosts, T. cruzi relies on the ability to invade host cells, replicate intracellularly and spread the infection in different organs of the mammalian host. Knowledge of the structure and function of T. cruzi surface molecules is fundamental to understanding the mechanisms by which the parasite interacts with its host. T. cruzi infective forms engage a repertoire of surface and secreted molecules, some of which are involved in triggering signaling pathways both in the parasite and the host cell, leading to intracellular Ca2+ mobilization, a process essential for parasite internalization. Here, we described a novel family of T. cruzi surface membrane proteins (TcSMP), including their genomic distribution, expression and cellular localization. We studied the mechanism of action of TcSMP in host-cell invasion and proposed a triggering role for TcSMP in host-cell lysosome exocytosis during metacyclic internalization. TcSMP genes are conserved among different T. cruzi lineages and share orthologs in other Trypanosoma species. These results suggest that the diversification of TcSMP genes in mammalian trypanosomes occurred after continental drift. In T. cruzi this gene family expanded by gene duplication.
Collapse
|
5
|
Tonkin ML, Workman SD, Eyford BA, Loveless BC, Fudge JL, Pearson TW, Boulanger MJ. Purification, crystallization and X-ray diffraction analysis of Trypanosoma congolense insect-stage surface antigen (TcCISSA). Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1503-6. [PMID: 23192033 PMCID: PMC3509974 DOI: 10.1107/s1744309112042686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/11/2012] [Indexed: 11/10/2022]
Abstract
Trypanosoma congolense is a major contributor to the vast socioeconomic devastation in sub-Saharan Africa caused by animal African trypanosomiasis. These protozoan parasites are transmitted between mammalian hosts by tsetse-fly vectors. A lack of understanding of the molecular basis of tsetse-trypanosome interactions stands as a barrier to the development of improved control strategies. Recently, a stage-specific T. congolense protein, T. congolense insect-stage surface antigen (TcCISSA), was identified that shows considerable sequence identity (>60%) to a previously identified T. brucei insect-stage surface molecule that plays a role in the maturation of infections. TcCISSA has multiple di-amino-acid and tri-amino-acid repeats in its extracellular domain, making it an especially interesting structure-function target. The predicted mature extracellular domain of TcCISSA was produced by recombinant DNA techniques, purified from Escherichia coli, crystallized and subjected to X-ray diffraction analysis; the data were processed to 2.7 Å resolution.
Collapse
Affiliation(s)
- Michelle L. Tonkin
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Sean D. Workman
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Brett A. Eyford
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Bianca C. Loveless
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Jessica L. Fudge
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Terry W. Pearson
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Petch Building, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
6
|
Eyford BA, Sakurai T, Smith D, Loveless B, Hertz-Fowler C, Donelson JE, Inoue N, Pearson TW. Differential protein expression throughout the life cycle of Trypanosoma congolense, a major parasite of cattle in Africa. Mol Biochem Parasitol 2011; 177:116-25. [PMID: 21354217 PMCID: PMC3820035 DOI: 10.1016/j.molbiopara.2011.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/07/2011] [Accepted: 02/13/2011] [Indexed: 01/24/2023]
Abstract
Trypanosoma congolense is an important pathogen of livestock in Africa. To study protein expression throughout the T. congolense life cycle, we used culture-derived parasites of each of the three main insect stages and bloodstream stage parasites isolated from infected mice, to perform differential protein expression analysis. Three complete biological replicates of all four life cycle stages were produced from T. congolense IL3000, a cloned parasite that is amenable to culture of major life cycle stages in vitro. Cellular proteins from each life cycle stage were trypsin digested and the resulting peptides were labeled with isobaric tags for relative and absolute quantification (iTRAQ). The peptides were then analyzed by tandem mass spectrometry (MS/MS). This method was used to identify and relatively quantify proteins from the different life cycle stages in the same experiment. A search of the Wellcome Trust's Sanger Institute's semi-annotated T. congolense database was performed using the MS/MS fragmentation data to identify the corresponding source proteins. A total of 2088 unique protein sequences were identified, representing 23% of the ∼9000 proteins predicted for the T. congolense proteome. The 1291 most confidently identified proteins were prioritized for further study. Of these, 784 yielded annotated hits while 501 were described as "hypothetical proteins". Six proteins showed no significant sequence similarity to any known proteins (from any species) and thus represent new, previously uncharacterized T. congolense proteins. Of particular interest among the remainder are several membrane molecules that showed drastic differential expression, including, not surprisingly, the well-studied variant surface glycoproteins (VSGs), invariant surface glycoproteins (ISGs) 65 and 75, congolense epimastigote specific protein (CESP), the surface protease GP63, an amino acid transporter, a pteridine transporter and a haptoglobin-hemoglobin receptor. Several of these surface disposed proteins are of functional interest as they are necessary for survival of the parasites.
Collapse
Affiliation(s)
- Brett A. Eyford
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Tatsuya Sakurai
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Derek Smith
- UVic-Genome BC Proteomics Centre, Vancouver Island Technology Park, Victoria, British Columbia V8Z 7X8, Canada
| | - Bianca Loveless
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | | | - John E. Donelson
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Noboru Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Terry W. Pearson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| |
Collapse
|
7
|
Transcriptomics and proteomics in human African trypanosomiasis: current status and perspectives. J Proteomics 2011; 74:1625-43. [PMID: 21316496 DOI: 10.1016/j.jprot.2011.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/23/2011] [Accepted: 01/27/2011] [Indexed: 01/21/2023]
Abstract
Human African trypanosomiasis, or sleeping sickness, is a neglected vector-borne parasitic disease caused by protozoa of the species Trypanosoma brucei sensu lato. Within this complex species, T. b. gambiense is responsible for the chronic form of sleeping sickness in Western and Central Africa, whereas T. b. rhodesiense causes the acute form of the disease in East Africa. Presently, 1.5 million disability-adjusted life years (DALYs) per year are lost due to sleeping sickness. In addition, on the basis of the mortality, the disease is ranked ninth out of 25 human infectious and parasitic diseases in Africa. Diagnosis is complex and needs the intervention of a specialized skilled staff; treatment is difficult and expensive and has potentially life-threatening side effects. The use of transcriptomic and proteomic technologies, currently in rapid development and increasing in sensitivity and discriminating power, is already generating a large panel of promising results. The objective of these technologies is to significantly increase our knowledge of the molecular mechanisms governing the parasite establishment in its vector, the development cycle of the parasite during the parasite's intra-vector life, its interactions with the fly and the other microbial inhabitants of the gut, and finally human host-trypanosome interactions. Such fundamental investigations are expected to provide opportunities to identify key molecular events that would constitute accurate targets for further development of tools dedicated to field work for early, sensitive, and stage-discriminant diagnosis, epidemiology, new chemotherapy, and potentially vaccine development, all of which will contribute to fighting the disease. The present review highlights the contributions of the transcriptomic and proteomic analyses developed thus far in order to identify potential targets (genes or proteins) and biological pathways that may constitute a critical step in the identification of new targets for the development of new tools for diagnostic and therapeutic purposes.
Collapse
|
8
|
Veitch NJ, Johnson PCD, Trivedi U, Terry S, Wildridge D, MacLeod A. Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes. BMC Genomics 2010; 11:124. [PMID: 20175885 PMCID: PMC2837033 DOI: 10.1186/1471-2164-11-124] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/22/2010] [Indexed: 12/29/2022] Open
Abstract
Background The evolutionarily ancient parasite, Trypanosoma brucei, is unusual in that the majority of its genes are regulated post-transcriptionally, leading to the suggestion that transcript abundance of most genes does not vary significantly between different life cycle stages despite the fact that the parasite undergoes substantial cellular remodelling and metabolic changes throughout its complex life cycle. To investigate this in the clinically relevant sub-species, Trypanosoma brucei gambiense, which is the causative agent of the fatal human disease African sleeping sickness, we have compared the transcriptome of two different life cycle stages, the potentially human-infective bloodstream forms with the non-human-infective procyclic stage using digital gene expression (DGE) analysis. Results Over eleven million unique tags were generated, producing expression data for 7360 genes, covering 81% of the genes in the genome. Compared to microarray analysis of the related T. b. brucei parasite, approximately 10 times more genes with a 2.5-fold change in expression levels were detected. The transcriptome analysis revealed the existence of several differentially expressed gene clusters within the genome, indicating that contiguous genes, presumably from the same polycistronic unit, are co-regulated either at the level of transcription or transcript stability. Conclusions DGE analysis is extremely sensitive for detecting gene expression differences, revealing firstly that a far greater number of genes are stage-regulated than had previously been identified and secondly and more importantly, this analysis has revealed the existence of several differentially expressed clusters of genes present on what appears to be the same polycistronic units, a phenomenon which had not previously been observed in microarray studies. These differentially regulated clusters of genes are in addition to the previously identified RNA polymerase I polycistronic units of variant surface glycoproteins and procyclin expression sites, which encode the major surface proteins of the parasite. This raises a number of questions regarding the function and regulation of the gene clusters that clearly warrant further study.
Collapse
Affiliation(s)
- Nicola J Veitch
- Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | | | | | | |
Collapse
|
9
|
Cordero EM, Nakayasu ES, Gentil LG, Yoshida N, Almeida IC, da Silveira JF. Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi. J Proteome Res 2009; 8:3642-52. [PMID: 19374451 DOI: 10.1021/pr800887u] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cell surface of Trypanosoma cruzi, the etiologic agent of Chagas disease, is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These molecules are involved in a variety of interactions between this parasite and its mammalian and insect hosts. Here, using the neutral detergent Triton X-114, we obtained fractions rich in GPI-anchored and other membrane proteins from insect developmental stages of T. cruzi. These fractions were analyzed by two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS), resulting in the identification of 98 proteins of metacyclic trypomastigotes and 280 of epimastigotes. Of those, approximately 65% (n=245) had predicted lipid post-translational modification sites (i.e., GPI-anchor, myristoylation, or prenylation), signal-anchor sequence, or transmembrane domains that could explain their solubility in detergent solution. The identification of some of these modified proteins was also validated by immunoblotting. We also present evidence that, in contrast to the noninfective proliferative epimastigote forms, the infective nonproliferative metacyclic trypomastigote forms express a large repertoire of surface glycoproteins, such as GP90 and GP82, which are involved in adhesion and invasion of host cells. Taken together, our results unequivocally show stage-specific protein profiles that appear to be related to the biology of each T. cruzi insect-derived developmental form.
Collapse
Affiliation(s)
- Esteban M Cordero
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, UNIFESP, Rua Botucatu, 862, CEP 04023-062, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Fragoso CM, Schumann Burkard G, Oberle M, Renggli CK, Hilzinger K, Roditi I. PSSA-2, a membrane-spanning phosphoprotein of Trypanosoma brucei, is required for efficient maturation of infection. PLoS One 2009; 4:e7074. [PMID: 19759911 PMCID: PMC2739429 DOI: 10.1371/journal.pone.0007074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/20/2009] [Indexed: 12/04/2022] Open
Abstract
The coat of Trypanosoma brucei consists mainly of glycosylphosphatidylinositol-anchored proteins that are present in several million copies and are characteristic of defined stages of the life cycle. While these major components of the coats of bloodstream forms and procyclic (insect midgut) forms are well characterised, very little is known about less abundant stage-regulated surface proteins and their roles in infection and transmission. By creating epitope-tagged versions of procyclic-specific surface antigen 2 (PSSA-2) we demonstrated that it is a membrane-spanning protein that is expressed by several different life cycle stages in tsetse flies, but not by parasites in the mammalian bloodstream. In common with other membrane-spanning proteins in T. brucei, PSSA-2 requires its cytoplasmic domain in order to exit the endoplasmic reticulum. Correct localisation of PSSA-2 requires phosphorylation of a cytoplasmic threonine residue (T305), a modification that depends on the presence of TbMAPK4. Mutation of T305 to alanine (T305A) has no effect on the localisation of the protein in cells that express wild type PSSA-2. In contrast, this protein is largely intracellular when expressed in a null mutant background. A variant with a T305D mutation gives strong surface expression in both the wild type and null mutant, but slows growth of the cells, suggesting that it may function as a dominant negative mutant. The PSSA-2 null mutant exhibits no perceptible phenotype in culture and is fully competent at establishing midgut infections in tsetse, but is defective in colonising the salivary glands and the production of infectious metacyclic forms. Given the protein's structure and the effects of mutation of T305 on proliferation and localisation, we postulate that PSSA-2 might sense and transmit signals that contribute to the parasite's decision to divide, differentiate or migrate.
Collapse
|
11
|
Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics 2009; 10:427. [PMID: 19747379 PMCID: PMC2753553 DOI: 10.1186/1471-2164-10-427] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 09/11/2009] [Indexed: 11/23/2022] Open
Abstract
Background Trypanosomes undergo extensive developmental changes during their complex life cycle. Crucial among these is the transition between slender and stumpy bloodstream forms and, thereafter, the differentiation from stumpy to tsetse-midgut procyclic forms. These developmental events are highly regulated, temporally reproducible and accompanied by expression changes mediated almost exclusively at the post-transcriptional level. Results In this study we have examined, by whole-genome microarray analysis, the mRNA abundance of genes in slender and stumpy forms of T.brucei AnTat1.1 cells, and also during their synchronous differentiation to procyclic forms. In total, five biological replicates representing the differentiation of matched parasite populations derived from five individual mouse infections were assayed, with RNAs being derived at key biological time points during the time course of their synchronous differentiation to procyclic forms. Importantly, the biological context of these mRNA profiles was established by assaying the coincident cellular events in each population (surface antigen exchange, morphological restructuring, cell cycle re-entry), thereby linking the observed gene expression changes to the well-established framework of trypanosome differentiation. Conclusion Using stringent statistical analysis and validation of the derived profiles against experimentally-predicted gene expression and phenotypic changes, we have established the profile of regulated gene expression during these important life-cycle transitions. The highly synchronous nature of differentiation between stumpy and procyclic forms also means that these studies of mRNA profiles are directly relevant to the changes in mRNA abundance within individual cells during this well-characterised developmental transition.
Collapse
|
12
|
Fate of glycosylphosphatidylinositol (GPI)-less procyclin and characterization of sialylated non-GPI-anchored surface coat molecules of procyclic-form Trypanosoma brucei. EUKARYOTIC CELL 2009; 8:1407-17. [PMID: 19633269 PMCID: PMC2747833 DOI: 10.1128/ec.00178-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A Trypanosoma brucei TbGPI12 null mutant that is unable to express cell surface procyclins and free glycosylphosphatidylinositols (GPI) revealed that these are not the only surface coat molecules of the procyclic life cycle stage. Here, we show that non-GPI-anchored procyclins are N-glycosylated, accumulate in the lysosome, and appear as proteolytic fragments in the medium. We also show, using lectin agglutination and galactose oxidase-NaB(3)H(4) labeling, that the cell surface of the TbGPI12 null parasites contains glycoconjugates that terminate in sialic acid linked to galactose. Following desialylation, a high-apparent-molecular-weight glycoconjugate fraction was purified by ricin affinity chromatography and gel filtration and shown to contain mannose, galactose, N-acetylglucosamine, and fucose. The latter has not been previously reported in T. brucei glycoproteins. A proteomic analysis of this fraction revealed a mixture of polytopic transmembrane proteins, including P-type ATPase and vacuolar proton-translocating pyrophosphatase. Immunolocalization studies showed that both could be labeled on the surfaces of wild-type and TbGPI12 null cells. Neither galactose oxidase-NaB(3)H(4) labeling of the non-GPI-anchored surface glycoconjugates nor immunogold labeling of the P-type ATPase was affected by the presence of procyclins in the wild-type cells, suggesting that the procyclins do not, by themselves, form a macromolecular barrier.
Collapse
|
13
|
Palmer RJ, Wakefield AE. Functional glycosylphosphatidylinositol anchor signal sequences in the Pneumocystis carinii PRT1 protease family. Am J Respir Cell Mol Biol 2001; 25:466-73. [PMID: 11694452 DOI: 10.1165/ajrcmb.25.4.4514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pneumocystis carinii is fungus which is a frequent cause of severe pneumonia in immunocompromised individuals. The P. carinii genome contains the PRT1 subtelomeric multigene family that encodes a kexin-like serine protease which is expressed on the surface of P. carinii. Analysis of the sequence of the carboxy-terminal sequence of many copies of PRT1 showed that they contained motifs characteristic of a glycosylphosphatidylinositol (GPI) anchor signal sequence. The ability of the C-terminal sequences of PRT1 to direct the addition of a GPI anchor was tested. CD14, a GPI-anchored monocyte glycoprotein antigen, was used as the basis of a heterologous system. CD14 was truncated to remove the carboxy-terminal sequences responsible for GPI-anchor addition. Addition of carboxy-terminal sequences from PRT1 restored high-level surface expression to the truncated CD14. Further, the majority of CD14-PRT1 recombinant protein was removed from the cell membrane by treatment with GPI-specific phospholipase C. These results suggest that the carboxy-terminal residues of most of the members of the PRT1 family of proteases have the potential to form a functional GPI-attachment signal.
Collapse
Affiliation(s)
- R J Palmer
- Molecular Infectious Diseases Group, Department of Pediatrics, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom
| | | |
Collapse
|
14
|
Acosta-Serrano A, Cole RN, Englund PT. Killing of Trypanosoma brucei by concanavalin A: structural basis of resistance in glycosylation mutants. J Mol Biol 2000; 304:633-44. [PMID: 11099385 DOI: 10.1006/jmbi.2000.4246] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Concanavalin A (Con A) kills procyclic (insect) forms of Trypanosoma brucei by binding to N-glycans on EP-procyclin, a major surface glycosyl phosphatidylinositol (GPI)-anchored protein which is rich in Glu-Pro repeats. We have previously isolated and studied two procyclic mutants (ConA 1-1 and ConA 4-1) that are more resistant than wild-type (WT) to Con A killing. Although both mutants express the same altered oligosaccharides compared to WT cells, ConA 4-1 is considerably more resistant to lectin killing than is ConA 1-1. Thus, we looked for other alterations to account for the differences in sensitivity. Using mass spectrometry, together with chemical and enzymatic treatments, we found that both mutants express types of EP-procyclin that are either poorly expressed or not found at all in WT cells. ConA 1-1 expresses mainly EP1-3, a novel procyclin that contains 18 EP repeats, is partially N-glycosylated, and bears hybrid-type glycans. On the other hand, ConA 4-1 cells express almost exclusively EP2-3, a novel non-glycosylated procyclin isoform with 23 EP repeats and no site for glycosylation. The predominance of EP2-3 in ConA 4-1 cells explains their high resistance to ConA killing. Thus, switching the procyclin repertoire, a process that could be relevant to parasite development in the insect vector, modulates the sensitivity of trypanosomes to cytotoxic lectins.
Collapse
Affiliation(s)
- A Acosta-Serrano
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
15
|
Inoue N, Lluz AT, Mori T, Nagasawa H, Fujisak K, Mikami T. Novel species specific antigens of trypanosoma congolense and their different localization among life-cycle stages. J Vet Med Sci 2000; 62:1041-5. [PMID: 11073073 DOI: 10.1292/jvms.62.1041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Seven monoclonal antibodies (mAbs) were raised against Trypanosoma congolense procyclic form (PCF). Localization of the antigens recognized by the mAbs was determined in bloodstream form (BSF), PCF, epimastigote form (EMF) and metacyclic form (MCF) by confocal laser scanning microscopy (CLSM). Two mAbs (10F9 and 20H12) showed different fluorescent patterns among different life-cycle stages of the parasite. The 10F9 recognized a 76 kDa antigen of all life-cycle stages of the parasite and the antigen localization corresponded with that of a mitochondrion. While the 20H12 recognized 119 and 122 kDa antigens of all the life-cycle stages and the antigen localization corresponded with a flagellum in BSF and MCF, tip of a flagellum in PCF, and part of cytoplasm in EMF. Moreover, the 20H12 did not react to T. brucei gambiense, T. b. rhodesiense and T. evansi antigens in both CLSM and immunoblotting. Therefore, the antigens recognized by the 20H12 seem to be T. congolense specific. Although, further studies will be required for a full characterization of the T. congolense specific 119 and 122 kDa antigens, the mAb 20H12 and the specific antigens may be useful in not only establishment of T. congolense specific diagnosis methods but also studies on molecular mechanisms regulating differentiation of the parasite during life-cycle.
Collapse
Affiliation(s)
- N Inoue
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Nolan DP, Jackson DG, Biggs MJ, Brabazon ED, Pays A, Van Laethem F, Paturiaux-Hanocq F, Elliott JF, Elliot JF, Voorheis HP, Pays E. Characterization of a novel alanine-rich protein located in surface microdomains in Trypanosoma brucei. J Biol Chem 2000; 275:4072-80. [PMID: 10660566 DOI: 10.1074/jbc.275.6.4072] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterologous expression in COS cells followed by orientation-specific polymerase chain reaction to select and amplify cDNAs encoding surface proteins in Trypanosoma brucei resulted in the isolation of a cDNA ( approximately 1.4 kilobase) which encodes an acidic, alanine-rich polypeptide that is expressed only in bloodstream forms of the parasite and has been termed bloodstream stage alanine-rich protein (BARP). Analysis of the amino acid sequence predicted the presence of a typical NH(2)-terminal leader sequence as well as a COOH-terminal hydrophobic extension with the potential to be replaced by a glycosylphosphatidylinositol anchor. A search of existing protein sequences revealed partial homology between BARP and the major surface antigen of procyclic forms of Trypanosoma congolense. BARP migrated as a complex, heterogeneous series of bands on Western blots with an apparent molecular mass ( approximately 50-70 kDa) significantly higher than predicted from the amino acid sequence ( approximately 26 kDa). Confocal microscopy demonstrated that BARP was present in small discrete spots that were distributed over the entire cellular surface. Detergent extraction experiments revealed that BARP was recovered in the detergent-insoluble, glycolipid-enriched fraction. These data suggested that BARP may be sequestered in lipid rafts.
Collapse
Affiliation(s)
- D P Nolan
- Laboratory of Molecular Parasitology, Universite Libre de Bruxelles Institute of Molecular Biology and Medicine, 12 Rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Acosta-Serrano A, Cole RN, Mehlert A, Lee MG, Ferguson MA, Englund PT. The procyclin repertoire of Trypanosoma brucei. Identification and structural characterization of the Glu-Pro-rich polypeptides. J Biol Chem 1999; 274:29763-71. [PMID: 10514452 DOI: 10.1074/jbc.274.42.29763] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The surface of the insect stages of the protozoan parasite Trypanosoma brucei is covered by abundant glycosyl phosphatidylinositol (GPI)-anchored glycoproteins known as procyclins. One type of procyclin, the EP isoform, is predicted to have 22-30 Glu-Pro (EP) repeats in its C-terminal domain and is encoded by multiple genes. Because of the similarity of the EP isoform sequences and the heterogeneity of their GPI anchors, it has been impossible to separate and characterize these polypeptides by standard protein fractionation techniques. To facilitate their structural and functional characterization, we used a combination of matrix-assisted laser desorption ionization and electrospray mass spectrometry to analyze the entire procyclin repertoire expressed on the trypanosome cell. This analysis, which required removal of the GPI anchors by aqueous hydrofluoric acid treatment and cleavage at aspartate-proline bonds by mild acid hydrolysis, provided precise information about the glycosylation state and the number of Glu-Pro repeats in these proteins. Using this methodology we detected in a T. brucei clone the glycosylated products of the EP3 gene and two different products of the EP1 gene (EP1-1 and EP1-2). Furthermore, only low amounts of the nonglycosylated products of the GPEET and EP2 genes were detected. Because all procyclin genes are transcribed polycistronically, the latter finding indicates that the expression of the GPEET and EP2 genes is post-transcriptionaly regulated. This is the first time that the whole procyclin repertoire from procyclic trypanosomes has been characterized at the protein level.
Collapse
Affiliation(s)
- A Acosta-Serrano
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- E Pays
- Department of Molecular Biology, University of Brussels 67, Rhode St Genèse, Belgium.
| | | |
Collapse
|
19
|
Carrington M, Boothroyd J. Implications of conserved structural motifs in disparate trypanosome surface proteins. Mol Biochem Parasitol 1996; 81:119-26. [PMID: 8898328 DOI: 10.1016/0166-6851(96)02706-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Evasion of the host immune system by Trypanosoma brucei is dependent on the sequential expression of individual genes encoding antigenically distinct variant surface glycoproteins (VSG). VSGs are antigenically distinct due to extensive differences in primary sequence; the only obvious conserved feature in the primary sequence is the location of cysteines that form disulphide bridges. Despite this difference, it is believed that VSGs have a conserved tertiary structure which could explain how a range of VSGs with different primary sequences can perform the same apparent function of producing a monolayer barrier that prevents the host antibodies from recognising other cell surface proteins. The main feature of the VSG tertiary structure is two long alpha-helices per monomer that are perpendicular to the cell surface and define the elongated shape of the VSG. The alpha-helices can be identified in the primary sequence by heptad analysis. Here, we briefly review the current understanding of VSG structure and discuss the fact that the cysteine residues and the heptads are conserved in some non-VSG surface proteins from T. brucei, providing strong evidence that these share a similar tertiary structure. These findings suggest that this master structure has evolved to facilitate a range of functions and has implications for understanding the architecture of the trypanosome cell surface and the origins of antigenic variation.
Collapse
Affiliation(s)
- M Carrington
- University of Cambridge, Department of Biochemistry, UK.
| | | |
Collapse
|
20
|
Alano P, Read D, Bruce M, Aikawa M, Kaido T, Tegoshi T, Bhatti S, Smith DK, Luo C, Hansra S, Carter R, Elliott JF. COS cell expression cloning of Pfg377, a Plasmodium falciparum gametocyte antigen associated with osmiophilic bodies. Mol Biochem Parasitol 1995; 74:143-56. [PMID: 8719156 DOI: 10.1016/0166-6851(95)02491-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We report the deduced protein sequence and preliminary characterization of Pfg377, a novel sexual stage antigen of Plasmodium falciparum. An initial cDNA clone (Pfg377-1) encoding the N-terminal 755 amino acids of Pfg377 was isolated by transfecting a 3D7 gametocyte cDNA library into COS7 cells and selecting using a pool of anti-Pfs230 monoclonal antibodies. The protein encoded by Pfg377-1 included an N-terminal hydrophobic signal sequence, but no apparent transmembrane anchor. Instead, the particular cDNA clone selected was fused in-frame at its 3' end with the coding sequence for the human decay acceleration factor membrane anchor, which had been deliberately placed downstream of the vector polylinker in order to attach potential fusion proteins onto the COS cell surface. Northern blots probed with the Pfg377-1 cDNA demonstrated cross-hybridization to a single approximately 9.5-kb transcript, which was present only in sexual stages, and not in a sexual stages. DNA hybridization was used to obtain a series of overlapping genomic clones which collectively yielded the complete DNA sequence for Pfg377. There are no introns within the gene, which contains a 9360-bp open reading frame and encodes a 377-kDa protein. The Pfg377 protein is highly hydrophilic, and has an essentially non-repetitive structure, with only four very limited regions of tandem repeats. The Pfg377 gene resides on chromosome 12, and immunoelectron microscopy with two different anti-Pfg377 polyclonal antisera raised against two separate recombinant sub-fragments of the protein both indicated that the antigen is located in electron-dense organelles of the gametocytes--the osmiophilic bodies--which are proposed to play a role in parasite emergence from the erythrocyte during gametocyte maturation in the Anopheles mosquito midgut. Although it was selected with anti-Pfs230 antibodies, comparison of the sub-cellular locations and protein sequences of Pfg377 and Pfs2 show them to be completely distinct antigens. We hypothesize that Pfg377-1 was initially isolated because it expresses an epitope which is recognized by (i.e., cross-reacts with) one of the anti-Pfs230 monoclonal antibodies used to select the original transfected COS cells.
Collapse
Affiliation(s)
- P Alano
- Laboratorio di Biologia Cellulare, Istituto Superiore di Sanirtá, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Yamamoto Y, Mizuno R, Nishimura T, Ogawa Y, Yoshikawa H, Fujimura H, Adachi E, Kishimoto T, Yanagihara T, Sakoda S. Cloning and expression of myelin-associated oligodendrocytic basic protein. A novel basic protein constituting the central nervous system myelin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31756-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|