1
|
Yamashita H, Matsumoto T, Kawashima K, Abdulla Daanaa HS, Yang Z, Akashi H. Dinucleotide preferences underlie apparent codon preference reversals in the Drosophila melanogaster lineage. Proc Natl Acad Sci U S A 2025; 122:e2419696122. [PMID: 40402244 DOI: 10.1073/pnas.2419696122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/21/2025] [Indexed: 05/23/2025] Open
Abstract
We employ fine-scale population genetic analyses to reveal dynamics among interacting forces that act at synonymous sites and introns among closely related Drosophila species. Synonymous codon usage bias has proven to be well suited for population genetic inference. Under major codon preference (MCP), translationally superior "major" codons confer fitness benefits relative to their less efficiently and/or accurately decoded synonymous counterparts. Our codon family and lineage-specific analyses expand on previous findings in the Drosophila simulans lineage; patterns in naturally occurring polymorphism demonstrate fixation biases toward GC-ending codons that are consistent in direction, but heterogeneous in magnitude, among synonymous families. These forces are generally stronger than fixation biases in intron sequences. In contrast, population genetic analyses reveal unexpected evidence of codon preference reversals in the Drosophila melanogaster lineage. Codon family-specific polymorphism patterns support reduced efficacy of natural selection in most synonymous families but indicate reversals of favored states in the four codon families encoded by NAY. Accelerated synonymous fixations in favor of NAT and greater differences for both allele frequencies and fixation rates among X-linked, relative to autosomal, loci bolster support for fitness effect reversals. The specificity of preference reversals to codons whose cognate tRNAs undergo wobble position queuosine modification is intriguing. However, our analyses reveal prevalent dinucleotide preferences for ApT over ApC that act in opposition to GC-favoring forces in both coding and intron regions. We present evidence that changes in the relative efficacy of translational selection and dinucleotide preference underlie apparent codon preference reversals.
Collapse
Affiliation(s)
- Haruka Yamashita
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Tomotaka Matsumoto
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kent Kawashima
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hassan Sibroe Abdulla Daanaa
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Hiroshi Akashi
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
2
|
Sigal M, Matsumoto S, Beattie A, Katoh T, Suga H. Engineering tRNAs for the Ribosomal Translation of Non-proteinogenic Monomers. Chem Rev 2024; 124:6444-6500. [PMID: 38688034 PMCID: PMC11122139 DOI: 10.1021/acs.chemrev.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Ribosome-dependent protein biosynthesis is an essential cellular process mediated by transfer RNAs (tRNAs). Generally, ribosomally synthesized proteins are limited to the 22 proteinogenic amino acids (pAAs: 20 l-α-amino acids present in the standard genetic code, selenocysteine, and pyrrolysine). However, engineering tRNAs for the ribosomal incorporation of non-proteinogenic monomers (npMs) as building blocks has led to the creation of unique polypeptides with broad applications in cellular biology, material science, spectroscopy, and pharmaceuticals. Ribosomal polymerization of these engineered polypeptides presents a variety of challenges for biochemists, as translation efficiency and fidelity is often insufficient when employing npMs. In this Review, we will focus on the methodologies for engineering tRNAs to overcome these issues and explore recent advances both in vitro and in vivo. These efforts include increasing orthogonality, recruiting essential translation factors, and creation of expanded genetic codes. After our review on the biochemical optimizations of tRNAs, we provide examples of their use in genetic code manipulation, with a focus on the in vitro discovery of bioactive macrocyclic peptides containing npMs. Finally, an analysis of the current state of tRNA engineering is presented, along with existing challenges and future perspectives for the field.
Collapse
Affiliation(s)
- Maxwell Sigal
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satomi Matsumoto
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Adam Beattie
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
3
|
Vila-Sanjurjo A, Mallo N, Atkins JF, Elson JL, Smith PM. Our current understanding of the toxicity of altered mito-ribosomal fidelity during mitochondrial protein synthesis: What can it tell us about human disease? Front Physiol 2023; 14:1082953. [PMID: 37457031 PMCID: PMC10349377 DOI: 10.3389/fphys.2023.1082953] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/28/2023] [Indexed: 07/18/2023] Open
Abstract
Altered mito-ribosomal fidelity is an important and insufficiently understood causative agent of mitochondrial dysfunction. Its pathogenic effects are particularly well-known in the case of mitochondrially induced deafness, due to the existence of the, so called, ototoxic variants at positions 847C (m.1494C) and 908A (m.1555A) of 12S mitochondrial (mt-) rRNA. It was shown long ago that the deleterious effects of these variants could remain dormant until an external stimulus triggered their pathogenicity. Yet, the link from the fidelity defect at the mito-ribosomal level to its phenotypic manifestation remained obscure. Recent work with fidelity-impaired mito-ribosomes, carrying error-prone and hyper-accurate mutations in mito-ribosomal proteins, have started to reveal the complexities of the phenotypic manifestation of mito-ribosomal fidelity defects, leading to a new understanding of mtDNA disease. While much needs to be done to arrive to a clear picture of how defects at the level of mito-ribosomal translation eventually result in the complex patterns of disease observed in patients, the current evidence indicates that altered mito-ribosome function, even at very low levels, may become highly pathogenic. The aims of this review are three-fold. First, we compare the molecular details associated with mito-ribosomal fidelity to those of general ribosomal fidelity. Second, we gather information on the cellular and organismal phenotypes associated with defective translational fidelity in order to provide the necessary grounds for an understanding of the phenotypic manifestation of defective mito-ribosomal fidelity. Finally, the results of recent experiments directly tackling mito-ribosomal fidelity are reviewed and future paths of investigation are discussed.
Collapse
Affiliation(s)
- Antón Vila-Sanjurjo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Natalia Mallo
- Grupo GIBE, Departamento de Bioloxía e Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Joanna L Elson
- The Bioscience Institute, Newcastle University, Newcastle uponTyne, United Kingdom
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Paul M Smith
- Department of Paediatrics, Raigmore Hospital, Inverness, Scotland, United Kingdom
| |
Collapse
|
4
|
Nagao A, Nakanishi Y, Yamaguchi Y, Mishina Y, Karoji M, Toya T, Fujita T, Iwasaki S, Miyauchi K, Sakaguchi Y, Suzuki T. Quality control of protein synthesis in the early elongation stage. Nat Commun 2023; 14:2704. [PMID: 37198183 PMCID: PMC10192219 DOI: 10.1038/s41467-023-38077-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
In the early stage of bacterial translation, peptidyl-tRNAs frequently dissociate from the ribosome (pep-tRNA drop-off) and are recycled by peptidyl-tRNA hydrolase. Here, we establish a highly sensitive method for profiling of pep-tRNAs using mass spectrometry, and successfully detect a large number of nascent peptides from pep-tRNAs accumulated in Escherichia coli pthts strain. Based on molecular mass analysis, we found about 20% of the peptides bear single amino-acid substitutions of the N-terminal sequences of E. coli ORFs. Detailed analysis of individual pep-tRNAs and reporter assay revealed that most of the substitutions take place at the C-terminal drop-off site and that the miscoded pep-tRNAs rarely participate in the next round of elongation but dissociate from the ribosome. These findings suggest that pep-tRNA drop-off is an active mechanism by which the ribosome rejects miscoded pep-tRNAs in the early elongation, thereby contributing to quality control of protein synthesis after peptide bond formation.
Collapse
Affiliation(s)
- Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Yui Nakanishi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yutaro Yamaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshifumi Mishina
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minami Karoji
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takafumi Toya
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
5
|
Nguyen H, Hoffer E, Fagan C, Maehigashi T, Dunham C. Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches. J Biol Chem 2023; 299:104608. [PMID: 36924943 PMCID: PMC10140155 DOI: 10.1016/j.jbc.2023.104608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNALys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
Collapse
Affiliation(s)
- HaAn Nguyen
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - EricD Hoffer
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - CrystalE Fagan
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA; Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Tatsuya Maehigashi
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - ChristineM Dunham
- Department of Chemistry, Emory University, Atlanta, GA USA; Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA.
| |
Collapse
|
6
|
Nguyen HA, Hoffer ED, Fagan CE, Maehigashi T, Dunham CM. Structural basis for reduced ribosomal A-site fidelity in response to P-site codon-anticodon mismatches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.28.526049. [PMID: 36747737 PMCID: PMC9900946 DOI: 10.1101/2023.01.28.526049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rapid and accurate translation is essential in all organisms to produce properly folded and functional proteins. mRNA codons that define the protein coding sequences are decoded by tRNAs on the ribosome in the aminoacyl (A) binding site. The mRNA codon and the tRNA anticodon interaction is extensively monitored by the ribosome to ensure accuracy in tRNA selection. While other polymerases that synthesize DNA and RNA can correct for misincorporations, the ribosome is unable to correct mistakes. Instead, when a misincorporation occurs, the mismatched tRNA-mRNA pair moves to the peptidyl (P) site and from this location, causes a reduction in the fidelity at the A site, triggering post-peptidyl transfer quality control. This reduced fidelity allows for additional incorrect tRNAs to be accepted and for release factor 2 (RF2) to recognize sense codons, leading to hydrolysis of the aberrant peptide. Here, we present crystal structures of the ribosome containing a tRNA Lys in the P site with a U•U mismatch with the mRNA codon. We find that when the mismatch occurs in the second position of the P-site codon-anticodon interaction, the first nucleotide of the A-site codon flips from the mRNA path to engage highly conserved 16S rRNA nucleotide A1493 in the decoding center. We propose that this mRNA nucleotide mispositioning leads to reduced fidelity at the A site. Further, this state may provide an opportunity for RF2 to initiate premature termination before erroneous nascent chains disrupt the cellular proteome.
Collapse
Affiliation(s)
- Ha An Nguyen
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - Eric D. Hoffer
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Crystal E. Fagan
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
- Biochemistry, Cell and Developmental Biology Graduate Program, Emory University, Atlanta, GA USA
| | - Tatsuya Maehigashi
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, GA USA
- Emory Antibiotic Resistance Center (ARC), Emory University, Atlanta, GA USA
| |
Collapse
|
7
|
Sun M, Zhang J. Preferred synonymous codons are translated more accurately: Proteomic evidence, among-species variation, and mechanistic basis. SCIENCE ADVANCES 2022; 8:eabl9812. [PMID: 35857447 PMCID: PMC9258949 DOI: 10.1126/sciadv.abl9812] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
A commonly stated cause of unequal uses of synonymous codons is their differential translational accuracies. A key prediction of this long-standing translational accuracy hypothesis (TAH) of codon usage bias is higher translational accuracies of more frequently used synonymous codons, which, however, has had no direct evidence beyond case studies. Analyzing proteomic data from Escherichia coli, we present direct, global evidence for this prediction. The experimentally measured codon-specific translational accuracies validate a sequence-based proxy; this proxy provides support for the TAH from the vast majority of over 1000 taxa surveyed in all domains of life. We find that the relative translational accuracies of synonymous codons vary substantially among taxa and are strongly correlated with the amounts of cognate transfer RNAs (tRNAs) relative to those of near-cognate tRNAs. These and other observations suggest a model in which selections for translational efficiency and accuracy drive codon usage bias and its coevolution with the tRNA pool.
Collapse
|
8
|
Li Y, Wang R, Wang H, Pu F, Feng X, Jin L, Ma Z, Ma XX. Codon Usage Bias in Autophagy-Related Gene 13 in Eukaryotes: Uncovering the Genetic Divergence by the Interplay Between Nucleotides and Codon Usages. Front Cell Infect Microbiol 2021; 11:771010. [PMID: 34804999 PMCID: PMC8602353 DOI: 10.3389/fcimb.2021.771010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Synonymous codon usage bias is a universal characteristic of genomes across various organisms. Autophagy-related gene 13 (atg13) is one essential gene for autophagy initiation, yet the evolutionary trends of the atg13 gene at the usages of nucleotide and synonymous codon remains unexplored. According to phylogenetic analyses for the atg13 gene of 226 eukaryotic organisms at the nucleotide and amino acid levels, it is clear that their nucleotide usages exhibit more genetic information than their amino acid usages. Specifically, the overall nucleotide usage bias quantified by information entropy reflected that the usage biases at the first and second codon positions were stronger than those at the third position of the atg13 genes. Furthermore, the bias level of nucleotide ‘G’ usage is highest, while that of nucleotide ‘C’ usage is lowest in the atg13 genes. On top of that, genetic features represented by synonymous codon usage exhibits a species-specific pattern on the evolution of the atg13 genes to some extent. Interestingly, the codon usages of atg13 genes in the ancestor animals (Latimeria chalumnae, Petromyzon marinus, and Rhinatrema bivittatum) are strongly influenced by mutation pressure from nucleotide composition constraint. However, the distributions of nucleotide composition at different codon positions in the atg13 gene display that natural selection still dominates atg13 codon usages during organisms’ evolution.
Collapse
Affiliation(s)
- Yicong Li
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Huihui Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Li Jin
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
9
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
10
|
Liu Y, Yang Q, Zhao F. Synonymous but Not Silent: The Codon Usage Code for Gene Expression and Protein Folding. Annu Rev Biochem 2021; 90:375-401. [PMID: 33441035 DOI: 10.1146/annurev-biochem-071320-112701] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Qian Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| | - Fangzhou Zhao
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA;
| |
Collapse
|
11
|
Southworth J, Grace CA, Marron AO, Fatima N, Carr M. A genomic survey of transposable elements in the choanoflagellate Salpingoeca rosetta reveals selection on codon usage. Mob DNA 2019; 10:44. [PMID: 31788034 PMCID: PMC6875170 DOI: 10.1186/s13100-019-0189-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/13/2019] [Indexed: 12/04/2022] Open
Abstract
Background Unicellular species make up the majority of eukaryotic diversity, however most studies on transposable elements (TEs) have centred on multicellular host species. Such studies may have therefore provided a limited picture of how transposable elements evolve across eukaryotes. The choanoflagellates, as the sister group to Metazoa, are an important study group for investigating unicellular to multicellular transitions. A previous survey of the choanoflagellate Monosiga brevicollis revealed the presence of only three families of LTR retrotransposons, all of which appeared to be active. Salpingoeca rosetta is the second choanoflagellate to have its whole genome sequenced and provides further insight into the evolution and population biology of transposable elements in the closest relative of metazoans. Results Screening the genome revealed the presence of a minimum of 20 TE families. Seven of the annotated families are DNA transposons and the remaining 13 families are LTR retrotransposons. Evidence for two putative non-LTR retrotransposons was also uncovered, but full-length sequences could not be determined. Superfamily phylogenetic trees indicate that vertical inheritance and, in the case of one family, horizontal transfer have been involved in the evolution of the choanoflagellates TEs. Phylogenetic analyses of individual families highlight recent element activity in the genome, however six families did not show evidence of current transposition. The majority of families possess young insertions and the expression levels of TE genes vary by four orders of magnitude across families. In contrast to previous studies on TEs, the families present in S. rosetta show the signature of selection on codon usage, with families favouring codons that are adapted to the host translational machinery. Selection is stronger in LTR retrotransposons than DNA transposons, with highly expressed families showing stronger codon usage bias. Mutation pressure towards guanosine and cytosine also appears to contribute to TE codon usage. Conclusions S. rosetta increases the known diversity of choanoflagellate TEs and the complement further highlights the role of horizontal gene transfer from prey species in choanoflagellate genome evolution. Unlike previously studied TEs, the S. rosetta families show evidence for selection on their codon usage, which is shown to act via translational efficiency and translational accuracy.
Collapse
Affiliation(s)
- Jade Southworth
- 1Department of Biological & Geographical Sciences, University of Huddersfield, Huddersfield, HD1 3DH UK
| | - C Alastair Grace
- 1Department of Biological & Geographical Sciences, University of Huddersfield, Huddersfield, HD1 3DH UK
| | - Alan O Marron
- 2Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA UK
| | - Nazeefa Fatima
- 3Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Martin Carr
- 1Department of Biological & Geographical Sciences, University of Huddersfield, Huddersfield, HD1 3DH UK
| |
Collapse
|
12
|
Southworth J, Armitage P, Fallon B, Dawson H, Bryk J, Carr M. Patterns of Ancestral Animal Codon Usage Bias Revealed through Holozoan Protists. Mol Biol Evol 2019; 35:2499-2511. [PMID: 30169693 PMCID: PMC6188563 DOI: 10.1093/molbev/msy157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Choanoflagellates and filastereans are the closest known single celled relatives of Metazoa within Holozoa and provide insight into how animals evolved from their unicellular ancestors. Codon usage bias has been extensively studied in metazoans, with both natural selection and mutation pressure playing important roles in different species. The disparate nature of metazoan codon usage patterns prevents the reconstruction of ancestral traits. However, traits conserved across holozoan protists highlight characteristics in the unicellular ancestors of Metazoa. Presented here are the patterns of codon usage in the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta, as well as the filasterean Capsaspora owczarzaki. Codon usage is shown to be remarkably conserved. Highly biased genes preferentially use GC-ending codons, however there is limited evidence this is driven by local mutation pressure. The analyses presented provide strong evidence that natural selection, for both translational accuracy and efficiency, dominates codon usage bias in holozoan protists. In particular, the signature of selection for translational accuracy can be detected even in the most weakly biased genes. Biased codon usage is shown to have coevolved with the tRNA species, with optimal codons showing complementary binding to the highest copy number tRNA genes. Furthermore, tRNA modification is shown to be a common feature for amino acids with higher levels of degeneracy and highly biased genes show a strong preference for using modified tRNAs in translation. The translationally optimal codons defined here will be of benefit to future transgenics work in holozoan protists, as their use should maximise protein yields from edited transgenes.
Collapse
Affiliation(s)
- Jade Southworth
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Paul Armitage
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Brandon Fallon
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Holly Dawson
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Jaroslaw Bryk
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - Martin Carr
- Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, United Kingdom
| |
Collapse
|
13
|
Barbhuiya PA, Uddin A, Chakraborty S. Compositional properties and codon usage of TP73 gene family. Gene 2018; 683:159-168. [PMID: 30316927 DOI: 10.1016/j.gene.2018.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/03/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
The TP73 gene is considered as one of the members of TP53 gene family and shows much homology to p53 gene. TP73 gene plays a pivotal role in cancer studies in addition to other biological functions. Codon usage bias (CUB) is the phenomenon of unequal usage of synonymous codons for an amino acid wherein some codons are more frequently used than others and it reveals the evolutionary relationship of a gene. Here, we report the pattern of codon usage in TP73 gene using various bioinformatic tools as no work was reported yet. Nucleotide composition analysis suggested that the mean nucleobase C was the highest, followed by G and the gene was GC rich. Correlation analysis between codon usage and GC3 suggested that most of the GC-ending codons showed positive correlation while most of the AT-ending codons showed negative correlation with GC3 in the coding sequences of TP73 gene variants in human. The CUB is moderate in human TP73 gene as evident from intrinsic codon deviation index (ICDI) analysis. Nature selected against two codons namely ATA (isoleucine) and AGA (arginine) in the coding sequences of TP73 gene during the course of evolution. A significant correlation (p < 0.05) was found between overall nucleotide composition and its composition at the 3rd codon position, indicating that both mutation pressure and natural selection might influence the CUB. The correlation analysis between ICDI and biochemical properties of protein suggested that variation of CUB was associated with degree of hydrophobicity and length of protein.
Collapse
Affiliation(s)
- Parvin A Barbhuiya
- Departments of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi 788150, Assam, India
| | - Supriyo Chakraborty
- Departments of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
14
|
Cao XA, Hu W, Shang YJ, Liu YS, Han SY, Wang YN, Zhao L, Li XR, Zhou JH. Analyses of nucleotide, synonymous codon and amino acid usages at gene levels of Brucella melitensis strain QY1. INFECTION GENETICS AND EVOLUTION 2018; 65:257-264. [PMID: 30092351 DOI: 10.1016/j.meegid.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/20/2018] [Accepted: 08/04/2018] [Indexed: 12/20/2022]
Abstract
Brucella melitensis is the causative pathogen of the zoonotic disease brucellosis in China. This work focused on analyses of genetic features represented by nucleotide, synonymous codon and amino acid usages at gene levels of B. melitensis strain QY1 isolated from China. Although nucleotide usage biases at different codon positions all work on synonymous codon usage bias, nucleotide usage biases at the 1st and 3rd positions play more important roles in codon usages. Mutation pressure caused by nucleotide composition constraint influences the formation of over-representative synonymous codons, but neighboring nucleotides surrounding a codon strongly influence synonymous codon usage bias for B. melitensis strain QY1. There is significant correlation between amino acid usage bias and hydropathicity of proteins for B. melitensis strain QY1. Compared with different Brucella species about synonymous codon usage patterns, synonymous codon usages are not obviously influenced by hosts. Due to nucleotide usage bias at the 1st codon position influencing synonymous codon and amino acid usages, good interactions among nucleotide, synonymous codon and amino acid usages exist in the evolutionary process of B. melitensis.
Collapse
Affiliation(s)
- Xiao-An Cao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Wen Hu
- Gansu Police Vocational College, Lanzhou 730046, Gansu, PR China
| | - You-Jun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Yong-Sheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Sheng-Yi Han
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, PR China
| | - Yi-Ning Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Lu Zhao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Xue-Rui Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, Gansu, PR China.
| |
Collapse
|
15
|
Seward EA, Kelly S. Selection-driven cost-efficiency optimization of transcripts modulates gene evolutionary rate in bacteria. Genome Biol 2018; 19:102. [PMID: 30064467 PMCID: PMC6066932 DOI: 10.1186/s13059-018-1480-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Most amino acids are encoded by multiple synonymous codons. However, synonymous codons are not used equally, and this biased codon use varies between different organisms. It has previously been shown that both selection acting to increase codon translational efficiency and selection acting to decrease codon biosynthetic cost contribute to differences in codon bias. However, it is unknown how these two factors interact or how they affect molecular sequence evolution. RESULTS Through analysis of 1320 bacterial genomes, we show that bacterial genes are subject to multi-objective selection-driven optimization of codon use. Here, selection acts to simultaneously decrease transcript biosynthetic cost and increase transcript translational efficiency, with highly expressed genes under the greatest selection. This optimization is not simply a consequence of the more translationally efficient codons being less expensive to synthesize. Instead, we show that transfer RNA gene copy number alters the cost-efficiency trade-off of synonymous codons such that, for many species, selection acting on transcript biosynthetic cost and translational efficiency act in opposition. Finally, we show that genes highly optimized to reduce cost and increase efficiency show reduced rates of synonymous and non-synonymous mutation. CONCLUSIONS This analysis provides a simple mechanistic explanation for variation in evolutionary rate between genes that depends on selection-driven cost-efficiency optimization of the transcript. These findings reveal how optimization of resource allocation to messenger RNA synthesis is a critical factor that determines both the evolution and composition of genes.
Collapse
Affiliation(s)
- Emily A Seward
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
16
|
Avian Influenza Virus PB1 Gene in H3N2 Viruses Evolved in Humans To Reduce Interferon Inhibition by Skewing Codon Usage toward Interferon-Altered tRNA Pools. mBio 2018; 9:mBio.01222-18. [PMID: 29970470 PMCID: PMC6030557 DOI: 10.1128/mbio.01222-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Influenza A viruses cause an annual contagious respiratory disease in humans and are responsible for periodic high-mortality human pandemics. Pandemic influenza A viruses usually result from the reassortment of gene segments between human and avian influenza viruses. These avian influenza virus gene segments need to adapt to humans. Here we focus on the human adaptation of the synonymous codons of the avian influenza virus PB1 gene of the 1968 H3N2 pandemic virus. We generated recombinant H3N2 viruses differing only in codon usage of PB1 mRNA and demonstrated that codon usage of the PB1 mRNA of recent H3N2 virus isolates enhances replication in interferon (IFN)-treated human cells without affecting replication in untreated cells, thereby partially alleviating the interferon-induced antiviral state. High-throughput sequencing of tRNA pools explains the reduced inhibition of replication by interferon: the levels of some tRNAs differ between interferon-treated and untreated human cells, and evolution of the codon usage of H3N2 PB1 mRNA is skewed toward interferon-altered human tRNA pools. Consequently, the avian influenza virus-derived PB1 mRNAs of modern H3N2 viruses have acquired codon usages that better reflect tRNA availabilities in IFN-treated cells. Our results indicate that the change in tRNA availabilities resulting from interferon treatment is a previously unknown aspect of the antiviral action of interferon, which has been partially overcome by human-adapted H3N2 viruses. Pandemic influenza A viruses that cause high human mortality usually result from reassortment of gene segments between human and avian influenza viruses. These avian influenza virus gene segments need to adapt to humans. Here we focus on the human adaptation of the avian influenza virus PB1 gene that was incorporated into the 1968 H3N2 pandemic virus. We demonstrate that the coding sequence of the PB1 mRNA of modern H3N2 viruses enhances replication in human cells in which interferon has activated a potent antiviral state. Reduced interferon inhibition results from evolution of PB1 mRNA codons skewed toward the pools of tRNAs in interferon-treated human cells, which, as shown here, differ significantly from the tRNA pools in untreated human cells. Consequently, avian influenza virus-derived PB1 mRNAs of modern H3N2 viruses have acquired codon usages that better reflect tRNA availabilities in IFN-treated cells and are translated more efficiently.
Collapse
|
17
|
Chen S, Li K, Cao W, Wang J, Zhao T, Huan Q, Yang YF, Wu S, Qian W. Codon-Resolution Analysis Reveals a Direct and Context-Dependent Impact of Individual Synonymous Mutations on mRNA Level. Mol Biol Evol 2018; 34:2944-2958. [PMID: 28961875 PMCID: PMC5850819 DOI: 10.1093/molbev/msx229] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Codon usage bias (CUB) refers to the observation that synonymous codons are not used equally frequently in a genome. CUB is stronger in more highly expressed genes, a phenomenon commonly explained by stronger natural selection on translational accuracy and/or efficiency among these genes. Nevertheless, this phenomenon could also occur if CUB regulates gene expression at the mRNA level, a hypothesis that has not been tested until recently. Here, we attempt to quantify the impact of synonymous mutations on mRNA level in yeast using 3,556 synonymous variants of a heterologous gene encoding green fluorescent protein (GFP) and 523 synonymous variants of an endogenous gene TDH3. We found that mRNA level was positively correlated with CUB among these synonymous variants, demonstrating a direct role of CUB in regulating transcript concentration, likely via regulating mRNA degradation rate, as our additional experiments suggested. More importantly, we quantified the effects of individual synonymous mutations on mRNA level and found them dependent on 1) CUB and 2) mRNA secondary structure, both in proximal sequence contexts. Our study reveals the pleiotropic effects of synonymous codon usage and provides an additional explanation for the well-known correlation between CUB and gene expression level.
Collapse
Affiliation(s)
- Siyu Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenqing Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing, China
| | - Tong Zhao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qing Huan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu-Fei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shaohuan Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Sino-Danish Center for Education and Research, Beijing, China
| |
Collapse
|
18
|
Codon usage and amino acid usage influence genes expression level. Genetica 2017; 146:53-63. [DOI: 10.1007/s10709-017-9996-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022]
|
19
|
Pal S, Sarkar I, Roy A, Mohapatra PKD, Mondal KC, Sen A. Comparative evolutionary genomics of Corynebacterium with special reference to codon and amino acid usage diversities. Genetica 2017; 146:13-27. [DOI: 10.1007/s10709-017-9986-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/11/2017] [Indexed: 11/28/2022]
|
20
|
Komar AA. The Yin and Yang of codon usage. Hum Mol Genet 2016; 25:R77-R85. [PMID: 27354349 DOI: 10.1093/hmg/ddw207] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/24/2016] [Indexed: 01/07/2023] Open
Abstract
The genetic code is degenerate. With the exception of two amino acids (Met and Trp), all other amino acid residues are each encoded by multiple, so-called synonymous codons. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in genes/genomes suggested that codon choice might have functional implications beyond amino acid coding. The pattern of non-uniform codon use (known as codon usage bias) varies between organisms and represents a unique feature of an organism. Organism-specific codon choice is related to organism-specific differences in populations of cognate tRNAs. This implies that, in a given organism, frequently used codons will be translated more rapidly than infrequently used ones and vice versa A theory of codon-tRNA co-evolution (necessary to balance accurate and efficient protein production) was put forward to explain the existence of codon usage bias. This model suggests that selection favours preferred (frequent) over un-preferred (rare) codons in order to sustain efficient protein production in cells and that a given un-preferred codon will have the same effect on an organism's fitness regardless of its position within an mRNA's open reading frame. However, many recent studies refute this prediction. Un-preferred codons have been found to have important functional roles and their effects appeared to be position-dependent. Synonymous codon usage affects the efficiency/stringency of mRNA decoding, mRNA biogenesis/stability, and protein secretion and folding. This review summarizes recent developments in the field that have identified novel functions of synonymous codons and their usage.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, OH, USA Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio, USA Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| |
Collapse
|
21
|
Carlini DB, Makowski M. Codon bias and gene ontology in holometabolous and hemimetabolous insects. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:686-98. [DOI: 10.1002/jez.b.22647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 08/10/2015] [Indexed: 01/25/2023]
|
22
|
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica contains 31 different modified nucleosides, which are all, except for one (Queuosine[Q]), synthesized on an oligonucleotide precursor, which through specific enzymes later matures into tRNA. The corresponding structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The syntheses of some of them (e.g.,several methylated derivatives) are catalyzed by one enzyme, which is position and base specific, but synthesis of some have a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N6-threonyladenosine [t6A],and Q). Several of the modified nucleosides are essential for viability (e.g.,lysidin, t6A, 1-methylguanosine), whereas deficiency in others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those, which are present in the body of the tRNA, have a primarily stabilizing effect on the tRNA. Thus, the ubiquitouspresence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
|
23
|
Abstract
How biological systems such as proteins achieve robustness to ubiquitous perturbations is a fundamental biological question. Such perturbations include errors that introduce phenotypic mutations into nascent proteins during the translation of mRNA. These errors are remarkably frequent. They are also costly, because they reduce protein stability and help create toxic misfolded proteins. Adaptive evolution might reduce these costs of protein mistranslation by two principal mechanisms. The first increases the accuracy of translation via synonymous "high fidelity" codons at especially sensitive sites. The second increases the robustness of proteins to phenotypic errors via amino acids that increase protein stability. To study how these mechanisms are exploited by populations evolving in the laboratory, we evolved the antibiotic resistance gene TEM-1 in Escherichia coli hosts with either normal or high rates of mistranslation. We analyzed TEM-1 populations that evolved under relaxed and stringent selection for antibiotic resistance by single molecule real-time sequencing. Under relaxed selection, mistranslating populations reduce mistranslation costs by reducing TEM-1 expression. Under stringent selection, they efficiently purge destabilizing amino acid changes. More importantly, they accumulate stabilizing amino acid changes rather than synonymous changes that increase translational accuracy. In the large populations we study, and on short evolutionary timescales, the path of least resistance in TEM-1 evolution consists of reducing the consequences of translation errors rather than the errors themselves.
Collapse
|
24
|
Baeza M, Alcaíno J, Barahona S, Sepúlveda D, Cifuentes V. Codon usage and codon context bias in Xanthophyllomyces dendrorhous. BMC Genomics 2015; 16:293. [PMID: 25887493 PMCID: PMC4404019 DOI: 10.1186/s12864-015-1493-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/27/2015] [Indexed: 01/11/2023] Open
Abstract
Background Synonymous codons are used differentially in organisms from the three domains of life, a phenomenon referred to as codon usage bias. In addition, codon pair bias, particularly in the 3’ codon context, has also been described in several organisms and is associated with the accuracy and rate of translation. An improved understanding of both types of bias is important for the optimization of heterologous protein expression, particularly in biotechnologically important organisms, such as the yeast Xanthophyllomyces dendrorhous, a promising bioresource for the carotenoid astaxanthin. Using genomic and transcriptomic data, the codon usage and codon context biases of X. dendrorhous open reading frames (ORFs) were analyzed to determine their expression levels, GC% and sequence lengths. X. dendrorhous totiviral ORFs were also included in these analyses. Results A total of 1,695 X. dendrorhous ORFs were identified through comparison with sequences in multiple databases, and the intron-exon structures of these sequences were determined. Although there were important expression variations among the ORFs under the studied conditions (different phases of growth and available carbon sources), most of these sequences were highly expressed under at least one of the analyzed conditions. Independent of the culture conditions, the highly expressed genes showed a strong bias in both codon usage and the 3’ context, with a minor association with the GC% and no relationship to the sequence length. The codon usage and codon-pair bias of the totiviral ORFs were highly variable with no similarities to the host ORFs. Conclusions There is a direct relation between the level of gene expression and codon usage and 3′ context bias in X. dendrorhous, which is more evident for ORFs that are expressed at the highest levels under the studied conditions. However, there is no direct relation between the totiviral ORF biases and the host ORFs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1493-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Salvador Barahona
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Dionisia Sepúlveda
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| |
Collapse
|
25
|
Roy A, Mukhopadhyay S, Sarkar I, Sen A. Comparative investigation of the various determinants that influence the codon and amino acid usage patterns in the genus Bifidobacterium. World J Microbiol Biotechnol 2015; 31:959-81. [DOI: 10.1007/s11274-015-1850-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022]
|
26
|
Evidence for stabilizing selection on codon usage in chromosomal rearrangements of Drosophila pseudoobscura. G3-GENES GENOMES GENETICS 2014; 4:2433-49. [PMID: 25326424 PMCID: PMC4267939 DOI: 10.1534/g3.114.014860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There has been a renewed interest in investigating the role of stabilizing selection acting on genome-wide traits such as codon usage bias. Codon bias, when synonymous codons are used at unequal frequencies, occurs in a wide variety of taxa. Standard evolutionary models explain the maintenance of codon bias through a balance of genetic drift, mutation and weak purifying selection. The efficacy of selection is expected to be reduced in regions of suppressed recombination. Contrary to observations in Drosophila melanogaster, some recent studies have failed to detect a relationship between the recombination rate, intensity of selection acting at synonymous sites, and the magnitude of codon bias as predicted under these standard models. Here, we examined codon bias in 2798 protein coding loci on the third chromosome of D. pseudoobscura using whole-genome sequences of 47 individuals, representing five common third chromosome gene arrangements. Fine-scale recombination maps were constructed using more than 1 million segregating sites. As expected, recombination was demonstrated to be significantly suppressed between chromosome arrangements, allowing for a direct examination of the relationship between recombination, selection, and codon bias. As with other Drosophila species, we observe a strong mutational bias away from the most frequently used codons. We find the rate of synonymous and nonsynonymous polymorphism is variable between different amino acids. However, we do not observe a reduction in codon bias or the strength of selection in regions of suppressed recombination as expected. Instead, we find that the interaction between weak stabilizing selection and mutational bias likely plays a role in shaping the composition of synonymous codons across the third chromosome in D. pseudoobscura.
Collapse
|
27
|
General trends in selectively driven codon usage biases in the domain archaea. J Mol Evol 2014; 79:105-10. [PMID: 25239794 DOI: 10.1007/s00239-014-9647-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Since the advent of rapid techniques for sequencing DNA in the mid 70's, it became clear that all codons coding for the same amino acid are not used according to neutral expectations. In the last 30 years, several theories were proposed for explaining this fact. However, the most important concepts were the result of analyses carried out in Bacteria, and unicellular and multicellular eukaryotes like mammals (in other words, in two of the three Domains of life). In this communication, we study the main forces that shape codon usage in Archaeae under an evolutionary perspective. This is important because, as known, the orthologous genes related with the informational system in this Domain (replication, transcription and translation) are more similar to eukaryotes than to Bacteria. Our results show that the effect of selection acting at the level of translation is present in the Domain but mainly restricted to only a phylum (Euryarchaeota) and therefore is not as extended as in Bacteria. Besides, we describe the phylogenetic distribution of translational optimal codons and estimate the effect of selection acting at the level of accuracy. Finally, we discuss these results under some peculiarities that characterize this Domain.
Collapse
|
28
|
The effects of the context-dependent codon usage bias on the structure of the nsp1α of porcine reproductive and respiratory syndrome virus. BIOMED RESEARCH INTERNATIONAL 2014; 2014:765320. [PMID: 25162025 PMCID: PMC4137607 DOI: 10.1155/2014/765320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/05/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022]
Abstract
The information about the crystal structure of porcine reproductive and respiratory syndrome virus (PRRSV) leader protease nsp1α is available to analyze the roles of tRNA abundance of pigs and codon usage of the nsp1 α gene in the formation of this protease. The effects of tRNA abundance of the pigs and the synonymous codon usage and the context-dependent codon bias (CDCB) of the nsp1 α on shaping the specific folding units (α-helix, β-strand, and the coil) in the nsp1α were analyzed based on the structural information about this protease from protein data bank (PDB: 3IFU) and the nsp1 α of the 191 PRRSV strains. By mapping the overall tRNA abundance along the nsp1 α, we found that there is no link between the fluctuation of the overall tRNA abundance and the specific folding units in the nsp1α, and the low translation speed of ribosome caused by the tRNA abundance exists in the nsp1 α. The strong correlation between some synonymous codon usage and the specific folding units in the nsp1α was found, and the phenomenon of CDCB exists in the specific folding units of the nsp1α. These findings provide an insight into the roles of the synonymous codon usage and CDCB in the formation of PRRSV nsp1α structure.
Collapse
|
29
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
30
|
Camiolo S, Melito S, Milia G, Porceddu A. Seforta, an integrated tool for detecting the signature of selection in coding sequences. BMC Res Notes 2014; 7:240. [PMID: 24739143 PMCID: PMC4022393 DOI: 10.1186/1756-0500-7-240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of amino acid residues are encoded by more than one codon, and a bias in the usage of such synonymous codons has been repeatedly demonstrated. One assumption is that this phenomenon has evolved to improve the efficiency of translation by reducing the time required for the recruitment of isoacceptors. The most abundant tRNA species are preferred at sites on the protein which are key for its functionality, a behavior which has been termed "translational accuracy". Although observed in many species, as yet no public domain software has been made available for its quantification. FINDINGS We present here Seforta (Selection for Translational Accuracy), a program designed to quantify translational accuracy. It searches for synonymous codon usage bias in both conserved and non-conserved regions of coding sequences and computes a cumulative odds ratio and a Z-score. The specification of a set of preferred codons is desirable, but the program can also generate these. Finally, a randomization protocol calculates the probability that preferred codon combinations could have arisen by chance. CONCLUSIONS Seforta is the first public domain program able to quantify translational accuracy. It comes with a simple graphical user interface and can be readily installed and adjusted to the user's requirements.
Collapse
Affiliation(s)
- Salvatore Camiolo
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy.
| | | | | | | |
Collapse
|
31
|
Li S, Yang J. System analysis of synonymous codon usage biases in archaeal virus genomes. J Theor Biol 2014; 355:128-39. [PMID: 24685889 PMCID: PMC7094158 DOI: 10.1016/j.jtbi.2014.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 12/30/2022]
Abstract
Recent studies of geothermally heated aquatic ecosystems have found widely divergent viruses with unusual morphotypes. Archaeal viruses isolated from these hot habitats usually have double-stranded DNA genomes, linear or circular, and can infect members of the Archaea domain. In this study, the synonymous codon usage bias (SCUB) and dinucleotide composition in the available complete archaeal virus genome sequences have been investigated. It was found that there is a significant variation in SCUB among different Archaeal virus species, which is mainly determined by the base composition. The outcome of correspondence analysis (COA) and Spearman׳s rank correlation analysis shows that codon usage of selected archaeal virus genes depends mainly on GC richness of genome, and the gene׳s function, albeit with smaller effects, also contributes to codon usage in this virus. Furthermore, this investigation reveals that aromaticity of each protein is also critical in affecting SCUB of these viral genes although it was less important than that of the mutational bias. Especially, mutational pressure may influence SCUB in SIRV1, SIRV2, ARV1, AFV1, and PhiCh1 viruses, whereas translational selection could play a leading role in HRPV1׳s SCUB. These conclusions not only can offer an insight into the codon usage biases of archaeal virus and subsequently the possible relationship between archaeal viruses and their host, but also may help in understanding the evolution of archaeal viruses and their gene classification, and more helpful to explore the origin of life and the evolution of biology. The SCUB of archaeal virus genes depends mainly on GC richness of genome. The mutational pressure is the main factor that influences SCUB. The aromaticity of each protein is also critical in affecting SCUB. The translational selection could play a leading role in HRPV1׳s SCUB. The mode is helpful to explore the origin of life and the evolution of biology.
Collapse
Affiliation(s)
- Sen Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
32
|
Coupling between protein level selection and codon usage optimization in the evolution of bacteria and archaea. mBio 2014; 5:e00956-14. [PMID: 24667707 PMCID: PMC3977353 DOI: 10.1128/mbio.00956-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The relationship between the selection affecting codon usage and selection on protein sequences of orthologous genes in diverse groups of bacteria and archaea was examined by using the Alignable Tight Genome Clusters database of prokaryote genomes. The codon usage bias is generally low, with 57.5% of the gene-specific optimal codon frequencies (Fopt) being below 0.55. This apparent weak selection on codon usage contrasts with the strong purifying selection on amino acid sequences, with 65.8% of the gene-specific dN/dS ratios being below 0.1. For most of the genomes compared, a limited but statistically significant negative correlation between Fopt and dN/dS was observed, which is indicative of a link between selection on protein sequence and selection on codon usage. The strength of the coupling between the protein level selection and codon usage bias showed a strong positive correlation with the genomic GC content. Combined with previous observations on the selection for GC-rich codons in bacteria and archaea with GC-rich genomes, these findings suggest that selection for translational fine-tuning could be an important factor in microbial evolution that drives the evolution of genome GC content away from mutational equilibrium. This type of selection is particularly pronounced in slowly evolving, “high-status” genes. A significantly stronger link between the two aspects of selection is observed in free-living bacteria than in parasitic bacteria and in genes encoding metabolic enzymes and transporters than in informational genes. These differences might reflect the special importance of translational fine-tuning for the adaptability of gene expression to environmental changes. The results of this work establish the coupling between protein level selection and selection for translational optimization as a distinct and potentially important factor in microbial evolution. Selection affects the evolution of microbial genomes at many levels, including both the structure of proteins and the regulation of their production. Here we demonstrate the coupling between the selection on protein sequences and the optimization of codon usage in a broad range of bacteria and archaea. The strength of this coupling varies over a wide range and strongly and positively correlates with the genomic GC content. The cause(s) of the evolution of high GC content is a long-standing open question, given the universal mutational bias toward AT. We propose that optimization of codon usage could be one of the key factors that determine the evolution of GC-rich genomes. This work establishes the coupling between selection at the level of protein sequence and at the level of codon choice optimization as a distinct aspect of genome evolution.
Collapse
|
33
|
Charneski CA, Hurst LD. Positively charged residues are the major determinants of ribosomal velocity. PLoS Biol 2013; 11:e1001508. [PMID: 23554576 PMCID: PMC3595205 DOI: 10.1371/journal.pbio.1001508] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
Both for understanding mechanisms of disease and for the design of transgenes, it is important to understand the determinants of ribosome velocity, as changes in the rate of translation are important for protein folding, error attenuation, and localization. While there is great variation in ribosomal occupancy along even a single transcript, what determines a ribosome's occupancy is unclear. We examine this issue using data from a ribosomal footprinting assay in yeast. While codon usage is classically considered a major determinant, we find no evidence for this. By contrast, we find that positively charged amino acids greatly retard ribosomes downstream from where they are encoded, consistent with the suggestion that positively charged residues interact with the negatively charged ribosomal exit tunnel. Such slowing is independent of and greater than the average effect owing to mRNA folding. The effect of charged amino acids is additive, with ribosomal occupancy well-predicted by a linear fit to the density of positively charged residues. We thus expect that a translated poly-A tail, encoding for positively charged lysines regardless of the reading frame, would act as a sandtrap for the ribosome, consistent with experimental data.
Collapse
Affiliation(s)
| | - Laurence D. Hurst
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Choi SS, Hannenhalli S. Three independent determinants of protein evolutionary rate. J Mol Evol 2013; 76:98-111. [PMID: 23400388 DOI: 10.1007/s00239-013-9543-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/16/2013] [Indexed: 12/15/2022]
Abstract
One of the most widely accepted ideas related to the evolutionary rates of proteins is that functionally important residues or regions evolve slower than other regions, a reasonable outcome of which should be a slower evolutionary rate of the proteins with a higher density of functionally important sites. Oddly, the role of functional importance, mainly measured by essentiality, in determining evolutionary rate has been challenged in recent studies. Several variables other than protein essentiality, such as expression level, gene compactness, protein-protein interactions, etc., have been suggested to affect protein evolutionary rate. In the present review, we try to refine the concept of functional importance of a gene, and consider three factors-functional importance, expression level, and gene compactness, as independent determinants of evolutionary rate of a protein, based not only on their known correlation with evolutionary rate but also on a reasonable mechanistic model. We suggest a framework based on these mechanistic models to correctly interpret the correlations between evolutionary rates and the various variables as well as the interrelationships among the variables.
Collapse
Affiliation(s)
- Sun Shim Choi
- Department of Medical Biotechnology, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, South Korea.
| | | |
Collapse
|
35
|
Nayak KC. Comparative genome sequence analysis of Sulfolobus acidocaldarius and 9 other isolates of its genus for factors influencing codon and amino acid usage. Gene 2013; 513:163-73. [DOI: 10.1016/j.gene.2012.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 10/08/2012] [Accepted: 10/21/2012] [Indexed: 11/17/2022]
|
36
|
Wald N, Alroy M, Botzman M, Margalit H. Codon usage bias in prokaryotic pyrimidine-ending codons is associated with the degeneracy of the encoded amino acids. Nucleic Acids Res 2012; 40:7074-83. [PMID: 22581775 PMCID: PMC3424539 DOI: 10.1093/nar/gks348] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synonymous codons are unevenly distributed among genes, a phenomenon termed codon usage bias. Understanding the patterns of codon bias and the forces shaping them is a major step towards elucidating the adaptive advantage codon choice can confer at the level of individual genes and organisms. Here, we perform a large-scale analysis to assess codon usage bias pattern of pyrimidine-ending codons in highly expressed genes in prokaryotes. We find a bias pattern linked to the degeneracy of the encoded amino acid. Specifically, we show that codon-pairs that encode two- and three-fold degenerate amino acids are biased towards the C-ending codon while codons encoding four-fold degenerate amino acids are biased towards the U-ending codon. This codon usage pattern is widespread in prokaryotes, and its strength is correlated with translational selection both within and between organisms. We show that this bias is associated with an improved correspondence with the tRNA pool, avoidance of mis-incorporation errors during translation and moderate stability of codon–anticodon interaction, all consistent with more efficient translation.
Collapse
Affiliation(s)
- Naama Wald
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
37
|
Qian W, Yang JR, Pearson NM, Maclean C, Zhang J. Balanced codon usage optimizes eukaryotic translational efficiency. PLoS Genet 2012; 8:e1002603. [PMID: 22479199 PMCID: PMC3315465 DOI: 10.1371/journal.pgen.1002603] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/05/2012] [Indexed: 11/18/2022] Open
Abstract
Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. Although an amino acid can be encoded by multiple synonymous codons, these codons are not used equally frequently in a genome. Biased codon usage is believed to improve translational efficiency because it is thought that preferentially used codons are translated faster than unpreferred ones. Surprisingly, we find similar translational speeds among synonymous codons. We show that translational efficiency is optimized by a previously unknown mechanism that relies on proportional use of codons according to their cognate tRNA concentrations. Our results provide important molecular details of protein translation, answer why codon usage is unequal, demonstrate widespread natural selection for translational efficiency, and can guide designs of synthetic genomes and cells with efficient translation systems.
Collapse
Affiliation(s)
- Wenfeng Qian
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jian-Rong Yang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nathaniel M. Pearson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Calum Maclean
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
38
|
Zaher HS, Green R. A primary role for release factor 3 in quality control during translation elongation in Escherichia coli. Cell 2011; 147:396-408. [PMID: 22000017 DOI: 10.1016/j.cell.2011.08.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/10/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022]
Abstract
Release factor 3 (RF3) is a GTPase found in a broad range of bacteria where it is thought to play a critical "recycling" role in translation by facilitating the removal of class 1 release factors (RF1 and RF2) from the ribosome following peptide release. More recently, RF3 was shown in vitro to stimulate a retrospective editing reaction on the bacterial ribosome wherein peptides carrying mistakes are prematurely terminated during protein synthesis. Here, we examine the role of RF3 in the bacterial cell and show that the deletion of this gene sensitizes cells to other perturbations that reduce the overall fidelity of protein synthesis. We further document substantial effects on mRNA stability and protein expression using reporter systems, native mRNAs and proteins. We conclude that RF3 plays a primary role in vivo in specifying the fidelity of protein synthesis thus impacting overall protein quantity and quality.
Collapse
Affiliation(s)
- Hani S Zaher
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
39
|
Su JH, Ma XX, He YL, Li JD, Ma XS, Dou YX, Luo XN, Cai XP. Mapping codon usage of the translation initiation region in porcine reproductive and respiratory syndrome virus genome. Virol J 2011; 8:476. [PMID: 22014033 PMCID: PMC3219751 DOI: 10.1186/1743-422x-8-476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine reproductive and respitatory syndrome virus (PRRSV) is a recently emerged pathogen and severely affects swine populations worldwide. The replication of PRRSV is tightly controlled by viral gene expression and the codon usage of translation initiation region within each gene could potentially regulate the translation rate. Therefore, a better understanding of the codon usage pattern of the initiation translation region would shed light on the regulation of PRRSV gene expression. RESULTS In this study, the codon usage in the translation initiation region and in the whole coding sequence was compared in PRRSV ORF1a and ORFs2-7. To investigate the potential role of codon usage in affecting the translation initiation rate, we established a codon usage model for PRRSV translation initiation region. We observed that some non-preferential codons are preferentially used in the translation initiation region in particular ORFs. Although some positions vary with codons, they intend to use codons with negative CUB. Furthermore, our model of codon usage showed that the conserved pattern of CUB is not directly consensus with the conserved sequence, but shaped under the translation selection. CONCLUSIONS The non-variation pattern with negative CUB in the PRRSV translation initiation region scanned by ribosomes is considered the rate-limiting step in the translation process.
Collapse
Affiliation(s)
- Jun-hong Su
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, PR China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Determinants of translation efficiency and accuracy. Mol Syst Biol 2011; 7:481. [PMID: 21487400 PMCID: PMC3101949 DOI: 10.1038/msb.2011.14] [Citation(s) in RCA: 338] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/15/2011] [Indexed: 12/17/2022] Open
Abstract
A given protein sequence can be encoded by an astronomical number of alternative nucleotide sequences. Recent research has revealed that this flexibility provides evolution with multiple ways to tune the efficiency and fidelity of protein translation and folding. Proper functioning of biological cells requires that the process of protein expression be carried out with high efficiency and fidelity. Given an amino-acid sequence of a protein, multiple degrees of freedom still remain that may allow evolution to tune efficiency and fidelity for each gene under various conditions and cell types. Particularly, the redundancy of the genetic code allows the choice between alternative codons for the same amino acid, which, although ‘synonymous,' may exert dramatic effects on the process of translation. Here we review modern developments in genomics and systems biology that have revolutionized our understanding of the multiple means by which translation is regulated. We suggest new means to model the process of translation in a richer framework that will incorporate information about gene sequences, the tRNA pool of the organism and the thermodynamic stability of the mRNA transcripts. A practical demonstration of a better understanding of the process would be a more accurate prediction of the proteome, given the transcriptome at a diversity of biological conditions.
Collapse
|
41
|
Nayak KC. Comparative study on factors influencing the codon and amino acid usage in Lactobacillus sakei 23K and 13 other lactobacilli. Mol Biol Rep 2011; 39:535-45. [DOI: 10.1007/s11033-011-0768-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 04/27/2011] [Indexed: 11/24/2022]
|
42
|
Zaher HS, Green R. Kinetic basis for global loss of fidelity arising from mismatches in the P-site codon:anticodon helix. RNA (NEW YORK, N.Y.) 2010; 16:1980-1989. [PMID: 20724456 PMCID: PMC2941106 DOI: 10.1261/rna.2241810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 07/16/2010] [Indexed: 05/27/2023]
Abstract
Faithful decoding of the genetic information by the ribosome relies on kinetically driven mechanisms that promote selection of cognate substrates during elongation. Recently, we have shown that in addition to these kinetically driven mechanisms, the ribosome possesses a post peptidyl transfer quality control system that retrospectively monitors the codon-anticodon interaction in the P site, triggering substantial losses in the specificity of the A site during subsequent tRNA and RF selection when a mistake has occurred. Here, we report a detailed kinetic analysis of tRNA selection in the context of a mismatched P-site codon:anticodon interaction. We observe pleiotropic effects of a P-site mismatch on tRNA selection, such that near-cognate tRNA is processed by the ribosome almost as efficiently as cognate. In particular, after a miscoding event, near-cognate codon-anticodon complexes are stabilized on the ribosome to an extent similar to that observed for cognate ones. Moreover, the two observed forward rates of GTPase activation and accommodation are greatly accelerated (∼10-fold) for near-cognate tRNAs. Because the ensemble of effects of a mismatched P site on substrate selection were found to be different from those reported for other ribosomal perturbations and miscoding agents, we propose that the structural integrity of the mRNA-tRNA helix in the P site provides a distinct molecular switch that dictates the specificity of the A site.
Collapse
Affiliation(s)
- Hani S Zaher
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
43
|
Shah P, Gilchrist MA. Effect of correlated tRNA abundances on translation errors and evolution of codon usage bias. PLoS Genet 2010; 6:e1001128. [PMID: 20862306 PMCID: PMC2940732 DOI: 10.1371/journal.pgen.1001128] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 08/18/2010] [Indexed: 11/19/2022] Open
Abstract
Despite the fact that tRNA abundances are thought to play a major role in determining translation error rates, their distribution across the genetic code and the resulting implications have received little attention. In general, studies of codon usage bias (CUB) assume that codons with higher tRNA abundance have lower missense error rates. Using a model of protein translation based on tRNA competition and intra-ribosomal kinetics, we show that this assumption can be violated when tRNA abundances are positively correlated across the genetic code. Examining the distribution of tRNA abundances across 73 bacterial genomes from 20 different genera, we find a consistent positive correlation between tRNA abundances across the genetic code. This work challenges one of the fundamental assumptions made in over 30 years of research on CUB that codons with higher tRNA abundances have lower missense error rates and that missense errors are the primary selective force responsible for CUB. Codon usage bias (CUB) is a ubiquitous and important phenomenon. CUB is thought to be driven primarily due to selection against missense errors. For over 30 years, the standard model of translation errors has implicitly assumed that the relationship between translation errors and tRNA abundances are inversely related. This is based on an implicit and unstated assumption that the distribution of tRNA abundances across the genetic code are uncorrelated. Examining these abundance distributions across 73 bacterial genomes from 20 different genera, we find a consistent positive correlation between tRNA abundances across the genetic code. We further show that codons with higher tRNA abundances are not always “optimal” with respect to reducing the missense error rate and hence cannot explain the observed patterns of CUB.
Collapse
Affiliation(s)
- Premal Shah
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA.
| | | |
Collapse
|
44
|
Raiford DW, Krane DE, Doom TE, Raymer ML. Automated isolation of translational efficiency bias that resists the confounding effect of GC(AT)-content. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2010; 7:238-250. [PMID: 20431144 DOI: 10.1109/tcbb.2008.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Genomic sequencing projects are an abundant source of information for biological studies ranging from the molecular to the ecological in scale; however, much of the information present may yet be hidden from casual analysis. One such information domain, trends in codon usage, can provide a wealth of information about an organism's genes and their expression. Degeneracy in the genetic code allows more than one triplet codon to code for the same amino acid, and usage of these codons is often biased such that one or more of these synonymous codons are preferred. Detection of this bias is an important tool in the analysis of genomic data, particularly as a predictor of gene expressivity. Methods for identifying codon usage bias in genomic data that rely solely on genomic sequence data are susceptible to being confounded by the presence of several factors simultaneously influencing codon selection. Presented here is a new technique for removing the effects of one of the more common confounding factors, GC(AT)-content, and of visualizing the search-space for codon usage bias through the use of a solution landscape. This technique successfully isolates expressivity-related codon usage trends, using only genomic sequence information, where other techniques fail due to the presence of GC(AT)-content confounding influences.
Collapse
Affiliation(s)
- Douglas W Raiford
- Department of Computer Science, University of Montana, Missoula, MT 59812, USA.
| | | | | | | |
Collapse
|
45
|
Genetic code ambiguity: an unexpected source of proteome innovation and phenotypic diversity. Curr Opin Microbiol 2009; 12:631-7. [PMID: 19853500 DOI: 10.1016/j.mib.2009.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/22/2009] [Accepted: 09/23/2009] [Indexed: 01/21/2023]
Abstract
Translation of the genome into the proteome is a highly accurate biological process. However, the molecular mechanisms involved in protein synthesis are not error free and downstream protein quality control systems are needed to counteract the negative effects of translational errors (mistranslation) on proteome and cell homeostasis. This plus human and mice diseases caused by translational error generalized the idea that codon ambiguity is detrimental to life. Here we depart from this classical view of deleterious translational error and highlight how codon ambiguity can play important roles in the evolution of novel proteins. We also explain how tRNA mischarging can be relevant for the synthesis of functional proteomes, how codon ambiguity generates phenotypic and genetic diversity and how advantageous phenotypes can be selected, fixed, and inherited. A brief introduction to the molecular nature of translational error is provided; however, detailed information on the mechanistic aspects of mistranslation or comprehensive literature reviews of this topic should be obtained elsewhere.
Collapse
|
46
|
Wen D, Vecchi MM, Gu S, Su L, Dolnikova J, Huang YM, Foley SF, Garber E, Pederson N, Meier W. Discovery and investigation of misincorporation of serine at asparagine positions in recombinant proteins expressed in Chinese hamster ovary cells. J Biol Chem 2009; 284:32686-94. [PMID: 19783658 DOI: 10.1074/jbc.m109.059360] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Misincorporation of amino acids in proteins expressed in Escherichia coli has been well documented but not in proteins expressed in mammalian cells under normal recombinant protein production conditions. Here we report for the first time that Ser can be incorporated at Asn positions in proteins expressed in Chinese hamster ovary cells. This misincorporation was discovered as a result of intact mass measurement, peptide mapping analysis, and tandem mass spectroscopy sequencing. Our analyses showed that the substitution was not related to specific protein molecules or DNA codons and was not site-specific. We believe that the incorporation of Ser at sites coded for Asn was due to mischarging of tRNA(Asn) rather than to codon misreading. The rationale for substitution of Asn by Ser and not by other amino acids is also discussed. Further investigation indicated that the substitution was due to the starvation for Asn in the cell culture medium and that the substitution could be limited by using the Asn-rich feed. These observations demonstrate that the quality of expressed proteins should be closely monitored when altering cell culture conditions.
Collapse
Affiliation(s)
- Dingyi Wen
- Biogen Idec Inc., 14 Cambridge Center, Cambridge, Massachusetts 02412, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Quality control by the ribosome following peptide bond formation. Nature 2008; 457:161-6. [PMID: 19092806 DOI: 10.1038/nature07582] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/24/2008] [Indexed: 11/08/2022]
Abstract
The overall fidelity of protein synthesis has been thought to rely on the combined accuracy of two basic processes: the aminoacylation of transfer RNAs with their cognate amino acid by the aminoacyl-tRNA synthetases, and the selection of cognate aminoacyl-tRNAs by the ribosome in cooperation with the GTPase elongation factor EF-Tu. These two processes, which together ensure the specific acceptance of a correctly charged cognate tRNA into the aminoacyl (A) site, operate before peptide bond formation. Here we report the identification of an additional mechanism that contributes to high fidelity protein synthesis after peptidyl transfer, using a well-defined in vitro bacterial translation system. In this retrospective quality control step, the incorporation of an amino acid from a non-cognate tRNA into the growing polypeptide chain leads to a general loss of specificity in the A site of the ribosome, and thus to a propagation of errors that results in abortive termination of protein synthesis.
Collapse
|
48
|
Affiliation(s)
- Ruth Hershberg
- Department of Biological Sciences, Stanford University, Stanford, California 94305;
| | - Dmitri A. Petrov
- Department of Biological Sciences, Stanford University, Stanford, California 94305;
| |
Collapse
|
49
|
Brockmann R, Beyer A, Heinisch JJ, Wilhelm T. Posttranscriptional expression regulation: what determines translation rates? PLoS Comput Biol 2007; 3:e57. [PMID: 17381238 PMCID: PMC1829480 DOI: 10.1371/journal.pcbi.0030057] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 02/06/2007] [Indexed: 11/21/2022] Open
Abstract
Recent analyses indicate that differences in protein concentrations are only 20%–40% attributable to variable mRNA levels, underlining the importance of posttranscriptional regulation. Generally, protein concentrations depend on the translation rate (which is proportional to the translational activity, TA) and the degradation rate. By integrating 12 publicly available large-scale datasets and additional database information of the yeast Saccharomyces cerevisiae, we systematically analyzed five factors contributing to TA: mRNA concentration, ribosome density, ribosome occupancy, the codon adaptation index, and a newly developed “tRNA adaptation index.” Our analysis of the functional relationship between the TA and measured protein concentrations suggests that the TA follows Michaelis–Menten kinetics. The calculated TA, together with measured protein concentrations, allowed us to estimate degradation rates for 4,125 proteins under standard conditions. A significant correlation to recently published degradation rates supports our approach. Moreover, based on a newly developed scoring system, we identified and analyzed genes subjected to the posttranscriptional regulation mechanism, translation on demand. Next we applied these findings to publicly available data of protein and mRNA concentrations under four stress conditions. The integration of these measurements allowed us to compare the condition-specific responses at the posttranscriptional level. Our analysis of all 62 proteins that have been measured under all four conditions revealed proteins with very specific posttranscriptional stress response, in contrast to more generic responders, which were nonspecifically regulated under several conditions. The concept of specific and generic responders is known for transcriptional regulation. Here we show that it also holds true at the posttranscriptional level. Large-scale mRNA concentration measurements are a hallmark of our post-genomic era. Usually they are taken as a surrogate for the corresponding protein concentrations. For most genes, proteins are the actual cellular players, but up to now it has been much more difficult to measure protein concentrations than mRNA concentrations. However, due to numerous posttranscriptional regulation mechanisms, mRNA levels only partly correlate with protein concentrations. Based on thoroughly composed reference datasets for protein and mRNA concentrations in yeast under standard growth conditions, we report the best corresponding correlation so far. We took into account additional factors, beyond mRNA concentrations, that influence protein levels in order to improve protein level predictions. Extending our previous approach, where ribosome occupancy and ribosome density were considered, we now also consider ORF-specific translation elongation rates. Different measures for elongation velocity were examined, and the codon adaptation index was found to be most appropriate. Moreover, saturation kinetics were introduced to better describe the translation process. The general findings were also applied to four stress conditions. Three new concepts, translation on demand, just-in-time translation, and general and specific posttranscriptional stress responders, are discussed.
Collapse
Affiliation(s)
- Regina Brockmann
- Theoretical Systems Biology, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
- Fachbereich Biologie/Chemie, AG Genetik, Universität Osnabrück, Osnabrück, Germany
| | - Andreas Beyer
- Theoretical Systems Biology, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Jürgen J Heinisch
- Fachbereich Biologie/Chemie, AG Genetik, Universität Osnabrück, Osnabrück, Germany
| | - Thomas Wilhelm
- Theoretical Systems Biology, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Kramer EB, Farabaugh PJ. The frequency of translational misreading errors in E. coli is largely determined by tRNA competition. RNA (NEW YORK, N.Y.) 2007; 13:87-96. [PMID: 17095544 PMCID: PMC1705757 DOI: 10.1261/rna.294907] [Citation(s) in RCA: 351] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Estimates of missense error rates (misreading) during protein synthesis vary from 10(-3) to 10(-4) per codon. The experiments reporting these rates have measured several distinct errors using several methods and reporter systems. Variation in reported rates may reflect real differences in rates among the errors tested or in sensitivity of the reporter systems. To develop a more accurate understanding of the range of error rates, we developed a system to quantify the frequency of every possible misreading error at a defined codon in Escherichia coli. This system uses an essential lysine in the active site of firefly luciferase. Mutations in Lys529 result in up to a 1600-fold reduction in activity, but the phenotype varies with amino acid. We hypothesized that residual activity of some of the mutant genes might result from misreading of the mutant codons by tRNA(Lys) (UUUU), the cognate tRNA for the lysine codons, AAA and AAG. Our data validate this hypothesis and reveal details about relative missense error rates of near-cognate codons. The error rates in E. coli do, in fact, vary widely. One source of variation is the effect of competition by cognate tRNAs for the mutant codons; higher error frequencies result from lower competition from low-abundance tRNAs. We also used the system to study the effect of ribosomal protein mutations known to affect error rates and the effect of error-inducing antibiotics, finding that they affect misreading on only a subset of near-cognate codons and that their effect may be less general than previously thought.
Collapse
Affiliation(s)
- Emily B Kramer
- Department of Biological Sciences and Program in Molecular and Cell Biology, University of Maryland, Baltimore, Maryland 21250, USA
| | | |
Collapse
|