1
|
Ganguli D, Manjunath KC, Bhat M, Rao DN. Biochemical characterisation of UvrD helicase and RecJ exonuclease from Neisseria gonorrhoeae. Int J Biol Macromol 2025; 306:141530. [PMID: 40032130 DOI: 10.1016/j.ijbiomac.2025.141530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
UvrD helicase and RecJ exonuclease play a critical role in DNA repair and recombination process thereby involved in the maintenance of the genomic integrity. In addition to DNA repair pathways, UvrD helicase plays an important role in phase variation and maintenance of virulence in pathogenic bacteria while RecJ is a single-stranded DNA -specific 5'-3' exonuclease activity responsible for generating a long 3'ssDNA gap for DNA resynthesis by DNA ploymerases in mismatch repair (MMR). In spite of being vital for performing these functions, there have been few reports on the mismatch repair pathway in pathogenic bacteria and particularly the interplay of mismatch repair proteins in methylation independent mismatch repair. Purified UvrD helicase from Neisseria gonorrhoeae (FA1090) (NgoUvrD) exhibits 3'-5' polarity on ssDNA and unwinds blunt end duplex DNA as well as different DNA substrates with overhangs. While NgoUvrD binds to Ni2+, Mg2+. Mn2+, Zn2+ and Ca2+, only Mg2+ and Mn2+ support the helicase activity as well as ATPase activity. Interestingly, Zn2+ inhibits both the helicase as well as ATPase activity. ssDNA binding to NgoUvrD abrogates the inhibition by Zn2+. This study, for the first time reveals a unique role of zinc in regulating UvrD helicase activity in N. gonorrhoeae. RecJ exonuclease from Neisseria gonorrhoeae is a 566 amino acid protein that contains the characteristic motifs conserved among all RecJ homologs. Site-directed mutagenesis in the conserved DHH motif abrogated enzymatic activity in D160A and H161A mutants. Interestingly, substitution of histidine 161 with alanine or serine residues enhanced RecJ exonuclease activity while the corresponding mutation in other bacterial RecJs abrogated the activity. NgoRecJ degrades double-stranded DNA with 2, 4, 6 and 8 nucleotide 5' overhang substrates unlike E. coli RecJ which degrades ssDNA with 6-nts overhang. In the present investigation we have studied the interaction between UvrD helicase and RecJ proteins participating in methylation-independent MMR pathway. Our studies highlight novel properties of NgoUvrD and NgoRecJ proteins and specific interaction between these proteins which could play in genome maintenance, pathogenesis and virulence of Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Debayan Ganguli
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - K C Manjunath
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Madhuraj Bhat
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Desirazu N Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
2
|
Storozhuk O, Bruekner SR, Paul A, Lebbink JHG, Sixma TK, Friedhoff P. MutL Activates UvrD by Interaction Between the MutL C-terminal Domain and the UvrD 2B Domain. J Mol Biol 2024; 436:168589. [PMID: 38677494 DOI: 10.1016/j.jmb.2024.168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch. Although this interdependence is well-established, the precise mechanism of activation and the specific MutL-UvrD interactions that trigger helicase activity remain elusive. To address these questions, we employed site-specific crosslinking techniques using single-cysteine variants of MutL and UvrD followed by functional assays. Our investigation unveils that the C-terminal domain of MutL not only engages with UvrD but also acts as a self-sufficient activator of UvrD helicase activity on DNA substrates with 3'-single-stranded tails. Especially when MutL is covalently attached to the 2B or 1B domain the tail length can be reduced to a minimal substrate of 5 nucleotides without affecting unwinding efficiency.
Collapse
Affiliation(s)
- Olha Storozhuk
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Susanne R Bruekner
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, Amsterdam, the Netherlands
| | - Ankon Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, Amsterdam, the Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany.
| |
Collapse
|
3
|
Rattaprasert P, Suntornthiticharoen P, Limudomporn P, Thima K, Chavalitshewinkoon-Petmitr P. Inhibitory effects of anthracyclines on partially purified 5'-3' DNA helicase of Plasmodium falciparum. Malar J 2022; 21:216. [PMID: 35821133 PMCID: PMC9275250 DOI: 10.1186/s12936-022-04238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum has been becoming resistant to the currently used anti-malarial drugs. Searching for new drug targets is urgently needed for anti-malarial development. DNA helicases separating double-stranded DNA into single-stranded DNA intermediates are essential in nearly all DNA metabolic transactions, thus they may act as a candidate for new drug targets against malarial parasites. Methods In this study, a P. falciparum 5′ to 3′ DNA helicase (PfDH-B) was partially purified from the crude extract of chloroquine- and pyrimethamine-resistant P. falciparum strain K1, by ammonium sulfate precipitation and three chromatographic procedures. DNA helicase activity of partially purified PfDH-B was examined by measuring its ability to unwind 32P-labelled partial duplex DNA. The directionality of PfDH-B was determined, and substrate preference was tested by using various substrates. Inhibitory effects of DNA intercalators such as anthracycline antibiotics on PfDH-B unwinding activity and parasite growth were investigated. Results The native PfDH-B was partially purified with a specific activity of 4150 units/mg. The PfDH-B could unwind M13-17-mer, M13-31-mer with hanging tail at 3′ or 5′ end and a linear substrate with 3′ end hanging tail but not blunt-ended duplex DNA, and did not need a fork-like substrate. Anthracyclines including aclarubicin, daunorubicin, doxorubicin, and nogalamycin inhibited the unwinding activity of PfDH-B with an IC50 value of 4.0, 7.5, 3.6, and 3.1 µM, respectively. Nogalamycin was the most effective inhibitor on PfDH-B unwinding activity and parasite growth (IC50 = 0.1 ± 0.002 µM). Conclusion Partial purification and characterization of 5′–3′ DNA helicase of P. falciparum was successfully performed. The partially purified PfDH-B does not need a fork-like substrate structure found in P. falciparum 3′ to 5′ DNA helicase (PfDH-A). Interestingly, nogalamycin was the most potent anthracycline inhibitor for PfDH-B helicase activity and parasite growth in culture. Further studies are needed to search for more potent but less cytotoxic inhibitors targeting P. falciparum DNA helicase in the future.
Collapse
Affiliation(s)
- Pongruj Rattaprasert
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand
| | | | - Paviga Limudomporn
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kanthinich Thima
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand
| | | |
Collapse
|
4
|
Nguyen B, Shinn MK, Weiland E, Lohman TM. Regulation of E. coli Rep helicase activity by PriC. J Mol Biol 2021; 433:167072. [PMID: 34081984 PMCID: PMC8941637 DOI: 10.1016/j.jmb.2021.167072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Abstract
Stalled DNA replication forks can result in incompletely replicated genomes and cell death. DNA replication restart pathways have evolved to deal with repair of stalled forks and E. coli Rep helicase functions in this capacity. Rep and an accessory protein, PriC, assemble at a stalled replication fork to facilitate loading of other replication proteins. A Rep monomer is a rapid and processive single stranded (ss) DNA translocase but needs to be activated to function as a helicase. Activation of Rep in vitro requires self-assembly to form a dimer, removal of its auto-inhibitory 2B sub-domain, or interactions with an accessory protein. Rep helicase activity has been shown to be stimulated by PriC, although the mechanism of activation is not clear. Using stopped flow kinetics, analytical sedimentation and single molecule fluorescence methods, we show that a PriC dimer activates the Rep monomer helicase and can also stimulate the Rep dimer helicase. We show that PriC can self-assemble to form dimers and tetramers and that Rep and PriC interact in the absence of DNA. We further show that PriC serves as a Rep processivity factor, presumably co-translocating with Rep during DNA unwinding. Activation is specific for Rep since PriC does not activate the UvrD helicase. Interaction of PriC with the C-terminal acidic tip of the ssDNA binding protein, SSB, eliminates Rep activation by stabilizing the PriC monomer. This suggests a likely mechanism for Rep activation by PriC at a stalled replication fork.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Min Kyung Shinn
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Elizabeth Weiland
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
5
|
Zou Y, Mason MG, Botella JR. Evaluation and improvement of isothermal amplification methods for point-of-need plant disease diagnostics. PLoS One 2020; 15:e0235216. [PMID: 32598374 PMCID: PMC7323990 DOI: 10.1371/journal.pone.0235216] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/10/2020] [Indexed: 01/01/2023] Open
Abstract
A number of isothermal DNA amplification technologies claim to be ideal for point-of-need (PON) applications as they enable reactions to be performed using a single-temperature heat source (e.g. water bath). Thus, we examined several isothermal amplification methods focusing on simplicity, cost, sensitivity and reproducibility to identify the most suitable method(s) for low resource PON applications. A number of methods were found unsuitable as they either involved multiple temperature incubations, were relatively expensive or required relatively large amounts target DNA for amplification. Among the methods examined, loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) were found to be the most suitable for PON applications as they are both single step methods that provide highly sensitive and reproducible amplifications. The speed of LAMP reactions was greatly enhanced, up to 76%, with the addition of loop primers while the presence of swarm primers and the sequestration of free magnesium ions with nucleotides also enhanced the amplification speed. In contrast, we were unable to enhance RPA's performance from the original published literature. While both RPA and LAMP have some drawbacks, either isothermal technology can reliably be used for on-site diagnostics with minimal equipment.
Collapse
Affiliation(s)
- Yiping Zou
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Glenn Mason
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Liu J, Lee R, Britton BM, London JA, Yang K, Hanne J, Lee JB, Fishel R. MutL sliding clamps coordinate exonuclease-independent Escherichia coli mismatch repair. Nat Commun 2019; 10:5294. [PMID: 31757945 PMCID: PMC6876574 DOI: 10.1038/s41467-019-13191-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
A shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL–EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL–EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH–GATC incisions. The mechanics of MMR strand specific excision that begins at a distant ssDNA break are not yet clear. Here the authors have used multiple single molecule imaging techniques to visualize the behavior of MMR components on mismatched DNA substrates and reveal an exonuclease-independent mechanism for E.coli MMR.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ryanggeun Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea
| | - Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - James A London
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Keunsang Yang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea
| | - Jeungphill Hanne
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea. .,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea.
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Liu X, Seet JX, Shi Y, Bianco PR. Rep and UvrD Antagonize One Another at Stalled Replication Forks and This Is Exacerbated by SSB. ACS OMEGA 2019; 4:5180-5196. [PMID: 30949615 PMCID: PMC6441946 DOI: 10.1021/acsomega.8b02375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
The Rep and UvrD DNA helicases are proposed to act at stalled DNA replication forks to facilitate replication restart when RNA polymerase stalls forks. To clarify the role of these DNA helicases in fork rescue, we used a coupled spectrophotometric ATPase assay to determine how they act on model fork substrates. For both enzymes, activity is low on regressed fork structures, suggesting that they act prior to the regression step that generates a Holliday junction. In fact, the preferred cofactors for both enzymes are forks with a gap in the nascent leading strand, consistent with the 3'-5' direction of translocation. Surprisingly, for Rep, this specificity is altered in the presence of stoichiometric amounts of a single-strand DNA-binding protein (SSB) relative to a fork with a gap in the nascent lagging strand. Even though Rep and UvrD are similar in structure, elevated concentrations of SSB inhibit Rep, but they have little to no effect on UvrD. Furthermore, Rep and UvrD antagonize one another at a fork. This is surprising given that these helicases have been shown to form a heterodimer and are proposed to act together to rescue an RNA polymerase-stalled fork. Consequently, the results herein indicate that although Rep and UvrD can act on similar fork substrates, they cannot function on the same fork simultaneously.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Center
for Single Molecule Biophysics, Department of Microbiology and
Immunology, Department of Biochemistry, University
at Buffalo, Buffalo, New York 14214, United
States
| | - Jiun Xiang Seet
- Center
for Single Molecule Biophysics, Department of Microbiology and
Immunology, Department of Biochemistry, University
at Buffalo, Buffalo, New York 14214, United
States
| | - Yi Shi
- Center
for Single Molecule Biophysics, Department of Microbiology and
Immunology, Department of Biochemistry, University
at Buffalo, Buffalo, New York 14214, United
States
| | - Piero R. Bianco
- Center
for Single Molecule Biophysics, Department of Microbiology and
Immunology, Department of Biochemistry, University
at Buffalo, Buffalo, New York 14214, United
States
| |
Collapse
|
8
|
Liu J, Lee JB, Fishel R. Stochastic Processes and Component Plasticity Governing DNA Mismatch Repair. J Mol Biol 2018; 430:4456-4468. [PMID: 29864444 PMCID: PMC6461355 DOI: 10.1016/j.jmb.2018.05.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/09/2018] [Accepted: 05/28/2018] [Indexed: 02/06/2023]
Abstract
DNA mismatch repair (MMR) is a DNA excision-resynthesis process that principally enhances replication fidelity. Highly conserved MutS (MSH) and MutL (MLH/PMS) homologs initiate MMR and in higher eukaryotes act as DNA damage sensors that can trigger apoptosis. MSH proteins recognize mismatched nucleotides, whereas the MLH/PMS proteins mediate multiple interactions associated with downstream MMR events including strand discrimination and strand-specific excision that are initiated at a significant distance from the mismatch. Remarkably, the biophysical functions of the MLH/PMS proteins have been elusive for decades. Here we consider recent observations that have helped to define the mechanics of MLH/PMS proteins and their role in choreographing MMR. We highlight the stochastic nature of DNA interactions that have been visualized by single-molecule analysis and the plasticity of protein complexes that employ thermal diffusion to complete the progressions of MMR.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, 43210, OH, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), 790-784, Pohang, Korea; Interdisciplinary Bioscience and Bioengineering, POSTECH, 790-784, Pohang, Korea.
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, 43210, OH, USA.
| |
Collapse
|
9
|
Ozdemir AY, Rusanov T, Kent T, Siddique LA, Pomerantz RT. Polymerase θ-helicase efficiently unwinds DNA and RNA-DNA hybrids. J Biol Chem 2018; 293:5259-5269. [PMID: 29444826 PMCID: PMC5892577 DOI: 10.1074/jbc.ra117.000565] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/07/2018] [Indexed: 11/06/2022] Open
Abstract
POLQ is a unique multifunctional replication and repair gene that encodes for a N-terminal superfamily 2 helicase and a C-terminal A-family polymerase. Although the function of the polymerase domain has been investigated, little is understood regarding the helicase domain. Multiple studies have reported that polymerase θ-helicase (Polθ-helicase) is unable to unwind DNA. However, it exhibits ATPase activity that is stimulated by single-stranded DNA, which presents a biochemical conundrum. In contrast to previous reports, we demonstrate that Polθ-helicase (residues 1-894) efficiently unwinds DNA with 3'-5' polarity, including DNA with 3' or 5' overhangs, blunt-ended DNA, and replication forks. Polθ-helicase also efficiently unwinds RNA-DNA hybrids and exhibits a preference for unwinding the lagging strand at replication forks, similar to related HELQ helicase. Finally, we find that Polθ-helicase can facilitate strand displacement synthesis by Polθ-polymerase, suggesting a plausible function for the helicase domain. Taken together, these findings indicate nucleic acid unwinding as a relevant activity for Polθ in replication repair.
Collapse
Affiliation(s)
- Ahmet Y Ozdemir
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Timur Rusanov
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Tatiana Kent
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Labiba A Siddique
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Richard T Pomerantz
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
10
|
Tomko EJ, Lohman TM. Modulation of Escherichia coli UvrD Single-Stranded DNA Translocation by DNA Base Composition. Biophys J 2017; 113:1405-1415. [PMID: 28978435 DOI: 10.1016/j.bpj.2017.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022] Open
Abstract
Escherichia coli UvrD is an SF1A DNA helicase/translocase that functions in chromosomal DNA repair and replication of some plasmids. UvrD can also displace proteins such as RecA from DNA in its capacity as an anti-recombinase. Central to all of these activities is its ATP-driven 3'-5' single-stranded (ss) DNA translocation activity. Previous ensemble transient kinetic studies have estimated the average translocation rate of a UvrD monomer on ssDNA composed solely of deoxythymidylates. Here we show that the rate of UvrD monomer translocation along ssDNA is influenced by DNA base composition, with UvrD having the fastest rate along polypyrimidines although decreasing nearly twofold on ssDNA containing equal amounts of the four bases. Experiments with DNA containing abasic sites and polyethylene glycol spacers show that the ssDNA base also influences translocation processivity. These results indicate that changes in base composition and backbone insertions influence the translocation rates, with increased ssDNA base stacking correlated with decreased translocation rates, supporting the proposal that base-stacking interactions are involved in the translocation mechanism.
Collapse
Affiliation(s)
- Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
11
|
Large domain movements upon UvrD dimerization and helicase activation. Proc Natl Acad Sci U S A 2017; 114:12178-12183. [PMID: 29087333 DOI: 10.1073/pnas.1712882114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli UvrD DNA helicase functions in several DNA repair processes. As a monomer, UvrD can translocate rapidly and processively along ssDNA; however, the monomer is a poor helicase. To unwind duplex DNA in vitro, UvrD needs to be activated either by self-assembly to form a dimer or by interaction with an accessory protein. However, the mechanism of activation is not understood. UvrD can exist in multiple conformations associated with the rotational conformational state of its 2B subdomain, and its helicase activity has been correlated with a closed 2B conformation. Using single-molecule total internal reflection fluorescence microscopy, we examined the rotational conformational states of the 2B subdomain of fluorescently labeled UvrD and their rates of interconversion. We find that the 2B subdomain of the UvrD monomer can rotate between an open and closed conformation as well as two highly populated intermediate states. The binding of a DNA substrate shifts the 2B conformation of a labeled UvrD monomer to a more open state that shows no helicase activity. The binding of a second unlabeled UvrD shifts the 2B conformation of the labeled UvrD to a more closed state resulting in activation of helicase activity. Binding of a monomer of the structurally similar Escherichia coli Rep helicase does not elicit this effect. This indicates that the helicase activity of a UvrD dimer is promoted via direct interactions between UvrD subunits that affect the rotational conformational state of its 2B subdomain.
Collapse
|
12
|
Hodeib S, Raj S, Manosas M, Zhang W, Bagchi D, Ducos B, Fiorini F, Kanaan J, Le Hir H, Allemand J, Bensimon D, Croquette V. A mechanistic study of helicases with magnetic traps. Protein Sci 2017; 26:1314-1336. [PMID: 28474797 PMCID: PMC5477542 DOI: 10.1002/pro.3187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 01/08/2023]
Abstract
Helicases are a broad family of enzymes that separate nucleic acid double strand structures (DNA/DNA, DNA/RNA, or RNA/RNA) and thus are essential to DNA replication and the maintenance of nucleic acid integrity. We review the picture that has emerged from single molecule studies of the mechanisms of DNA and RNA helicases and their interactions with other proteins. Many features have been uncovered by these studies that were obscured by bulk studies, such as DNA strands switching, mechanical (rather than biochemical) coupling between helicases and polymerases, helicase-induced re-hybridization and stalled fork rescue.
Collapse
Affiliation(s)
- Samar Hodeib
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Saurabh Raj
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Maria Manosas
- Departament de Física FonamentalFacultat de Física, Universitat de BarcelonaBarcelona08028Spain
- CIBER‐BBN de BioingenieriaBiomateriales y Nanomedicina, Instituto de Sanidad Carlos IIIMadridSpain
| | - Weiting Zhang
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Debjani Bagchi
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
- Present address: Physics DepartmentFaculty of Science, The M.S. University of BarodaVadodaraGujarat390002India
| | - Bertrand Ducos
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Francesca Fiorini
- Univ Lyon, Molecular Microbiology and Structural Biochemistry, MMSB‐IBCP UMR5086 CNRS/Lyon1Lyon Cedex 769367France
| | - Joanne Kanaan
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - Jean‐François Allemand
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| | - David Bensimon
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
- Department of Chemistry and BiochemistryUniversity of California Los AngelesLos AngelesCalifornia90095
| | - Vincent Croquette
- Laboratoire de physique statistiqueDépartement de physique de l'ENS, École normale supérieure, PSL Research University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ. Paris 06, CNRS75005ParisFrance
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS)Département de biologie, École normale supérieure, CNRS, INSERM, PSL Research University75005ParisFrance
| |
Collapse
|
13
|
Hodeib S, Raj S, Manosas M, Zhang W, Bagchi D, Ducos B, Allemand JF, Bensimon D, Croquette V. Single molecule studies of helicases with magnetic tweezers. Methods 2016; 105:3-15. [DOI: 10.1016/j.ymeth.2016.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022] Open
|
14
|
Fujiwara A, Kawato K, Kato S, Yasukawa K, Hidese R, Fujiwara S. Application of a Euryarchaeota-Specific Helicase from Thermococcus kodakarensis for Noise Reduction in PCR. Appl Environ Microbiol 2016; 82:3022-3031. [PMID: 26969705 PMCID: PMC4959085 DOI: 10.1128/aem.04116-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED DNA/RNA helicases, which are enzymes for eliminating hydrogen bonds between bases of DNA/DNA, DNA/RNA, and RNA/RNA using the energy of ATP hydrolysis, contribute to various biological activities. In the present study, the Euryarchaeota-specific helicase EshA (TK0566) from the hyperthermophilic archaeon Thermococcus kodakarensis (Tk-EshA) was obtained as a recombinant form, and its enzymatic properties were examined. Tk-EshA exhibited maximal ATPase activity in the presence of RNA at 80°C. Unwinding activity was evaluated with various double-stranded DNAs (forked, 5' overhung, 3' overhung, and blunt end) at 50°C. Tk-EshA unwound forked and 3' overhung DNAs. These activities were expected to unwind the structured template and to peel off misannealed primers when Tk-EshA was added to a PCR mixture. To examine the effect of Tk-EshA on PCR, various target DNAs were selected, and DNA synthesis was investigated. When 16S rRNA genes were used as a template, several misamplified products (noise DNAs) were detected in the absence of Tk-EshA. In contrast, noise DNAs were eliminated in the presence of Tk-EshA. Noise reduction by Tk-EshA was also confirmed when Taq DNA polymerase (a family A DNA polymerase, PolI type) and KOD DNA polymerase (a family B DNA polymerase, α type) were used for PCR. Misamplified bands were also eliminated during toxA gene amplification from Pseudomonas aeruginosa DNA, which possesses a high GC content (69%). Tk-EshA addition was more effective than increasing the annealing temperature to reduce misamplified DNAs during toxA amplification. Tk-EshA is a useful tool to reduce noise DNAs for accurate PCR. IMPORTANCE PCR is a technique that is useful for genetic diagnosis, genetic engineering, and detection of pathogenic microorganisms. However, troubles with nonspecific DNA amplification often occur from primer misannealing. In order to achieve a specific DNA amplification by eliminating noise DNAs derived from primer misannealing, a thermostable Euryarchaeota-specific helicase (Tk-EshA) was included in the PCR mixture. The addition of Tk-EshA has reduced noise DNAs in PCR.
Collapse
Affiliation(s)
- Ayako Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| | - Katsuhiro Kawato
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| | - Saori Kato
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryota Hidese
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
- Research Center for Intelligent Bio-Materials, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, Japan
| |
Collapse
|
15
|
Hermans N, Laffeber C, Cristovão M, Artola-Borán M, Mardenborough Y, Ikpa P, Jaddoe A, Winterwerp HHK, Wyman C, Jiricny J, Kanaar R, Friedhoff P, Lebbink JHG. Dual daughter strand incision is processive and increases the efficiency of DNA mismatch repair. Nucleic Acids Res 2016; 44:6770-86. [PMID: 27174933 PMCID: PMC5001592 DOI: 10.1093/nar/gkw411] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 05/03/2016] [Indexed: 12/27/2022] Open
Abstract
DNA mismatch repair (MMR) is an evolutionarily-conserved process responsible for the repair of replication errors. In Escherichia coli, MMR is initiated by MutS and MutL, which activate MutH to incise transiently-hemimethylated GATC sites. MMR efficiency depends on the distribution of these GATC sites. To understand which molecular events determine repair efficiency, we quantitatively studied the effect of strand incision on unwinding and excision activity. The distance between mismatch and GATC site did not influence the strand incision rate, and an increase in the number of sites enhanced incision only to a minor extent. Two GATC sites were incised by the same activated MMR complex in a processive manner, with MutS, the closed form of MutL and MutH displaying different roles. Unwinding and strand excision were more efficient on a substrate with two nicks flanking the mismatch, as compared to substrates containing a single nick or two nicks on the same side of the mismatch. Introduction of multiple nicks by the human MutLα endonuclease also contributed to increased repair efficiency. Our data support a general model of prokaryotic and eukaryotic MMR in which, despite mechanistic differences, mismatch-activated complexes facilitate efficient repair by creating multiple daughter strand nicks.
Collapse
Affiliation(s)
- Nicolaas Hermans
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Charlie Laffeber
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Michele Cristovão
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Mariela Artola-Borán
- Institute of Molecular Cancer Research of the University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Yannicka Mardenborough
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Pauline Ikpa
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Aruna Jaddoe
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands
| | - Herrie H K Winterwerp
- Division of Biochemistry and Center for Biomedical Genetics, Netherlands Cancer Institute, 1006 BE Amsterdam, The Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands Department of Radiation Oncology, Erasmus Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Josef Jiricny
- Institute of Molecular Cancer Research of the University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands Department of Radiation Oncology, Erasmus Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, Justus-Liebig-University, D-35392 Giessen, Germany
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus Medical Center Rotterdam, 3015 AA Rotterdam,The Netherlands Department of Radiation Oncology, Erasmus Medical Center Rotterdam, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
16
|
Petrova V, Chen SH, Molzberger ET, Tomko E, Chitteni-Pattu S, Jia H, Ordabayev Y, Lohman TM, Cox MM. Active displacement of RecA filaments by UvrD translocase activity. Nucleic Acids Res 2015; 43:4133-49. [PMID: 25824953 PMCID: PMC4417151 DOI: 10.1093/nar/gkv186] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/23/2015] [Indexed: 12/17/2022] Open
Abstract
The UvrD helicase has been implicated in the disassembly of RecA nucleoprotein filaments in vivo and in vitro. We demonstrate that UvrD utilizes an active mechanism to remove RecA from the DNA. Efficient RecA removal depends on the availability of DNA binding sites for UvrD and/or the accessibility of the RecA filament ends. The removal of RecA from DNA also requires ATP hydrolysis by the UvrD helicase but not by RecA protein. The RecA-removal activity of UvrD is slowed by RecA variants with enhanced DNA-binding properties. The ATPase rate of UvrD during RecA removal is much slower than the ATPase activity of UvrD when it is functioning either as a translocase or a helicase on DNA in the absence of RecA. Thus, in this context UvrD may operate in a specialized disassembly mode.
Collapse
Affiliation(s)
- Vessela Petrova
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Stefanie H Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eileen T Molzberger
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Eric Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Haifeng Jia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yerdos Ordabayev
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael M Cox
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Li J, Macdonald J. Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 2015; 64:196-211. [DOI: 10.1016/j.bios.2014.08.069] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 01/02/2023]
|
18
|
Zanoli LM, Spoto G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. BIOSENSORS 2013; 3:18-43. [PMID: 25587397 PMCID: PMC4263587 DOI: 10.3390/bios3010018] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/07/2012] [Accepted: 12/24/2012] [Indexed: 12/05/2022]
Abstract
Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed.
Collapse
Affiliation(s)
- Laura Maria Zanoli
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail:
| | - Giuseppe Spoto
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail: ; Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
19
|
Abstract
Several nucleic acid amplification techniques (NAATs), particularly PCR and real-time PCR, are currently used in the routine clinical laboratories. Such approaches have allowed rapid diagnosis with a high degree of sensitivity and specificity. However, conventional PCR methods have several intrinsic disadvantages such as the requirement for temperature cycling apparatus, and sophisticated and costly analytical equipments. Therefore, amplification at a constant temperature is an attractive alternative method to avoid these requirements. A new generation of isothermal amplification techniques are gaining a wide popularity as diagnostic tools due to their simple operation, rapid reaction and easy detection. The main isothermal methods reviewed here include loop-mediated isothermal amplification, nucleic acid sequence-based amplification, and helicase-dependent amplification. In this review, design criteria, potential of amplification, and application of these alternative molecular tests will be discussed and compared to conventional NAATs.
Collapse
Affiliation(s)
- Francesca Sidoti
- Virology Unit, Department of Public Health and Microbiology, University Hospital San Giovanni Battista di Torino, University of Turin, Via Santena 9, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Virology Unit, Department of Public Health and Microbiology, University Hospital San Giovanni Battista di Torino, University of Turin, Via Santena 9, 10126 Turin, Italy
| | - Cristina Costa
- Virology Unit, Department of Public Health and Microbiology, University Hospital San Giovanni Battista di Torino, University of Turin, Via Santena 9, 10126 Turin, Italy
| | - Rossana Cavallo
- Virology Unit, Department of Public Health and Microbiology, University Hospital San Giovanni Battista di Torino, University of Turin, Via Santena 9, 10126 Turin, Italy
| |
Collapse
|
20
|
Ahmad M, Ansari A, Tarique M, Satsangi AT, Tuteja R. Plasmodium falciparum UvrD helicase translocates in 3' to 5' direction, colocalizes with MLH and modulates its activity through physical interaction. PLoS One 2012; 7:e49385. [PMID: 23185322 PMCID: PMC3503981 DOI: 10.1371/journal.pone.0049385] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/10/2012] [Indexed: 01/25/2023] Open
Abstract
Malaria is a global disease and a major health problem. The control of malaria is a daunting task due to the increasing drug resistance. Therefore, there is an urgent need to identify and characterize novel parasite specific drug targets. In the present study we report the biochemical characterization of parasite specific UvrD helicase from Plasmodium falciparum. The N-terminal fragment (PfUDN) containing UvrD helicase domain, which consists of helicase motifs Q, Ia-Id, II, III and most of motif IV, and the C-terminal fragment (PfUDC1) containing UvrD helicase C terminal domain, consisting of remaining part of motif IV and motifs IVa-IVc and 161 amino acids of intervening sequence between motif IV and V, possess ssDNA-dependent ATPase and DNA helicase activities in vitro. Using immunodepletion assays we show that the ATPase and helicase activities are attributable to PfUDN and PfUDC1 proteins. The helicase activity can utilize the hydrolysis of all the nucleotide and deoxynucleotide triphosphates and the direction of unwinding is 3' to 5'. The endogenous P. falciparum UvrD contains the characteristic DNA helicase activity. PfUDN interacts with PfMLH (P. falciparum MutL homologue) and modulates the endonuclease activity of PfMLH and PfMLH positively regulates the unwinding activity of PfUDN. We show that PfUvrD is expressed in the nucleus distinctly in the schizont stages of the intraerythrocytic development of the parasite and it colocalizes with PfMLH. These studies will make an important contribution in understanding the nucleic acid transaction in the malaria parasite.
Collapse
Affiliation(s)
- Moaz Ahmad
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Abulaish Ansari
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Akash Tripathi Satsangi
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
21
|
Carter AS, Tahmaseb K, Compton SA, Matson SW. Resolving Holliday junctions with Escherichia coli UvrD helicase. J Biol Chem 2012; 287:8126-34. [PMID: 22267744 DOI: 10.1074/jbc.m111.314047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli UvrD helicase is known to function in the mismatch repair and nucleotide excision repair pathways and has also been suggested to have roles in recombination and replication restart. The primary intermediate DNA structure in these two processes is the Holliday junction. UvrD has been shown to unwind a variety of substrates including partial duplex DNA, nicked DNA, forked DNA structures, blunt duplex DNA and RNA-DNA hybrids. Here, we demonstrate that UvrD also catalyzes the robust unwinding of Holliday junction substrates. To characterize this unwinding reaction we have employed steady-state helicase assays, pre-steady-state rapid quench helicase assays, DNaseI footprinting, and electron microscopy. We conclude that UvrD binds initially to the junction compared with binding one of the blunt ends of the four-way junction to initiate unwinding and resolves the synthetic substrate into two double-stranded fork structures. We suggest that UvrD, along with its mismatch repair partners, MutS and MutL, may utilize its ability to unwind Holliday junctions directly in the prevention of homeologous recombination. UvrD may also be involved in the resolution of stalled replication forks by unwinding the Holliday junction intermediate to allow bypass of the blockage.
Collapse
Affiliation(s)
- Annamarie S Carter
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
22
|
Doseeva V, Forbes T, Wolff J, Khripin Y, O'Neil D, Rothmann T, Nazarenko I. Multiplex isothermal helicase-dependent amplification assay for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. Diagn Microbiol Infect Dis 2011; 71:354-65. [DOI: 10.1016/j.diagmicrobio.2011.08.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/28/2011] [Accepted: 08/27/2011] [Indexed: 10/16/2022]
|
23
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
24
|
Surovaya AN, Grokhovsky SL, Gursky YG, Andronova VL, Arkhipova VS, Bazhulina NP, Galegov GA, Gursky GV. Complex of the herpes simplex virus initiator protein UL9 with DNA as a platform for the design of a new type of antiviral drugs. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910020077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Kumari A, Minko IG, Smith RL, Lloyd RS, McCullough AK. Modulation of UvrD helicase activity by covalent DNA-protein cross-links. J Biol Chem 2010; 285:21313-22. [PMID: 20444702 DOI: 10.1074/jbc.m109.078964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UvrD (DNA helicase II) has been implicated in DNA replication, DNA recombination, nucleotide excision repair, and methyl-directed mismatch repair. The enzymatic function of UvrD is to translocate along a DNA strand in a 3' to 5' direction and unwind duplex DNA utilizing a DNA-dependent ATPase activity. In addition, UvrD interacts with many other proteins involved in the above processes and is hypothesized to facilitate protein turnover, thus promoting further DNA processing. Although UvrD interactions with proteins bound to DNA have significant biological implications, the effects of covalent DNA-protein cross-links on UvrD helicase activity have not been characterized. Herein, we demonstrate that UvrD-catalyzed strand separation was inhibited on a DNA strand to which a 16-kDa protein was covalently bound. Our sequestration studies suggest that the inhibition of UvrD activity is most likely due to a translocation block and not helicase sequestration on the cross-link-containing DNA substrate. In contrast, no inhibition of UvrD-catalyzed strand separation was apparent when the protein was linked to the complementary strand. The latter result is surprising given the earlier observations that the DNA in this covalent complex is severely bent ( approximately 70 degrees ), with both DNA strands making multiple contacts with the cross-linked protein. In addition, UvrD was shown to be required for replication of plasmid DNAs containing covalent DNA-protein complexes. Combined, these data suggest a critical role for UvrD in the processing of DNA-protein cross-links.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Center for Research on Occupational and Environmental Toxicology, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
26
|
Jeong YJ, Park K, Kim DE. Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell Mol Life Sci 2009; 66:3325-36. [PMID: 19629390 PMCID: PMC11115679 DOI: 10.1007/s00018-009-0094-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 01/27/2023]
Abstract
Since the development of polymerase chain reaction, amplification of nucleic acids has emerged as an elemental tool for molecular biology, genomics, and biotechnology. Amplification methods often use temperature cycling to exponentially amplify nucleic acids; however, isothermal amplification methods have also been developed, which do not require heating the double-stranded nucleic acid to dissociate the synthesized products from templates. Among the several methods used for isothermal DNA amplification, the helicase-dependent amplification (HDA) is discussed in this review with an emphasis on the reconstituted DNA replication system. Since DNA helicase can unwind the double-stranded DNA without the need for heating, the HDA system provides a very useful tool to amplify DNA in vitro under isothermal conditions with a simplified reaction scheme. This review describes components and detailed aspects of current HDA systems using Escherichia coli UvrD helicase and T7 bacteriophage gp4 helicase with consideration of the processivity and efficiency of DNA amplification.
Collapse
Affiliation(s)
- Yong-Joo Jeong
- Department of Bio and Nanochemistry, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul, 136-702 Republic of Korea
| | - Kkothanahreum Park
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul, 143-701 Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-dong, Gwanjin-gu, Seoul, 143-701 Republic of Korea
| |
Collapse
|
27
|
Atkinson J, Guy CP, Cadman CJ, Moolenaar GF, Goosen N, McGlynn P. Stimulation of UvrD helicase by UvrAB. J Biol Chem 2009; 284:9612-23. [PMID: 19208629 DOI: 10.1074/jbc.m808030200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helicases play critical roles in all aspects of nucleic acid metabolism by catalyzing the remodeling of DNA and RNA structures. UvrD is an abundant helicase in Escherichia coli with well characterized functions in mismatch and nucleotide excision repair and a possible role in displacement of proteins such as RecA from single-stranded DNA. The mismatch repair protein MutL is known to stimulate UvrD. Here we show that the nucleotide excision repair proteins UvrA and UvrB can together stimulate UvrD-catalyzed unwinding of a range of DNA substrates containing strand discontinuities, including forked DNA substrates. The stimulation is specific for UvrD, as UvrAB failed to stimulate Rep helicase, a UvrD homologue. Moreover, although UvrAB can promote limited strand displacement, stimulation of UvrD did not require the strand displacement function of UvrAB. We conclude that UvrAB, like MutL, modulate UvrD helicase activity. This stimulation likely plays a role in DNA strand and protein displacement by UvrD in nucleotide excision repair. Promotion of UvrD-catalyzed unwinding of nicked duplexes by UvrAB may also explain the need for UvrAB and UvrD in Okazaki fragment processing in cells lacking DNA polymerase I. More generally, these data support the idea that helicase activity is regulated in vivo, with helicases acting as part of multisubunit complexes rather than in isolation.
Collapse
Affiliation(s)
- John Atkinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Curti E, Smerdon SJ, Davis EO. Characterization of the helicase activity and substrate specificity of Mycobacterium tuberculosis UvrD. J Bacteriol 2006; 189:1542-55. [PMID: 17158674 PMCID: PMC1855738 DOI: 10.1128/jb.01421-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UvrD is a helicase that is widely conserved in gram-negative bacteria. A uvrD homologue was identified in Mycobacterium tuberculosis on the basis of the homology of its encoded protein with Escherichia coli UvrD, with which it shares 39% amino acid identity, distributed throughout the protein. The gene was cloned, and a histidine-tagged form of the protein was expressed and purified to homogeneity. The purified protein had in vitro ATPase activity that was dependent upon the presence of DNA. Oligonucleotides as short as four nucleotides were sufficient to promote the ATPase activity. The DNA helicase activity of the enzyme was only fueled by ATP and dATP. UvrD preferentially unwound 3'-single-stranded tailed duplex substrates over 5'-single-stranded ones, indicating that the protein had a duplex-unwinding activity with 3'-to-5' polarity. A 3' single-stranded DNA tail of 18 nucleotides was required for effective unwinding. By using a series of synthetic oligonucleotide substrates, we demonstrated that M. tuberculosis UvrD has an unwinding preference towards nicked DNA duplexes and stalled replication forks, representing the likely sites of action in vivo. The potential role of M. tuberculosis UvrD in maintenance of bacterial genomic integrity makes it a promising target for drug design against M. tuberculosis.
Collapse
Affiliation(s)
- Elena Curti
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
29
|
Cadman CJ, Matson SW, McGlynn P. Unwinding of Forked DNA Structures by UvrD. J Mol Biol 2006; 362:18-25. [PMID: 16890954 DOI: 10.1016/j.jmb.2006.06.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 11/18/2022]
Abstract
Many studies have demonstrated the need for processing of blocked replication forks to underpin genome duplication. UvrD helicase in Escherichia coli has been implicated in the processing of damaged replication forks, or the recombination intermediates formed from damaged forks. Here we show that UvrD can unwind forked DNA structures, in part due to the ability of UvrD to initiate unwinding from discontinuities within the phosphodiester backbone of DNA. UvrD does therefore have the capacity to target DNA intermediates of replication and recombination. Such an activity resulted in unwinding of what would be the parental duplex DNA ahead of either a stalled replication fork or a D-loop formed by recombination. However, UvrD had a substrate preference for fork structures having a nascent lagging strand at the branch point but no leading strand. Furthermore, at such structures the polarity of UvrD altered so that unwinding of the lagging strand predominated. This reaction is reminiscent of the PriC-Rep pathway of replication restart, suggesting that UvrD and Rep may have at least partially redundant functions.
Collapse
Affiliation(s)
- Chris J Cadman
- School of Medical Sciences, Institute of Medical Sciences University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | |
Collapse
|
30
|
Matson SW, Robertson AB. The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res 2006; 34:4089-97. [PMID: 16935885 PMCID: PMC1616947 DOI: 10.1093/nar/gkl450] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
UvrD is a superfamily I DNA helicase with well documented roles in excision repair and methyl-directed mismatch repair (MMR) in addition to poorly understood roles in replication and recombination. The MutL protein is a homodimeric DNA-stimulated ATPase that plays a central role in MMR in Escherichia coli. This protein has been characterized as the master regulator of mismatch repair since it interacts with and modulates the activity of several other proteins involved in the mismatch repair pathway including MutS, MutH and UvrD. Here we present a brief summary of recent studies directed toward arriving at a better understanding of the interaction between MutL and UvrD, and the impact of this interaction on the activity of UvrD and its role in mismatch repair.
Collapse
Affiliation(s)
- Steven W Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
31
|
Suntornthiticharoen P, Petmitr S, Chavalitshewinkoon-Petmitr P. Purification and characterization of a novel 3′-5′ DNA helicase fromPlasmodium falciparumand its sensitivity to anthracycline antibiotics. Parasitology 2006; 133:389-98. [PMID: 16772048 DOI: 10.1017/s0031182006000527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/14/2006] [Accepted: 04/17/2006] [Indexed: 11/06/2022]
Abstract
Plasmodium falciparumhas developed resistance to most anti-malarials; therefore, an investigation of potential targets should be performed. DNA helicases are enzymes that catalyse the unwinding of double-stranded DNA to provide single-stranded templates for DNA replication, repair and recombination. In this study, a DNA helicase (PfDH A) was purified from a crude extract ofPlasmodium falciparum. DNA helicase activity was measured by assaying unwinding activity. The apparent molecular weight of PfDH A as determined by SDS-PAGE was 90 kDa. PfDH A moved unidirectionally in the 3′ -to- 5′ direction along the bound strand and preferred a fork-like substrate structure and could not unwind blunt-ended duplex DNA. Unwinding activity required Mg2+and could be inhibited by 200 mMNaCl or KCl and was dependent on hydrolysis of ATP or dATP. Anthracyclines, including daunorubicin, nogalamycin, doxorubicin, and aclarubicin, inhibited PfDH A activity with IC50values of 2, 5, 8 and 9 μM, respectively. Based on the results, PfDH A differs from all known human DNA helicases. However, its function and roles in parasite DNA replication need to be elucidated in the future.
Collapse
Affiliation(s)
- P Suntornthiticharoen
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Bangkok 10400, Thailand
| | | | | |
Collapse
|
32
|
Robertson AB, Pattishall SR, Gibbons EA, Matson SW. MutL-catalyzed ATP hydrolysis is required at a post-UvrD loading step in methyl-directed mismatch repair. J Biol Chem 2006; 281:19949-59. [PMID: 16690604 DOI: 10.1074/jbc.m601604200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methyl-directed mismatch repair is a coordinated process that ensures replication fidelity and genome integrity by resolving base pair mismatches and insertion/deletion loops. This post-replicative event involves the activities of several proteins, many of which appear to be regulated by MutL. MutL interacts with and modulates the activities of MutS, MutH, UvrD, and perhaps other proteins. The purified protein catalyzes a slow ATP hydrolysis reaction that is essential for its role in mismatch repair. However, the role of the ATP hydrolysis reaction is not understood. We have begun to address this issue using two point mutants: MutL-E29A, which binds nucleotide but does not catalyze ATP hydrolysis, and MutL-D58A, which does not bind nucleotide. As expected, both mutants failed to complement the loss of MutL in genetic assays. Purified MutL-E29A protein interacted with MutS and stimulated the MutH-catalyzed nicking reaction in a mismatch-dependent manner. Importantly, MutL-E29A stimulated the loading of UvrD on model substrates. In fact, stimulation of UvrD-catalyzed unwinding was more robust with MutL-E29A than the wild-type protein. MutL-D58A, on the other hand, did not interact with MutS, stimulate MutH-catalyzed nicking, or stimulate the loading of UvrD. We conclude that ATP-bound MutL is required for the incision steps associated with mismatch repair and that ATP hydrolysis by MutL is required for a step in the mismatch repair pathway subsequent to the loading of UvrD and may serve to regulate helicase loading.
Collapse
Affiliation(s)
- Adam B Robertson
- Department of Biology, University of North Carolina at Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
33
|
Choudhary S, Doherty KM, Handy CJ, Sayer JM, Yagi H, Jerina DM, Brosh RM. Inhibition of Werner syndrome helicase activity by benzo[a]pyrene diol epoxide adducts can be overcome by replication protein A. J Biol Chem 2005; 281:6000-9. [PMID: 16380375 DOI: 10.1074/jbc.m510122200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RecQ helicases are believed to function in repairing replication forks stalled by DNA damage and may also play a role in the intra-S-phase checkpoint, which delays the replication of damaged DNA, thus permitting repair to occur. Since little is known regarding the effects of DNA damage on RecQ helicases, and because the replication and recombination defects in Werner syndrome cells may reflect abnormal processing of damaged DNA associated with the replication fork, we examined the effects of specific bulky, covalent adducts at N(6) of deoxyadenosine (dA) or N(2) of deoxyguanosine (dG) on Werner (WRN) syndrome helicase activity. The adducts are derived from the optically active 7,8-diol 9,10-epoxide (DE) metabolites of the carcinogen benzo[a]pyrene (BaP). The results demonstrate that WRN helicase activity is inhibited in a strand-specific manner by BaP DE-dG adducts only when on the translocating strand. These adducts either occupy the minor groove without significant perturbation of DNA structure (trans adducts) or cause base displacement at the adduct site (cis adducts). In contrast, helicase activity is only mildly affected by intercalating BaP DE-dA adducts that locally perturb DNA double helical structure. This differs from our previous observation that intercalating dA adducts derived from benzo[c]phenanthrene (BcPh) DEs inhibit WRN activity in a strand- and stereospecific manner. Partial unwinding of the DNA helix at BaP DE-dA adduct sites may make such adducted DNAs more susceptible to the action of helicase than DNA containing the corresponding BcPh DE-dA adducts, which cause little or no destabilization of duplex DNA. The single-stranded DNA binding protein RPA, an auxiliary factor for WRN helicase, enabled the DNA unwinding enzyme to overcome inhibition by either the trans-R or cis-R BaP DE-dG adduct, suggesting that WRN and RPA may function together to unwind duplex DNA harboring specific covalent adducts that otherwise block WRN helicase acting alone.
Collapse
Affiliation(s)
- Saba Choudhary
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health/DHHS, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
An L, Tang W, Ranalli TA, Kim HJ, Wytiaz J, Kong H. Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem 2005; 280:28952-8. [PMID: 15955821 PMCID: PMC1361353 DOI: 10.1074/jbc.m503096200] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helicase-dependent amplification (HDA) is an isothermal in vitro DNA amplification method based upon the coordinated actions of helicases to separate double-stranded DNA and DNA polymerases to synthesize DNA. Previously, a mesophilic form of HDA (mHDA) utilizing the Escherichia coli UvrD helicase, DNA polymerase I Klenow fragment, two accessory proteins, MutL and single-stranded DNA-binding protein (SSB), was developed (1). In an effort to improve the specificity and performance of HDA, we have cloned and purified a thermostable UvrD helicase (Tte-UvrD) and the mutL homolog (Tte-MutL) from Thermoanaerobacter tengcongensis. Characterization of the Tte-UvrD helicase shows that it is stable and active from 45 to 65 degrees C. We have found that the Tte-UvrD helicase unwinds blunt-ended DNA duplexes as well as substrates possessing 3'- or 5'-ssDNA tails. Tte-UvrD was used to develop athermophilichelicase-dependent amplification (tHDA) system to selectively amplify target sequences at 60-65 degrees C. The tHDA system is more efficient than mHDA, displaying heightened amplification sensitivity without the need for the MutL and SSB accessory proteins. Amplification independent of MutL corresponds with studies demonstrating that maximal Tte-UvrD helicase activity does not require the mutL homolog. The tHDA system allows for rapid amplification and detection of targets present in genomic DNA. The expeditious nature and simplistic design of the tHDA platform makes the technology ideal for use in diagnostic applications requiring rapid identification of organisms at the point-of-need.
Collapse
Affiliation(s)
| | - Wen Tang
- BioHelix, 32 Tozer Road, Beverly, Massachusetts 01915, USA
| | | | - Hyun-Jin Kim
- BioHelix, 32 Tozer Road, Beverly, Massachusetts 01915, USA
| | - Jamie Wytiaz
- BioHelix, 32 Tozer Road, Beverly, Massachusetts 01915, USA
| | - Huimin Kong
- BioHelix, 32 Tozer Road, Beverly, Massachusetts 01915, USA
- *To whom correspondence should be addressed. Tel: +1 978 998-7285; Fax: + 1 978 921 1350; E-mail:
| |
Collapse
|
35
|
Fischer CJ, Maluf NK, Lohman TM. Mechanism of ATP-dependent translocation of E.coli UvrD monomers along single-stranded DNA. J Mol Biol 2005; 344:1287-309. [PMID: 15561144 DOI: 10.1016/j.jmb.2004.10.005] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 10/04/2004] [Accepted: 10/04/2004] [Indexed: 11/28/2022]
Abstract
Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. Using stopped-flow methods we have examined the kinetic mechanism of translocation of UvrD monomers along single-stranded DNA (ssDNA) in vitro by monitoring the transient kinetics of arrival of protein at the 5'-end of the ssDNA. Arrival at the 5'-end was monitored by the effect of protein on the fluorescence intensity of fluorophores (Cy3 or fluorescein) attached to the 5'-end of a series of oligodeoxythymidylates varying in length from 16 to 124 nt. We find that UvrD monomers are capable of ATP-dependent translocation along ssDNA with a biased 3' to 5' directionality. Global non-linear least-squares analysis of the full kinetic time-courses in the presence of a protein trap to prevent rebinding of free protein to the DNA using the methods described in the accompanying paper enabled us to obtain quantitative estimates of the kinetic parameters for translocation. We find that UvrD monomers translocate in discrete steps with an average kinetic step-size, m=3.68(+/-0.03) nt step(-1), a translocation rate constant, kt=51.3(+/-0.6) steps s(-1), (macroscopic translocation rate, mkt=189.0(+/-0.7) nt s(-1)), with a processivity corresponding to an average translocation distance of 2400(+/-600) nt before dissociation (10 mM Tris-HCl (pH 8.3), 20 mM NaCl, 20% (v/v) glycerol, 25 degrees C). However, in spite of its ability to translocate rapidly and efficiently along ssDNA, a UvrD monomer is unable to unwind even an 18 bp duplex in vitro. DNA helicase activity in vitro requires a UvrD dimer that unwinds DNA with a similar kinetic step-size of 4-5 bp step(-1), but an approximately threefold slower unwinding rate of 68(+/-9) bp s(-1) under the same solution conditions, indicating that DNA unwinding activity requires more than the ability to simply translocate directionally along ss-DNA.
Collapse
Affiliation(s)
- Christopher J Fischer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8231, Saint Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
36
|
Vincent M, Xu Y, Kong H. Helicase-dependent isothermal DNA amplification. EMBO Rep 2004; 5:795-800. [PMID: 15247927 PMCID: PMC1249482 DOI: 10.1038/sj.embor.7400200] [Citation(s) in RCA: 589] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 05/24/2004] [Accepted: 06/14/2004] [Indexed: 01/25/2023] Open
Abstract
Polymerase chain reaction is the most widely used method for in vitro DNA amplification. However, it requires thermocycling to separate two DNA strands. In vivo, DNA is replicated by DNA polymerases with various accessory proteins, including a DNA helicase that acts to separate duplex DNA. We have devised a new in vitro isothermal DNA amplification method by mimicking this in vivo mechanism. Helicase-dependent amplification (HDA) utilizes a DNA helicase to generate single-stranded templates for primer hybridization and subsequent primer extension by a DNA polymerase. HDA does not require thermocycling. In addition, it offers several advantages over other isothermal DNA amplification methods by having a simple reaction scheme and being a true isothermal reaction that can be performed at one temperature for the entire process. These properties offer a great potential for the development of simple portable DNA diagnostic devices to be used in the field and at the point-of-care.
Collapse
Affiliation(s)
- Myriam Vincent
- New England Biolabs, 32 Tozer Road, Beverly, Massachusetts 01915, USA
| | - Yan Xu
- New England Biolabs, 32 Tozer Road, Beverly, Massachusetts 01915, USA
| | - Huimin Kong
- New England Biolabs, 32 Tozer Road, Beverly, Massachusetts 01915, USA
| |
Collapse
|
37
|
Dessinges MN, Lionnet T, Xi XG, Bensimon D, Croquette V. Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proc Natl Acad Sci U S A 2004; 101:6439-44. [PMID: 15079074 PMCID: PMC404063 DOI: 10.1073/pnas.0306713101] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA helicases are enzymes capable of unwinding double-stranded DNA (dsDNA) to provide the single-stranded DNA template required in many biological processes. Among these, UvrD, an essential DNA repair enzyme, has been shown to unwind dsDNA while moving 3'-5' on one strand. Here, we use a single-molecule manipulation technique to monitor real-time changes in extension of a single, stretched, nicked dsDNA substrate as it is unwound by a single enzyme. This technique offers a means for measuring the rate, lifetime, and processivity of the enzymatic complex as a function of ATP, and for estimating the helicase step size. Strikingly, we observe a feature not seen in bulk assays: unwinding is preferentially followed by a slow, enzyme-translocation-limited rezipping of the separated strands rather than by dissociation of the enzymatic complex followed by quick rehybridization of the DNA strands. We address the mechanism underlying this phenomenon and propose a fully characterized model in which UvrD switches strands and translocates backwards on the other strand, allowing the DNA to reanneal in its wake.
Collapse
Affiliation(s)
- Marie-Noëlle Dessinges
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, Unité Mixte de Recherche 8550, Centre National de la Recherche Scientifique, 24 Rue Lhomond, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
38
|
Kaplan DL, Davey MJ, O'Donnell M. Mcm4,6,7 uses a "pump in ring" mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J Biol Chem 2003; 278:49171-82. [PMID: 13679365 DOI: 10.1074/jbc.m308074200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mcm4,6,7 is a ring-shaped heterohexamer and the putative eukaryotic replication fork helicase. In this study, we examine the mechanism of Mcm4,6,7. Mcm4,6,7 binds to only one strand of a duplex during unwinding, corresponding to the leading strand of a replication fork. Mcm4,6,7 unwinding stops at a nick in either strand. The Mcm4,6,7 ring also actively translocates along duplex DNA, enabling the protein to drive branch migration of Holliday junctions. The Mcm4,6,7 mechanism is very similar to DnaB, except the proteins translocate with opposite polarity along DNA. Mcm4,6,7 and DnaB have different structural folds and evolved independently; thus, the similarity in mechanism is surprising. We propose a "pump in ring" mechanism for both Mcm4,6,7 and DnaB, wherein a single-stranded DNA pump is situated within the central channel of the ring-shaped helicase, and unwinding is the result of steric exclusion. In this example of convergent evolution, the "pump in ring" mechanism was probably selected by eukaryotic and bacterial replication fork helicases in order to restrict unwinding to replication fork structures, stop unwinding when the replication fork encounters a nick, and actively translocate along duplex DNA to accomplish additional activities such as DNA branch migration.
Collapse
Affiliation(s)
- Daniel L Kaplan
- Rockefeller University and Howard Hughes Medical Institute, Laboratory of DNA Replication, New York, New York 10021, USA.
| | | | | |
Collapse
|
39
|
Maluf NK, Ali JA, Lohman TM. Kinetic mechanism for formation of the active, dimeric UvrD helicase-DNA complex. J Biol Chem 2003; 278:31930-40. [PMID: 12788954 DOI: 10.1074/jbc.m304223200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli UvrD protein is a 3' to 5' SF1 helicase required for DNA repair as well as DNA replication of certain plasmids. We have shown previously that UvrD can self-associate to form dimers and tetramers in the absence of DNA, but that a UvrD dimer is required to form an active helicase-DNA complex in vitro. Here we have used pre-steady state, chemical quenched flow methods to examine the kinetic mechanism for formation of the active, dimeric helicase-DNA complex. Experiments were designed to examine the steps leading to formation of the active complex, separate from the subsequent DNA unwinding steps. The results show that the active dimeric complex can form via two pathways. The first, faster path involves direct binding to the DNA substrate of a pre-assembled UvrD dimer (dimer path), whereas the second, slower path proceeds via sequential binding to the DNA substrate of two UvrD monomers (monomer path), which then assemble on the DNA to form the dimeric helicase. The rate-limiting step within the monomer pathway involves dimer assembly on the DNA. These results show that UvrD dimers that pre-assemble in the absence of DNA are intermediates along the pathway to formation of the functional dimeric UvrD helicase.
Collapse
Affiliation(s)
- Nasib K Maluf
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
40
|
Maluf NK, Fischer CJ, Lohman TM. A Dimer of Escherichia coli UvrD is the active form of the helicase in vitro. J Mol Biol 2003; 325:913-35. [PMID: 12527299 DOI: 10.1016/s0022-2836(02)01277-9] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Escherichia coli UvrD protein is a 3' to 5' SF1 DNA helicase involved in methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized in vitro UvrD-catalyzed unwinding of a series of 18 bp duplex DNA substrates with 3' single-stranded DNA (ssDNA) tails ranging in length from two to 40 nt. Single turnover DNA-unwinding experiments were performed using chemical quenched flow methods, as a function of both [UvrD] and [DNA] under conditions such that UvrD-DNA binding is stoichiometric. Although a single UvrD monomer binds tightly to the single-stranded/double-stranded DNA (dsDNA) junction if the 3' ssDNA tail is at least four nt, no unwinding was observed for DNA substrates with tail-lengths </=8 nt, even at high [UvrD]/[DNA] ratios. Unwinding is observed for DNA substrates with 3' ssDNA tail lengths >/=12 nt, and the unwinding amplitude displays a sigmoidal dependence on [UvrD(tot)]/[DNA(tot)]. Quantitative analysis of these data indicates that a single UvrD monomer bound at the ssDNA/dsDNA junction of any DNA substrate, independent of 3' ssDNA tail length, is not competent to fully unwind even a short 18 bp duplex DNA, and that two UvrD monomers must bind the DNA substrate in order to form a complex that is able to unwind short DNA substrates in vitro. Other proteins, including a mutant UvrD with no ATPase activity as well as a monomer of the structurally homologous E.coli Rep helicase, cannot substitute for the second UvrD monomer, suggesting a specific interaction between two UvrD monomers and that both must be able to hydrolyze ATP. Initiation of DNA unwinding in vitro appears to require a dimeric UvrD complex in which one subunit is bound to the ssDNA/dsDNA junction, while the second subunit is bound to the 3' ssDNA tail.
Collapse
Affiliation(s)
- Nasib K Maluf
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8231, St. Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
41
|
Maluf NK, Lohman TM. Self-association equilibria of Escherichia coli UvrD helicase studied by analytical ultracentrifugation. J Mol Biol 2003; 325:889-912. [PMID: 12527298 DOI: 10.1016/s0022-2836(02)01276-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Escherichia coli UvrD protein (helicase II) is an SF1 superfamily helicase required for methyl-directed mismatch repair and nucleotide excision repair of DNA. We have characterized quantitatively the self-assembly equilibria of the UvrD protein as a function of [NaCl], [glycerol], and temperature (5-35 degrees C; pH 8.3) using analytical sedimentation velocity and equilibrium techniques, and find that UvrD self-associates into dimeric and tetrameric species over a range of solution conditions (t</=25 degrees C). Increasing [NaCl] from 20mM to 200 mM decreases the dimerization equilibrium constant (L(20)) from 2.33(+/-0.30) microM(-1) to 0.297(+/-0.006) microM(-1) (pH 8.3, 20% (v/v) glycerol, 25 degrees C). The overall tetramerization equilibrium constant (L(40)) is 5.11(+/-0.80) microM(-3) at 20mM NaCl, but decreases so that it is not measurable at 200 mM NaCl. At 500 mM NaCl, only UvrD monomers are detectable. Increasing [glycerol] over the range from 20% to 40% (v/v) decreases both L(20) and L(40). We find no evidence for hexamer formation, although a species consistent in size with an octamer is detected at 35 degrees C. Inclusion of either ADP or ATPgammaS does not affect either L(20) or L(40) significantly, and does not induce the formation of additional assembly states. We also investigated the stoichiometry of UvrD binding to a 3'-(dT)(20)-18 bp DNA substrate by sedimentation equilibrium. At saturating concentrations of UvrD, three UvrD monomers can bind to the DNA substrate, although only two UvrD monomers are required to form a processive helicase complex. When the total DNA substrate concentration is about twofold greater than the total UvrD concentration, the vast majority of the DNA is bound by a single UvrD monomer.
Collapse
Affiliation(s)
- Nasib K Maluf
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8231, St. Louis, MO 63110-1093, USA
| | | |
Collapse
|
42
|
DNA helicases, motors that move along nucleic acids: Lessons from the SF1 helicase superfamily. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1874-6047(04)80008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
43
|
Lucius AL, Vindigni A, Gregorian R, Ali JA, Taylor AF, Smith GR, Lohman TM. DNA unwinding step-size of E. coli RecBCD helicase determined from single turnover chemical quenched-flow kinetic studies. J Mol Biol 2002; 324:409-28. [PMID: 12445778 DOI: 10.1016/s0022-2836(02)01067-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism by which Escherichia coli RecBCD DNA helicase unwinds duplex DNA was examined in vitro using pre-steady-state chemical quenched-flow kinetic methods. Single turnover DNA unwinding experiments were performed by addition of ATP to RecBCD that was pre-bound to a series of DNA substrates containing duplex DNA regions ranging from 24 bp to 60 bp. In each case, the time-course for formation of completely unwound DNA displayed a distinct lag phase that increased with duplex length, reflecting the transient formation of partially unwound DNA intermediates during unwinding catalyzed by RecBCD. Quantitative analysis of five independent sets of DNA unwinding time courses indicates that RecBCD unwinds duplex DNA in discrete steps, with an average unwinding "step-size", m=3.9(+/-1.3)bp step(-1), with an average unwinding rate of k(U)=196(+/-77)steps s(-1) (mk(U)=790(+/-23)bps(-1)) at 25.0 degrees C (10mM MgCl(2), 30 mM NaCl (pH 7.0), 5% (v/v) glycerol). However, additional steps, not linked directly to DNA unwinding are also detected. This kinetic DNA unwinding step-size is similar to that determined for the E.coli UvrD helicase, suggesting that these two SF1 superfamily helicases may share similar mechanisms of DNA unwinding.
Collapse
Affiliation(s)
- Aaron L Lucius
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Petranović M, Zahradka K, Zahradka D, Petranović D, Nagy B, Salaj-Smic E, Petranović D. Genetic evidence that the elevated levels of Escherichia coli helicase II antagonize recombinational DNA repair. Biochimie 2001; 83:1041-7. [PMID: 11879732 DOI: 10.1016/s0300-9084(01)01346-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Some phages survive irradiation much better upon multiple than upon single infection, a phenomenon known as multiplicity reactivation (MR). Long ago MR of UV-irradiated lambda red phage in E. coli cells was shown to be a manifestation of recA-dependent recombinational DNA repair. We used this experimental model to assess the influence of helicase II on the type of recombinational repair responsible for MR. Since helicase II is encoded by the SOS-inducible uvrD gene, SOS-inducing treatments such as irradiating recA(+) or heating recA441 cells were used. We found: i) that MR was abolished by the SOS-inducing treatments; ii) that in uvrD background these treatments did not affect MR; and iii) that the presence of a high-copy plasmid vector carrying the uvrD(+) allele together with its natural promoter region was sufficient to block MR. From these results we infer that helicase II is able to antagonize the type of recA-dependent recombinational repair acting on multiple copies of UV-damaged lambda DNA and that its anti-recombinogenic activity is operative at elevated levels only.
Collapse
Affiliation(s)
- M Petranović
- Department of Molecular Genetics, Ruder Bosković Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Previous studies have shown that MutL physically interacts with UvrD (DNA helicase II) (Hall, M. C., Jordan, J. R., and Matson, S. W. (1998) EMBO J. 17, 1535-1541) and dramatically stimulates the unwinding reaction catalyzed by UvrD in the presence and absence of the other protein components of the methyl-directed mismatch repair pathway (Yamaguchi, M., Dao, V., and Modrich, P. (1998) J. Biol. Chem. 273, 9197-9201). The mechanism of this stimulation was investigated using DNA binding assays, single-turnover helicase assays, and unwinding assays involving long duplex DNA substrates. The results indicate that MutL binds DNA and loads UvrD onto the DNA substrate. The interaction between MutL and DNA and that between MutL and UvrD are both important for stimulation of UvrD-catalyzed unwinding. MutL does not clamp UvrD onto the substrate; and therefore, the processivity of unwinding is not increased in the presence of MutL. The implications of these results are discussed, and models are presented for the mechanism of MutL stimulation as well as for the role of MutL as a master coordinator in the methyl-directed mismatch repair pathway.
Collapse
Affiliation(s)
- L E Mechanic
- Departments of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
46
|
Ali JA, Maluf NK, Lohman TM. An oligomeric form of E. coli UvrD is required for optimal helicase activity. J Mol Biol 1999; 293:815-34. [PMID: 10543970 DOI: 10.1006/jmbi.1999.3185] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pre-steady-state chemical quenched-flow techniques were used to study DNA unwinding catalyzed by Escherichia coli UvrD helicase (helicase II), a member of the SF1 helicase superfamily. Single turnover experiments, with respect to unwinding of a DNA oligonucleotide, were used to examine the DNA substrate and UvrD concentration requirements for rapid DNA unwinding by pre-bound UvrD helicase. In excess UvrD at low DNA concentrations (1 nM), the bulk of the DNA is unwound rapidly by pre-bound UvrD complexes upon addition of ATP, but with time-courses that display a distinct lag phase for formation of fully unwound DNA, indicating that unwinding occurs in discrete steps, with a "step size" of four to five base-pairs as previously reported. Optimum unwinding by pre-bound UvrD-DNA complexes requires a 3' single-stranded (ss) DNA tail of 36-40 nt, whereas productive complexes do not form readily on DNA with 3'-tail lengths </=16 nt. A 5'-ssDNA tail is neither sufficient nor does it stimulate unwinding, even in the presence of a 3'-ssDNA tail. Nitrocellulose filter binding studies show that UvrD binding affinity also increases with increasing 3'-ssDNA tail length, showing apparent positive cooperativity for binding to DNA with a 40 nt 3'-ssDNA tail. Single turnover DNA unwinding experiments performed at higher DNA concentrations (50 nM) show a sigmoidal dependence of the extent of unwinding on the pre-incubated [UvrD], also indicating cooperativity. These results indicate that the form of the UvrD helicase with optimal helicase activity is oligomeric with at least two sites for binding the DNA substrate, where one site contacts regions of the 3'-ssDNA tail that are distal from the single-stranded/double-stranded DNA junction.
Collapse
Affiliation(s)
- J A Ali
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
47
|
Dao V, Modrich P. Mismatch-, MutS-, MutL-, and helicase II-dependent unwinding from the single-strand break of an incised heteroduplex. J Biol Chem 1998; 273:9202-7. [PMID: 9535911 DOI: 10.1074/jbc.273.15.9202] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli MutS, MutL, and DNA helicase II are sufficient to initiate mismatch-dependent unwinding of an incised heteroduplex (Yamaguchi, M., Dao, V., and Modrich, P. (1998) J. Biol. Chem., 273, 9197-9201). We have studied unwinding of 6.4-kilobase circular G-T heteroduplexes that contain a single-strand incision, 808 base pairs 5' to the mismatch or 1023 base pairs 3' to the mispair as viewed along the shorter path between the two DNA sites. Unwinding of both substrates in the presence of MutS, MutL, DNA helicase II, and single-stranded DNA binding protein was mismatch-dependent and initiated at the single-strand break. Although unwinding occurred in both directions from the strand break, it was biased toward the shorter path linking the strand break and the mispair. MutS and MutL are thus sufficient to coordinate mismatch recognition to the orientation-dependent activation of helicase II unwinding at a single-strand break located a kilobase from the mispair.
Collapse
Affiliation(s)
- V Dao
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
48
|
Zhang G, Deng E, Baugh LR, Hamilton CM, Maples VF, Kushner SR. Conserved motifs II to VI of DNA helicase II from Escherichia coli are all required for biological activity. J Bacteriol 1997; 179:7544-50. [PMID: 9393722 PMCID: PMC179708 DOI: 10.1128/jb.179.23.7544-7550.1997] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There are seven conserved motifs (IA, IB, and II to VI) in DNA helicase II of Escherichia coli that have high homology among a large family of proteins involved in DNA metabolism. To address the functional importance of motifs II to VI, we employed site-directed mutagenesis to replace the charged amino acid residues in each motif with alanines. Cells carrying these mutant alleles exhibited higher UV and methyl methanesulfonate sensitivity, increased rates of spontaneous mutagenesis, and elevated levels of homologous recombination, indicating defects in both the excision repair and mismatch repair pathways. In addition, we also changed the highly conserved tyrosine(600) in motif VI to phenylalanine (uvrD309, Y600F). This mutant displayed a moderate increase in UV sensitivity but a decrease in spontaneous mutation rate, suggesting that DNA helicase II may have different functions in the two DNA repair pathways. Furthermore, a mutation in domain IV (uvrD307, R284A) significantly reduced the viability of some E. coli K-12 strains at 30 degrees C but not at 37 degrees C. The implications of these observations are discussed.
Collapse
Affiliation(s)
- G Zhang
- Department of Genetics, University of Georgia, Athens 30602, USA
| | | | | | | | | | | |
Collapse
|
49
|
Stephens KM, McMacken R. Functional properties of replication fork assemblies established by the bacteriophage lambda O and P replication proteins. J Biol Chem 1997; 272:28800-13. [PMID: 9353352 DOI: 10.1074/jbc.272.45.28800] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used a set of bacteriophage lambda and Escherichia coli replication proteins to establish rolling circle DNA replication in vitro to permit characterization of the functional properties of lambda replication forks. We demonstrate that the lambda replication fork assembly synthesizes leading strand DNA chains at a physiological rate of 650-750 nucleotides/s at 30 degrees C. This rate is identical to the fork movement rate we obtained using a minimal protein system, composed solely of E. coli DnaB helicase and DNA polymerase III holoenzyme. Our data are consistent with the conclusion that these two key bacterial replication proteins constitute the basic functional unit of a lambda replication fork. A comparison of rolling circle DNA replication in the minimal and lambda replication systems indicated that DNA synthesis proceeded for more extensive periods in the lambda system and produced longer DNA chains, which averaged nearly 200 kilobases in length. The higher potency of the lambda replication system is believed to result from its capacity to mediate efficient reloading of DnaB helicase onto rolling circle replication products, thereby permitting reinitiation of DNA chain elongation following spontaneous termination events. E. coli single-stranded DNA-binding protein and primase individually stimulated rolling circle DNA replication, but they apparently act indirectly by blocking accumulation of inhibitory free single-stranded DNA product. Finally, in the course of this work, we discovered that E. coli DNA polymerase III holoenzyme is itself capable of carrying out significant strand displacement DNA synthesis at about 50 nucleotides/s when it is supplemented with E. coli single-stranded DNA-binding protein.
Collapse
Affiliation(s)
- K M Stephens
- Department of Biochemistry, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
50
|
Hall MC, Matson SW. Mutation of a highly conserved arginine in motif IV of Escherichia coli DNA helicase II results in an ATP-binding defect. J Biol Chem 1997; 272:18614-20. [PMID: 9228029 DOI: 10.1074/jbc.272.30.18614] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A site-directed mutation in motif IV of Escherichia coli DNA helicase II (UvrD) was generated to examine the functional significance of this region. The highly conserved arginine at position 284 was replaced with alanine to construct UvrD-R284A. The ability of the mutant allele to function in methyl-directed mismatch repair and UvrABC-mediated nucleotide excision repair was examined by genetic complementation assays. The R284A substitution abolished function in both DNA repair pathways. To identify the biochemical defects responsible for the loss of biological function, UvrD-R284A was purified to apparent homogeneity, and its biochemical properties were compared with wild-type UvrD. UvrD-R284A failed to unwind a 92-base pair duplex region and was severely compromised in unwinding a 20-base pair duplex region. The Km of UvrD-R284A for ATP was significantly greater than 3 mM compared with 80 microM for UvrD. A large decrease in ATP binding was confirmed using a nitrocellulose filter binding assay. These data suggested that the R284A mutation severely reduced the affinity of helicase II for ATP. The reduced unwinding activity and loss of biological function of UvrD-R284A was probably the result of decreased affinity for ATP. These results implicate motif IV of superfamily I helicases in nucleotide binding and represent the first characterization of a helicase mutation outside motifs I and II that severely impacted the Km for ATP.
Collapse
Affiliation(s)
- M C Hall
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|