1
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
2
|
Cohen JD, Sundaram MV. C. elegans Apical Extracellular Matrices Shape Epithelia. J Dev Biol 2020; 8:E23. [PMID: 33036165 PMCID: PMC7712855 DOI: 10.3390/jdb8040023] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apical extracellular matrices (aECMs) coat exposed surfaces of epithelia to shape developing tissues and protect them from environmental insults. Despite their widespread importance for human health, aECMs are poorly understood compared to basal and stromal ECMs. The nematode Caenorhabditis elegans contains a variety of distinct aECMs, some of which share many of the same types of components (lipids, lipoproteins, collagens, zona pellucida domain proteins, chondroitin glycosaminoglycans and proteoglycans) with mammalian aECMs. These aECMs include the eggshell, a glycocalyx-like pre-cuticle, both collagenous and chitin-based cuticles, and other understudied aECMs of internal epithelia. C. elegans allows rapid genetic manipulations and live imaging of fluorescently-tagged aECM components, and is therefore providing new insights into aECM structure, trafficking, assembly, and functions in tissue shaping.
Collapse
Affiliation(s)
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine 415 Curie Blvd, Philadelphia, PA 19104-6145, USA;
| |
Collapse
|
3
|
Serrano-Saiz E, Vogt MC, Levy S, Wang Y, Kaczmarczyk KK, Mei X, Bai G, Singson A, Grant BD, Hobert O. SLC17A6/7/8 Vesicular Glutamate Transporter Homologs in Nematodes. Genetics 2020; 214:163-178. [PMID: 31776169 PMCID: PMC6944403 DOI: 10.1534/genetics.119.302855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/24/2019] [Indexed: 01/04/2023] Open
Abstract
Members of the superfamily of solute carrier (SLC) transmembrane proteins transport diverse substrates across distinct cellular membranes. Three SLC protein families transport distinct neurotransmitters into synaptic vesicles to enable synaptic transmission in the nervous system. Among them is the SLC17A6/7/8 family of vesicular glutamate transporters, which endows specific neuronal cell types with the ability to use glutamate as a neurotransmitter. The genome of the nematode Caenorhabditis elegans encodes three SLC17A6/7/8 family members, one of which, eat-4/VGLUT, has been shown to be involved in glutamatergic neurotransmission. Here, we describe our analysis of the two remaining, previously uncharacterized SLC17A6/7/8 family members, vglu-2 and vglu-3 These two genes directly neighbor one another and are the result of a recent gene duplication event in C. elegans, but not in other Caenorhabditis species. Compared to EAT-4, the VGLU-2 and VGLU-3 protein sequences display a more distant similarity to canonical, vertebrate VGLUT proteins. We tagged both genomic loci with gfp and detected no expression of vglu-3 at any stage of development in any cell type of both C. elegans sexes. In contrast, vglu-2::gfp is dynamically expressed in a restricted set of distinct cell types. Within the nervous system, vglu-2::gfp is exclusively expressed in a single interneuron class, AIA, where it localizes to vesicular structures in the soma, but not along the axon, suggesting that VGLU-2 may not be involved in synaptic transport of glutamate. Nevertheless, vglu-2 mutants are partly defective in the function of the AIA neuron in olfactory behavior. Outside the nervous system, VGLU-2 is expressed in collagen secreting skin cells where VGLU-2 most prominently localizes to early endosomes, and to a lesser degree to apical clathrin-coated pits, the trans-Golgi network, and late endosomes. On early endosomes, VGLU-2 colocalizes most strongly with the recycling promoting factor SNX-1, a retromer component. Loss of vglu-2 affects the permeability of the collagen-containing cuticle of the worm, and based on the function of a vertebrate VGLUT1 protein in osteoclasts, we speculate that vglu-2 may have a role in collagen trafficking in the skin. We conclude that C. elegans SLC17A6/7/8 family members have diverse functions within and outside the nervous system.
Collapse
Affiliation(s)
- Esther Serrano-Saiz
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
- Centro de Biologia Molecular Severo Ochoa/Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Sagi Levy
- Rockefeller University, New York, New York 10065
| | - Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Karolina K Kaczmarczyk
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| | - Xue Mei
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Andrew Singson
- Waksman Institute, Rutgers University, Piscataway, New Jersey 08854
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, New York 10027
| |
Collapse
|
4
|
Genetic markers enable the verification and manipulation of the dauer entry decision. Dev Biol 2019; 454:170-180. [PMID: 31242447 DOI: 10.1016/j.ydbio.2019.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/24/2022]
Abstract
Phenotypic plasticity allows animals to survive in changing environments through the alteration of phenotypes or development. One of the best-studied examples of phenotypic plasticity is dauer larval development in the free-living roundworm Caenorhabditis elegans. When faced with hostile environments, C. elegans larvae can exit reproductive development and enter the stress-resistant and spore-like dauer larval stage. However, knowledge about how the dauer entry decision is made, and how the different tissues of the animal coordinate to execute transformation into dauer, is limited. This is because identifying animals that make the entry decision, or that fail to coordinately remodel their tissues during dauer development, is time-consuming and labor-intensive. Utilizing our previously reported RNA-seq of animals going through dauer or reproductive development (Lee et al., 2017), we have identified genetic markers for conveniently tracking and manipulating the dauer entry decision. These include col-183 (which tracks dauer fate in the hypodermis), ets-10 (neurons and intestine), nhr-246 (intestine and hypodermis), and F53F1.4 (reproductive fate in the hypodermis). Using condition shift experiments, we demonstrate that the dauer-specific fluorescent expression of the markers correspond to the commitment event of the dauer entry decision, and therefore label when the decision is made. We show that these markers can be used to manipulate the entry decision by driving the reproduction-promoting gene daf-9 under the control of the dauer-specific marker col-183, through which we could shift animals into non-dauer development. We further demonstrate that the markers can be used to track tissue coordination during the decision. daf-9, daf-15, and daf-18 partial dauers exhibit incomplete expression of the ets-10 marker, with our results indicating that the same gene (e.g. daf-9 or daf-18) can affect dauer development differently in different tissues. Our findings provide molecular tools for studying phenotypic plasticity during a whole animal decision.
Collapse
|
5
|
Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development. G3-GENES GENOMES GENETICS 2014; 4:733-47. [PMID: 24569038 PMCID: PMC4059243 DOI: 10.1534/g3.113.009522] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.
Collapse
|
6
|
Novelli J, Page AP, Hodgkin J. The C terminus of collagen SQT-3 has complex and essential functions in nematode collagen assembly. Genetics 2006; 172:2253-67. [PMID: 16452136 PMCID: PMC1456373 DOI: 10.1534/genetics.105.053637] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nematode exoskeleton is a multilayered structure secreted by the underlying hypodermal cells and mainly composed of small collagens, which are encoded by a large gene family. In previous work, we reported analysis of the C. elegans dpy-31 locus, encoding a hypodermally expressed zinc-metalloprotease of the BMP-1/TOLLOID family essential for viability and cuticle deposition. We have generated a large set of extragenic suppressors of dpy-31 lethality, most of which we show here to be allelic to the cuticle collagen genes sqt-3 and dpy-17. We analyzed the interaction among dpy-31, sqt-3, and dpy-17 using a SQT-3-specific antiserum, which was employed in immunofluorescence experiments. Our results support a role for DPY-31 in SQT-3 extracellular processing and suggest that the SQT-3 C-terminal nontrimeric region serves multiple roles during SQT-3 assembly. Different missense mutations of this region have diverse phenotypic consequences, including cold-sensitive lethality. Furthermore, the biochemical and genetic data indicate that the extracellular assemblies of DPY-17 and SQT-3 are interdependent, most likely because the collagens are incorporated into the same cuticular substructure. We find that absence of DPY-17 causes extensive intracellular retention of SQT-3, indicating that formation of the SQT-3-DPY-17 polymer could begin in the intracellular environment before secretion.
Collapse
Affiliation(s)
- Jacopo Novelli
- Genetics Unit, Department of Biochemistry, University of Oxford, United Kingdom
| | | | | |
Collapse
|
7
|
Novelli J, Ahmed S, Hodgkin J. Gene interactions in Caenorhabditis elegans define DPY-31 as a candidate procollagen C-proteinase and SQT-3/ROL-4 as its predicted major target. Genetics 2005; 168:1259-73. [PMID: 15579684 PMCID: PMC1448789 DOI: 10.1534/genetics.104.027953] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc metalloproteases of the BMP-1/TOLLOID family (also known as astacins) are extracellular enzymes involved in important developmental processes in metazoans. We report the characterization of the Caenorhabditis elegans gene dpy-31, which encodes the first essential astacin metalloprotease identified in this organism. Loss-of-function mutations in dpy-31 result in cuticle defects, abnormal morphology, and embryonic lethality, indicating that dpy-31 is required for formation of the collagenous exoskeleton. DPY-31 is widely expressed in the hypodermal cells, which are responsible for cuticle secretion. We have investigated the dpy-31 function through reversion analysis. While complete reversion can be obtained only by intragenic suppressors, reversion of the Dpy-31 lethal phenotype also can be caused by dominant extragenic suppressors. Nine extragenic suppressors carry mutations in the uniquely essential collagen gene sqt-3, which we show is the same gene as rol-4. Most mutations exhibit the unusual property of exclusively dominant suppression and all affect the sequence of the SQT-3 collagen C terminus. This suggests that DPY-31 is responsible for C-terminal proteolytic processing of collagen trimers and is therefore a structural and functional homolog of vertebrate BMP-1. The results also demonstrate the critical importance of the collagen C-terminal sequence, which is highly conserved among all 49 members of the SQT-3 subfamily.
Collapse
Affiliation(s)
- Jacopo Novelli
- Genetics Unit, Department of Biochemistry, Oxford OX1 3QU, United Kingdom
| | | | | |
Collapse
|
8
|
Page AP, Winter AD. Enzymes involved in the biogenesis of the nematode cuticle. ADVANCES IN PARASITOLOGY 2003; 53:85-148. [PMID: 14587697 DOI: 10.1016/s0065-308x(03)53003-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nematodes include species that are significant parasites of man, his domestic animals and crops, and cause chronic debilitating diseases in the developing world; such as lymphatic filariasis and river blindness caused by filarial species. Around one third of the World's population harbour parasitic nematodes; no vaccines exist for prevention of infection, limited effective drugs are available and drug resistance is an ever-increasing problem. A critical structure of the nematode is the protective cuticle, a collagen-rich extracellular matrix (ECM) that forms the exoskeleton, and is critical for viability. This resilient structure is synthesized sequentially five times during nematode development and offers protection from the environment, including the hosts' immune response. The detailed characterization of this complex structure; it's components, and the means by which they are synthesized, modified, processed and assembled will identify targets that may be exploited in the future control of parasitic nematodes. This review will focus on the nematode cuticle. This structure is predominantly composed of collagens, a class of proteins that are modified by a range of co- and post-translational modifications prior to assembly into higher order complexes or ECMs. The collagens and their associated enzymes have been comprehensively characterized in vertebrate systems and some of these studies will be addressed in this review. Conversely, the biosynthesis of this class of essential structural proteins has not been studied in such detail in the nematodes. As with all morphogenetic, functional and developmental studies in the Nematoda phylum, the free-living species Caenorhabditis elegans has proven to be invaluable in the characterization of the cuticle and the cuticle collagen gene family, and is now proving to be an excellent model in the study of cuticle collagen biosynthetic enzymes. This model system will be the main focus of this review.
Collapse
Affiliation(s)
- Antony P Page
- Wellcome Centre for Molecular Parasitology, The Anderson College, The University of Glasgow, Glasgow G11 6NU, UK
| | | |
Collapse
|
9
|
de Moraes Neto AHA, Lanfredi RM, Gadelha C, Cunha-e-Silva NL, Simão RA, Achete C, de Souza W. Further studies on the structural analysis of the cuticle of Litomosoides chagasfilhoi (Nematoda: Filarioidea). Parasitol Res 2003; 89:397-406. [PMID: 12632155 DOI: 10.1007/s00436-002-0783-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Accepted: 08/15/2002] [Indexed: 11/24/2022]
Abstract
In order to obtain further information on the structural organization of the cuticle of nematodes, this structure was isolated from adult forms of the filariid Litomosoides chagasfilhoi. The purity of the fraction was determined by light and transmission electron microscopy, deep-etching, high resolution scanning electron microscopy, atomic force microscopy, immunocytochemistry, gel electrophoresis (SDS-PAGE) and Western blot. The epicuticle presented a rugous surface with parallel rows and several globular particles that could be involved in the absorption of nutrients and secretion of products. Analysis by SDS-PAGE of purified cuticles revealed five major polypeptides corresponding to 151, 41, 28, 13 and 11 kDa. A polyclonal antibody against a synthetic 18 amino-acid peptide that corresponds to the sequence of domain E of the Haemonchus contortus3A3 collagen gene recognized several protein bands on the Western blot of purified cuticle, and labeled all cuticular layers, as shown by immunocytochemistry.
Collapse
Affiliation(s)
- A H A de Moraes Neto
- Laboratório de Helmintologia Programa de Biologia Celular e Parasitologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Merriweather A, Guenzler V, Brenner M, Unnasch TR. Characterization and expression of enzymatically active recombinant filarial prolyl 4-hydroxylase. Mol Biochem Parasitol 2001; 116:185-97. [PMID: 11522351 DOI: 10.1016/s0166-6851(01)00317-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cuticle of parasitic nematodes consists primarily of a network of collagen molecules. The enzyme responsible for collagen maturation is prolyl 4-hydroxylase, making this enzyme a central activity in cuticle biosynthesis and a potentially important chemotherapeutic target. Adult and embryonic Brugia malayi are shown to be susceptible to inhibitors of vertebrate prolyl 4-hydroxylase, with exposed parasites exhibiting pathologies consistent with a disruption in cuticle biosynthesis. A full-length cDNA (Ov-phy-1) encoding a catalytically active alpha-subunit of Onchocerca volvulus prolyl 4-hydroxylase was isolated and characterized. The derived amino acid sequence of Ov-phy-1 encoded a peptide that was most similar to the two Caenorhabditis elegans prolyl 4-hydroxylase homologues and to the isoform II enzymes of vertebrates. Expressed sequence tag (EST) analysis and developmental polymerase chain reaction (PCR) studies demonstrated that Ov-phy-1 was expressed in L3 and adult parasites. The gene encoding the Ov-phy-1 open reading frame contained 11 introns, similar in structure to the gene encoding human prolyl 4-hydroxylase isoform I. Genomic Southern blot, EST and genomic PCR studies demonstrated that the O. volvulus genome contained between three and eight genes closely related to Ov-phy-1. Co-expression of Ov-phy-1 with the O. volvulus homologue of protein disulfide isomerase in a baculovirus system resulted in the production of enzymatically active O. volvulus prolyl 4-hydroxylase. In vitro production of enzymatically active O. volvulus prolyl 4-hydroxylase should facilitate identification of specific inhibitors of the parasite enzyme.
Collapse
Affiliation(s)
- A Merriweather
- Division of Geographic Medicine, University of Alabama at Birmingham, BBRB 203, 1530 3rd Avenue South, Birmingham, AL 35294-2170, USA
| | | | | | | |
Collapse
|
11
|
Metzler DE, Metzler CM, Sauke DJ. Lipids, Membranes, and Cell Coats. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Hill KL, Harfe BD, Dobbins CA, L'Hernault SW. dpy-18 encodes an alpha-subunit of prolyl-4-hydroxylase in caenorhabditis elegans. Genetics 2000; 155:1139-48. [PMID: 10880476 PMCID: PMC1461137 DOI: 10.1093/genetics/155.3.1139] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Collagen is an extracellular matrix (ECM) component encoded by a large multigene family in multicellular animals. Procollagen is post-translationally modified by prolyl-4-hydroxylase (EC 1.14.11.2) before secretion and participation in ECM formation. Therefore, collagen processing and regulation can be studied by examining this required interaction of prolyl-4-hydroxylase with procollagen. High-resolution polymorphism mapping was used to place the Caenorhabditis elegans dpy-18 gene on the physical map, and we show that it encodes a prolyl-4-hydroxylase alpha catalytic subunit. The Dpy phenotype of dpy-18(e364) amber mutants is more severe when this mutation is in trans to the noncomplementing deficiency tDf7, while the dpy-18(e499) deletion mutant exhibits the same phenotype as dpy-18(e499)/tDf7. Furthermore, dpy-18 RNA interference (RNAi) in wild-type worms results in Dpy progeny, while dpy-18 (RNAi) in dpy-18(e499) mutants does not alter the Dpy phenotype of their progeny. These observations suggest that the dpy-18 null phenotype is Dpy. A dpy-18::gfp promoter fusion construct is expressed throughout the hypodermis within the cells that abundantly produce the cuticle collagens, as well as in certain head and posterior neurons. While prolyl-4-hydroxylase has been studied extensively by biochemical techniques, this is the first report of a mutationally defined prolyl-4-hydroxylase in any animal.
Collapse
Affiliation(s)
- K L Hill
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
13
|
Venolia L, Ao W, Kim S, Kim C, Pilgrim D. unc-45 gene of Caenorhabditis elegans encodes a muscle-specific tetratricopeptide repeat-containing protein. CELL MOTILITY AND THE CYTOSKELETON 2000; 42:163-77. [PMID: 10098931 DOI: 10.1002/(sici)1097-0169(1999)42:3<163::aid-cm1>3.0.co;2-e] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The unc-45 gene of the nematode, Caenorhabditis elegans, is essential for muscle organization and embryonic development. Genetic evidence suggests the unc-45 gene product controls muscle thick filament assembly. We report here on the determination of the gene's chromosomal location and the isolation and sequencing of its cDNA. The amino terminus of the predicted unc-45 protein contains three tandem repeats that belong in the tetratricopeptide repeat family. Tetratricopeptide motifs have been shown to be involved in protein interactions, and some of the closest homologues have chaperone-like activity. The carboxy terminus of the protein has homology with the related fungal proteins, CRO1 and She4p, which have been postulated to play a role in assembly of or interactions with a cytoplasmic myosin. We have also determined the sequence of the homologous gene from C. briggsae, which demonstrates a high level of conservation. We show that the unc-45 gene promoter can drive reporter gene expression, which is limited to muscle tissues (pharyngeal, body wall, vulval, and anal muscles), consistent with a role for the unc-45 gene in muscle development or function.
Collapse
Affiliation(s)
- L Venolia
- Deparment of Biology, Williams College, Williamstown, Massachusetts 01267-3147, USA
| | | | | | | | | |
Collapse
|
14
|
Thacker C, Marra MA, Jones A, Baillie DL, Rose AM. Functional Genomics in Caenorhabditis elegans: An Approach Involving Comparisons of Sequences from Related Nematodes. Genome Res 1999. [DOI: 10.1101/gr.9.4.348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Comparative genomic analysis was used to investigate the gene structure of the bli-4 locus from two relatedCaenorhabditis species, C. elegans and C. briggsae. In C. elegans, bli-4 is a complex gene encoding a member of the kex2/subtilisin-like family of proprotein convertases. Genomic sequence comparisons coupled with RT–PCR analysis identified five additional coding exons that had not been identified previously using standard recombinant DNA techniques. The C. briggsae gene was able to rescue both viable blistered and developmentally arrested mutants of C. elegans bli-4, demonstrating functional conservation. In addition, deletion analysis of conserved sequences outside of coding regions, combined with phenotypic rescue experiments, identified regulatory elements that alter the expression of the bli-4 gene. These results demonstrate the utility of genomic sequence comparisons of homologous genes in related species as an effective tool with which to dissect the functional information of complex genes.[The sequence for cosmid K0410 is available at GenBank (accession no. AFO 39719); fosmids G06P23 and G25K01 are available as online supplementary material atwww.genome.org.]
Collapse
|
15
|
Jones JT, Curtis RH, Wightman PJ, Burrows PR. Isolation and characterization of a putative collagen gene from the potato cyst nematode Globodera pallida. Parasitology 1996; 113 ( Pt 6):581-8. [PMID: 8939055 DOI: 10.1017/s0031182000067639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A cDNA clone encoding a full length putative collagen has been isolated in a screen of a mixed stage Globodera pallida expression library. Comparison of the deduced amino acid sequence of this molecule with other collagens suggests it is a cuticular collagen and a member of the col-8 subfamily of collagen genes. Northern blots show the gene is expressed specifically in gravid, adult females of the parasite as compared to second (invasive) stage juveniles and virgin females. Preliminary immunocytochemical studies indicate this collagen is present in areas other than the cuticle; these findings and the potential functional role of this collagen are discussed.
Collapse
Affiliation(s)
- J T Jones
- Unit of Nematology, Scottish Crop Research Institute, Invergowrie, Dundee, Scotland.
| | | | | | | |
Collapse
|
16
|
Thacker C, Peters K, Srayko M, Rose AM. The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. Genes Dev 1995; 9:956-71. [PMID: 7774813 DOI: 10.1101/gad.9.8.956] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many secreted proteins are excised from inactive proproteins by cleavage at pairs of basic residues. Recent studies have identified several serine endoproteases that catalyze this cleavage in the secretory pathways of yeast and metazoans. These enzymes belong to the kex2/subtilisin-like family of proprotein convertases. In this paper we describe the molecular characterization of the bli-4 gene from Caenorhabditis elegans, which was shown previously by genetic analysis of lethal mutants to be essential for the normal development of this organism. Sequencing of cDNA and genomic clones has revealed that bli-4 encodes gene products related to the kex2/subtilisin-like family of proprotein convertases. Analysis of bli-4 cDNAs has predicted four protein products, which we have designated blisterases A, B, C, and D. These protein products share a common amino terminus, but differ at the carboxyl termini, and are most likely produced from alternatively spliced transcripts. We have determined the molecular lesions for three bli-4 alleles (h199, h1010, and q508) that result in developmental arrest during late embryogenesis. In each case, the molecular lesions are within exons common to all of the BLI-4 isoforms. The original defining allele of bli-4, e937, is completely viable yet exhibits blistering of the adult cuticle. Molecular analysis of this allele revealed a deletion that removes exon 13, which is unique to blisterase A. No RNA transcript corresponding to exon 13 is detectable in the blistered mutants. These findings suggest that blisterase A is required for the normal function of the adult cuticle.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Thacker
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
17
|
Scott AL, Yenbutr P, Eisinger SW, Raghavan N. Molecular cloning of the cuticular collagen gene Bmcol-2 from Brugia malayi. Mol Biochem Parasitol 1995; 70:221-5. [PMID: 7637708 DOI: 10.1016/0166-6851(95)00017-u] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A L Scott
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- M Krause
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Krause M. Chapter 20 Transcription and Translation. Methods Cell Biol 1995. [DOI: 10.1016/s0091-679x(08)61400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
20
|
Van der Eycken W, de Almeida Engler J, Van Montagu M, Gheysen G. Identification and analysis of a cuticular collagen-encoding gene from the plant-parasitic nematode Meloidogyne incognita. Gene 1994; 151:237-42. [PMID: 7828882 DOI: 10.1016/0378-1119(94)90663-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The vast majority of proteins in the nematode cuticle are collagens. Cuticular collagen-encoding genes (col) have been described for the animal parasites Ascaris suum and Haemonchus contortus and for the free-living Caenorhabditis elegans. The proteins encoded by all these genes seem to have the same basic structure, indicating that there is a conserved subfamily of cuticular col in these nematodes. In this paper, we describe the identification and characterization of a cDNA (Lemmi 5) which corresponds to a cuticular col of the plant-parasitic nematode Meloidogyne incognita. The derived protein structure is very similar to the basic structure of the C. elegans cuticular collagens. Using PCR technology, we have shown the presence of Lemmi 5-related sequences in the genome of Ditylenchus destructor. Our data strongly support the existence of a cuticular col subfamily which is highly conserved in the phylum Nemata.
Collapse
|
21
|
van der Keyl H, Kim H, Espey R, Oke CV, Edwards MK. Caenorhabditis elegans sqt-3 mutants have mutations in the col-1 collagen gene. Dev Dyn 1994; 201:86-94. [PMID: 7803850 DOI: 10.1002/aja.1002010109] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
sqt-3 mutants of Caenorhabditis elegans form dumpy larvae and adults and display allele-specific defects in locomotion, fertility, and viability. We have determined that the sqt-3 locus encodes COL-1 collagen. We physically mapped the col-1 gene to a cosmid on chromosome V whose position is consistent with the location of the sqt-3 gene. We also observed morphological defects in sqt-3 mutants at stages that correlate with the mRNA expression patterns of col-1. Sequence analysis of the col-1 gene in the three temperature-sensitive mutants revealed that each allele of sqt-3 has a unique missense mutation causing arginine or glutamic acid to replace glycine in a Gly-X-Y triple helical domain. These glycine substitutions may result in longer non-collagenous domains, which may decrease the thermal stability or impart additional flexibility to mutant trimers. In addition, we describe four corrections to the published sequence of col-1, including one fifteen nucleotide addition that completes a conserved domain in the amino terminal coding region.
Collapse
Affiliation(s)
- H van der Keyl
- Department of Biology, Haverford College, Pennsylvania 19041
| | | | | | | | | |
Collapse
|
22
|
Abstract
The cuticle of the nematode Caenorhabditis elegans forms the barrier between the animal and its environment. In addition to being a protective layer, it is an exoskeleton which is important in maintaining and defining the normal shape of the nematode. The cuticle is an extracellular matrix consisting predominantly of small collagen-like proteins that are extensively crosslinked. Although it also contains other protein and non-protein compounds that undoubtedly play a significant part in its function, the specific role of collagen in cuticle structure and morphology is considered here. The C. elegans genome contains between 50 and 150 collagen genes, most of which are believed to encode cuticular collagens. Mutations that result in cuticular defects and grossly altered body form have been identified in more than 40 genes. Six of these genes are now known to encode cuticular collagens, a finding that confirms the importance of this group of structural proteins to the formation of the cuticle and the role of the cuticle as an exoskeleton in shaping the worm. It is likely that many more of the genes identified by mutations giving altered body form, will be collagen genes. Mutations in the cuticular collagen genes provide a powerful tool for investigating the mechanisms by which this group of proteins interact to form the nematode cuticle.
Collapse
|
23
|
Levy AD, Kramer JM. Identification, sequence and expression patterns of the Caenorhabditis elegans col-36 and col-40 collagen-encoding genes. Gene 1993; 137:281-5. [PMID: 8299960 DOI: 10.1016/0378-1119(93)90021-t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The collagen (Col)-encoding gene family in the nematode, Caenorhabditis elegans, consists of 50-150 members. We have undertaken studies of these genes as part of the analysis of the assembly of the cuticle, the nematode's exoskeleton. We present here the complete nucleotide and deduced amino acid sequences of the col-36 and col-40 genes, both located on chromosome II and encoding cuticle Col. Both Col possess the structural properties found in the type of Col that form the cuticle, such as short Gly-Xaa-Yaa interruptions and Cys clusters at conserved sites. On the basis of identical patterns of conserved cysteines, col-36 and col-40 belong to the col-6 cuticle Col family. Semi-quantitative analysis using reverse transcription-PCR demonstrates that the col-36 transcript is present in L1 larvae and at the L1-L2 and L2d-dauer molts. The col-40 transcript is present in L1 larvae and at the L2d-dauer molt. Different members of the col-6 family are structurally related, but have different developmental expression patterns.
Collapse
Affiliation(s)
- A D Levy
- Department of Cell, Molecular and Structural Biology, Northwestern University Medical School, Chicago, IL 60611
| | | |
Collapse
|
24
|
Fetterer RH, Rhoads ML. Biochemistry of the nematode cuticle: relevance to parasitic nematodes of livestock. Vet Parasitol 1993; 46:103-11. [PMID: 8484203 DOI: 10.1016/0304-4017(93)90051-n] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cuticle of nematodes is a thin, flexible outer covering composed primarily of protein with trace amounts of lipid and carbohydrate. There has been considerable recent interest in the biochemistry, immunology and molecular biology of the cuticle of parasitic nematodes because of its role as an interface between parasite and host. The cuticle consists of: (1) collagen-like proteins that form the medial and basal layers; (2) non-collagen proteins that form the epicuticular and external cortical regions; (3) non-structural proteins associated with the external surface. The collagen-like proteins are solubilized by reducing agents, have molecular weights of 30-120 kDa and exhibit stage and species variations. Nematode collagen genes, however, code only for proteins with molecular weights of 30 kDa. The non-collagenous proteins, referred to as cuticlin, exhibit unusual chemical properties as indicated by their resistance to solubilization even under strongly denaturing conditions. Recent studies of Ascaris suum have demonstrated the presence of tyrosine-derived cross-links, dityrosine and isotrityrosine, that may form the linkage between subunits in assemblage of the collagenous and noncollagenous structural components of the cuticle. A peroxidase enzyme has been implicated in the synthesis of these cross-links. Recent 125I labeling studies of Haemonchus contortus have identified and characterized stage-specific proteins on the cuticular surface.
Collapse
Affiliation(s)
- R H Fetterer
- Helminthic Diseases Laboratory, Agricultural Research Service, Beltsville, MD 20705
| | | |
Collapse
|
25
|
Politz SM, Philipp M. Caenorhabditis elegans as a model for parasitic nematodes: A focus on the cuticle. ACTA ACUST UNITED AC 1992; 8:6-12. [PMID: 15463517 DOI: 10.1016/0169-4758(92)90302-i] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The phylum Nematoda consists of over half a million species of worms that inhabit astoundingly diverse environments. Nematodes can live as obligatory parasites of plants and animals, or alternate a parasitic with a free-living life style. The fact that the vast majority of species are strictly free living often surprises parasitology students, for obviously the highest research priorities in this field have involved parasites of medical, veterinary and agricultural importance. Here Samuel Politz and Mario Philipp contend that some basic questions concerning the biology of the parasite cuticle can be investigated more easily and in greater depth in the free-living nematode Caenorhabditis elegans than in the parasites themselves.
Collapse
Affiliation(s)
- S M Politz
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | |
Collapse
|
26
|
Abstract
The collagen genes of nematodes encode proteins that have a diverse range of functions. Among their most abundant products are the cuticular collagens, which include about 80% of the proteins present in the nematode cuticle. The structures of these collagens have been found to be strikingly similar in the free-living and parasitic nematode species studied so far, and the genes that encode them appear to constitute a large multigene family whose expression is subject to developmental regulation. Collagen genes that may have a role in cell-cell interactions and collagen genes that correspond to the vertebrate type IV collagen genes have also been identified and studied in nematodes.
Collapse
Affiliation(s)
- I B Kingston
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
27
|
Cox GN. Molecular biology of the cuticle collagen gene families of Caenorhabditis elegans and Haemonchus contortus. Acta Trop 1990; 47:269-81. [PMID: 1978527 DOI: 10.1016/0001-706x(90)90028-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G N Cox
- Synergen Inc., Boulder, CO 80301
| |
Collapse
|
28
|
Abstract
The surface-associated molecules of the second (L2), third (L3) and fourth (L4) larval stages of Dirofilaria immitis were characterized employing radiolabeling techniques and SDS-PAGE analysis. Major labeled components of 35 kDa and 6 kDa were present in extracts from IODO-GEN-labeled L2 and L3 parasites. The results of lactoperoxidase-catalyzed reactions also demonstrated that L2 and L3 stages of D. immitis have a similar repertoire of surface-associated antigens. However, in contrast to the results obtained with IODO-GEN, lactoperoxidase reactions labeled components with apparent molecular weights of 66, 48, 25, 16.5 and 12 kDa. The similarities in the molecular weights of the L2 and L3 surface-associated components and the results of immunoprecipitation experiments which demonstrated that antibodies produced against the 35 kDa molecule from D. immitis L3s also recognize the 35 kDa component from L2 parasites suggest that synthesis of the molecules found at the surface of mature infective larvae begins as early as day 6 of development in the mosquito, D. immitis L4s emerged from the molting process with a repertoire of surface-associated antigens distinct from those found on L2s and L3s. IODO-GEN labeling of D. immitis L4s showed major surface-associated molecules with apparent molecular weights of 57, 40, 25, 12 and 10 kDa when analyzed under non-reducing conditions. In addition to molecules of 57, 40, 25, 12 and 10 kDa, extracts of D. immitis L4s labeled with lactoperoxidase contained additional major bands at 45, 43 and 8 kDa. Metabolic labeling experiments demonstrated a shift in the amount and complexity of the excretory/secretory products released by D. immitis during L3 to L4 development.
Collapse
|
29
|
Haemonchus contortus: evidence that the 3A3 collagen gene is a member of an evolutionarily conserved family of nematode cuticle collagens. Exp Parasitol 1990; 70:175-85. [PMID: 2404780 DOI: 10.1016/0014-4894(90)90098-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rabbit antisera were raised against an 18 amino acid-long peptide that corresponds to the predicted sequence of the carboxy-terminal, nontriple helical region of the Haemonchus contortus 3A3 collagen gene. This sequence is highly conserved and diagnostic for members of the col-l collagen family, which includes the 3A3 gene. We find that these antisera react predominantly with multiple, high molecular weight (greater than 68 kDa) proteins on Western blots of whole worm extracts. The number and molecular weights of the reacting proteins vary depending upon the developmental stage of the worms analyzed. All of the reacting proteins are collagenase sensitive. The reacting collagens copurify with cuticles and are released from cuticles by reducing agents. In indirect immunofluorescence assays the antisera react only with the broken edges of isolated cuticles, suggesting that the antisera are reacting with an internal cuticle layer. This layer appears to be circular and to extend throughout the length of the worm. The antisera react on Western blots with multiple, high molecular weight collagens of eight other nematodes examined, representing two classes and several orders. These data provide additional support for the notion that the 3A3 collagen gene, and other members of the col-l collagen family, encode cuticle collagens. Collagens with this peptide sequence, presumably other members of the col-l collagen family, appear to be widely distributed in the phylum Nematoda.
Collapse
|
30
|
Park YS, Kramer JM. Tandemly duplicated Caenorhabditis elegans collagen genes differ in their modes of splicing. J Mol Biol 1990; 211:395-406. [PMID: 1689778 DOI: 10.1016/0022-2836(90)90360-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Caenorhabditis elegans contains 50 to 150 collagen genes dispersed throughout its genome. We have determined the complete nucleotide sequences of two collagen genes, col-12 and col-13, that are separated by only 1800 bases and are transcribed in the same direction. The 951 nucleotides of their coding regions differ by only five nucleotides (99.5% identity). The amino acid sequences are identical except for two conservative amino acid changes within the putative secretory signal sequences, so the mature forms of the col-12 and col-13 collagens would be identical. The position and sequence of the intron (52 base-pairs) within the coding region of each gene are perfectly conserved. In contrast to the coding regions and the introns, the 5' and 3' flanking regions show little sequence similarity, col-12 and col-13 are expressed at similar levels at the same developmental stages, and appear to utilize conserved TATA boxes and transcription start sites. The major differences between the genes is that, preceding the initiator ATG, col-12 has a cis-spliced intron, while col-13 is transspliced. Thus, col-12 and col-13 are essentially identical in all aspects except that the col-12 mRNA has a 26-nucleotide cis-spliced leader at the same place where the col-13 mRNA has a 22-nucleotide trans-spliced leader. These results suggest that col-12 and col-13 are derived from a gene duplication and that sequence homology in the coding regions, but not in the flanking regions, has been maintained by gene conversion. The fact that the only significant difference between the two genes is in their modes of splicing suggests that cis and trans-splicing can be interchanged during gene evolution.
Collapse
Affiliation(s)
- Y S Park
- University of Illinois, Department of Biological Sciences, Chicago 60680
| | | |
Collapse
|
31
|
Guo XD, Kramer JM. The Two Caenorhabditis elegans Basement Membrane (Type IV) Collagen Genes Are Located on Separate Chromosomes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)71530-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
32
|
Cox GN, Fields C, Kramer JM, Rosenzweig B, Hirsh D. Sequence comparisons of developmentally regulated collagen genes of Caenorhabditis elegans. Gene 1989; 76:331-44. [PMID: 2753356 DOI: 10.1016/0378-1119(89)90173-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Collagen genes col-6, col-7 (partial), col-8, col-14 and col-19 from the nematode Caenorhabditis elegans were sequenced, and compared to the previously sequenced genes col-1 and col-2. The genes are between 1.0 and 1.2 kb in length, and each includes one or two short introns. The presumptive promoter regions contain sequences similar to the eukaryotic TATA promoter element. Two distinct, conserved sequences were found in the presumptive promoter regions of, respectively, the dauer larva-specific genes col-2 and col-6, and the primarily adult-specific genes col-7 and col-19. The domain structures of the collagen polypeptides are similar: each polypeptide contains two triple-helix forming (Gly-X-Y)n domains, one of 30-33 amino acids (aa), and the other of 127-132 aa. The latter domain is interrupted by one to three short (2-8 aa) non-(Gly-X-Y)n segments that occur at relatively conserved locations in each polypeptide. Sets of cysteine residues flank the (Gly-X-Y)n domains in all of the polypeptides. The genes can be placed into three families based upon amino acid sequence similarities. Genes within a family do not always exhibit similar developmental expression programs, suggesting that structural and regulatory regions of the genes have evolved separately. The codon usage in the genes is highly asymmetrical, with adenine appearing in the third position of 85% of the glycine codons, and 93% of the proline codons.
Collapse
Affiliation(s)
- G N Cox
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder 80309-0347
| | | | | | | | | |
Collapse
|
33
|
Selkirk ME, Nielsen L, Kelly C, Partono F, Sayers G, Maizels RM. Identification, synthesis and immunogenicity of cuticular collagens from the filarial nematodes Brugia malayi and Brugia pahangi. Mol Biochem Parasitol 1989; 32:229-46. [PMID: 2927447 DOI: 10.1016/0166-6851(89)90073-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The major structural proteins of the cuticle of the filarial nematode parasites Brugia malayi and Brugia pahangi were identified by extrinsic iodination and sensitivity to clostridial collagenase. At least 16 acidic components were identified in adult worms by 2-dimensional electrophoresis, with molecular weights ranging from 35,000 to 160,000. These proteins appear to be cross-linked by disulphide bonds, and localised in the basal and inner cortical layers of the cuticle. The outer cortex, containing the epicuticle, is insoluble in 1% sodium dodecyl sulphate and 5% 2-mercaptoethanol, and can be isolated free of cellular material. Despite their inaccessibility to the immune system in intact worms, antibodies to the cuticular collagens are provoked in humans infected with a variety of filarial parasites. Immunological cross-reactivity was demonstrated between a 35 kDa component and human type IV (basement membrane) collagen. Autoantibodies to type IV collagen were detected in a number of individuals with lymphatic filariasis, although no correlation could be drawn with observed pathology. Synthesis of cuticular collagens is discontinuous, occurs at negligible levels in mature adult male worms, and does not appear to involve the production of small molecular weight precursors, in contrast to Caenorhabditis elegans. Hybridisation with a heterologous cDNA probe coding for the alpha 2 chain of chicken type 1 collagen suggests that they are encoded by a multigene family.
Collapse
Affiliation(s)
- M E Selkirk
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, U.K
| | | | | | | | | | | |
Collapse
|
34
|
Bornstein P, Sage H. Regulation of collagen gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1989; 37:67-106. [PMID: 2672111 DOI: 10.1016/s0079-6603(08)60695-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Fields C. Domain organization and intron positions in Caenorhabditis elegans collagen genes: the 54-bp module hypothesis revisited. J Mol Evol 1988; 28:55-63. [PMID: 3148742 DOI: 10.1007/bf02143497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The amino acid (aa) sequences of the polypeptides encoded by five collagen genes of the nematode Caenorhabditis elegans, col-6, col-7 (partial), col-8, col-14, and col-19, were determined. These collagen polypeptides, as well as those encoded by the previously sequenced C. elegans collagen genes col-1 and col-2, share a common organization into five domains: an amino-terminal leader, a short (30-33 aa) (Gly-X-Y)n domain, a non(Gly-X-Y) spacer, a long (127-132 aa) (Gly-X-Y)n domain, and a short carboxyl-terminal domain. The domain organizations and intron positions of these polypeptides were compared with those of the polypeptides encoded by Drosophila and Strongylocentrotus type IV, and vertebrate types I, II, III, IV, and IX collagen genes; the C. elegans collagen polypeptides are most similar to the vertebrate type IX collagens. It is suggested that the collagen gene family comprises two divergent subfamilies, one of which includes the vertebrate interstitial collagen genes, and the other of which includes the invertebrate collagen genes and the vertebrate type IV and type IX collagen genes. Only the vertebrate interstitial collagen genes display clear evidence of evolution via the tandem duplication of a 54-bp exon.
Collapse
Affiliation(s)
- C Fields
- Computing Research Laboratory, New Mexico State University, Las Cruces 88003-0001
| |
Collapse
|
36
|
Kramer JM, Johnson JJ, Edgar RS, Basch C, Roberts S. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell 1988; 55:555-65. [PMID: 3180220 DOI: 10.1016/0092-8674(88)90214-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Different mutations in the sqt-1 gene of C. elegans can lengthen, shorten, or helically twist the entire animal. We have cloned the sqt-1 gene and have shown that it encodes a collagen. sqt-1 was localized to a 35 kb region of DNA by physical mapping of chromosomal deficiencies. A transposon (Tc1)-induced mutation of sqt-1 was generated and utilized to identify the sqt-1 gene within this 35 kb region. Sequence analysis of the sqt-1 gene shows that it encodes a 32 kd collagen polypeptide that is similar in size and structure to other members of the C. elegans collagen family. The Tc1 insertion mutant has no detectable sqt-1 transcripts, yet it is morphologically normal, indicating that the null phenotype of sqt-1 is wild type. These results demonstrate that collagen mutations can have dramatic effects on organismal morphology.
Collapse
Affiliation(s)
- J M Kramer
- Laboratory for Cell, Molecular, and Developmental Biology, University of Illinois, Chicago 60680
| | | | | | | | | |
Collapse
|
37
|
Abstract
Mutations in the Caenorhabditis elegans dpy-13 (dumpy) gene result in a short, chunky body shape. This gene was tagged by insertion of the Tc1 transposon, and the wild-type gene was cloned by chromosomal walking 11 kb from ama-1, a cloned gene encoding the large subunit of RNA polymerase II. Three transposon insertion sites in dpy-13 are located near the 5' end of a 1.2 kb transcribed region. The EMS-induced reference allele, dpy-13(e184), carries a small deletion near the middle of this gene. The DNA sequence reveals that dpy-13 is a member of the collagen multi-gene family, and it could encode a polypeptide of 302 amino acids. A 146 base pair sequence, encoding amino acids 56-103, is unique in the C. elegans genome, and it hybridizes to a 1 kb mRNA of moderate abundance.
Collapse
Affiliation(s)
- N von Mende
- Division of Biological Sciences, University of Missouri, Columbia 65211
| | | | | | | |
Collapse
|
38
|
Fetterer RH, Urban JF. Developmental changes in cuticular proteins of Ascaris suum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1988; 90:321-7. [PMID: 3409662 DOI: 10.1016/0305-0491(88)90081-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
1. Cuticles were isolated from developmental stages of the swine nematode Ascaris suum by a combination of mechanical disruption and detergent treatment of larvae or by surgical removal of cuticle from adults. Proteins from the isolated cuticles were solubilized with 2-mercaptoethanol (2ME) and analyzed by SDS-PAGE. 2. 2ME soluble, cuticular proteins from adults consisted of 5 to 6 bands with 80% of proteins in 2 bands with mol. wts of 106,000 and 93,000. Cuticular proteins from the third and fourth larval stages (L3 and L4) were comparable to adult, but differences in the number of bands were observed. The soluble proteins from the adult, L3 and L4 were readily degraded by a bacterial collagenase suggesting that these proteins are collagen-like structural elements of the cuticle. 3. The soluble proteins from the second stage (L2) differed from the adult and other larval stages in both the number and mol. wt of protein bands and their lack of degradation by bacterial collagenase. Amino acid composition of soluble cuticular proteins were similar for adult and L4, but glycine and proline were present in lower amounts in the L2. 4. These results support a hypothesis that there are stage specific differences in cuticular proteins from A. suum and that the greatest differences appear to exist between L2 and other stages.
Collapse
Affiliation(s)
- R H Fetterer
- Helminthic Diseases Laboratory, USDA, BARC-East Beltsville, MD 20705
| | | |
Collapse
|
39
|
Abstract
While determining the 5' ends of C. elegans actin mRNAs, we have discovered a 22 nucleotide spliced leader sequence. The leader sequence is found on mRNA from three of the four nematode actin genes. The leader also appears to be present on some, but not all, nonactin mRNAs. The actin mRNA leader sequence is identical to the first 22 nucleotides of a novel 100 nucleotide RNA transcribed adjacent, and in the opposite orientation, to the 5S ribosomal gene. The evidence suggests that the actin mRNA leader sequence is acquired from this novel nucleotide transcript by an intermolecular trans-splicing mechanism.
Collapse
|
40
|
|
41
|
Abstract
We have shown the expression of transformed genes in the nematode Caenorhabditis elegans using a new gene fusion system. Vectors consisting of the flanking regions of a collagen gene (col-1) or a major sperm protein gene of C. elegans fused to the Escherichia coli uidA gene, encoding beta-glucuronidase, were microinjected into worms and found to be propagated as high-copy extrachromosomal tandem arrays. We have detected beta-glucuronidase activity in transformed lines, and have shown that the activity is dependent upon the correct reading frame of the construction and on the presence of the worm sequences. The enzyme activity was shown to be encoded by the chimeric beta-glucuronidase gene by co-segregation analysis and by inactivation with specific antisera. Expression is at a very low level, and seems to be constitutive. We have used histochemical techniques to visualize the enzyme activity in embryos.
Collapse
|
42
|
Sage H, Mecham R. Extracellular matrix-induced synthesis of a low molecular weight collagen by fetal calf ligament fibroblasts. Connect Tissue Res 1987; 16:41-56. [PMID: 2952447 DOI: 10.3109/03008208709001993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Fetal calf ligamentum nuchae fibroblasts, cultured from animals of different gestational age, synthesize a unique, low molecular weight collagen termed FCL-1 (Sage, H., Mecham, R., Johnson, C., and Bornstein, P., 1983, J. Cell Biol. 97:1933-1938). Previous studies on the elastogenic differentiation of these cells in vitro demonstrated that the extracellular matrix (ECM) protein elastin was specifically induced in undifferentiated fibroblasts when they were grown on ligament ECM isolated from animals at later stages of development (Mecham, R.P., Madaras, J.G., and Senior, R.M., 1984. J. Cell Biol. 98:1804-1812). To investigate the expression of FCL-1 as a function of developmental age, we grew fetal calf ligament fibroblasts from an 85 d (first trimester) animal (FCL 85d) on three different substrata: ligament from a 120 d (second trimester) animal, ligament from a 270 d (term) animal, and unmodified plastic tissue culture dishes. FCL 270d fibroblasts were grown on plastic substrata and served as a differentiated cellular control. Analysis of metabolically radiolabeled proteins from both the culture media and the cell layers showed that the synthesis of FCL-1 was selectively increased in those cells cultured on ligament ECM. For FCL 85d fibroblasts grown on 120 d and 270 d ligaments, FCL-1 comprised 17% and 22%, respectively, of the culture medium proteins that precipitated at concentrations of ammonium sulfate from 20-50%. FCL 85d and 270d fibroblasts grown on plastic substrata yielded values of 2.5% and 1.0%, respectively. This effect appeared to be specific for this collagen and did not reflect a general increase in the synthesis of connective tissue proteins of the ECM (e.g., types I and III procollagen). As percent of total newly-synthesized cellular protein, the output of FCL-1 was 10-fold higher by FCL 85d cells grown on 270d ligament ECM (5.8%) as compared to that of the same cellular population grown on a plastic surface (0.56%). The presence of the ligament ECM also altered the levels and distribution of secreted proteins between the culture medium and the cell layer. These studies provide evidence for differential expression of the novel collagen FCL-1 by FCL fibroblasts during development and suggest that such expression is affected, at least in part, by interaction of the cell with a ligament ECM.
Collapse
|
43
|
Hirsh D, Cox GN, Kramer JM, Stinchcomb D, Jefferson R. Structure and expression of the collagen genes of C. elegans. Ann N Y Acad Sci 1985; 460:163-71. [PMID: 3868944 DOI: 10.1111/j.1749-6632.1985.tb51164.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|