1
|
Cederlund AA, Aspden RM. Walking on water: revisiting the role of water in articular cartilage biomechanics in relation to tissue engineering and regenerative medicine. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220364. [PMID: 35919975 PMCID: PMC9346369 DOI: 10.1098/rsif.2022.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The importance, and the difficulty, of generating biosynthetic articular cartilage is widely recognized. Problems arise from obtaining sufficient stiffness, toughness and longevity in the material and integration of new material into existing cartilage and bone. Much work has been done on chondrocytes and tissue macromolecular components while water, which comprises the bulk of the tissue, is largely seen as a passive component; the ‘solid matrix’ is believed to be the main load-bearing element most of the time. Water is commonly seen as an inert filler whose restricted flow through the tissue is believed to be sufficient to generate the properties measured. We propose that this model should be turned on its head. Water comprises 70–80% of the matrix and has a bulk modulus considerably greater than that of cartilage. We suggest that the macromolecular components structure the water to support the loads applied. Here, we shall examine the structure and organization of the main macromolecules, collagen, aggrecan and hyaluronan, and explore how water interacts with their polyelectrolyte nature. This may inform the biosynthetic process by identifying starting points to enable developing tissue properties to guide the cells into producing the appropriate macromolecular composition and structure.
Collapse
Affiliation(s)
- Anna A Cederlund
- Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Richard M Aspden
- Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
2
|
Salinas-Marín R, Villanueva-Cabello TM, Martínez-Duncker I. Biology of Proteoglycans and Associated Glycosaminoglycans. COMPREHENSIVE GLYCOSCIENCE 2021:63-102. [DOI: 10.1016/b978-0-12-819475-1.00065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Chermside-Scabbo CJ, Harris TL, Brodt MD, Braenne I, Zhang B, Farber CR, Silva MJ. Old Mice Have Less Transcriptional Activation But Similar Periosteal Cell Proliferation Compared to Young-Adult Mice in Response to in vivo Mechanical Loading. J Bone Miner Res 2020; 35:1751-1764. [PMID: 32311160 PMCID: PMC7486279 DOI: 10.1002/jbmr.4031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Mechanical loading is a potent strategy to induce bone formation, but with aging, the bone formation response to the same mechanical stimulus diminishes. Our main objectives were to (i) discover the potential transcriptional differences and (ii) compare the periosteal cell proliferation between tibias of young-adult and old mice in response to strain-matched mechanical loading. First, to discover potential age-related transcriptional differences, we performed RNA sequencing (RNA-seq) to compare the loading responses between tibias of young-adult (5-month) and old (22-month) C57BL/6N female mice following 1, 3, or 5 days of axial loading (loaded versus non-loaded). Compared to young-adult mice, old mice had less transcriptional activation following loading at each time point, as measured by the number of differentially expressed genes (DEGs) and the fold-changes of the DEGs. Old mice engaged fewer pathways and gene ontology (GO) processes, showing less activation of processes related to proliferation and differentiation. In tibias of young-adult mice, we observed prominent Wnt signaling, extracellular matrix (ECM), and neuronal responses, which were diminished with aging. Additionally, we identified several targets that may be effective in restoring the mechanoresponsiveness of aged bone, including nerve growth factor (NGF), Notum, prostaglandin signaling, Nell-1, and the AP-1 family. Second, to directly test the extent to which periosteal cell proliferation was diminished in old mice, we used bromodeoxyuridine (BrdU) in a separate cohort of mice to label cells that divided during the 5-day loading interval. Young-adult and old mice had an average of 15.5 and 16.7 BrdU+ surface cells/mm, respectively, suggesting that impaired proliferation in the first 5 days of loading does not explain the diminished bone formation response with aging. We conclude that old mice have diminished transcriptional activation following mechanical loading, but periosteal proliferation in the first 5 days of loading does not differ between tibias of young-adult and old mice. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher J Chermside-Scabbo
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Taylor L Harris
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Michael D Brodt
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Ingrid Braenne
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University, St. Louis, MO, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew J Silva
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
4
|
Stavinohova R, Hartley C, Burmeister LM, Ricketts SL, Pettitt L, Tetas Pont R, Hitti RJ, Schofield E, Oliver JAC, Mellersh CS. Clinical, histopathological and genetic characterisation of oculoskeletal dysplasia in the Northern Inuit Dog. PLoS One 2019; 14:e0220761. [PMID: 31415586 PMCID: PMC6695176 DOI: 10.1371/journal.pone.0220761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Seven Northern Inuit Dogs (NID) were diagnosed by pedigree analysis with an autosomal recessive inherited oculoskeletal dysplasia (OSD). Short-limbed dwarfism, angular limb deformities and a variable combination of macroglobus, cataracts, lens coloboma, microphakia and vitreopathy were present in all seven dogs, while retinal detachment was diagnosed in five dogs. Autosomal recessive OSD caused by COL9A3 and COL9A2 mutations have previously been identified in the Labrador Retriever (dwarfism with retinal dysplasia 1-drd1) and Samoyed dog (dwarfism with retinal dysplasia 2-drd2) respectively; both of those mutations were excluded in all affected NID. Nine candidate genes were screened in whole genome sequence data; only one variant was identified that was homozygous in two affected NID but absent in controls. This variant was a nonsense single nucleotide polymorphism in COL9A3 predicted to result in a premature termination codon and a truncated protein product. This variant was genotyped in a total of 1,232 dogs. All seven affected NID were homozygous for the variant allele (T/T), while 31/116 OSD-unaffected NID were heterozygous for the variant (C/T) and 85/116 were homozygous for the wildtype allele (C/C); indicating a significant association with OSD (p = 1.41x10-11). A subset of 56 NID unrelated at the parent level were analysed to determine an allele frequency of 0.08, estimating carrier and affected rates to be 15% and 0.6% respectively in NID. All 1,109 non-NID were C/C, suggesting the variant is rare or absent in other breeds. Expression of retinal mRNA was similar between an OSD-affected NID and OSD-unaffected non-NID. In conclusion, a nonsense variant in COL9A3 is strongly associated with OSD in NID, and appears to be widespread in this breed.
Collapse
Affiliation(s)
- Renata Stavinohova
- Unit of Comparative Ophthalmology, Centre for Small Animal Studies, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Claudia Hartley
- Unit of Comparative Ophthalmology, Centre for Small Animal Studies, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Louise M. Burmeister
- Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Sally L. Ricketts
- Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Louise Pettitt
- Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Roser Tetas Pont
- Unit of Comparative Ophthalmology, Centre for Small Animal Studies, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Rebekkah J. Hitti
- Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Ellen Schofield
- Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - James A. C. Oliver
- Unit of Comparative Ophthalmology, Centre for Small Animal Studies, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
- Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| | - Cathryn S. Mellersh
- Kennel Club Genetics Centre, Animal Health Trust, Kentford, Newmarket, Suffolk, United Kingdom
| |
Collapse
|
5
|
Biodiversity of CS–proteoglycan sulphation motifs: chemical messenger recognition modules with roles in information transfer, control of cellular behaviour and tissue morphogenesis. Biochem J 2018; 475:587-620. [DOI: 10.1042/bcj20170820] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 01/07/2018] [Indexed: 12/19/2022]
Abstract
Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.
Collapse
|
6
|
Wegener H, Paulsen H, Seeger K. The cysteine-rich region of type VII collagen is a cystine knot with a new topology. J Biol Chem 2014; 289:4861-9. [PMID: 24385431 DOI: 10.1074/jbc.m113.531327] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagens are a group of extracellular matrix proteins with essential functions for skin integrity. Anchoring fibrils are made of type VII collagen (Col7) and link different skin layers together: the basal lamina and the underlying connective tissue. Col7 has a central collagenous domain and two noncollagenous domains located at the N and C terminus (NC1 and NC2), respectively. A cysteine-rich region of hitherto unknown function is located at the transition of the NC1 domain to the collagenous domain. A synthetic model peptide of this region was investigated by CD and NMR spectroscopy. The peptide folds into a collagen triple helix, and the cysteine residues form disulfide bridges between the different strands. The eight cystine knot topologies that are characterized by exclusively intermolecular disulfide bridges have been analyzed by molecular modeling. Two cystine knots are energetically preferred; however, all eight disulfide bridge arrangements are essentially possible. This novel cystine knot is present in type IX collagen, too. The conserved motif of the cystine knot is CX3CP. The cystine knot is N-terminal to the collagen triple helix in both collagens and therefore probably impedes unfolding of the collagen triple helix from the N terminus.
Collapse
|
7
|
Growth of the mandible and biological characteristics of the mandibular condylar cartilage. JAPANESE DENTAL SCIENCE REVIEW 2013. [DOI: 10.1016/j.jdsr.2013.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Balasubramanian P, Prabhakaran MP, Sireesha M, Ramakrishna S. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective. POLYMER COMPOSITES – POLYOLEFIN FRACTIONATION – POLYMERIC PEPTIDOMIMETICS – COLLAGENS 2012. [DOI: 10.1007/12_2012_176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Kalchishkova N, Fürst CM, Heinegård D, Blom AM. NC4 Domain of cartilage-specific collagen IX inhibits complement directly due to attenuation of membrane attack formation and indirectly through binding and enhancing activity of complement inhibitors C4B-binding protein and factor H. J Biol Chem 2011; 286:27915-26. [PMID: 21659506 DOI: 10.1074/jbc.m111.242834] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Collagen IX containing the N-terminal noncollagenous domain 4 (NC4) is unique to cartilage and a member of the family of fibril-associated collagens with both collagenous and noncollagenous domains. Collagen IX is located at the surface of fibrils formed by collagen II and a minor proportion of collagen XI, playing roles in tissue stability and integrity. The NC4 domain projects out from the fibril surface and provides sites for interaction with other matrix components such as cartilage oligomeric matrix protein, matrilins, fibromodulin, and osteoadherin. Fragmentation of collagen IX and loss of the NC4 domain are early events in cartilage degradation in joint diseases that precedes major damage of collagen II fibrils. Our results demonstrate that NC4 can function as a novel inhibitor of the complement system able to bind C4, C3, and C9 and to directly inhibit C9 polymerization and assembly of the lytic membrane attack complex. NC4 also binds the complement inhibitors C4b-binding protein and factor H and enhances their cofactor activity in degradation of activated complement components C4b and C3b. NC4 interactions with fibromodulin and osteoadherin inhibited binding to C1q and complement activation by these proteins. Taken together, our results suggest that collagen IX and its interactions with matrix components are important parts of a machinery that protects the cartilage from complement activation and chronic inflammation seen in diseases like rheumatoid arthritis.
Collapse
Affiliation(s)
- Nikolina Kalchishkova
- Department of Laboratory Medicine, Section of Medical Protein Chemistry, Lund University, S-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
10
|
Bobick BE, Chen FH, Le AM, Tuan RS. Regulation of the chondrogenic phenotype in culture. ACTA ACUST UNITED AC 2010; 87:351-71. [PMID: 19960542 DOI: 10.1002/bdrc.20167] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, there has been a great deal of interest in the development of regenerative approaches to produce hyaline cartilage ex vivo that can be utilized for the repair or replacement of damaged or diseased tissue. It is clinically imperative that cartilage engineered in vitro mimics the molecular composition and organization of and exhibits biomechanical properties similar to persistent hyaline cartilage in vivo. Experimentally, much of our current knowledge pertaining to the regulation of cartilage formation, or chondrogenesis, has been acquired in vitro utilizing high-density cultures of undifferentiated chondroprogenitor cells stimulated to differentiate into chondrocytes. In this review, we describe the extracellular matrix molecules, nuclear transcription factors, cytoplasmic protein kinases, cytoskeletal components, and plasma membrane receptors that characterize cells undergoing chondrogenesis in vitro and regulate the progression of these cells through the chondrogenic differentiation program. We also provide an extensive list of growth factors and other extracellular signaling molecules, as well as chromatin remodeling proteins such as histone deacetylases, known to regulate chondrogenic differentiation in culture. In addition, we selectively highlight experiments that demonstrate how an understanding of normal hyaline cartilage formation can lead to the development of novel cartilage tissue engineering strategies. Finally, we present directions for future studies that may yield information applicable to the in vitro generation of hyaline cartilage that more closely resembles native tissue.
Collapse
Affiliation(s)
- Brent E Bobick
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
11
|
Danfelter M, Onnerfjord P, Heinegård D. Fragmentation of proteins in cartilage treated with interleukin-1: specific cleavage of type IX collagen by matrix metalloproteinase 13 releases the NC4 domain. J Biol Chem 2007; 282:36933-41. [PMID: 17951262 DOI: 10.1074/jbc.m702491200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degradation of bovine nasal cartilage induced by interleukin-1 (IL-1) was used to study catabolic events in the tissue over 16 days. Culture medium was fractionated by two-dimensional electrophoresis (isoelectric focusing and SDS-PAGE). Identification of components by peptide mass fingerprinting revealed released fragments representing the NC4 domain of the type IX collagen alpha1 chain at days 12 and 16. A novel peptide antibody against a near N-terminal epitope of the NC4 domain confirmed the finding and indicated the presence of one of the fragments already at day 9. Mass spectrometric analysis of the two most abundant fragments revealed that the smallest one contained almost the entire NC4 domain cleaved between arginine 258 and isoleucine 259 in the sequence -ETCNELPAR258-COOH NH2-ITP-. A larger fragment contained the NC4 domain and the major part of the COL3 domain with a cleavage site between glycine 400 and threonine 401 in COL3 (-RGPPGPPGPPGPSG400-COOH NH2-TIG-). The presence of multiple collagen alpha1 (IX) N-terminal sequences demonstrates that the released molecules were cleaved at sites very close to the original N terminus either prior to or due to IL-1 treatment. Matrix metalloproteinase 13 (MMP-13) is active and cleaves fibromodulin in the time interval studied. Cartilage explants treated with MMP-13 were shown to release collagen alpha1 (IX) fragments with the same sizes and with the same cleavage sites as those obtained upon IL-1 treatment. These data describe cleavage by an MMP-13 activity toward non-collagenous and triple helix domains. These potentially important degradation events precede the major loss of type II collagen.
Collapse
Affiliation(s)
- Mikael Danfelter
- Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | | | | |
Collapse
|
12
|
Elsaid KA, Chichester CO. Review: Collagen markers in early arthritic diseases. Clin Chim Acta 2006; 365:68-77. [PMID: 16257399 DOI: 10.1016/j.cca.2005.09.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2005] [Revised: 09/21/2005] [Accepted: 09/21/2005] [Indexed: 11/18/2022]
Abstract
In arthritic diseases e.g. osteoarthritis (OA) and rheumatoid arthritis (RA), the stability of the collagen type II (CII) fibers, a major component of articular cartilage, is compromised with extensive proteolytic breakdown leading to cartilage erosion and joint deterioration. A clinical need for molecular markers that give instantaneous measure of rate of joint deterioration has developed, as other measurements e.g. arthroscopy, and joint space narrowing are insensitive to small changes in disease status over short periods of time. Owing to its exclusive presence in cartilaginous tissues, markers of CII synthesis and degradation have been extensively studied. Assays that measure these markers in biological fluids e.g. synovial fluid (SF), serum, and urine have been developed and applied to detect early disease onset, monitor disease progression, and response to anti-arthritic drugs. CII synthesis markers include the procollagen type II C-propeptide (PIICP) and the procollagen type IIA N-propeptide (PIIANP). CII degradation markers include CII C-telopeptide (CII-X), CII neoepitope (TIINE), helix II, C2C, CNBr 9.7, Coll 2-1, and Coll 2-1 NO(2). Most of these markers differentiate between early stages of OA, RA and reference controls. The best correlations with structural changes occur when measurements are made in SF while serum measurement frequently did not correlate with structural changes. Although the selection of an optimal marker or a set of markers is still problematic, few markers are of considerable utility in early detection and monitoring of arthritic diseases. The current challenge is to improve the discriminatory power of these markers so they can be used to guide therapeutic decisions.
Collapse
Affiliation(s)
- K A Elsaid
- Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, RI 02881, USA
| | | |
Collapse
|
13
|
Zhang P, Jimenez SA, Stokes DG. Regulation of human COL9A1 gene expression. Activation of the proximal promoter region by SOX9. J Biol Chem 2003; 278:117-23. [PMID: 12399468 DOI: 10.1074/jbc.m208049200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COL9A1 gene contains two promoter regions, one driving expression of a long alpha1(IX) chain in cartilage (upstream) and one driving expression of a shorter chain in the cornea and vitreous (downstream). To determine how the chondrocyte-specific expression of the COL9A1 gene is regulated, we have begun to characterize the upstream chondrocyte-specific promoter region of the human COL9A1 gene. Transient-transfection analyses performed in rat chondrosarcoma (RCS) cells, human chondrosarcoma (HTB) cells, and NIH/3T3 cells showed that the COL9A1 promoter was active in RCS cells but not HTB or NIH/3T3 cells. Inclusion of the first intron had no effect on promoter activity. In transient-transfection analyses with promoter deletion constructs, it was found that full promoter activity in RCS cells depended on the region from -560 bp to +130 bp relative to the transcriptional start site (+1). Sequence analysis of the region from -890 bp to the transcriptional start predicted five putative SOX/Sry-binding sites. Mutation analysis revealed that two of three putative SOX/Sry binding sites within the -560 to +130 bp region are responsible for most of the COL9A1 promoter activity in RCS cells. Co-transfection experiments with a SOX9 expression plasmid revealed that a construct containing the five putative SOX/Sry-binding sites was transactivated 20- to 30-fold in both HTB and NIH/3T3 cells. Further co-transfection experiments showed that two of the SOX/Sry-binding sites located within the -560 to +130 bp region were required for full transactivation. However, mutation and deletion analyses indicated that a region from -560 to -357 bp, which does not contain any other conspicuous SOX9 sites, is also important for full promoter activity. DNA-protein binding assays and super-shift analysis revealed that SOX9 can form a specific complex with one of the SOX/Sry-binding sites with in the -560 to +130 region.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Medicine, Division of Rheumatology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
14
|
Mwale F, Tchetina E, Wu CW, Poole AR. The assembly and remodeling of the extracellular matrix in the growth plate in relationship to mineral deposition and cellular hypertrophy: an in situ study of collagens II and IX and proteoglycan. J Bone Miner Res 2002; 17:275-83. [PMID: 11811558 DOI: 10.1359/jbmr.2002.17.2.275] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The recent development of new specific immunoassays has provided an opportunity to study the assembly and resorption of type II and IX collagens of the extracellular matrix in relationship to endochondral calcification in situ. Here, we describe how in the bovine fetal physis prehypertrophic chondrocytes deposit an extensive extracellular matrix that, initially, is rich in both type II and type IX collagens and proteoglycan (PG; principally, aggrecan). The majority of the alpha1(IX)-chains lack the NC4 domain consistent with our previous studies with cultured chondrocytes. During assembly, the molar ratio of type II/COL2 domain of the alpha1(IX)-chain varied from 8:1 to 25:1. An increase in the content of Ca2+ and inorganic phosphate (Pi) was initiated in the prehypertrophic zone when the NC4 domain was removed selectively from the alpha1(IX)-chain. This was followed by the progressive loss of the alpha1(IX) COL2 domain and type II collagen. In the hypertrophic zone, the Ca2+/Pi molar ratio ranged from 1.56 to a maximum of 1.74, closely corresponding to that of mature hydroxyapatite (1.67). The prehypertrophic zone had an average ratio Ca2+/Pi ranging from 0.25 to 1, suggesting a phase transformation. At hypertrophy, when mineral content was maximal, type II collagen was reduced maximally in content coincident with a peak of cleavage of this molecule by collagenase when matrix metalloproteinase 13 (MMP-13) expression was maximal. In contrast, PG (principally aggrecan) was retained when hydroxyapatite was formed consistent with the view that this PG does not inhibit and might promote calcification in vivo. Taken together with earlier studies, these findings show that matrix remodeling after assembly is linked closely to initial changes in Ca2+ and Pi to subsequent cellular hypertrophy and mineralization. These changes involve a progressive and selective removal of types II and IX collagens with the retention of the PG aggrecan.
Collapse
Affiliation(s)
- Fackson Mwale
- Jewish General Hospital, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
15
|
Mwale F, Billinghurst C, Wu W, Alini M, Webber C, Reiner A, Ionescu M, Poole J, Poole AR. Selective assembly and remodelling of collagens II and IX associated with expression of the chondrocyte hypertrophic phenotype. Dev Dyn 2000; 218:648-62. [PMID: 10906783 DOI: 10.1002/1097-0177(200008)218:4<648::aid-dvdy1022>3.0.co;2-p] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The assembly and resorption of the extracellular matrix in the physis of the growth plate are poorly understood. By examining isolated fetal growth plate chondrocytes in culture and using immunochemical methods we show that type II collagen, proteoglycan aggrecan, and type IX collagen are assembled into a matrix that is initially enriched in type II collagen over proteoglycan and type IX collagen. When compared to the content of the COL2 domain in the alpha(1)(IX) chain it is evident that the majority ( 90%) of type IX molecules lack the NC4 domain unlike in articular cartilage. During matrix assembly the molar ratio of type II/COL2 of alpha(1)(IX) varied from 25:1 to 2.5:1. Following expression of the hypertrophic phenotype (initiation of type X collagen synthesis) there are parallel changes in both collagen and proteoglycan contents (inversely related to collagenase cleavage of type II collagen). The NC4 domain is then selectively, rapidly and irreversibly removed as mineralization is initiated, leaving the alpha(1)(IX) chain COL2 domain. Subsequently as mineralization progresses type II and type IX collagen (COL2 domain), but not the proteoglycan aggrecan, are resorbed coincident with a markedly increased cleavage of type II collagen by collagenase as mineral is deposited in the matrix. This study, therefore reveals a carefully orchestrated series of events in matrix assembly and resorption that prepares the extracellular matrix for mineralization.
Collapse
Affiliation(s)
- F Mwale
- Joint Diseases Laboratory, Shriners Hospitals for Children and Division of Surgical Research, Department of Surgery, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Khaleduzzaman M, Sumiyoshi H, Ueki Y, Inoguchi K, Ninomiya Y, Yoshioka H. Structure of the human type XIX collagen (COL19A1) gene, which suggests it has arisen from an ancestor gene of the FACIT family. Genomics 1997; 45:304-12. [PMID: 9344653 DOI: 10.1006/geno.1997.4921] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Type XIX collagen is a newly discovered member of the FACIT (fibril-associated collagens with interrupted triple helices) group of extracellular matrix proteins. Based on the primary structure, type XIX collagen is thought to act as a cross-bridge between fibrils and other extracellular matrix molecules. Here we describe the complete exon/intron organization of COL19A1 and show that it contains 51 exons, spanning more than 250 kb of genomic DNA. The comparison of exon structures of COL19A1 and other FACIT family genes revealed several similarities among these genes. The structure of exons encoding the noncollagenous (NC) 1-collagenous (COL) 1-NC 2-COL 2-NC 3-COL 3-NC 4 domain of the alpha1(XIX) chain is similar to that of the NC 1-COL 1-NC 2-COL 3-NC 3 domain of the alpha2(IX) chain except for the NC 3 domain of alpha1(XIX). The exons encoding the COL 5-NC 6 domain of alpha1(XIX) are also similar to those of the COL 3-NC 4 domain of alpha1(IX) chain. Previously, COL19A1 was mapped to human chromosome 6q12-q14, where COL9A1 is also located. Likewise, the present work shows that the mouse Col19a1 gene is located on mouse chromosome 1, region A3, where Col9a1 has also been mapped. Taken together, the data suggest that COL19A1 and COL9A1 (Col19a1 and Col9a1) were duplicated from the same ancestor gene of the FACIT family. Three CA repeat markers with high heterozygosity were found in COL19A1. These markers may be useful for linkage analysis of age-related inheritable diseases involved in eyes and/or brain.
Collapse
Affiliation(s)
- M Khaleduzzaman
- Department of Molecular Biology and Biochemistry, Okayama University Medical School, Okayama, 700, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Poole CA, Gilbert RT, Herbage D, Hartmann DJ. Immunolocalization of type IX collagen in normal and spontaneously osteoarthritic canine tibial cartilage and isolated chondrons. Osteoarthritis Cartilage 1997; 5:191-204. [PMID: 9219682 DOI: 10.1016/s1063-4584(97)80014-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The pericellular localization of type IX collagen in avian and mammalian hyaline cartilages remains controversial, while its distribution during osteoarthritic degeneration is poorly understood. This study aimed to compare and contrast the immunohistochemical distribution of type IX collagen in normal mature and spontaneously osteoarthritic canine tibial cartilage. DESIGN Thick vibratome sectioning techniques were evaluated and compared with isolated chondrons using a range of streptavidin-linked probes in combination with light, confocal and transmission electron microscopy. RESULTS In normal intact samples, type IX collagen was concentrated in the pericellular microenvironment, while a weaker extracellular reaction around each chondron separated the territorial matrix from the unstained interterritorial matrix. Further differentiation was evident in isolated chondrons where the fibrous pericellular capsule stained more intensely than the tail and interconnecting segments between columnated chondrons. Two regions of type IX reactivity were identified in osteoarthritic tissue: an intensely stained superficial reactive region below the eroding margins, and normal deep layer cartilage where pericellular staining persists. The superficial reactive region was characterized by chondron swelling and chondrocyte cluster formation, a loss of pericellular type IX staining, and a significant increase in matrix staining between clusters. Disintegration and loss of fibrillar collagens was evident in both the swollen microenvironment and adjacent territorial matrices. CONCLUSIONS The results suggest that changes in type IX distribution, expansion of the pericellular microenvironment and chondrocyte proliferation represent key elements in the chondron remodeling and chondrocyte cluster formation associated with osteoarthritic degeneration.
Collapse
Affiliation(s)
- C A Poole
- Department of Anatomy, Faculty of Medicine and Health Sciences, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
18
|
Abstract
Collagen IX was identified as a distinct component of cartilage about 10 years ago. Composed of three polypeptide chains, its heterotrimeric molecules are located on the surface of type II collagen fibrils in cartilage. The interaction between collagens II and IX is stabilized by covalent crosslinks. The location of collagen IX molecules on fibril surfaces suggests that they represent macromolecular bridges between fibrils and other matrix components in cartilage, and that collagen IX is important for the cohesive and compressive properties of cartilage. Transgenic mice with mutations in a type IX gene develop normally, but show degenerative changes in articular cartilage after birth. Additional evidence for the importance of collagen IX in human articular cartilage comes from the recent finding that a mutation in one of the collagen IX genes causes multiple epiphyseal dysplasia. The mild complaints in affected individuals with the mutation suggest that mutations in type IX collagen genes may represent genetic risk factors for late onset osteoarthritis.
Collapse
Affiliation(s)
- B R Olsen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Affiliation(s)
- B R Olsen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
20
|
Myers J, Yang H, D'Ippolito J, Presente A, Miller M, Dion A. The triple-helical region of human type XIX collagen consists of multiple collagenous subdomains and exhibits limited sequence homology to alpha 1(XVI). J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32344-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
21
|
Perälä M, Elima K, Metsäranta M, Rosati R, de Crombrugghe B, Vuorio E. The exon structure of the mouse alpha 2(IX) collagen gene shows unexpected divergence from the chick gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37655-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Mundlos S. Expression patterns of matrix genes during human skeletal development. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1994; 28:1-47. [PMID: 8058966 DOI: 10.1016/s0079-6336(11)80048-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S Mundlos
- Department of Paediatrics, University of Mainz, Germany
| |
Collapse
|
23
|
Affiliation(s)
- N Fukai
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
24
|
Mayne R, Brewton R, Mayne P, Baker J. Isolation and characterization of the chains of type V/type XI collagen present in bovine vitreous. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)98361-4] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Wu J, Woods P, Eyre D. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50048-x] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
|
27
|
Arai M, Yada T, Suzuki S, Kimata K. Isolation and characterization of type IX collagen-proteoglycan from the Swarm rat chondrosarcoma. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1117:60-70. [PMID: 1627594 DOI: 10.1016/0304-4165(92)90163-o] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type IX collagen was partially purified from the Swarm rat chondrosarcoma by a series of a conventional salting-out procedures. The preparation was further separated by anion exchange chromatography into an unbound and a bound fraction in an A230 ratio of about 5:1. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the bound fraction appeared as a broad band, whose molecular mass ranged from 250 to 270 kDa. Digestion with chondroitinase ABC reduced the apparent molecular mass of the bound fraction to about 250 kDa, a value comparable to the molecular mass of the unbound fraction. Tryptic peptide maps of the protein moieties of unbound and bound forms showed that their molecular structures were basically identical. A monoclonal antibody specific for LMW, one of the pepsin-resistant fragments of the rat sarcoma type IX, reacted with both the unbound and bound fractions. Together the results indicate that the unbound and bound fractions represent a type IX collagen devoid of the chondroitin sulfate chain and its proteoglycan form with covalently bound chondroitin sulfate, respectively. The extent of glycosaminoglycan attachment to type IX collagen molecules in rat chondrosarcoma (about 16%) is quite different from the extents described in chick embryo cartilage (about 80%), chick vitreous humour (100%) and bovine cartilage (less than 5%). Further studies on the neoplastic tissue will offer additional information regarding the biological basis and biological consequences of the glycosaminoglycan attachment to type IX collagen molecules.
Collapse
Affiliation(s)
- M Arai
- Institute for Molecular Science of Medicine, Aichi Medical University, Japan
| | | | | | | |
Collapse
|
28
|
Swiderski RE, Solursh M. Localization of type II collagen, long form alpha 1(IX) collagen, and short form alpha 1(IX) collagen transcripts in the developing chick notochord and axial skeleton. Dev Dyn 1992; 194:118-27. [PMID: 1421522 DOI: 10.1002/aja.1001940205] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In this study we compare, by in situ hybridization, the spatial and temporal expression patterns of transcripts of avian type II collagen and the long and short forms of the (alpha 1) chain of type IX collagen during the development of the notochord and axial skeleton. We observed type II collagen and short form type IX collagen transcripts in the developing (stage 25-28) nonchondrogenic notochord. Conversely, long form type IX transcripts were not detectable in the notochord or perinotochordal sheath. Interestingly, all three transcripts colocalized in the developing chondrogenic vertebrae of the axial skeleton as well as in the chondrocranium and Meckel's cartilage. The expression of the short form of type IX collagen in these regions was more restricted than that of the long form. This report provides additional support for a complex regulatory pathway of cartilage marker gene expression in chondrogenic vs. nonchondrogenic tissues during avian embryogenesis.
Collapse
Affiliation(s)
- R E Swiderski
- Department of Biology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
29
|
|
30
|
Abstract
Articular cartilage contains at least five genetically distinct types of collagen. Types II, IX, and XI are cartilage-specific and are cross-linked together in a copolymeric network that forms the extracellular framework of the tissue. Fibrils of type II collagen provide the basic architecture. Type XI, a quantitatively minor fibril-forming collagen, is probably copolymerized with type II collagen in the matrix. Type IX collagen accounts for approximately 1% of the collagenous protein in adult articular cartilage and its molecules exist in the tissue covalently linked to the surface of type II collagen fibrils. Its suspected functions include regulating fibril diameters and mediating fibril-fibril and fibril-proteoglycan interactions. Stromelysin, a matrix metalloproteinase, was recently shown to degrade type IX collagen. This action may cause the collagen network swelling seen in articular cartilage in early experimental osteoarthritis, (OA). Collagen type X is restricted to the underlying calcified zone of articular cartilage, a zone that exhibits active remodeling in joints with OA. Degradation products of the various cartilage collagens show promise as molecular markers of joint disease.
Collapse
Affiliation(s)
- D R Eyre
- Department of Orthopaedics, University of Washington, Seattle 98195
| |
Collapse
|
31
|
Kulyk WM, Coelho CN, Kosher RA. Type IX collagen gene expression during limb cartilage differentiation. MATRIX (STUTTGART, GERMANY) 1991; 11:282-8. [PMID: 1921854 DOI: 10.1016/s0934-8832(11)80236-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Changes in the steady-state levels of mRNAs for the alpha 1(IX) and alpha 2(IX) polypeptide chains of cartilage-characteristic type IX collagen were examined during the course of chick limb chondrogenesis in vitro and in vivo. Cytoplasmic type IX collagen mRNAs begin to accumulate at the onset of overt chondrogenesis in high density micromass culture coincident with the crucial condensation phase of the process, in which prechondrogenic mesenchymal cells become closely juxtaposed prior to depositing a cartilage matrix. The initiation of type IX collagen mRNA accumulation at condensation coincides with the initiation of accumulation of cartilage proteoglycan core protein mRNA and with a striking increase in type II collagen mRNA accumulation. Following condensation in vitro, there is a concomitant progressive increase in cytoplasmic type IX collagen, core protein, and type II collagen mRNA levels which parallels the progressive accumulation of cartilage matrix. Type IX collagen mRNAs also begin to accumulate at the initiation of overt chondrogenesis in vivo in the chondrogenic central core of the developing limb bud. In contrast, little, or no type IX collagen mRNAs are detectable in the nonchondrogenic peripheral regions of the developing limb bud.
Collapse
Affiliation(s)
- W M Kulyk
- Department of Anatomy, University of Connecticut Health Center, Farmington 06032
| | | | | |
Collapse
|
32
|
Mitrovic DR. Synthesis of abnormal articular cartilage proteoglycans in rapidly destructive arthropathy (osteoarthritis). Rheumatol Int 1991; 11:55-61. [PMID: 1947671 DOI: 10.1007/bf00291146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Articular cartilage fragments were obtained from four femoral heads and one femoral condyle, resected in five patients undergoing prosthetic surgery for rapidly destructive arthropathy (RDA) and from one normal femoral head and one normal femoral condyle resected at autopsy. The cartilage fragments were labelled in vitro with 35SO4 and newly-synthesized proteoglycans, (35S-PGs) were then extracted with 4 M guanidinium hydrochloride (GuHCl) and analyzed. In three cases a much greater and in one case a significantly increased proportion of small 35S-PGs enriched in dermatan sulfate (DS) was demonstrated in diseased tissues in comparison with control samples. These DS 35S-PGs were completely unable to interact with hyaluronan (HA) and had longer glycosamino-glycan (GAG) side chains than large 35S-PGs. Also, large 35S-PGs extracted from diseased tissue interacted poorly under associative conditions with exogenous HA when this was added to the crude extract. However, they interacted much better following the addition of exogenous HA to the purified high density proteoglycans. This suggests the presence of an inhibitor of PG-HA interaction in the crude extract which is lost during PG purification. The synthesis of an abnormally large proportion of small PGs by articular chondrocytes and impaired aggregation of large PGs may account for the accelerated destruction of articular cartilage in this condition.
Collapse
Affiliation(s)
- D R Mitrovic
- U.18 of INSERM, Lariboisière Hospital, Paris, France
| |
Collapse
|
33
|
Abstract
The collagens form a large family of proteins. Collagen fibrils, composed of staggered arrays of fibrillar collagen molecules (types I, II, III, V and XI), provide a supporting scaffold for extracellular matrices of connective tissues. The non-fibrillar collagens are less abundant than the fibrillar collagens, but it is becoming clear that they have important functions in the matrix. Recently, a group with unique structural characteristics has been defined and named the FACIT (Fibril-Associated Collagens with Interrupted Triple-helices) group. There is evidence that these collagens may serve as molecular bridges that are important for the organization and stability of extracellular matrices.
Collapse
Affiliation(s)
- L M Shaw
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
34
|
Type XIV collagen, a new homotrimeric molecule extracted from fetal bovine skin and tendon, with a triple helical disulfide-bonded domain homologous to type IX and type XII collagens. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89579-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Structural and functional comparison of type IX collagen-proteoglycan from chicken cartilage and vitreous humor. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67713-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
36
|
Cizdziel PE, Hosoi J, Montgomery JC, Wiseman RW, Barrett JC. Loss of a tumor suppressor gene function is correlated with downregulation of chondrocyte-specific collagen expression in Syrian hamster embryo cells. Mol Carcinog 1991; 4:14-24. [PMID: 2009131 DOI: 10.1002/mc.2940040105] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously described the isolation of closely related, preneoplastic Syrian hamster cell lines that have retained (supB+) or lost (supB-) the ability to suppress the anchorage-independent growth and tumorigenicity of a sarcoma cell line (BP6T) in cell hybrids. In this report, we have used differential cDNA screening to clone several genes that are expressed in supB+ cells and downregulated in supB- cells. The nontumorigenic supB+ and supB- variants are advantageous for differential cDNA cloning because multiple independent cell lines differing in their tumor suppressor activity have been isolated. Differentially expressed cDNAs were isolated and placed into one of four groups based on DNA cross-hybridization. Representative cDNAs from Groups I and II, which were expressed at relatively high levels in two independently derived supB+ cell lines (DES4 and 10W) and downregulated in the supB- and tumor cell lines, were sequenced. The DNA and predicted amino acid sequences of these genes were found to be highly homologous to the chondrocyte-specific collagens type II and type IX. In contrast to the chondrocyte-specific collagens, another collagen isoform, collagen type I, was expressed at similar levels in both supB+ and supB- cells. These results suggest that carcinogen-induced immortalization selected for chondrocyte-like cell lines from the mixed embryo cell population. As these cells progressed toward tumorigenicity, the ability to express the chondrocyte differentiation markers was lost concomitantly with the ability to suppress the tumorigenicity of the BP6T sarcoma cell line. These results are consistent with the hypothesis that the supB+ tumor suppressor gene is involved in the regulation of differentiation. The identification of genes regulated by this suppressor gene may aid in its isolation.
Collapse
Affiliation(s)
- P E Cizdziel
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | | | | | | | | |
Collapse
|
37
|
Wu LN, Genge BR, Lloyd GC, Wuthier RE. Collagen-binding proteins in collagenase-released matrix vesicles from cartilage. Interaction between matrix vesicle proteins and different types of collagen. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(17)35301-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
38
|
Henrotin Y, Bassleer C, Collette J, Nusgens B, Franchimont P. Radioimmunoassay for human type II collagen. JOURNAL OF IMMUNOASSAY 1990; 11:555-78. [PMID: 1704387 DOI: 10.1080/01971529008055050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human articular cartilage type II collagen (h coll.II) was purified and used to develop a radioimmunoassay. The sequential saturation procedure allowed a sensitivity of 3 ng/tube. The intra and between assay coefficients of variation were less than 10 and 20% respectively in the linear part of the curve. The assay was highly specific for native human articular type II collagen. There was no cross-reactivity with other constituents of cartilage: human proteoglycans, fibronectin, laminin and hyaluronic acid did not interfere with the assay. No cross-reactivity existed with bovine collagen types I, III, IV. However, native collagens from human placenta (I, III, IV, V, VI), rat and calf skin type I collagens and bovine type II collagen produced a weak cross-reaction only at high doses. Concerning the latter, inhibition curves were not parallel. Parallelism of inhibition curves were observed for dilution of type II collagen, produced by human chondrocytes in three-dimensional culture. All of these characteristics indicate that radioimmunoassy of type II collagen is a very sensitive and specific method available for the study and quantification of type II collagen in in vitro experimental conditions.
Collapse
Affiliation(s)
- Y Henrotin
- State University of Liège, Department of Endocrinology, Sart-Tilman, Belgium
| | | | | | | | | |
Collapse
|
39
|
Pihlajaniemi T, Tamminen M. The alpha 1 chain of type XIII collagen consists of three collagenous and four noncollagenous domains, and its primary transcript undergoes complex alternative splicing. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44849-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Muragaki Y, Kimura T, Ninomiya Y, Olsen BR. The complete primary structure of two distinct forms of human alpha 1 (IX) collagen chains. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:703-8. [PMID: 2209617 DOI: 10.1111/j.1432-1033.1990.tb19279.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type IX collagen molecules contain three genetically distinct subunits. One of the subunits, alpha 2(IX), contains a covalently attached glycosaminoglycan side chain. A second subunit, alpha 1 (IX), has been found to be synthesized in two forms. The two forms are generated by the alternative use of two transcription start sites and splice patterns. The two forms have been found in chicken, mouse and human but cDNAs encoding both forms have only been reported for chicken. In the present report we describe the isolation of cDNA clones encoding the complete translated portion of both forms of human alpha 1(IX) collagen chains. Nucleotide sequence analysis has permitted the determination of the primary structure of both forms. These probes and sequences should prove useful in future studies of chondrodysplasias involving type IX collagen.
Collapse
Affiliation(s)
- Y Muragaki
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
41
|
Santi PA, Lease MK, Harrison RG, Wicker EM. Ultrastructure of proteoglycans in the tectorial membrane. JOURNAL OF ELECTRON MICROSCOPY TECHNIQUE 1990; 15:293-300. [PMID: 2374036 DOI: 10.1002/jemt.1060150308] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ultrastructure of proteoglycans (PGs) in the tectorial membrane (TM) of the mature chinchilla cochlea was investigated using the cationic dye Cuprolinic blue. When used at a high critical electrolyte concentration, Cuprolinic blue has been shown specifically to bind to the glycosaminoglycan residues of sulfated PGs. After Cuprolinic blue treatment, PGs were observed in the TM which were represented as rod-shaped, electron-dense structures. A perifibrillar, primarily orthogonal, array of PGs was associated with the type A protofibrils. These PGs were distributed in 50 nm intervals along the length of the type A protofibrils. A less common orientation was parallel to the axis of the type A protofibrils. PGs did not appear to be associated with the type B protofibrils. Based upon previous results by other investigators, the TM contains types II and IX collagen, and it appears likely that the type A protofibrils are composed of collagen type II. PGs visualized in the TM in this study thus may represent the glycosaminoglycan residue of type IX collagen which is associated with the type II collagen fibrils. Alternatively, the TM PGs may be small dermatan or chondroitin sulfate PGs.
Collapse
Affiliation(s)
- P A Santi
- Department of Otolaryngology, University of Minnesota Medical School, Minneapolis 55414
| | | | | | | |
Collapse
|
42
|
JONES A, BEE J. Age- and position-related heterogeneity of equine tendon extracellular matrix composition. Res Vet Sci 1990. [DOI: 10.1016/s0034-5288(18)31027-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Mizoguchi I, Nakamura M, Takahashi I, Kagayama M, Mitani H. An immunohistochemical study of localization of type I and type II collagens in mandibular condylar cartilage compared with tibial growth plate. HISTOCHEMISTRY 1990; 93:593-9. [PMID: 2184152 DOI: 10.1007/bf00272201] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Immunohistochemical localization of type I and type II collagens was examined in the rat mandibular condylar cartilage (as the secondary cartilage) and compared with that in the tibial growth plate (as the primary cartilage) using plastic embedded tissues. In the condylar cartilage, type I collagen was present not only in the extracellular matrix (ECM) of the fibrous, proliferative, and transitional cell layers, but also in the ECM of the maturative and hypertrophic cell layers. Type II collagen was present in the ECM of the maturative and hypertrophic cell layers. In the growth plate, type II collagen was present in the ECM of whole cartilaginous layers; type I collagen was not present in the cartilage but in the perichondrium and the bone matrices. These results indicate that differences exist in the components of the ECM between the primary and secondary cartilages. It is suggested that these two tissues differ in the developmental processes and/or in the reactions to their own local functional needs.
Collapse
Affiliation(s)
- I Mizoguchi
- Department of Orthodontics, School of Dentistry, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
44
|
Shimokomaki M, Wright DW, Irwin MH, van der Rest M, Mayne R. The structure and macromolecular organization of type IX collagen in cartilage. Ann N Y Acad Sci 1990; 580:1-7. [PMID: 2186687 DOI: 10.1111/j.1749-6632.1990.tb17912.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M Shimokomaki
- Department of Cell Biology and Anatomy, University of Alabama, Birmingham 35294
| | | | | | | | | |
Collapse
|
45
|
Nishimura I, Muragaki Y, Hayashi M, Ninomiya Y, Olsen BR. Tissue-specific expression of type IX collagen. Ann N Y Acad Sci 1990; 580:112-9. [PMID: 2186688 DOI: 10.1111/j.1749-6632.1990.tb17923.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- I Nishimura
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | | | |
Collapse
|
46
|
Murray LW, Hollister DW, Rimoin DL. Diastrophic dysplasia: evidence against a defect of type II collagen. MATRIX (STUTTGART, GERMANY) 1990; 9:459-67. [PMID: 2635759 DOI: 10.1016/s0934-8832(11)80015-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A description of an abnormal segment-long-spacing crystallite (SLS) pattern has been reported for type II collagen from patients with diastrophic dysplasia (Stanescu et al., 1982 a), a disorder that is characterized by large collagen fibrils in the cartilage matrix. The abnormal SLS consisted of an altered electron density between bands 42 and 45, which was interpreted as an abnormality in the type II collagen molecule. It was suggested that the type II collagen is abnormal in diastrophic dysplasia. We have examined SLS of type II collagen from two patients with diastrophic dysplasia and found the SLS patterns to be identical with that of control type II SLS in almost all micrographs. In a few micrographs of diastrophic SLS, crystallites exhibiting the pattern reported by Stanescu et al. were seen. However, the abnormally patterned crystallites always consisted of dimers that were overlapped at the COOH ends in such a way that an electron dense band of one crystallite was positioned between bands 42 and 45 of the second crystallite, apparently creating the abnormal pattern. The abnormal SLS pattern seen in these cases of diastrophic dysplasia appears to be the result of overlapping crystallites and may not be the result of an intrinsic abnormality of type II collagen. We have constructed histograms of the collagen fibril diameters in diastrophic cartilage. While they are larger than normal collagen fibrils, this by itself does not indicate an abnormality of type II collagen. We have shown that large fibrils such as these can be obtained from normal type II collagen when the structure of the cartilage is disrupted by extraction with guanidine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L W Murray
- Department of Pediatrics, Harbor/UCLA Medical Center, Torrance 90502
| | | | | |
Collapse
|
47
|
Nishimura I, Muragaki Y, Olsen BR. Tissue-specific Forms of Type IX Collagen-Proteoglycan Arise from the Use of Two Widely Separated Promoters. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47214-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Furuto DK, Bhown AS, Miller EJ. Characterization of mammalian type IX collagen fragments from limited pepsin digests of a transplantable swarm rat chondrosarcoma. MATRIX (STUTTGART, GERMANY) 1989; 9:353-65. [PMID: 2515424 DOI: 10.1016/s0934-8832(89)80040-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Collagenous fragments from type IX molecules have been solubilized by limited pepsin proteolysis of a transplantable rat chondrosarcoma and isolated by selective salt precipitation. Chromatography of the solubilized precipitate on CM-cellulose under nondenaturing conditions yielded three fractions. When examined by polarimetry, the material in all three fractions revealed native collagen helical structure with melting points which ranged from 31-37 degrees C. When the fractions were denatured and rechromatographed on a column of agarose beads, the most acidic fraction eluted as 13-kDa polypeptides with and without prior reduction and alkylation. In contrast, the second and third fractions eluted as 100-kDa and 30-kDa polypeptides prior to reduction, but on reduction and alkylation produced reducible products of 34 kDa and 10 kDa, respectively. The general compositional features of the three fractions closely resemble comparable collagenous fragments of type IX collagen from other species. The denaturation products of the 13-kDa nonreducible, the 30-kDa reducible, and the 100-kDa reducible fractions were sequentially purified by CM-cellulose and reversed-phase chromatography to resolve the chain constituents. The isolated 10-kDa, 13-kDa, and 34-kDa chains were cleaved with CNBr, and the cleavage products identified by gel-permeation chromatography. Two 13-kDa polypeptides, 13K2 and 13K3, which did not contain any methionyl residues and were not cleaved with CNBr, were digested with trypsin, and the peptide digests were resolved by reversed-phase chromatography. Comparisons of the CNBr and tryptic cleavage products demonstrate that the three major collagenous fragments are composed of three unique polypeptides. A partial amino acid sequence of an 8-kDa CNBr peptide derived from a purified 10-kDa peptide (10K1) matches identically the amino acid sequence derived from a cDNA sequence in the rat alpha 1(IX) chain (Kimura et al., 1989). These studies, then, present convenient procedures useful in the isolation of mammalian type IX collagen fragments and describe features of the rat molecule, indicating that it is similar to the avian counterpart with respect to chain composition and general molecular structure.
Collapse
Affiliation(s)
- D K Furuto
- Department of Biochemistry, University of Alabama, Birmingham 35294
| | | | | |
Collapse
|
49
|
Poole AR, Matsui Y, Hinek A, Lee ER. Cartilage macromolecules and the calcification of cartilage matrix. Anat Rec (Hoboken) 1989; 224:167-79. [PMID: 2672883 DOI: 10.1002/ar.1092240207] [Citation(s) in RCA: 138] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The calcification of cartilage matrix in endochondral bone formation occurs in an extracellular matrix composed of fibrils of type II collagen with which type X collagen is closely associated. Also present within this matrix are the large proteoglycans containing chondroitin sulfate which aggregate with hyaluronic acid. In addition, the matrix contains matrix vesicles containing alkaline phosphatase. There is probably a concentration of calcium as a result of its binding to the many chondroitin sulfate chains. At the time of calcification, these proteoglycans become focally concentrated in sites where mineral is deposited. This would result in an even greater focal concentration of calcium. Release of inorganic phosphate, as a result of the activity of alkaline phosphatase, can lead to the displacement of proteoglycan bound calcium and its precipitation. The C-propeptide of type II collagen becomes concentrated in the mineralizing sites, prior to which it is mainly associated with type II collagen fibrils and is present in dilated cisternae of the enlarged hypertrophic chondrocytes. The synthesis of type II collagen and the C-propeptide, together with alkaline phosphatase, are regulated by the vitamin D metabolites 24,25(OH)2 cholecalciferol and 1,25 (OH)2 cholecalciferol. At the time of calcification, type X collagen remains associated with type II collagen fibrils. It may play a role in preventing the initial calcification of these fibrils focusing mineral formation in focal interfibrillar sites. This process of calcification is clearly very complex, and involves different interacting matrix molecules and is carefully regulated at the cellular level.
Collapse
Affiliation(s)
- A R Poole
- Joint Diseases Laboratory, Shriners Hospital for Crippled Children, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
50
|
Deyl Z, Adam M. Separation methods for the study of collagen and treatment of collagen disorders. JOURNAL OF CHROMATOGRAPHY 1989; 488:161-97. [PMID: 2654158 DOI: 10.1016/s0378-4347(00)82945-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Liquid chromatographic and electrophoretic methods applicable to the separation of collagen and its fragments are reviewed. Special attention is paid to the separation of both stabile and labile crosslinking elements. Identification procedures exploiting the mapping of either collagen alpha-chains or of cyanogen bromide fragments are discussed. These methods can be used for diagnosing inborn errors of collagen metabolism using bioptic or necroptic samples. Analysis of urinary hydroxyproline-containing peptides or the determination of peptidically bound pyridinoline is suitable for measuring the intensity of collagen metabolism.
Collapse
Affiliation(s)
- Z Deyl
- Institute of Physiology, Czechoslovak Academy of Sciences, Prague 4-Krc
| | | |
Collapse
|