1
|
Xiao H, Zhou J, Yang F, Liu Z, Song J, Chen W, Liu H, Cheng L. Assembly and Capsid Expansion Mechanism of Bacteriophage P22 Revealed by High-Resolution Cryo-EM Structures. Viruses 2023; 15:v15020355. [PMID: 36851569 PMCID: PMC9965877 DOI: 10.3390/v15020355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The formation of many double-stranded DNA viruses, such as herpesviruses and bacteriophages, begins with the scaffolding-protein-mediated assembly of the procapsid. Subsequently, the procapsid undergoes extensive structural rearrangement and expansion to become the mature capsid. Bacteriophage P22 is an established model system used to study virus maturation. Here, we report the cryo-electron microscopy structures of procapsid, empty procapsid, empty mature capsid, and mature capsid of phage P22 at resolutions of 2.6 Å, 3.9 Å, 2.8 Å, and 3.0 Å, respectively. The structure of the procapsid allowed us to build an accurate model of the coat protein gp5 and the C-terminal region of the scaffolding protein gp8. In addition, interactions among the gp5 subunits responsible for procapsid assembly and stabilization were identified. Two C-terminal α-helices of gp8 were observed to interact with the coat protein in the procapsid. The amino acid interactions between gp5 and gp8 in the procapsid were consistent with the results of previous biochemical studies involving mutant proteins. Our structures reveal hydrogen bonds and salt bridges between the gp5 subunits in the procapsid and the conformational changes of the gp5 domains involved in the closure of the local sixfold opening and a thinner capsid shell during capsid maturation.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
| | - Junquan Zhou
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
| | - Fan Yang
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jingdong Song
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Wenyuan Chen
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
- Correspondence: (W.C.); (H.L.); (L.C.)
| | - Hongrong Liu
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
- Correspondence: (W.C.); (H.L.); (L.C.)
| | - Lingpeng Cheng
- Institute of Interdisciplinary Studies, Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control, Hunan Normal University, Changsha 410082, China
- Correspondence: (W.C.); (H.L.); (L.C.)
| |
Collapse
|
2
|
Dedeo CL, Cingolani G, Teschke CM. Portal Protein: The Orchestrator of Capsid Assembly for the dsDNA Tailed Bacteriophages and Herpesviruses. Annu Rev Virol 2019; 6:141-160. [PMID: 31337287 PMCID: PMC6947915 DOI: 10.1146/annurev-virology-092818-015819] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tailed, double-stranded DNA bacteriophages provide a well-characterized model system for the study of viral assembly, especially for herpesviruses and adenoviruses. A wealth of genetic, structural, and biochemical work has allowed for the development of assembly models and an understanding of the DNA packaging process. The portal complex is an essential player in all aspects of bacteriophage and herpesvirus assembly. Despite having low sequence similarity, portal structures across bacteriophages share the portal fold and maintain a conserved function. Due to their dynamic role, portal proteins are surprisingly plastic, and their conformations change for each stage of assembly. Because the maturation process is dependent on the portal protein, researchers have been working to validate this protein as a potential antiviral drug target. Here we review recent work on the role of portal complexes in capsid assembly, including DNA packaging, as well as portal ring assembly and incorporation and analysis of portal structures.
Collapse
Affiliation(s)
- Corynne L Dedeo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
3
|
Coat Protein Mutations That Alter the Flux of Morphogenetic Intermediates through the ϕX174 Early Assembly Pathway. J Virol 2017; 91:JVI.01384-17. [PMID: 28978706 DOI: 10.1128/jvi.01384-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/25/2017] [Indexed: 11/20/2022] Open
Abstract
Two scaffolding proteins orchestrate ϕX174 morphogenesis. The internal scaffolding protein B mediates the formation of pentameric assembly intermediates, whereas the external scaffolding protein D organizes 12 of these intermediates into procapsids. Aromatic amino acid side chains mediate most coat-internal scaffolding protein interactions. One residue in the internal scaffolding protein and three in the coat protein constitute the core of the B protein binding cleft. The three coat gene codons were randomized separately to ascertain the chemical requirements of the encoded amino acids and the morphogenetic consequences of mutation. The resulting mutants exhibited a wide range of recessive phenotypes, which could generally be explained within a structural context. Mutants with phenylalanine, tyrosine, and methionine substitutions were phenotypically indistinguishable from the wild type. However, tryptophan substitutions were detrimental at two sites. Charged residues were poorly tolerated, conferring extreme temperature-sensitive and lethal phenotypes. Eighteen lethal and conditional lethal mutants were genetically and biochemically characterized. The primary defect associated with the missense substitutions ranged from inefficient internal scaffolding protein B binding to faulty procapsid elongation reactions mediated by external scaffolding protein D. Elevating B protein concentrations above wild-type levels via exogenous, cloned-gene expression compensated for inefficient B protein binding, as did suppressing mutations within gene B. Similarly, elevating D protein concentrations above wild-type levels or compensatory mutations within gene D suppressed faulty elongation. Some of the parental mutations were pleiotropic, affecting multiple morphogenetic reactions. This progressively reduced the flux of intermediates through the pathway. Accordingly, multiple mechanisms, which may be unrelated, could restore viability.IMPORTANCE Genetic analyses have been instrumental in deciphering the temporal events of many biochemical pathways. However, pleiotropic effects can complicate analyses. Vis-à-vis virion morphogenesis, an improper protein-protein interaction within an early assembly intermediate can influence the efficiency of all subsequent reactions. Consequently, the flux of assembly intermediates cumulatively decreases as the pathway progresses. During morphogenesis, ϕX174 coat protein participates in at least four well-defined reactions, each one characterized by an interaction with a scaffolding or structural protein. In this study, genetic analyses, biochemical characterizations, and physiological assays, i.e., elevating the protein levels with which the coat protein interacts, were used to elucidate pleiotropic effects that may alter the flux of intermediates through a morphogenetic pathway.
Collapse
|
4
|
Motwani T, Lokareddy RK, Dunbar CA, Cortines JR, Jarrold MF, Cingolani G, Teschke CM. A viral scaffolding protein triggers portal ring oligomerization and incorporation during procapsid assembly. SCIENCE ADVANCES 2017; 3:e1700423. [PMID: 28782023 PMCID: PMC5529062 DOI: 10.1126/sciadv.1700423] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Most double-stranded DNA viruses package genetic material into empty precursor capsids (or procapsids) through a dodecameric portal protein complex that occupies 1 of the 12 vertices of the icosahedral lattice. Inhibiting incorporation of the portal complex prevents the formation of infectious virions, making this step an excellent target for antiviral drugs. The mechanism by which a sole portal assembly is selectively incorporated at the special vertex is unclear. We recently showed that, as part of the DNA packaging process for bacteriophage P22, the dodecameric procapsid portal changes conformation to a mature virion state. We report that preformed dodecameric rings of P22 portal protein, as opposed to portal monomers, incorporate into nascent procapsids, with preference for the procapsid portal conformation. Finally, a novel role for P22 scaffolding protein in triggering portal ring formation from portal monomers is elucidated and validated by incorporating de novo assembled portal rings into procapsids.
Collapse
Affiliation(s)
- Tina Motwani
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Ravi K. Lokareddy
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Carmen A. Dunbar
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Juliana R. Cortines
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
- Institute of Biomembranes and Bioenergetics, National Research Council, Via Amendola 165/A, 70126 Bari, Italy
| | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, CT 06269, USA
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
5
|
Abstract
Electron cryomicroscopy (cryo-EM) has been used to determine the atomic coordinates (models) from density maps of biological assemblies. These models can be assessed by their overall fit to the experimental data and stereochemical information. However, these models do not annotate the actual density values of the atoms nor their positional uncertainty. Here, we introduce a computational procedure to derive an atomic model from a cryo-EM map with annotated metadata. The accuracy of such a model is validated by a faithful replication of the experimental cryo-EM map computed using the coordinates and associated metadata. The functional interpretation of any structural features in the model and its utilization for future studies can be made in the context of its measure of uncertainty. We applied this protocol to the 3.3-Å map of the mature P22 bacteriophage capsid, a large and complex macromolecular assembly. With this protocol, we identify and annotate previously undescribed molecular interactions between capsid subunits that are crucial to maintain stability in the absence of cementing proteins or cross-linking, as occur in other bacteriophages.
Collapse
|
6
|
Newcomer RL, Fraser LCR, Teschke CM, Alexandrescu AT. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding. Biophys J 2015; 109:2666-2677. [PMID: 26682823 PMCID: PMC4699920 DOI: 10.1016/j.bpj.2015.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/13/2015] [Accepted: 11/06/2015] [Indexed: 01/30/2023] Open
Abstract
The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining (3)JNC' couplings transmitted through H-bonds, the temperature and urea-concentration dependence of (1)HN and (15)N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and (3)JNC' H-bond couplings, are identified with an accuracy of 90% by (1)HN temperature coefficients. The accuracy is improved to 95% when (15)N temperature coefficients are also included. In contrast, the urea dependence of (1)HN and (15)N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility.
Collapse
Affiliation(s)
- Rebecca L Newcomer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - LaTasha C R Fraser
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut; Department of Chemistry, University of Connecticut, Storrs, Connecticut.
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
7
|
A Molecular Staple: D-Loops in the I Domain of Bacteriophage P22 Coat Protein Make Important Intercapsomer Contacts Required for Procapsid Assembly. J Virol 2015; 89:10569-79. [PMID: 26269173 DOI: 10.1128/jvi.01629-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/08/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bacteriophage P22, a double-stranded DNA (dsDNA) virus, has a nonconserved 124-amino-acid accessory domain inserted into its coat protein, which has the canonical HK97 protein fold. This I domain is involved in virus capsid size determination and stability, as well as protein folding. The nuclear magnetic resonance (NMR) solution structure of the I domain revealed the presence of a D-loop, which was hypothesized to make important intersubunit contacts between coat proteins in adjacent capsomers. Here we show that amino acid substitutions of residues near the tip of the D-loop result in aberrant assembly products, including tubes and broken particles, highlighting the significance of the D-loops in proper procapsid assembly. Using disulfide cross-linking, we showed that the tips of the D-loops are positioned directly across from each other both in the procapsid and the mature virion, suggesting their importance in both states. Our results indicate that D-loop interactions act as "molecular staples" at the icosahedral 2-fold symmetry axis and significantly contribute to stabilizing the P22 capsid for DNA packaging. IMPORTANCE Many dsDNA viruses have morphogenic pathways utilizing an intermediate capsid, known as a procapsid. These procapsids are assembled from a coat protein having the HK97 fold in a reaction driven by scaffolding proteins or delta domains. Maturation of the capsid occurs during DNA packaging. Bacteriophage HK97 uniquely stabilizes its capsid during maturation by intercapsomer cross-linking, but most virus capsids are stabilized by alternate means. Here we show that the I domain that is inserted into the coat protein of bacteriophage P22 is important in the process of proper procapsid assembly. Specifically, the I domain allows for stabilizing interactions across the capsid 2-fold axis of symmetry via a D-loop. When amino acid residues at the tip of the D-loop are mutated, aberrant assembly products, including tubes, are formed instead of procapsids, consequently phage production is affected, indicating the importance of stabilizing interactions during the assembly and maturation reactions.
Collapse
|
8
|
Rizzo AA, Suhanovsky MM, Baker ML, Fraser LCR, Jones LM, Rempel DL, Gross ML, Chiu W, Alexandrescu AT, Teschke CM. Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and CryoEM modeling. Structure 2014; 22:830-41. [PMID: 24836025 PMCID: PMC4068711 DOI: 10.1016/j.str.2014.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 11/17/2022]
Abstract
Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded β-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core.
Collapse
Affiliation(s)
- Alessandro A Rizzo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Margaret M Suhanovsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Matthew L Baker
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - LaTasha C R Fraser
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Lisa M Jones
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Don L Rempel
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wah Chiu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
9
|
Suhanovsky MM, Teschke CM. An intramolecular chaperone inserted in bacteriophage P22 coat protein mediates its chaperonin-independent folding. J Biol Chem 2013; 288:33772-33783. [PMID: 24126914 DOI: 10.1074/jbc.m113.515312] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage P22 coat protein has the common HK97-like fold but with a genetically inserted domain (I-domain). The role of the I-domain, positioned at the outermost surface of the capsid, is unknown. We hypothesize that the I-domain may act as an intramolecular chaperone because the coat protein folds independently, and many folding mutants are localized to the I-domain. The function of the I-domain was investigated by generating the coat protein core without its I-domain and the isolated I-domain. The core coat protein shows a pronounced folding defect. The isolated I-domain folds autonomously and has a high thermodynamic stability and fast folding kinetics in the presence of a peptidyl prolyl isomerase. Thus, the I-domain provides thermodynamic stability to the full-length coat protein so that it can fold reasonably efficiently while still allowing the HK97-like core to retain the flexibility required for conformational switching during procapsid assembly and maturation.
Collapse
Affiliation(s)
- Margaret M Suhanovsky
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Carolyn M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269; Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269.
| |
Collapse
|
10
|
Abstract
Electron cryo-microscopy (cryo-EM) is a technique in structural biology that is widely used to solve the three-dimensional structures of macromolecular assemblies, close to their biological and solution conditions. Recent improvements in cryo-EM and single-particle reconstruction methodologies have led to the determination of several virus structures at near-atomic resolution (3.3 - 4.6 Å). These cryo-EM structures not only resolve the Cα backbones and side-chain densities of viral capsid proteins, but also suggest functional roles that the protein domains and some key amino acid residues play. This paper reviews the recent advances in near-atomic-resolution cryo-EM for probing the mechanisms of virus assembly and morphogenesis.
Collapse
|
11
|
Padilla-Meier GP, Gilcrease EB, Weigele PR, Cortines JR, Siegel M, Leavitt JC, Teschke CM, Casjens SR. Unraveling the role of the C-terminal helix turn helix of the coat-binding domain of bacteriophage P22 scaffolding protein. J Biol Chem 2012; 287:33766-80. [PMID: 22879595 DOI: 10.1074/jbc.m112.393132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many viruses encode scaffolding and coat proteins that co-assemble to form procapsids, which are transient precursor structures leading to progeny virions. In bacteriophage P22, the association of scaffolding and coat proteins is mediated mainly by ionic interactions. The coat protein-binding domain of scaffolding protein is a helix turn helix structure near the C terminus with a high number of charged surface residues. Residues Arg-293 and Lys-296 are particularly important for coat protein binding. The two helices contact each other through hydrophobic side chains. In this study, substitution of the residues of the interface between the helices, and the residues in the β-turn, by aspartic acid was used examine the importance of the conformation of the domain in coat binding. These replacements strongly affected the ability of the scaffolding protein to interact with coat protein. The severity of the defect in the association of scaffolding protein to coat protein was dependent on location, with substitutions at residues in the turn and helix 2 causing the most significant effects. Substituting aspartic acid for hydrophobic interface residues dramatically perturbs the stability of the structure, but similar substitutions in the turn had much less effect on the integrity of this domain, as determined by circular dichroism. We propose that the binding of scaffolding protein to coat protein is dependent on angle of the β-turn and the orientation of the charged surface on helix 2. Surprisingly, formation of the highly complex procapsid structure depends on a relatively simple interaction.
Collapse
Affiliation(s)
- G Pauline Padilla-Meier
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus. Proc Natl Acad Sci U S A 2011; 108:1355-60. [PMID: 21220301 DOI: 10.1073/pnas.1015739108] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Formation of many dsDNA viruses begins with the assembly of a procapsid, containing scaffolding proteins and a multisubunit portal but lacking DNA, which matures into an infectious virion. This process, conserved among dsDNA viruses such as herpes viruses and bacteriophages, is key to forming infectious virions. Bacteriophage P22 has served as a model system for this study in the past several decades. However, how capsid assembly is initiated, where and how scaffolding proteins bind to coat proteins in the procapsid, and the conformational changes upon capsid maturation still remain elusive. Here, we report Cα backbone models for the P22 procapsid and infectious virion derived from electron cryomicroscopy density maps determined at 3.8- and 4.0-Å resolution, respectively, and the first procapsid structure at subnanometer resolution without imposing symmetry. The procapsid structures show the scaffolding protein interacting electrostatically with the N terminus (N arm) of the coat protein through its C-terminal helix-loop-helix motif, as well as unexpected interactions between 10 scaffolding proteins and the 12-fold portal located at a unique vertex. These suggest a critical role for the scaffolding proteins both in initiating the capsid assembly at the portal vertex and propagating its growth on a T = 7 icosahedral lattice. Comparison of the procapsid and the virion backbone models reveals coordinated and complex conformational changes. These structural observations allow us to propose a more detailed molecular mechanism for the scaffolding-mediated capsid assembly initiation including portal incorporation, release of scaffolding proteins upon DNA packaging, and maturation into infectious virions.
Collapse
|
13
|
Parent KN, Khayat R, Tu LH, Suhanovsky MM, Cortines JR, Teschke CM, Johnson JE, Baker TS. P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. Structure 2010; 18:390-401. [PMID: 20223221 PMCID: PMC2951021 DOI: 10.1016/j.str.2009.12.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 12/15/2009] [Accepted: 12/29/2009] [Indexed: 11/30/2022]
Abstract
Viral capsid assembly and stability in tailed, dsDNA phage and Herpesviridae are achieved by various means including chemical crosslinks (unique to HK97), or auxiliary proteins (lambda, T4, phi29, and herpesviruses). All these viruses have coat proteins (CP) with a conserved, HK97-like core structure. We used a combination of trypsin digestion, gold labeling, cryo-electron microscopy, 3D image reconstruction, and comparative modeling to derive two independent, pseudoatomic models of bacteriophage P22 CP: before and after maturation. P22 capsid stabilization results from intersubunit interactions among N-terminal helices and an extensive "P loop," which obviate the need for crosslinks or auxiliary proteins. P22 CP also has a telokin-like Ig domain that likely stabilizes the monomer fold so that assembly may proceed via individual subunit addition rather than via preformed capsomers as occurs in HK97. Hence, the P22 CP structure may be a paradigm for understanding how monomers assemble in viruses like phi29 and HSV-1.
Collapse
Affiliation(s)
- Kristin N. Parent
- University of California, San Diego, Department of Chemistry & Biochemistry, La Jolla, CA
| | - Reza Khayat
- The Scripps Research Institute, Department of Molecular Biology, La Jolla, CA
| | - Long H. Tu
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT
| | | | - Juliana R. Cortines
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT
| | - Carolyn M. Teschke
- University of Connecticut, Department of Molecular and Cell Biology, Storrs, CT
| | - John E. Johnson
- The Scripps Research Institute, Department of Molecular Biology, La Jolla, CA
| | - Timothy S. Baker
- University of California, San Diego, Department of Chemistry & Biochemistry, La Jolla, CA
- University of California, San Diego, Division of Biological Sciences, La Jolla, CA
| |
Collapse
|
14
|
Parent KN, Suhanovsky MM, Teschke CM. Polyhead formation in phage P22 pinpoints a region in coat protein required for conformational switching. Mol Microbiol 2007; 65:1300-10. [PMID: 17680786 PMCID: PMC3215258 DOI: 10.1111/j.1365-2958.2007.05868.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eighteen single amino acid substitutions in phage P22 coat protein cause temperature-sensitive folding defects (tsf). Three intragenic global suppressor (su) substitutions (D163G, T166I and F170L), localized to a flexible loop, rescue the folding of several tsf coat proteins. Here we investigate the su substitutions in the absence of the original tsf substitutions. None of the su variant coat proteins displayed protein folding defects. Individual su substitutions had little effect on phage production in vivo; yet double and triple combinations resulted in a cold-sensitive (cs) phenotype, consistent with a defect in assembly. During virus assembly and maturation, conformational switching of capsid subunits is required when chemically identical capsid subunits form an icosahedron. Analysis of double- and triple-su phage-infected cell lysates by negative-stain electron microscopy reveals an increase in aberrant structures at the cs temperature. In vitro assembly of F170L coat protein causes production of polyheads, never seen before in phage P22. Purified procapsids composed of all of the su coat proteins showed defects in expansion, which mimics maturation in vitro. Our results suggest that a previously identified surface-exposed loop in coat protein is critical in conformational switching of subunits during both procapsid assembly and maturation.
Collapse
Affiliation(s)
| | | | - Carolyn M. Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
15
|
Parent KN, Teschke CM. GroEL/S substrate specificity based on substrate unfolding propensity. Cell Stress Chaperones 2007; 12:20-32. [PMID: 17441504 PMCID: PMC1852890 DOI: 10.1379/csc-219r.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phage P22 wild-type (WT) coat protein does not require GroEL/S to fold but temperature-sensitive-folding (tsf) coat proteins need the chaperone complex for correct folding. WT coat protein and all variants absolutely require P22 scaffolding protein, an assembly chaperone, to assemble into precursor structures termed procapsids. Previously, we showed that a global suppressor (su) substitution, T1661, which rescues several tsf coat protein variants, functioned by inducing GroEL/S. This led to an increased formation of tsf:T1661 coat protein:GroEL complexes compared with the tsf parents. The increased concentration of complexes resulted in more assembly-competent coat proteins because of a shift in the chaperone-driven kinetic partitioning between aggregation-prone intermediates toward correct folding and assembly. We have now investigated the folding and assembly of coat protein variants that carry a different global su substitution, F170L. By monitoring levels of phage production in the presence of a dysfunctional GroEL we found that tsf:F170L proteins demonstrate a less stringent requirement for GroEL. Tsf:F170L proteins also did not cause induction of the chaperones. Circular dichroism and tryptophan fluorescence indicate that the native state of the tsf: F170L coat proteins is restored to WT-like values. In addition, native acrylamide gel electrophoresis shows a stabilized native state for tsf:F170L coat proteins. The F170L su substitution also increases procapsid production compared with their tsf parents. We propose that the F170L su substitution has a decreased requirement for the chaperones GroEL and GroES as a result of restoring the tsf coat proteins to a WT-like state. Our data also suggest that GroEL/S can be induced by increasing the population of unfolding intermediates.
Collapse
Affiliation(s)
- Kristin N Parent
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
16
|
Parent KN, Ranaghan MJ, Teschke CM. A second-site suppressor of a folding defect functions via interactions with a chaperone network to improve folding and assembly in vivo. Mol Microbiol 2005; 54:1036-50. [PMID: 15522085 DOI: 10.1111/j.1365-2958.2004.04326.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Single amino acid substitutions in a protein can cause misfolding and aggregation to occur. Protein misfolding can be rescued by second-site amino acid substitutions called suppressor substitutions (su), commonly through stabilizing the native state of the protein or by increasing the rate of folding. Here we report evidence that su substitutions that rescue bacteriophage P22 temperature-sensitive-folding (tsf) coat protein variants function in a novel way. The ability of tsf:su coat proteins to fold and assemble under a variety of cellular conditions was determined by monitoring levels of phage production. The tsf:su coat proteins were found to more effectively utilize P22 scaffolding protein, an assembly chaperone, as compared with their tsf parents. Phage-infected cells were radioactively labelled to quantify the associations between coat protein variants and folding and assembly chaperones. Phage carrying the tsf:su coat proteins induced more GroEL and GroES, and increased formation of protein:chaperone complexes as compared with their tsf parents. We propose that the su substitutions result in coat proteins that are more assembly competent in vivo because of a chaperone-driven kinetic partitioning between aggregation-prone intermediates and the final assembled state. Through more proficient use of this chaperone network, the su substitutions exhibit a novel means of suppression of a folding defect.
Collapse
Affiliation(s)
- Kristin N Parent
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|
17
|
Ventura S. Sequence determinants of protein aggregation: tools to increase protein solubility. Microb Cell Fact 2005; 4:11. [PMID: 15847694 PMCID: PMC1087874 DOI: 10.1186/1475-2859-4-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 04/22/2005] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli is one of the most widely used hosts for the production of recombinant proteins. However, very often the target protein accumulates into insoluble aggregates in a misfolded and biologically inactive form. Bacterial inclusion bodies are major bottlenecks in protein production and are hampering the development of top priority research areas such structural genomics. Inclusion body formation was formerly considered to occur via non-specific association of hydrophobic surfaces in folding intermediates. Increasing evidence, however, indicates that protein aggregation in bacteria resembles to the well-studied process of amyloid fibril formation. Both processes appear to rely on the formation of specific, sequence-dependent, intermolecular interactions driving the formation of structured protein aggregates. This similarity in the mechanisms of aggregation will probably allow applying anti-aggregational strategies already tested in the amyloid context to the less explored area of protein aggregation inside bacteria. Specifically, new sequence-based approaches appear as promising tools to tune protein aggregation in biotechnological processes.
Collapse
Affiliation(s)
- Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
18
|
Datta P, Mallik P, Ghosh AN, Chakravorthy M. Temperature Sensitive Mutation in the 38 kDa Minor Structural Protein Gene of Phage MB78 Interferes with Phage Morphogenesis. Virus Genes 2005; 30:197-207. [PMID: 15744577 DOI: 10.1007/s11262-004-5628-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 09/05/2004] [Indexed: 10/25/2022]
Abstract
Temperature sensitive mutation in the gene for the 38 kDa minor structural protein of the phage MB78, a virulent phage of Salmonella enterica serovar typhimurium, interferes with phage development at restrictive temperature. Electron microscopy of particles produced at non-permissive temperature indicated that the particles formed are tailless. Two types of particles are seen: (i) empty capsids, which are not perfect icosahedral (ii) icosahedral particles filled with DNA. The gene for the 38 kDa protein is located in the SalIG fragment of the phage genome. Nucleotide sequence of the SalIG fragment of MB78 as well as its temperature sensitive mutant has been determined and analysed. Such analysis indicated that in the mutant the codon GCA has been changed to GTA resulting in substitution of alanine at position 75 of the protein by valine (A75V). This makes the protein thermolabile. Our results suggest that normal functioning of this 38 kDa protein is necessary for attachment of tail fibre to the capsid. Or in other words, this 38 kDa protein is involved in phage morphogenesis.
Collapse
Affiliation(s)
- Pinaki Datta
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, U.P., India
| | | | | | | |
Collapse
|
19
|
Pope WH, Haase-Pettingell C, King J. Protein folding failure sets high-temperature limit on growth of phage P22 in Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 2004; 70:4840-7. [PMID: 15294822 PMCID: PMC492335 DOI: 10.1128/aem.70.8.4840-4847.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-temperature limit for growth of microorganisms differs greatly depending on their species and habitat. The importance of an organism's ability to manage thermal stress is reflected in the ubiquitous distribution of the heat shock chaperones. Although many chaperones function to reduce protein folding defects, it has been difficult to identify the specific protein folding pathways that set the high-temperature limit of growth for a given microorganism. We have investigated this for a simple system, phage P22 infection of Salmonella enterica serovar Typhimurium. Production of infectious particles exhibited a broad maximum of 150 phage per cell when host cells were grown at between 30 and 39 degrees C in minimal medium. Production of infectious phage declined sharply in the range of 40 to 41 degrees C, and at 42 degrees C, production had fallen to less than 1% of the maximum rate. The host cells maintained optimal division rates at these temperatures. The decrease in phage infectivity was steeper than the loss of physical particles, suggesting that noninfectious particles were formed at higher temperatures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a decrease in the tailspike adhesins assembled on phage particles purified from cultures incubated at higher temperatures. The infectivity of these particles was restored by in vitro incubation with soluble tailspike trimers. Examination of tailspike folding and assembly in lysates of phage-infected cells confirmed that the fraction of polypeptide chains able to reach the native state in vivo decreased with increasing temperature, indicating a thermal folding defect rather than a particle assembly defect. Thus, we believe that the folding pathway of the tailspike adhesin sets the high-temperature limit for P22 formation in Salmonella serovar Typhimurium.
Collapse
Affiliation(s)
- Welkin H Pope
- Massachusetts Institute of Technology, 77 Massachusetts Ave. 68-330, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
20
|
Doyle SM, Anderson E, Parent KN, Teschke CM. A concerted mechanism for the suppression of a folding defect through interactions with chaperones. J Biol Chem 2004; 279:17473-82. [PMID: 14764588 DOI: 10.1074/jbc.m400467200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Specific amino acid substitutions confer a temperature-sensitive-folding (tsf) phenotype to bacteriophage P22 coat protein. Additional amino acid substitutions, called suppressor substitutions (su), relieve the tsf phenotype. These su substitutions are proposed to increase the efficiency of procapsid assembly, favoring correct folding over improper aggregation. Our recent studies indicate that the molecular chaperones GroEL/ES are more effectively recruited in vivo for the folding of tsf:su coat proteins than their tsf parents. Here, the tsf:su coat proteins are studied with in vitro equilibrium and kinetic techniques to establish a molecular basis for suppression. The tsf:su coat proteins were monomeric, as determined by velocity sedimentation analytical ultracentrifugation. The stability of the tsf:su coat proteins was ascertained by equilibrium urea titrations, which were best described by a three-state folding model, N <--> I <--> U. The tsf:su coat proteins either had stabilized native or intermediate states as compared with their tsf coat protein parents. The kinetics of the I <--> U transition showed a decrease in the rate of unfolding and a small increase in the rate of refolding, thereby increasing the population of the intermediate state. The increased intermediate population may be the reason the tsf:su coat proteins are aggregation-prone and likely enhances GroEL-ES interactions. The N --> I unfolding rate was slower for the tsf:su proteins than their tsf coat parents, resulting in an increase in the native state population, which may allow more competent interactions with scaffolding protein, an assembly chaperone. Thus, the suppressor substitution likely improves folding in vivo through increased efficiency of coat protein-chaperone interactions.
Collapse
Affiliation(s)
- Shannon M Doyle
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | | | | | |
Collapse
|
21
|
Doyle SM, Anderson E, Zhu D, Braswell EH, Teschke CM. Rapid unfolding of a domain populates an aggregation-prone intermediate that can be recognized by GroEL. J Mol Biol 2003; 332:937-51. [PMID: 12972263 DOI: 10.1016/s0022-2836(03)00955-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Some amino acid substitutions in phage P22 coat protein cause a temperature-sensitive folding (tsf) phenotype. In vivo, these tsf amino acid substitutions cause coat protein to aggregate and form intracellular inclusion bodies when folded at high temperatures, but at low temperatures the proteins fold properly. Here the effects of tsf amino acid substitutions on folding and unfolding kinetics and the stability of coat protein in vitro have been investigated to determine how the substitutions change the ability of coat protein to fold properly. The equilibrium unfolding transitions of the tsf variants were best fit to a three-state model, N if I if U, where all species concerned were monomeric, a result confirmed by velocity sedimentation analytical ultracentrifugation. The primary effect of the tsf amino acid substitutions on the equilibrium unfolding pathway was to decrease the stability (DeltaG) and the solvent accessibility (m-value) of the N if I transition. The kinetics of folding and unfolding of the tsf coat proteins were investigated using tryptophan fluorescence and circular dichroism (CD) at 222 nm. The tsf amino acid substitutions increased the rate of unfolding by 8-14-fold, with little effect on the rate of folding, when monitored by tryptophan fluorescence. In contrast, when folding or unfolding reactions were monitored by CD, the reactions were too fast to be observed. The tsf coat proteins are natural substrates for the molecular chaperones, GroEL/S. When native tsf coat protein monomers were incubated with GroEL, they bound efficiently, indicating that a folding intermediate was significantly populated even without denaturant. Thus, the tsf coat proteins aggregate in vivo because of an increased propensity to populate this unfolding intermediate.
Collapse
Affiliation(s)
- Shannon M Doyle
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT 06269-3125, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
To assemble into a virus with icosahedral symmetry, capsid proteins must be able to attain multiple conformations. Whether this conformational diversity is achieved during folding of the subunit, or subsequently during assembly, is not clear. Phage P22 coat protein offers an ideal model to investigate the folding of a monomeric capsid subunit since its folding is independent of assembly. Our early studies indicated that P22 coat protein monomers could be folded into an assembly-competent state in vitro, with evidence of a kinetic intermediate. Using urea denaturation, coat protein monomers are shown to be marginally stable. The reversible folding of coat protein follows a three-state model, N if I if U, with an intermediate exhibiting most of the tryptophan fluorescence of the folded state, but little secondary structure. Folding and unfolding kinetics monitored by circular dichroism, tryptophan fluorescence, and bisANS fluorescence indicate that several kinetic intermediates are populated sequentially through parallel channels en route to the native state. Additionally, two native states were identified, suggesting that the several conformers required to assemble an icosahedral capsid may be found in solution before assembly ensues.
Collapse
Affiliation(s)
- Eric Anderson
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
23
|
O'Reilly L, Roth MJ. Identification of conformational and cold-sensitive mutations in the MuLV envelope protein. Virology 2003; 312:337-49. [PMID: 12919739 DOI: 10.1016/s0042-6822(03)00244-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure and function of the C-terminal domain of the murine leukemia virus Surface protein (MuLV SU) is not well defined. Passage of chimeric ecotropic-amphotropic MuLV viruses with junctions within the SU C-terminus results in the selection of specific point mutations which improve virus viability and Env function. Point mutations were characterized that alter the conformation of the SU/TM heterodimers on the viral particles. Mutation of position E311 within the Moloney MuLV SU protein alters the conformation of the TM protein and its recognition by antibody 42-114 in immunoprecipitation reactions. Mutation of either G541R in the amphotropic 4070A TM, V421M in the 4070A SU, or deletion of S39 and P40 at the N-terminus of the M-MuLV SU results in an irreversible cold-sensitive phenotype at 4 degrees C. This loss of viral titer can be restored by incorporating V421M plus G541R or del S39 P40 plus G541R in cis within the SU/TM.
Collapse
Affiliation(s)
- Lucille O'Reilly
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
24
|
Horwich A. Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions. J Clin Invest 2002. [DOI: 10.1172/jci0216781] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Aramli LA, Teschke CM. Alleviation of a defect in protein folding by increasing the rate of subunit assembly. J Biol Chem 2001; 276:25372-7. [PMID: 11304542 DOI: 10.1074/jbc.m101759200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the nature of protein grammar is critical because amino acid substitutions in some proteins cause misfolding and aggregation of the mutant protein resulting in a disease state. Amino acid substitutions in phage P22 coat protein, known as tsf (temperature-sensitive folding) mutations, cause folding defects that result in aggregation at high temperatures. We have isolated global su (suppressor) amino acid substitutions that alleviate the tsf phenotype in coat protein (Aramli, L. A., and Teschke, C. M. (1999) J. Biol. Chem. 274, 22217-22224). Unexpectedly, we found that a global su amino acid substitution in tsf coat proteins made aggregation worse and that the tsf phenotype was suppressed by increasing the rate of subunit assembly, thereby decreasing the concentration of aggregation-prone folding intermediates.
Collapse
Affiliation(s)
- L A Aramli
- University of Connecticut, Department of Molecular and Cell Biology, 75 N. Eagleville Road, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
26
|
Abstract
GroEL recognizes proteins that are folding improperly or that have aggregation-prone intermediates. Here we have used as substrates for GroEL, wildtype (WT) coat protein of phage P22 and 3 coat proteins that carry single amino acid substitutions leading to a temperature-sensitive folding (tsf) phenotype. In vivo, WT coat protein does not require GroEL for proper folding, whereas GroEL is necessary for the folding of the tsf coat proteins; thus, the single amino acid substitutions cause coat protein to become a substrate for GroEL. The conformation of WT and tsf coat proteins when in a binary complex with GroEL was investigated using tryptophan fluorescence, quenching of fluorescence, and accessibility of the coat proteins to proteolysis. WT coat protein and the tsf coat protein mutants were each found to be in a different conformation when bound to GroEL. As an additional measure of the changes in the bound conformation, the affinity of binding of WT and tsf coat proteins to GroEL was determined using a fluorescence binding assay. The tsf coat proteins were bound more tightly by GroEL than WT coat protein. Therefore, even though the proteins are identical except for a single amino acid substitution, GroEL did not bind these substrate polypeptides in the same conformation within its central cavity. Therefore, GroEL is likely to bind coat protein in a conformation consistent with a late folding intermediate, with substantial secondary and tertiary structure formed.
Collapse
Affiliation(s)
- M D de Beus
- University of Connecticut, Department of Molecular and Cell Biology, Storrs 06269-3125, USA
| | | | | |
Collapse
|
27
|
Aramli LA, Teschke CM. Single amino acid substitutions globally suppress the folding defects of temperature-sensitive folding mutants of phage P22 coat protein. J Biol Chem 1999; 274:22217-24. [PMID: 10428787 DOI: 10.1074/jbc.274.32.22217] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino acid sequence of a polypeptide defines both the folding pathway and the final three-dimensional structure of a protein. Eighteen amino acid substitutions have been identified in bacteriophage P22 coat protein that are defective in folding and cause their folding intermediates to be substrates for GroEL and GroES. These temperature-sensitive folding (tsf) substitutions identify amino acids that are critical for directing the folding of coat protein. Additional amino acid residues that are critical to the folding process of P22 coat protein were identified by isolating second site suppressors of the tsf coat proteins. Suppressor substitutions isolated from the phage carrying the tsf coat protein substitutions included global suppressors, which are substitutions capable of alleviating the folding defects of numerous tsf coat protein mutants. In addition, potential global and site-specific suppressors were isolated, as well as a group of same site amino acid substitutions that had a less severe phenotype than the tsf parent. The global suppressors were located at positions 163, 166, and 170 in the coat protein sequence and were 8-190 amino acid residues away from the tsf parent. Although the folding of coat proteins with tsf amino acid substitutions was improved by the global suppressor substitutions, GroEL remained necessary for folding. Therefore, we believe that the global suppressor sites identify a region that is critical to the folding of coat protein.
Collapse
Affiliation(s)
- L A Aramli
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | |
Collapse
|
28
|
Greene B, King J. Folding and stability of mutant scaffolding proteins defective in P22 capsid assembly. J Biol Chem 1999; 274:16141-6. [PMID: 10347166 DOI: 10.1074/jbc.274.23.16141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage P22 scaffolding subunits are elongated molecules that interact through their C termini with coat subunits to direct icosahedral capsid assembly. The soluble state of the subunit exhibits a partially folded intermediate during equilibrium unfolding experiments, whose C-terminal domain is unfolded (Greene, B., and King, J. (1999) J. Biol. Chem. 274, 16135-16140). Four mutant scaffolding proteins exhibiting temperature-sensitive defects in different stages of particle assembly were purified. The purified mutant proteins adopted a similar conformation to wild type, but all were destabilized with respect to wild type. Analysis of the thermal melting transitions showed that the mutants S242F and Y214W further destabilized the C-terminal domain, whereas substitutions near the N terminus either destabilized a different domain or affected interactions between domains. Two mutant proteins carried an additional cysteine residue, which formed disulfide cross-links but did not affect the denaturation transition. These mutants differed both from temperature-sensitive folding mutants found in other P22 structural proteins and from the thermolabile temperature-sensitive mutants described for T4 lysozyme. The results suggest that the defects in these mutants are due to destabilization of domains affecting the weak subunit-subunit interactions important in the assembly and function of the virus precursor shell.
Collapse
Affiliation(s)
- B Greene
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
29
|
Nakonechny WS, Teschke CM. GroEL and GroES control of substrate flux in the in vivo folding pathway of phage P22 coat protein. J Biol Chem 1998; 273:27236-44. [PMID: 9765246 DOI: 10.1074/jbc.273.42.27236] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our present understanding of the action of the chaperonins GroEL/S on protein folding is based primarily on in vitro studies, whereas the folding of proteins in the cellular milieu has not been as thoroughly investigated. We have developed a means of examining in vivo protein folding and assembly that utilizes the coat protein of bacteriophage P22, a naturally occurring substrate of GroEL/S. Here we show that amino acid substitutions in coat protein that cause a temperature-sensitive-folding (tsf) phenotype slowed assembly rates upon increasing the temperature of cell growth. Raising cellular concentrations of GroEL/S increased the rate of assembly of the tsf mutant coat proteins to nearly that of wild-type (WT) coat protein by protecting a thermolabile folding intermediate from aggregation, thereby increasing the concentration of assembly-competent coat protein. The rate of release of the tsf coat proteins from the GroEL/S-coat protein ternary complex was approximately 2-fold slower at non-permissive temperatures when compared with the release of WT coat protein. However, the rate of release of WT or tsf coat proteins at each temperature remained constant regardless of GroEL/S levels. Thus, raising the cellular concentration of GroEL/S increased the amount of assembly-competent tsf coat proteins not by altering the rates of folding but by increasing the probability of GroEL/S-coat protein complex formation.
Collapse
Affiliation(s)
- W S Nakonechny
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | |
Collapse
|
30
|
Haase-Pettingell C, King J. Prevalence of temperature sensitive folding mutations in the parallel beta coil domain of the phage P22 tailspike endorhamnosidase. J Mol Biol 1997; 267:88-102. [PMID: 9096209 DOI: 10.1006/jmbi.1996.0841] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Temperature sensitive mutations fall into two general classes: tl mutations, which render the mature protein thermolabile, and tsf (temperature sensitive folding) mutations, which destabilize an intermediate in the folding pathway without altering the functions of the folded state. The molecular defects caused by tsf mutations have been intensively studied for the elongated tailspike endorhamnosidase of Salmonella phage P22. The tailspike, responsible for host cell recognition and attachment, contains a 13 strand parallel beta coil domain. A set of tsf mutants located in the beta coil domain have been shown to cause folding defects in the in vivo folding pathway for the tailspike. We report here additional data on 17 other temperature sensitive mutants which are in the beta coil domain. Using mutant proteins formed at low temperature, the essential functions of assembling on the phage head, and binding to the O-antigen lipopolysaccharide (LPS) receptor of Salmonella were examined at high temperatures. All of the mutant proteins once folded at permissive temperature, were functional at restrictive temperatures. When synthesized at restrictive temperature the mutant chains formed an early folding intermediate, but failed to reach the mature conformation, accumulating instead in the aggregated inclusion body state. Thus this set of mutants all have the temperature sensitive folding phenotype. The prevalence of tsf mutants in the parallel beta coil domain presumably reflects properties of its folding intermediates. The key property may be the tendency of the intermediate to associate off pathway to the kinetically trapped inclusion body state.
Collapse
|
31
|
Vernet T, Tessier DC, Chatellier J, Plouffe C, Lee TS, Thomas DY, Storer AC, Ménard R. Structural and functional roles of asparagine 175 in the cysteine protease papain. J Biol Chem 1995; 270:16645-52. [PMID: 7622473 DOI: 10.1074/jbc.270.28.16645] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The role of the asparagine residue in the Cys-His-Asn "catalytic triad" of cysteine proteases has been investigated by replacing Asn175 in papain by alanine and glutamine using site-directed mutagenesis. The mutants were expressed in yeast and kinetic parameters determined against the substrate carbobenzoxy-L-phenylalanyl-(7-amino-4-methylcoumarinyl)- L-arginine. At the optimal pH of 6.5, the specificity constant (k(cat)/KM)obs was reduced by factors of 3.4 and 150 for the Asn175-->Gln and Asn175-->Ala mutants, respectively. Most of this effect was the result of a decrease in k(cat), as neither mutation significantly affected KM. Substrate hydrolysis by these mutants is still much faster than the non-catalytic rate, and therefore Asn175 cannot be considered as an essential catalytic residue in the cysteine protease papain. Detailed analyses of the pH activity profiles for both mutants allow the evaluation of the role of the Asn175 side chain on the stability of the active site ion pair and on the intrinsic activity of the enzyme. Alteration of the side chain at position 175 was also found to increase aggregation and proteolytic susceptibility of the proenzyme and to affect the thermal stability of the mature enzyme, reflecting a contribution of the asparagine residue to the structural integrity of papain. The strict conservation of Asn175 in cysteine proteases might therefore result from a combination of functional and structural constraints.
Collapse
Affiliation(s)
- T Vernet
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Galisteo ML, Gordon CL, King J. Stability of wild-type and temperature-sensitive protein subunits of the phage P22 capsid. J Biol Chem 1995; 270:16595-601. [PMID: 7622466 DOI: 10.1074/jbc.270.28.16595] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Temperature-sensitive folding (tsf) mutants of the phage P22 coat protein prevent newly synthesized polypeptide chains from reaching the conformation competent for capsid assembly in cells, and can be rescued by the GroEL chaperone (Gordon, C., Sather, S., Casjens, S., and King, J. (1994) J. Biol. Chem. 269, 27941-27951). Here we investigate the stabilities of wild-type and four tsf mutant unpolymerized subunits. Wild-type coat protein subunits denatured at 40 degrees C, with a calorimetric enthalpy of approximately 600 kJ/mol. Comparison with coat protein denaturation within the shell lattice (Tm = 87 degrees C, delta H approximately 1700 kJ/mol) (Galisteo, M.L., and King, J. (1993) Biophys. J. 65, 227-235) indicates that protein-protein interactions within the capsid provide enormous stabilization. The melting temperatures of the subunits carrying tsf substitutions were similar to wild-type. At low temperatures, the tsf mutants, but not the wild-type, formed non-covalent dimers, which were dissociated at temperatures above 30 degrees C. Spectroscopic and calorimetric studies indicated that the mutant proteins have reduced amounts of ordered structure at low temperature, as compared to the wild-type protein. Although complex, the in vitro phenotypes are consistent with the in vivo finding that the mutants are defective in folding, rather than subunit stability. These results suggest a role for incompletely folded subunits as precursors in viral capsid assembly, providing a mechanism of reaching multiple conformations in the polymerized form.
Collapse
Affiliation(s)
- M L Galisteo
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | |
Collapse
|
33
|
Teschke CM, King J. In vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo temperature sensitivity. Biochemistry 1995; 34:6815-26. [PMID: 7756313 DOI: 10.1021/bi00020a028] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The coat protein that forms the icosahedral shell of phage P22 can be efficiently refolded in vitro [Teschke, C. M., & King, J. (1993) Biochemistry 32, 10839-10847]. Temperature-sensitive mutants of coat protein interfere with folding or assembly in vivo [Gordon, C. L., & King, J. (1993) J. Biol. Chem. 268, 9358-9368]. The folding of a set of phage P22 coat proteins carrying the temperature-sensitive for folding (tsf) substitutions W48Q, A108V, G232D, T294I, and F353L has been investigated in vitro. Denatured tsf polypeptides were able to fold into soluble species with high efficiency. The efficiency of folding of the wild-type (WT) and mutant polypeptides at different temperatures showed sharp transitions where aggregation predominated over folding. The refolding of the tsf mutant proteins did not show an obvious thermal defect in yield. The tsf polypeptides folded through the long-lived kinetic intermediate previously described for WT coat protein with similar relaxation times. The folding kinetics of the tsf polypeptides in bisANS, a hydrophobic fluorescent dye, were also similar to those of the WT protein. However, the folded tsf proteins showed decreased secondary structure compared to WT coat protein. Analysis of the folded state by native gel electrophoresis revealed that the tsf coat proteins folded into dimers and trimers, not monomers. The dimer and trimer species were incompetent for assembly. Once formed, dimers and trimers showed no propensity toward aggregation. The folding pathway of the mutant polypeptides must be quite similar to the WT pathway, but at some step inappropriate intersubunit interactions occur due to the amino acid substitutions, trapping the subunits from assembly.
Collapse
Affiliation(s)
- C M Teschke
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
34
|
Kellenberger E, Wunderli-Allenspach H. Electron microscopic studies on intracellular phage development--history and perspectives. Micron 1995; 26:213-45. [PMID: 7788280 DOI: 10.1016/0968-4328(94)00051-q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review is centered on the applications of thin sections to the study of intracellular precursors of bacteriophage heads. Results obtained with other preparation methods are included in so far as they are essential for the comprehension of the biological problems. This type of work was pioneered with phage T4, which contributed much to today's understanding of morphogenesis and form determination. The T4 story is rich in successes, but also in many fallacies. Due to its large size, T4 is obviously prone to preparation artefacts such as emptying, flattening and others. Many of these artefacts were first encountered in T4. Artefacts are mostly found in lysates, however, experience shows that they are not completely absent from thin sections. This can be explained by the fact that permeability changes induced by fixatives occur. The information gained from T4 was profitably used for the study of other phages. They are included in this review as far as electron microscopic studies played a major role in the elucidation of their morphogenetic pathways. Research on phage assembly pathways and form determination is a beautiful illustration for the power of the integrated approach which combines electron microscopy with biochemistry, genetics and biophysics. As a consequence, we did not restrict ourselves to the review of electron microscopic work but tried to integrate pertinent data which contribute to the understanding of the molecular mechanisms acting in determining the form of supramolecular structures.
Collapse
Affiliation(s)
- E Kellenberger
- Department of Microbiology, Biocenter of the University, Basel, Switzerland
| | | |
Collapse
|
35
|
Selective in vivo rescue by GroEL/ES of thermolabile folding intermediates to phage P22 structural proteins. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46878-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|