1
|
Tailor K, Sagar P, Dave K, Pohnerkar J. Fusion of the N-terminal 119 amino acids of RelA with the CTD domain render growth inhibitory effects of the latter, (p)ppGpp-dependent. Mol Genet Genomics 2022; 297:601-620. [PMID: 35238978 DOI: 10.1007/s00438-022-01873-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
The guanosine nucleotide derivatives ppGpp and pppGpp are central to the remarkable capacity of bacteria to adapt to fluctuating environments and metabolic perturbations. They are synthesized by two proteins, RelA and SpoT in E. coli and the activities of each of the two enzymes are highly regulated for homeostatic control of intracellular (p)ppGpp levels. Characterization of the mutant studied here indicates that moderate level expression of RelA appreciably reduces growth of cells wherein the basal levels of (p)ppGpp are higher than in the wild type without elevating the levels further. Consistent with this result, a large part of the growth inhibition effect is reproduced by overexpression of RelA NTD-CTD fusion lacking the (p)ppGpp synthesis function. A null mutation in relA abolishes this growth inhibitory effect suggesting its requirement for basal level synthesis of (p)ppGpp. Accordingly, increase in the (p)ppGpp levels in the relA1 mutant by spoT202 mutation largely restored the growth inhibitory effects of overexpression of RelA NTD-CTD fusion. Expression of this construct consisting of 119 amino acids of the N-terminal hydrolytic domain (HD) fused in-frame with the CTD domain (±TGS domain) renders the growth inhibitory effects (p)ppGpp-responsive-inhibited growth only of spoT1 and spoT202 relA1 mutants. This finding uncovered an hitherto unrealized (p)ppGpp-dependent regulation of RelA-CTD function, unraveling the importance of RelA NTD-HD domain for its regulatory role. An incremental rise in the (p)ppGpp levels is proposed to progressively modulate the interaction of RelA-CTD with the ribosomes with possible implications in the feedback regulation of the (p)ppGpp synthesis function, a proposal that accounts for the nonlinear kinetics of (p)ppGpp synthesis and increased ratio of RelA:ribosomes, both in vitro as well as in vivo.
Collapse
Affiliation(s)
- Krishma Tailor
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Prarthi Sagar
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Keyur Dave
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Jayashree Pohnerkar
- Department of Biochemistry, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
2
|
Monticolo F, Palomba E, Chiusano ML. Translation machinery reprogramming in programmed cell death in Saccharomyces cerevisiae. Cell Death Discov 2021; 7:17. [PMID: 33462193 PMCID: PMC7814045 DOI: 10.1038/s41420-020-00392-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
Programmed cell death involves complex molecular pathways in both eukaryotes and prokaryotes. In Escherichia coli, the toxin-antitoxin system (TA-system) has been described as a programmed cell death pathway in which mRNA and ribosome organizations are modified, favoring the production of specific death-related proteins, but also of a minor portion of survival proteins, determining the destiny of the cell population. In the eukaryote Saccharomyces cerevisiae, the ribosome was shown to change its stoichiometry in terms of ribosomal protein content during stress response, affecting the relative proportion between ohnologs, i.e., the couple of paralogs derived by a whole genome duplication event. Here, we confirm the differential expression of ribosomal proteins in yeast also during programmed cell death induced by acetic acid, and we highlight that also in this case pairs of ohnologs are involved. We also show that there are different trends in cytosolic and mitochondrial ribosomal proteins gene expression during the process. Moreover, we show that the exposure to acetic acid induces the differential expression of further genes coding for products related to translation processes and to rRNA post-transcriptional maturation, involving mRNA decapping, affecting translation accuracy, and snoRNA synthesis. Our results suggest that the reprogramming of the overall translation apparatus, including the cytosolic ribosome reorganization, are relevant events in yeast programmed cell death induced by acetic acid.
Collapse
Affiliation(s)
- Francesco Monticolo
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Napoli, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055, Portici, NA, Italy. .,Department of Research Infrastructures for Marine Biological Resources (RIMAR), Stazione Zoologica "Anton Dohrn", Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
3
|
Sanyal R, Harinarayanan R. Activation of RelA by pppGpp as the basis for its differential toxicity over ppGpp in Escherichia coli. J Biosci 2020. [DOI: 10.1007/s12038-020-9991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Kaspy I, Glaser G. Escherichia coli RelA Regulation via Its C-Terminal Domain. Front Microbiol 2020; 11:572419. [PMID: 33224116 PMCID: PMC7669825 DOI: 10.3389/fmicb.2020.572419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/09/2020] [Indexed: 01/25/2023] Open
Abstract
One of the most important stress responses in bacteria is the stringent response. The main player in this response is the signal molecule (p)ppGpp, which is synthesized by a Rel family protein. In Escherichia coli, RelA is the main synthetase of (p)ppGpp in response to amino acid starvation. Although the synthetic activity of RelA is well-understood, its regulation is not yet fully characterized. The C-terminus domain (CTD) of the E. coli RelA is responsible for the regulation of the protein and for its complete dependency on wild-type (WT) ribosome. The CTD contains three Cysteine residues, positioned in a very conserved order. Together with our previous results, we show in vitro the negative dominant effect of a part of the WT CTD (AA 564-744) named YG4 on RelA synthetic activity. This effect is abolished using mutated YG4 (YG4-638). In vitro and mass spectrometry (MS)-MS analysis of the native RelA and the mutated RelA in Cys-638 (Rel638) in the presence of the native and mutated YG4 (YG4-638) reveals that RelA forms a homodimer via its CTD by the formation of a disulfide bond between the two Cys-638 residues. This supports our previous data which showed, using a two-hybrid system, interactions between RelA proteins via the CTD. Finally, we show in vitro that excess of the native YG4 inhibited RelA synthetic activity but did not affect the amount of RelA bound to the ribosome. Our results suggest that the regulatory mechanism of RelA is by the dimerization of the protein via disulfide bonds in the CTD. Upon amino-acid starvation, the dimer changes its conformation, thus activating the stringent response in the cell.
Collapse
Affiliation(s)
- Ilana Kaspy
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gad Glaser
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Sanyal R, Vimala A, Harinarayanan R. Studies on the Regulation of (p)ppGpp Metabolism and Its Perturbation Through the Over-Expression of Nudix Hydrolases in Escherichia coli. Front Microbiol 2020; 11:562804. [PMID: 33178149 PMCID: PMC7593582 DOI: 10.3389/fmicb.2020.562804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022] Open
Abstract
Stringent response mediated by modified guanosine nucleotides is conserved across bacteria and is regulated through the Rel/Spo functions. In Escherichia coli, RelA and SpoT proteins synthesize the modified nucleotides ppGpp and pppGpp, together referred to as (p)ppGpp. SpoT is also the primary (p)ppGpp hydrolase. In this study, using hypomorphic relA alleles, we provide experimental evidence for SpoT-mediated negative regulation of the amplification of RelA-dependent stringent response. We investigated the kinetics of ppGpp degradation in cells recovering from stringent response in the complete absence of SpoT function. We found that, although greatly diminished, there was slow ppGpp degradation and growth resumption after a lag period, concomitant with decrease in ppGpp pool. We present evidence for reduction in the ppGpp degradation rate following an increase in pppGpp pool, during recovery from stringent response. From a genetic screen, the nudix hydrolases MutT and NudG were identified as over-expression suppressors of the growth defect of ΔspoT and ΔspoT ΔgppA strains. The effect of over-expression of these hydrolases on the stringent response to amino acid starvation and basal (p)ppGpp pool was studied. Over-expression of each hydrolase reduced the strength of the stringent response to amino acid starvation, and additionally, perturbed the ratio of ppGpp to pppGpp in strains with reduced SpoT hydrolase activity. In these strains that do not accumulate pppGpp during amino acid starvation, the expression of NudG or MutT supported pppGpp accumulation. This lends support to the idea that a reduction in the SpoT hydrolase activity is sufficient to cause the loss of pppGpp accumulation and therefore the phenomenon is independent of hydrolases that target pppGpp, such as GppA.
Collapse
Affiliation(s)
- Rajeshree Sanyal
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Allada Vimala
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rajendran Harinarayanan
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
6
|
Hall DC, Król JE, Cahill JP, Ji HF, Ehrlich GD. The Development of a Pipeline for the Identification and Validation of Small-Molecule RelA Inhibitors for Use as Anti-Biofilm Drugs. Microorganisms 2020; 8:1310. [PMID: 32872142 PMCID: PMC7563162 DOI: 10.3390/microorganisms8091310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Biofilm infections have no approved effective medical treatments and can only be disrupted via physical means. This means that any biofilm infection that is not addressable surgically can never be eliminated and can only be managed as a chronic disease. Therefore, there is an urgent need for the development of new classes of drugs that can target the metabolic mechanisms within biofilms which render them recalcitrant to traditional antibiotics. Persister cells within the biofilm structure may play a large role in the enhanced antibiotic recalcitrance of bacteria biofilms. Biofilm persister cells can be resistant to up to 1000 times the minimal inhibitory concentrations of many antibiotics, as compared to their planktonic envirovars; they are thought to be the prokaryotic equivalent of metazoan stem cells. Their metabolic resistance has been demonstrated to be an active process induced by the stringent response that is triggered by the ribosomally-associated enzyme RelA in response to amino acid starvation. This 84-kD pyrophosphokinase produces the "magic spot" alarmones, collectively called (p)ppGpp. These alarmones act by directly regulating transcription by binding to RNA polymerase. These transcriptional changes lead to a major shift in cellular function to both upregulate oxidative stress-combating enzymes and down regulate major cellular functions associated with growth and replication. These changes in gene expression produce the quiescent persister cells. In this work, we describe a hybrid in silico laboratory pipeline for identifying and validating small-molecule inhibitors of RelA for use in the combinatorial treatment of bacterial biofilms as re-potentiators of classical antibiotics.
Collapse
Affiliation(s)
- Donald C. Hall
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA; (D.C.H.J.); (J.P.C.)
- Department of Microbiology & Immunology, Center for Advanced Microbial Processing, Drexel University, Philadelphia, PA 19102, USA;
- Center for Genomic Sciences, Drexel University, Philadelphia, PA 19102, USA
- Center for Surgical Infections and Bacterial Biofilms, Institute of Molecular Medicine, and Infectious Disease, Drexel University, Philadelphia, PA 19102, USA
| | - Jarosław E. Król
- Department of Microbiology & Immunology, Center for Advanced Microbial Processing, Drexel University, Philadelphia, PA 19102, USA;
- Center for Genomic Sciences, Drexel University, Philadelphia, PA 19102, USA
- Center for Surgical Infections and Bacterial Biofilms, Institute of Molecular Medicine, and Infectious Disease, Drexel University, Philadelphia, PA 19102, USA
| | - John P. Cahill
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA; (D.C.H.J.); (J.P.C.)
| | - Hai-Feng Ji
- Department of Chemistry, Drexel University, Philadelphia, PA 19104, USA; (D.C.H.J.); (J.P.C.)
| | - Garth D. Ehrlich
- Department of Microbiology & Immunology, Center for Advanced Microbial Processing, Drexel University, Philadelphia, PA 19102, USA;
- Center for Genomic Sciences, Drexel University, Philadelphia, PA 19102, USA
- Center for Surgical Infections and Bacterial Biofilms, Institute of Molecular Medicine, and Infectious Disease, Drexel University, Philadelphia, PA 19102, USA
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Drexel University, Philadelphia, PA 19102, USA
| |
Collapse
|
7
|
Abstract
Type II toxin-antitoxin (TA) systems are small genetic elements composed of a toxic protein and its cognate antitoxin protein, the latter counteracting the toxicity of the former. While TA systems were initially discovered on plasmids, functioning as addiction modules through a phenomenon called postsegregational killing, they were later shown to be massively present in bacterial chromosomes, often in association with mobile genetic elements. Extensive research has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules and to characterize the conditions leading to their activation. Type II toxin-antitoxin (TA) systems are small genetic elements composed of a toxic protein and its cognate antitoxin protein, the latter counteracting the toxicity of the former. While TA systems were initially discovered on plasmids, functioning as addiction modules through a phenomenon called postsegregational killing, they were later shown to be massively present in bacterial chromosomes, often in association with mobile genetic elements. Extensive research has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules and to characterize the conditions leading to their activation. The diversity of their proposed roles, ranging from genomic stabilization and abortive phage infection to stress modulation and antibiotic persistence, in conjunction with the poor understanding of TA system regulation, resulted in the generation of simplistic models, often refuted by contradictory results. This review provides an epistemological and critical retrospective on TA modules and highlights fundamental questions concerning their roles and regulations that still remain unanswered.
Collapse
|
8
|
Towards Exploring Toxin-Antitoxin Systems in Geobacillus: A Screen for Type II Toxin-Antitoxin System Families in a Thermophilic Genus. Int J Mol Sci 2019; 20:ijms20235869. [PMID: 31771094 PMCID: PMC6929052 DOI: 10.3390/ijms20235869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
The toxin-antitoxin (TA) systems have been attracting attention due to their role in regulating stress responses in prokaryotes and their biotechnological potential. Much recognition has been given to type II TA system of mesophiles, while thermophiles have received merely limited attention. Here, we are presenting the putative type II TA families encoded on the genomes of four Geobacillus strains. We employed the TA finder tool to mine for TA-coding genes and manually curated the results using protein domain analysis tools. We also used the NCBI BLAST, Operon Mapper, ProOpDB, and sequence alignment tools to reveal the geobacilli TA features. We identified 28 putative TA pairs, distributed over eight TA families. Among the identified TAs, 15 represent putative novel toxins and antitoxins, belonging to the MazEF, MNT-HEPN, ParDE, RelBE, and XRE-COG2856 TA families. We also identified a potentially new TA composite, AbrB-ParE. Furthermore, we are suggesting the Geobacillus acetyltransferase TA (GacTA) family, which potentially represents one of the unique TA families with a reverse gene order. Moreover, we are proposing a hypothesis on the xre-cog2856 gene expression regulation, which seems to involve the c-di-AMP. This study aims for highlighting the significance of studying TAs in Geobacillus and facilitating future experimental research.
Collapse
|
9
|
Irving SE, Corrigan RM. Triggering the stringent response: signals responsible for activating (p)ppGpp synthesis in bacteria. MICROBIOLOGY-SGM 2019; 164:268-276. [PMID: 29493495 DOI: 10.1099/mic.0.000621] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The stringent response is a conserved bacterial stress response mechanism that allows bacteria to respond to nutritional challenges. It is mediated by the alarmones pppGpp and ppGpp, nucleotides that are synthesized and hydrolyzed by members of the RSH superfamily. Whilst there are key differences in the binding targets for (p)ppGpp between Gram-negative and Gram-positive bacterial species, the transient accumulation of (p)ppGpp caused by nutritional stresses results in a global change in gene expression in all species. The RSH superfamily of enzymes is ubiquitous throughout the bacterial kingdom, and can be split into three main groups: the long-RSH enzymes; the small alarmone synthetases (SAS); and the small alarmone hydrolases (SAH). Despite the prevalence of these enzymes, there are important differences in the way in which they are regulated on a transcriptional and post-translational level. Here we provide an overview of the diverse regulatory mechanisms that are involved in governing this crucial signalling network. Understanding how the RSH superfamily members are regulated gives insights into the varied important biological roles for this signalling pathway across the bacteria.
Collapse
Affiliation(s)
- Sophie E Irving
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca M Corrigan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
10
|
Inorganic Polyphosphate Accumulation in Escherichia coli Is Regulated by DksA but Not by (p)ppGpp. J Bacteriol 2019; 201:JB.00664-18. [PMID: 30745375 DOI: 10.1128/jb.00664-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/07/2019] [Indexed: 12/25/2022] Open
Abstract
Production of inorganic polyphosphate (polyP) by bacteria is triggered by a variety of different stress conditions. polyP is required for stress survival and virulence in diverse pathogenic microbes. Previous studies have hypothesized a model for regulation of polyP synthesis in which production of the stringent-response second messenger (p)ppGpp directly stimulates polyP accumulation. In this work, I have now shown that this model is incorrect, and (p)ppGpp is not required for polyP synthesis in Escherichia coli However, stringent mutations of RNA polymerase that frequently arise spontaneously in strains defective in (p)ppGpp synthesis and null mutations of the stringent-response-associated transcription factor DksA both strongly inhibit polyP accumulation. The loss of polyP synthesis in a mutant lacking DksA was reversed by deletion of the transcription elongation factor GreA, suggesting that competition between these proteins for binding to the secondary channel of RNA polymerase plays an important role in controlling polyP activation. These results provide new insights into the poorly understood regulation of polyP synthesis in bacteria and indicate that the relationship between polyP and the stringent response is more complex than previously suspected.IMPORTANCE Production of polyP in bacteria is required for virulence and stress response, but little is known about how bacteria regulate polyP levels in response to changes in their environments. Understanding this regulation is important for understanding how pathogenic microbes resist killing by disinfectants, antibiotics, and the immune system. In this work, I have clarified the connections between polyP regulation and the stringent response to starvation stress in Escherichia coli and demonstrated an important and previously unknown role for the transcription factor DksA in controlling polyP levels.
Collapse
|
11
|
Curtis TD, Takeuchi I, Gram L, Knudsen GM. The Influence of the Toxin/Antitoxin mazEF on Growth and Survival of Listeria monocytogenes under Stress. Toxins (Basel) 2017; 9:E31. [PMID: 28098783 PMCID: PMC5308263 DOI: 10.3390/toxins9010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/31/2016] [Accepted: 01/07/2017] [Indexed: 12/11/2022] Open
Abstract
A major factor in the resilience of Listeria monocytogenes is the alternative sigma factor B (σB). Type II Toxin/Antitoxin (TA) systems are also known to have a role in the bacterial stress response upon activation via the ClpP or Lon proteases. Directly upstream of the σB operon in L. monocytogenes is the TA system mazEF, which can cleave mRNA at UACMU sites. In this study, we showed that the mazEF TA locus does not affect the level of persister formation during treatment with antibiotics in lethal doses, but exerts different effects according to the sub-inhibitory stress added. Growth of a ΔmazEF mutant was enhanced relative to the wildtype in the presence of sub-inhibitory norfloxacin and at 42 °C, but was decreased when challenged with ampicillin and gentamicin. In contrast to studies in Staphylococcus aureus, we found that the mazEF locus did not affect transcription of genes within the σB operon, but MazEF effected the expression of the σB-dependent genes opuCA and lmo0880, with a 0.22 and 0.05 fold change, respectively, compared to the wildtype under sub-inhibitory norfloxacin conditions. How exactly this system operates remains an open question, however, our data indicates it is not analogous to the system of S. aureus, suggesting a novel mode of action for MazEF in L. monocytogenes.
Collapse
Affiliation(s)
- Thomas D Curtis
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Matematiktorvet Bldg. 301, DK-2800 Kongens Lyngby, Denmark.
| | - Ippei Takeuchi
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Matematiktorvet Bldg. 301, DK-2800 Kongens Lyngby, Denmark.
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Matematiktorvet Bldg. 301, DK-2800 Kongens Lyngby, Denmark.
| | - Gitte M Knudsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Matematiktorvet Bldg. 301, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
12
|
Jia H, Sun X, Sun H, Li C, Wang Y, Feng X, Li C. Intelligent Microbial Heat-Regulating Engine (IMHeRE) for Improved Thermo-Robustness and Efficiency of Bioconversion. ACS Synth Biol 2016; 5:312-20. [PMID: 26793993 DOI: 10.1021/acssynbio.5b00158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The growth and production of microorganisms in bioconversion are often hampered by heat stress. In this study, an intelligent microbial heat-regulating engine (IMHeRE) was developed and customized to improve the thermo-robustness of Escherichia coli via the integration of a thermotolerant system and a quorum-regulating system. At the cell level, the thermotolerant system composed of different heat shock proteins and RNA thermometers hierarchically expands the optimum temperature by sensing heat changes. At the community level, the quorum-regulating system dynamically programs the altruistic sacrifice of individuals to reduce metabolic heat release by sensing the temperature and cell density. Using this hierarchical, dynamical, and multilevel regulation, the IMHeRE is able to significantly improve cell growth and production. In a real application, the production of lysine was increased 5-fold at 40 °C using the IMHeRE. Our work provides new potential for the development of bioconversion by conserving energy and increasing productivity.
Collapse
Affiliation(s)
- Haiyang Jia
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiangying Sun
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Huan Sun
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chenyi Li
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yunqian Wang
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xudong Feng
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chun Li
- Department
of Biological Engineering, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
- State
Key Laboratory of System Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Sterckx YGJ, De Gieter S, Zorzini V, Hadži S, Haesaerts S, Loris R, Garcia-Pino A. An efficient method for the purification of proteins from four distinct toxin–antitoxin modules. Protein Expr Purif 2015; 108:30-40. [DOI: 10.1016/j.pep.2015.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/27/2014] [Accepted: 01/04/2015] [Indexed: 11/24/2022]
|
14
|
Starosta AL, Lassak J, Jung K, Wilson DN. The bacterial translation stress response. FEMS Microbiol Rev 2014; 38:1172-201. [PMID: 25135187 DOI: 10.1111/1574-6976.12083] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022] Open
Abstract
Throughout their life, bacteria need to sense and respond to environmental stress. Thus, such stress responses can require dramatic cellular reprogramming, both at the transcriptional as well as the translational level. This review focuses on the protein factors that interact with the bacterial translational apparatus to respond to and cope with different types of environmental stress. For example, the stringent factor RelA interacts with the ribosome to generate ppGpp under nutrient deprivation, whereas a variety of factors have been identified that bind to the ribosome under unfavorable growth conditions to shut-down (RelE, pY, RMF, HPF and EttA) or re-program (MazF, EF4 and BipA) translation. Additional factors have been identified that rescue ribosomes stalled due to stress-induced mRNA truncation (tmRNA, ArfA, ArfB), translation of unfavorable protein sequences (EF-P), heat shock-induced subunit dissociation (Hsp15), or antibiotic inhibition (TetM, FusB). Understanding the mechanism of how the bacterial cell responds to stress will not only provide fundamental insight into translation regulation, but will also be an important step to identifying new targets for the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Agata L Starosta
- Gene Center, Department for Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany; Center for integrated Protein Science Munich (CiPSM), Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | |
Collapse
|
15
|
Jin DJ, Cagliero C, Zhou YN. Role of RNA polymerase and transcription in the organization of the bacterial nucleoid. Chem Rev 2013; 113:8662-82. [PMID: 23941620 PMCID: PMC3830623 DOI: 10.1021/cr4001429] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ding Jun Jin
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Cedric Cagliero
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| | - Yan Ning Zhou
- Transcription Control Section, Gene Regulation and Chromosome Biology Laboratory National Cancer Institute, NIH, P.O. Box B, Frederick, MD 21702
| |
Collapse
|
16
|
Demidenok OI, Goncharenko AV. Bacterial toxin-antitoxin systems and perspectives for their application in medicine. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813060070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abstract
Escherichia coli mazEF is a toxin-antitoxin stress-induced module mediating cell death. It requires the quorum-sensing signal (QS) “extracellular death factor” (EDF), the penta-peptide NNWNN (EcEDF), enhancing the endoribonucleolytic activity of E. coli toxin MazF. Here we discovered that E. coli mazEF-mediated cell death could be triggered by QS peptides from the supernatants (SN) of the Gram-positive bacterium Bacillus subtilis and the Gram-negative bacterium Pseudomonas aeruginosa. In the SN of B. subtilis, we found one EDF, the hexapeptide RGQQNE, called BsEDF. In the SN of P. aeruginosa, we found three EDFs: the nonapeptide INEQTVVTK, called PaEDF-1, and two hexadecapeptides, VEVSDDGSGGNTSLSQ, called PaEDF-2, and APKLSDGAAAGYVTKA, called PaEDF-3. When added to a diluted E. coli cultures, each of these peptides acted as an interspecies EDF that triggered mazEF-mediated death. Furthermore, though their sequences are very different, each of these EDFs amplified the endoribonucleolytic activity of E. coli MazF, probably by interacting with different sites on E. coli MazF. Finally, we suggest that EDFs may become the basis for a new class of antibiotics that trigger death from outside the bacterial cells. Bacteria communicate with one another via quorum-sensing signal (QS) molecules. QS provides a mechanism for bacteria to monitor each other’s presence and to modulate gene expression in response to population density. Previously, we added E. coli EDF (EcEDF), the peptide NNWNN, to this list of QS molecules. Here we extended the group of QS peptides to several additional different peptides. The new EDFs are produced by two other bacteria, Bacillus subtilis and Pseudomonas aeruginosa. Thus, in this study we established a “new family of EDFs.” This family provides the first example of quorum-sensing molecules participating in interspecies bacterial cell death. Furthermore, each of these peptides provides the basis of a new class of antibiotics triggering death by acting from outside the cell.
Collapse
|
18
|
Moll I, Engelberg-Kulka H. Selective translation during stress in Escherichia coli. Trends Biochem Sci 2012; 37:493-8. [PMID: 22939840 DOI: 10.1016/j.tibs.2012.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 12/18/2022]
Abstract
The bacterial stress response, a strategy to cope with environmental changes, is generally known to operate on the transcriptional level. Here, we discuss a novel paradigm for stress adaptation at the post-transcriptional level, based on the recent discovery of a stress-induced modified form of the translation machinery in Escherichia coli that is generated by MazF, the toxin component of the toxin-antitoxin (TA) module mazEF. Under stress, the induced endoribonuclease MazF removes the 3'-terminal 43 nucleotides of the 16S rRNA of ribosomes and, concomitantly, the 5'-untranslated regions (UTRs) of specific transcripts. This elegant mechanism enables selective translation due to the complementary effect of MazF on ribosomes and mRNAs, and also represents the first example of functional ribosome heterogeneity based on rRNA alteration.
Collapse
Affiliation(s)
- Isabella Moll
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria.
| | | |
Collapse
|
19
|
Two programmed cell death systems in Escherichia coli: an apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biol 2012; 10:e1001281. [PMID: 22412352 PMCID: PMC3295820 DOI: 10.1371/journal.pbio.1001281] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 01/26/2012] [Indexed: 12/17/2022] Open
Abstract
A newly discovered apoptotic-like death is inhibited by the previously described mazEF-mediated death pathway, revealing two programmed cell death systems in Escherichia coli. In eukaryotes, the classical form of programmed cell death (PCD) is apoptosis, which has as its specific characteristics DNA fragmentation and membrane depolarization. In Escherichia coli a different PCD system has been reported. It is mediated by the toxin–antitoxin system module mazEF. The E. coli mazEF module is one of the most thoroughly studied toxin–antitoxin systems. mazF encodes a stable toxin, MazF, and mazE encodes a labile antitoxin, MazE, which prevents the lethal effect of MazF. mazEF-mediated cell death is a population phenomenon requiring the quorum-sensing pentapeptide NNWNN designated Extracellular Death Factor (EDF). mazEF is triggered by several stressful conditions, including severe damage to the DNA. Here, using confocal microscopy and FACS analysis, we show that under conditions of severe DNA damage, the triggered mazEF-mediated cell death pathway leads to the inhibition of a second cell death pathway. The latter is an apoptotic-like death (ALD); ALD is mediated by recA and lexA. The mazEF-mediated pathway reduces recA mRNA levels. Based on these results, we offer a molecular model for the maintenance of an altruistic characteristic in cell populations. In our model, the ALD pathway is inhibited by the altruistic EDF-mazEF-mediated death pathway. The enteric bacterium Escherichia coli, like most other bacteria, carries on its chromosome a pair of genes, mazE and mazF (mazEF): mazF specifies a toxin, and mazE specifies an antitoxin. Previously, we have shown that E. coli mazEF is responsible for bacterial programmed cell death in response to stressors such as DNA damage. Here, we report that extensive DNA damage can induce a second mode of cell death, which we call apoptotic-like death (ALD). ALD is like apoptosis—a mode of cell death that has previously been recorded only in eukaryotes. During ALD, the cell membrane is depolarized, and the DNA is fragmented and can be detected using the classical TUNEL assay. The MazEF death pathway, however, shows neither of those features, yet also kills the cell. We show that ALD is mediated by two proteins, RecA and LexA, which are noteworthy because LexA is an inhibitor of the SOS response (which is a global response to DNA damage in which the cell cycle is arrested and DNA repair is induced). This defines ALD as a form of SOS response. Furthermore, MazEF and its downstream components cause reduction of recA mRNA levels, which could explain how the MazEF pathway inhibits the ALD pathway. We conclude that the E. coli ALD pathway is a back-up system for the traditional mazEF cell death pathway. Should one of the components of the mazEF pathway be inactivated, bacterial cell death would occur through ALD. These findings also have implications for the mechanisms of “altruistic” cell death among bacterial populations.
Collapse
|
20
|
Vesper O, Amitai S, Belitsky M, Byrgazov K, Kaberdina AC, Engelberg-Kulka H, Moll I. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell 2011; 147:147-57. [PMID: 21944167 DOI: 10.1016/j.cell.2011.07.047] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 03/11/2011] [Accepted: 07/21/2011] [Indexed: 01/17/2023]
Abstract
Escherichia coli (E. coli) mazEF is a stress-induced toxin-antitoxin (TA) module. The toxin MazF is an endoribonuclease that cleaves single-stranded mRNAs at ACA sequences. Here, we show that MazF cleaves at ACA sites at or closely upstream of the AUG start codon of some specific mRNAs and thereby generates leaderless mRNAs. Moreover, we provide evidence that MazF also targets 16S rRNA within 30S ribosomal subunits at the decoding center, thereby removing 43 nucleotides from the 3' terminus. As this region comprises the anti-Shine-Dalgarno (aSD) sequence that is required for translation initiation on canonical mRNAs, a subpopulation of ribosomes is formed that selectively translates the described leaderless mRNAs both in vivo and in vitro. Thus, we have discovered a modified translation machinery that is generated in response to MazF induction and that probably serves for stress adaptation in Escherichia coli.
Collapse
Affiliation(s)
- Oliver Vesper
- Max F. Perutz Laboratories, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Yamaguchi Y, Inouye M. Regulation of growth and death in Escherichia coli by toxin–antitoxin systems. Nat Rev Microbiol 2011; 9:779-90. [DOI: 10.1038/nrmicro2651] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Edwards AN, Patterson-Fortin LM, Vakulskas CA, Mercante JW, Potrykus K, Vinella D, Camacho MI, Fields JA, Thompson SA, Georgellis D, Cashel M, Babitzke P, Romeo T. Circuitry linking the Csr and stringent response global regulatory systems. Mol Microbiol 2011; 80:1561-80. [PMID: 21488981 DOI: 10.1111/j.1365-2958.2011.07663.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CsrA protein regulates important cellular processes by binding to target mRNAs and altering their translation and/or stability. In Escherichia coli, CsrA binds to sRNAs, CsrB and CsrC, which sequester CsrA and antagonize its activity. Here, mRNAs for relA, spoT and dksA of the stringent response system were found among 721 different transcripts that copurified with CsrA. Many of the transcripts that copurified with CsrA were previously determined to respond to ppGpp and/or DksA. We examined multiple regulatory interactions between the Csr and stringent response systems. Most importantly, DksA and ppGpp robustly activated csrB/C transcription (10-fold), while they modestly activated csrA expression. We propose that CsrA-mediated regulation is relieved during the stringent response. Gel shift assays confirmed high affinity binding of CsrA to relA mRNA leader and weaker interactions with dksA and spoT. Reporter fusions, qRT-PCR and immunoblotting showed that CsrA repressed relA expression, and (p)ppGpp accumulation during stringent response was enhanced in a csrA mutant. CsrA had modest to negligible effects on dksA and spoT expression. Transcription of dksA was negatively autoregulated via a feedback loop that tended to mask CsrA effects. We propose that the Csr system fine-tunes the stringent response and discuss biological implications of the composite circuitry.
Collapse
Affiliation(s)
- Adrianne N Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The Escherichia coli Extracellular Death Factor EDF Induces the Endoribonucleolytic Activities of the Toxins MazF and ChpBK. Mol Cell 2011; 41:625-35. [DOI: 10.1016/j.molcel.2011.02.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 10/17/2010] [Accepted: 12/24/2010] [Indexed: 01/15/2023]
|
24
|
Zhu T, Lou Q, Wu Y, Hu J, Yu F, Qu D. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile. BMC Microbiol 2010; 10:287. [PMID: 21073699 PMCID: PMC2996381 DOI: 10.1186/1471-2180-10-287] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Accepted: 11/12/2010] [Indexed: 11/16/2022] Open
Abstract
Background Staphylococcus epidermidis has emerged as one of the most important nosocomial pathogens, mainly because of its ability to colonize implanted biomaterials by forming a biofilm. Extensive studies are focused on the molecular mechanisms involved in biofilm formation. The LytSR two-component regulatory system regulates autolysis and biofilm formation in Staphylococcus aureus. However, the role of LytSR played in S. epidermidis remained unknown. Results In the present study, we demonstrated that lytSR knock-out in S. epidermidis did not alter susceptibility to Triton X-100 induced autolysis. Quantitative murein hydrolase assay indicated that disruption of lytSR in S. epidermidis resulted in decreased activities of extracellular murein hydrolases, although zymogram showed no apparent differences in murein hydrolase patterns between S. epidermidis strain 1457 and its lytSR mutant. Compared to the wild-type counterpart, 1457ΔlytSR produced slightly more biofilm, with significantly decreased dead cells inside. Microarray analysis showed that lytSR mutation affected the transcription of 164 genes (123 genes were upregulated and 41 genes were downregulated). Specifically, genes encoding proteins responsible for protein synthesis, energy metabolism were downregulated, while genes involved in amino acid and nucleotide biosynthesis, amino acid transporters were upregulated. Impaired ability to utilize pyruvate and reduced activity of arginine deiminase was observed in 1457ΔlytSR, which is consistent with the microarray data. Conclusions The preliminary results suggest that in S. epidermidis LytSR two-component system regulates extracellular murein hydrolase activity, bacterial cell death and pyruvate utilization. Based on the microarray data, it appears that lytSR inactivation induces a stringent response. In addition, LytSR may indirectly enhance biofilm formation by altering the metabolic status of the bacteria.
Collapse
Affiliation(s)
- Tao Zhu
- Key laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College of Fudan University, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
25
|
Kroll J, Klinter S, Schneider C, Voss I, Steinbüchel A. Plasmid addiction systems: perspectives and applications in biotechnology. Microb Biotechnol 2010; 3:634-57. [PMID: 21255361 PMCID: PMC3815339 DOI: 10.1111/j.1751-7915.2010.00170.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/17/2010] [Indexed: 11/26/2022] Open
Abstract
Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process. Use of antibiotics in industrial fermentations is not an applicable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. Several plasmid addiction systems (PAS) were described in the literature. However, not every system has reached a full applicable state. This review compares most known addiction systems and is focusing on biotechnical applications.
Collapse
Affiliation(s)
- Jens Kroll
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, D-48149 Münster, Germany
| | | | | | | | | |
Collapse
|
26
|
Cavanagh AT, Chandrangsu P, Wassarman KM. 6S RNA regulation of relA alters ppGpp levels in early stationary phase. MICROBIOLOGY-SGM 2010; 156:3791-3800. [PMID: 20829285 PMCID: PMC3068707 DOI: 10.1099/mic.0.043992-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
6S RNA is a small, non-coding RNA that interacts directly with σ70-RNA polymerase and regulates transcription at many σ70-dependent promoters. Here, we demonstrate that 6S RNA regulates transcription of relA, which encodes a ppGpp synthase. The 6S RNA-dependent regulation of relA expression results in increased ppGpp levels during early stationary phase in cells lacking 6S RNA. These changes in ppGpp levels, although modest, are sufficient to result in altered regulation of transcription from σ70-dependent promoters sensitive to ppGpp, including those promoting expression of genes involved in amino acid biosynthesis and rRNA. These data place 6S RNA as another player in maintaining appropriate gene expression as cells transition into stationary phase. Independent of this ppGpp-mediated 6S RNA-dependent regulation, we also demonstrate that in later stationary phase, 6S RNA continues to downregulate transcription in general, and specifically at a subset of the amino acid promoters, but through a mechanism that is independent of ppGpp and which we hypothesize is through direct regulation. In addition, 6S RNA-dependent regulation of σS activity is not mediated through observed changes in ppGpp levels. We suggest a role for 6S RNA in modulating transcription of several global regulators directly, including relA, to downregulate expression of key pathways in response to changing environmental conditions.
Collapse
Affiliation(s)
- Amy T Cavanagh
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | - Pete Chandrangsu
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | - Karen M Wassarman
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| |
Collapse
|
27
|
Diago-Navarro E, Hernandez-Arriaga AM, López-Villarejo J, Muñoz-Gómez AJ, Kamphuis MB, Boelens R, Lemonnier M, Díaz-Orejas R. parD toxin-antitoxin system of plasmid R1 - basic contributions, biotechnological applications and relationships with closely-related toxin-antitoxin systems. FEBS J 2010; 277:3097-117. [DOI: 10.1111/j.1742-4658.2010.07722.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Prozorov AA, Danilenko VN. Toxin-antitoxin systems in bacteria: Apoptotic tools or metabolic regulators? Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710020013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H. A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS One 2009; 4:e6785. [PMID: 19707553 PMCID: PMC2727947 DOI: 10.1371/journal.pone.0006785] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 07/24/2009] [Indexed: 11/17/2022] Open
Abstract
Toxin-antitoxin (TA) modules are gene pairs specifying for a toxin and its antitoxin and are found on the chromosomes of many bacteria including pathogens. Here we report how each of five such TA systems in E. coli affect bacterial cell death differently in liquid media and during biofilm formation. Of all these systems, only the TA system mazEF mediated cell death both in liquid media and during biofilm formation. At the other extreme, as our results have revealed here, the TA system dinJ-YafQ is unique in that it is involved only in the death process during biofilm formation. Cell death governed by mazEF and dinJ-YafQ seems to participate in biofilm formation through a novel mechanism.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Reut Verdiger
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Ayalla Shlosberg-Fedida
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| | - Hanna Engelberg-Kulka
- Department of Molecular Biology, Hadassah Medical School, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
30
|
The role of relA and spoT in Yersinia pestis KIM5 pathogenicity. PLoS One 2009; 4:e6720. [PMID: 19701461 PMCID: PMC2726946 DOI: 10.1371/journal.pone.0006720] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/20/2009] [Indexed: 01/17/2023] Open
Abstract
The ppGpp molecule is part of a highly conserved regulatory system for mediating the growth response to various environmental conditions. This mechanism may represent a common strategy whereby pathogens such as Yersinia pestis, the causative agent of plague, regulate the virulence gene programs required for invasion, survival and persistence within host cells to match the capacity for growth. The products of the relA and spoT genes carry out ppGpp synthesis. To investigate the role of ppGpp on growth, protein synthesis, gene expression and virulence, we constructed a ΔrelA ΔspoT Y. pestis mutant. The mutant was no longer able to synthesize ppGpp in response to amino acid or carbon starvation, as expected. We also found that it exhibited several novel phenotypes, including a reduced growth rate and autoaggregation at 26°C. In addition, there was a reduction in the level of secretion of key virulence proteins and the mutant was>1,000-fold less virulent than its wild-type parent strain. Mice vaccinated subcutaneously (s.c.) with 2.5×104 CFU of the ΔrelA ΔspoT mutant developed high anti-Y. pestis serum IgG titers, were completely protected against s.c. challenge with 1.5×105 CFU of virulent Y. pestis and partially protected (60% survival) against pulmonary challenge with 2.0×104 CFU of virulent Y. pestis. Our results indicate that ppGpp represents an important virulence determinant in Y. pestis and the ΔrelA ΔspoT mutant strain is a promising vaccine candidate to provide protection against plague.
Collapse
|
31
|
Kolodkin-Gal I, Engelberg-Kulka H. The stationary-phase sigma factor sigma(S) is responsible for the resistance of Escherichia coli stationary-phase cells to mazEF-mediated cell death. J Bacteriol 2009; 191:3177-82. [PMID: 19251848 PMCID: PMC2681799 DOI: 10.1128/jb.00011-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/11/2009] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli mazEF is a toxin-antitoxin gene module that mediates cell death during exponential-phase cellular growth through either reactive oxygen species (ROS)-dependent or ROS-independent pathways. Here, we found that the stationary-phase sigma factor sigma(S) was responsible for the resistance to mazEF-mediated cell death during stationary growth phase. Deletion of rpoS, the gene encoding sigma(S) from the bacterial chromosome, permitted mazEF-mediated cell death during stationary growth phase.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Molecular Biology, the Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
32
|
Gillespie JJ, Williams K, Shukla M, Snyder EE, Nordberg EK, Ceraul SM, Dharmanolla C, Rainey D, Soneja J, Shallom JM, Vishnubhat ND, Wattam R, Purkayastha A, Czar M, Crasta O, Setubal JC, Azad AF, Sobral BS. Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 2008; 3:e2018. [PMID: 19194535 PMCID: PMC2635572 DOI: 10.1371/journal.pone.0002018] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/07/2008] [Indexed: 11/19/2022] Open
Abstract
Background Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular α-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs). Methodology/Principal Findings We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (∼1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions. Conclusion/Significance Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rice KC, Bayles KW. Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 2008; 72:85-109, table of contents. [PMID: 18322035 PMCID: PMC2268280 DOI: 10.1128/mmbr.00030-07] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of bacterial cell death and lysis has been studied for over 100 years, the contribution of these important processes to bacterial physiology and development has only recently been recognized. Contemporary study of cell death and lysis in a number of different bacteria has revealed that these processes, once thought of as being passive and unregulated, are actually governed by highly complex regulatory systems. An emerging paradigm in this field suggests that, analogous to programmed cell death in eukaryotes, regulated cell death and lysis in bacteria play an important role in both developmental processes, such as competence and biofilm development, and the elimination of damaged cells, such as those irreversibly injured by environmental or antibiotic stress. Further study in this exciting field of bacterial research may provide new insight into the potential evolutionary link between control of cell death in bacteria and programmed cell death (apoptosis) in eukaryotes.
Collapse
Affiliation(s)
- Kelly C Rice
- Department of Microbiology and Pathology, University of Nebraska Medical Center, 668 S. 41st St., PYH4014, Omaha, NE 68198-6245, USA
| | | |
Collapse
|
34
|
RelA functionally suppresses the growth defect caused by a mutation in the G domain of the essential Der protein. J Bacteriol 2008; 190:3236-43. [PMID: 18296517 DOI: 10.1128/jb.01758-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A unique bacterial GTPase, Der, containing two tandem GTP-binding domains, is essential for cell growth and plays a crucial role in a large ribosomal subunit in Escherichia coli. The depletion of Der resulted in accumulation of both large and small ribosomal subunits and also affected the stability of large ribosomal subunits. However, its exact cellular function still remains elusive. Previously, we have shown that two G domain mutants, DerN118D and DerN321D, cannot support cell growth at low temperatures, suggesting that both GTP-binding domains are indispensable. In this study, we show that both Der variants are defective in ribosome biogenesis. Genetic screening of an E. coli genomic library was performed to identify the genes which, when expressed from a multicopy plasmid, can restore the growth defect of the DerN321D mutant at restrictive temperatures. Among seven suppressors isolated, four were located at 62.7 min on the E. coli genomic map, and the gene responsible for the suppression of DerN321D was identified as the relA gene which encodes a ribosome-associated (p)ppGpp synthetase. The synthetic activity of RelA was found to be essential for its DerN321D suppressor activity. Overexpression of RelA in a suppressor strain did not affect the expression of DerN321D but suppressed the polysome defects caused by the DerN321D mutant. This is the first demonstration of suppression of impaired function of Der by a functional enzyme. A possible mechanism of the suppression of DerN321D by RelA overproduction is discussed.
Collapse
|
35
|
Abstract
The bacterial stringent response serves as a paradigm for understanding global regulatory processes. It can be triggered by nutrient downshifts or starvation and is characterized by a rapid RelA-dependent increase in the alarmone (p)ppGpp. One hallmark of the response is the switch from maximum-growth-promoting to biosynthesis-related gene expression. However, the global transcription patterns accompanying the stringent response in Escherichia coli have not been analyzed comprehensively. Here, we present a time series of gene expression profiles for two serine hydroxymate-treated cultures: (i) MG1655, a wild-type E. coli K-12 strain, and (ii) an isogenic relADelta251 derivative defective in the stringent response. The stringent response in MG1655 develops in a hierarchical manner, ultimately involving almost 500 differentially expressed genes, while the relADelta251 mutant response is both delayed and limited in scope. We show that in addition to the down-regulation of stable RNA-encoding genes, flagellar and chemotaxis gene expression is also under stringent control. Reduced transcription of these systems, as well as metabolic and transporter-encoding genes, constitutes much of the down-regulated expression pattern. Conversely, a significantly larger number of genes are up-regulated. Under the conditions used, induction of amino acid biosynthetic genes is limited to the leader sequences of attenuator-regulated operons. Instead, up-regulated genes with known functions, including both regulators (e.g., rpoE, rpoH, and rpoS) and effectors, are largely involved in stress responses. However, one-half of the up-regulated genes have unknown functions. How these results are correlated with the various effects of (p)ppGpp (in particular, RNA polymerase redistribution) is discussed.
Collapse
|
36
|
Wang NR, Hergenrother PJ. A continuous fluorometric assay for the assessment of MazF ribonuclease activity. Anal Biochem 2007; 371:173-83. [PMID: 17706586 PMCID: PMC2443740 DOI: 10.1016/j.ab.2007.07.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/06/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Plasmids maintain themselves in their bacterial host through several different mechanisms, one of which involves the synthesis of plasmid-encoded toxin and antitoxin proteins. When the plasmid is present, the antitoxin binds to and neutralizes the toxin. If a plasmid-free daughter cell arises, however, the labile antitoxin is degraded (and not replenished) and the toxin kills the cell from within. These toxin-antitoxin (TA) systems thereby function as postsegregational killing systems, and the disruption of the TA interaction represents an intriguing antibacterial strategy. It was recently discovered that the genes for one particular TA system, MazEF, are ubiquitous on plasmids isolated from clinical vancomycin-resistant enterococci (VRE) strains. Thus, it appears that small molecule disruptors of the MazEF interaction have potential as antibacterial agents. The MazF toxin protein is known to be a ribonuclease. Unfortunately, traditional methods for the assessment of MazF activity rely on the use of radiolabeled substrates followed by analysis with polyacrylamide gel electrophoresis. This article describes a simple and convenient continuous assay for the assessment of MazF activity. The assay uses an oligonucleotide with a fluorophore on the 5' end and a quencher on the 3' end, and processing of this substrate by MazF results in a large increase in the fluorescence signal. Through this assay, we have for the first time determined K(M) and V(max) values for this enzyme and have also found that MazF is not inhibited by standard ribonuclease inhibitors. This assay will be useful to those interested in the biochemistry of the MazF family of toxins and the disruption of MazE/MazF.
Collapse
|
37
|
Tsilibaris V, Maenhaut-Michel G, Mine N, Van Melderen L. What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome? J Bacteriol 2007; 189:6101-8. [PMID: 17513477 PMCID: PMC1951899 DOI: 10.1128/jb.00527-07] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli K-12 chromosome encodes at least five proteic toxin-antitoxin (TA) systems. The mazEF and relBE systems have been extensively characterized and were proposed to be general stress response modules. On one hand, mazEF was proposed to act as a programmed cell death system that is triggered by a variety of stresses. On the other hand, relBE and mazEF were proposed to serve as growth modulators that induce a dormancy state during amino acid starvation. These conflicting hypotheses led us to test a possible synergetic effect of the five characterized E. coli TA systems on stress response. We compared the behavior of a wild-type strain and its derivative devoid of the five TA systems under various stress conditions. We were unable to detect TA-dependent programmed cell death under any of these conditions, even under conditions previously reported to induce it. Thus, our results rule out the programmed-cell-death hypothesis. Moreover, the presence of the five TA systems advantaged neither recovery from the different stresses nor cell growth under nutrient-limited conditions in competition experiments. This casts a doubt on whether TA systems significantly influence bacterial fitness and competitiveness during non-steady-state growth conditions.
Collapse
Affiliation(s)
- Virginie Tsilibaris
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, B-6041 Gosselies, Belgium
| | | | | | | |
Collapse
|
38
|
Nakagawa A, Oshima T, Mori H. Identification and characterization of a second, inducible promoter of relA in Escherichia coli. Genes Genet Syst 2007; 81:299-310. [PMID: 17159291 DOI: 10.1266/ggs.81.299] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The alarmone ppGpp is an important signal molecule for the stringent response. Escherichia coli relA encodes a ppGpp synthetase, and although the regulation of RelA protein activity has been studied extensively, the regulation of relA transcription remains unclear. Here, we describe a novel relA promoter, relAP2. According to quantitative measurement of mRNA by primer extension analysis, the previously reported promoter relAP1 is constitutively active throughout growth, while relAP2 is induced temporarily at the transition state between the exponential growth and stationary phases. A chromosomal transcriptional lacZ fusion (relAP2-lacZ) showed that relAP2 is positively regulated by H-NS and CRP. Furthermore, the reduced activity of relAP2-lacZ in an hns mutant could be rescued by an rpoS mutation, which is sufficient to derepress the relAP2-lacZ activity. These data suggest that transient expression from the relAP2 promoter is controlled by several global regulators. This may account for the complex regulation of relA expression in Escherichia coli.
Collapse
Affiliation(s)
- Akira Nakagawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | | |
Collapse
|
39
|
Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, Purkayastha A, Sobral BS, Azad AF. Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 2007; 2:e266. [PMID: 17342200 PMCID: PMC1800911 DOI: 10.1371/journal.pone.0000266] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 02/08/2007] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The genome sequence of Rickettsia felis revealed a number of rickettsial genetic anomalies that likely contribute not only to a large genome size relative to other rickettsiae, but also to phenotypic oddities that have confounded the categorization of R. felis as either typhus group (TG) or spotted fever group (SFG) rickettsiae. Most intriguing was the first report from rickettsiae of a conjugative plasmid (pRF) that contains 68 putative open reading frames, several of which are predicted to encode proteins with high similarity to conjugative machinery in other plasmid-containing bacteria. METHODOLOGY/PRINCIPAL FINDINGS Using phylogeny estimation, we determined the mode of inheritance of pRF genes relative to conserved rickettsial chromosomal genes. Phylogenies of chromosomal genes were in agreement with other published rickettsial trees. However, phylogenies including pRF genes yielded different topologies and suggest a close relationship between pRF and ancestral group (AG) rickettsiae, including the recently completed genome of R. bellii str. RML369-C. This relatedness is further supported by the distribution of pRF genes across other rickettsiae, as 10 pRF genes (or inactive derivatives) also occur in AG (but not SFG) rickettsiae, with five of these genes characteristic of typical plasmids. Detailed characterization of pRF genes resulted in two novel findings: the identification of oriV and replication termination regions, and the likelihood that a second proposed plasmid, pRFdelta, is an artifact of the original genome assembly. CONCLUSION/SIGNIFICANCE Altogether, we propose a new rickettsial classification scheme with the addition of a fourth lineage, transitional group (TRG) rickettsiae, that is unique from TG and SFG rickettsiae and harbors genes from possible exchanges with AG rickettsiae via conjugation. We offer insight into the evolution of a plastic plasmid system in rickettsiae, including the role plasmids may have played in the acquirement of virulence traits in pathogenic strains, and the likely origin of plasmids within the rickettsial tree.
Collapse
Affiliation(s)
- Joseph J. Gillespie
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Magda S. Beier
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nicole C. Ammerman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joshua M. Shallom
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Anjan Purkayastha
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Bruno S. Sobral
- Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia, United States of America
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
40
|
Wilbaux M, Mine N, Guérout AM, Mazel D, Van Melderen L. Functional interactions between coexisting toxin-antitoxin systems of the ccd family in Escherichia coli O157:H7. J Bacteriol 2007; 189:2712-9. [PMID: 17259320 PMCID: PMC1855815 DOI: 10.1128/jb.01679-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems are widely represented on mobile genetic elements as well as in bacterial chromosomes. TA systems encode a toxin and an antitoxin neutralizing it. We have characterized a homolog of the ccd TA system of the F plasmid (ccd(F)) located in the chromosomal backbone of the pathogenic O157:H7 Escherichia coli strain (ccd(O157)). The ccd(F) and the ccd(O157) systems coexist in O157:H7 isolates, as these pathogenic strains contain an F-related virulence plasmid carrying the ccd(F) system. We have shown that the chromosomal ccd(O157) system encodes functional toxin and antitoxin proteins that share properties with their plasmidic homologs: the CcdB(O157) toxin targets the DNA gyrase, and the CcdA(O157) antitoxin is degraded by the Lon protease. The ccd(O157) chromosomal system is expressed in its natural context, although promoter activity analyses revealed that its expression is weaker than that of ccd(F). ccd(O157) is unable to mediate postsegregational killing when cloned in an unstable plasmid, supporting the idea that chromosomal TA systems play a role(s) other than stabilization in bacterial physiology. Our cross-interaction experiments revealed that the chromosomal toxin is neutralized by the plasmidic antitoxin while the plasmidic toxin is not neutralized by the chromosomal antitoxin, whether expressed ectopically or from its natural context. Moreover, the ccd(F) system is able to mediate postsegregational killing in an E. coli strain harboring the ccd(O157) system in its chromosome. This shows that the plasmidic ccd(F) system is functional in the presence of its chromosomal counterpart.
Collapse
Affiliation(s)
- Myriam Wilbaux
- Laboratoire de Génétique des Procaryotes, Institut de Biologie et Médecine Moléculaires, Université Libre de Bruxelles, 12 Rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | | | | | | | | |
Collapse
|
41
|
Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2006; 2:e135. [PMID: 17069462 PMCID: PMC1626106 DOI: 10.1371/journal.pgen.0020135] [Citation(s) in RCA: 318] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traditionally, programmed cell death (PCD) is associated with eukaryotic multicellular organisms. However, recently, PCD systems have also been observed in bacteria. Here we review recent research on two kinds of genetic programs that promote bacterial cell death. The first is mediated by mazEF, a toxin–antitoxin module found in the chromosomes of many kinds of bacteria, and mainly studied in Escherichia coli. The second program is found in Bacillus subtilis, in which the skf and sdp operons mediate the death of a subpopulation of sporulating bacterial cells. We relate these two bacterial PCD systems to the ways in which bacterial populations resemble multicellular organisms.
Collapse
Affiliation(s)
- Hanna Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | |
Collapse
|
42
|
Raju KK, Gautam S, Sharma A. Molecules involved in the modulation of rapid cell death in Xanthomonas. J Bacteriol 2006; 188:5408-16. [PMID: 16855230 PMCID: PMC1540037 DOI: 10.1128/jb.00056-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In earlier studies from this laboratory, Xanthomonas campestris pv. glycines was found to exhibit a nutrition stress-related postexponential rapid cell death (RCD). The RCD was exhibited in protein-rich media but not in starch or other minimal media. This RCD in X. campestris pv. glycines was found to display features similar to those of the programmed cell death (PCD) of eukaryotes. Results of the present study showed that the observed RCD in this organism is both positively and negatively regulated by small molecules. The amino acids glycine and l-alanine as well as the D isomers of valine, methionine, and threonine were found to induce the synthesis of an active caspase-3-like protein that was associated with the onset of RCD. Addition of pyruvate and citrate to the culture medium induced both the synthesis of active caspase-3-like protein and RCD. Higher levels of intracellular accumulation of pyruvate and citrate were also observed under conditions favoring RCD. On the other hand, dextrin and maltose, the hydrolytic products of starch, inhibited the synthesis of the caspase-3-like protein. Addition of glucose and cyclic AMP (cAMP) to the RCD-favoring medium prevented RCD. Glucose, cAMP, caffeine (a known inhibitor of a phosphodiesterase that breaks down cAMP), and forskolin (from the herb Coleus forskholii, known to activate the enzyme adenylate cyclase that forms cAMP) inhibited the caspase enzyme activity in vivo and consequently the RCD process. The addition of glucose and other inhibitors of RCD enhanced intracellular cAMP accumulation. This is the first report demonstrating the involvement of small molecules in the regulation of nutrition stress-related stationary-phase rapid cell death in X. campestris pv. glycines, which is programmed.
Collapse
Affiliation(s)
- K K Raju
- Food Technology Division, BARC, Mumbai 400085, India
| | | | | |
Collapse
|
43
|
Abstract
Although plasmid-borne and chromosomal toxin-antitoxin (TA) operons have been known for some time, the recent identification of mRNA as the target of at least two different classes of toxins has led to a dramatic renewal of interest in these systems as mediators of stress responses. Members of the MazF/PemK family, the so-called mRNA interferases, are ribonucleases that inhibit translation by destroying cellular mRNAs under stress conditions, while the founder member of the RelE family promotes cleavage of mRNAs through the ribosome. Detailed structures of these enzymes, often in complex with their inhibitors, have provided vital clues to their mechanisms of action. The primary role and regulation of these systems has been the subject of some controversy. One model suggests they play a beneficial role by wiping the slate clean and preventing wasteful energy consumption by the translational apparatus during adaptation to stress conditions, while another favours the idea that their main function is programmed cell death. The two models might not be mutually exclusive if a side-effect of prolonged exposure to toxic RNase activity without de novo synthesis of the inhibitor were a state of dormancy for which we do not yet understand the key to recovery. In this review, I discuss the recent developments in the rapidly expanding field of what I refer to as bacterial shutdown decay.
Collapse
Affiliation(s)
- Ciarán Condon
- CNRS UPR 9073 (affiliated with Université de Paris 7 - Denis Diderot), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
44
|
Kolodkin-Gal I, Engelberg-Kulka H. Induction of Escherichia coli chromosomal mazEF by stressful conditions causes an irreversible loss of viability. J Bacteriol 2006; 188:3420-3. [PMID: 16621839 PMCID: PMC1447462 DOI: 10.1128/jb.188.9.3420-3423.2006] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 02/22/2006] [Indexed: 11/20/2022] Open
Abstract
mazEF is a stress-induced toxin-antitoxin module located on the chromosomes of many bacteria. Here we induced Escherichia coli chromosomal mazEF by various stressful conditions. We found an irreversible loss of viability, which is the basic characteristic of cell death. These results further support our previous conclusion that E. coli mazEF mediation of cell death is not a passive process, but an active and genetically "programmed" death response.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
45
|
Lemos JAC, Brown TA, Abranches J, Burne RA. Characteristics of Streptococcus mutans strains lacking the MazEF and RelBE toxin-antitoxin modules. FEMS Microbiol Lett 2005; 253:251-7. [PMID: 16243456 DOI: 10.1016/j.femsle.2005.09.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 11/23/2022] Open
Abstract
Two pairs of genes were identified in Streptococcus mutans with similarity to relBE and mazEF toxin-antitoxin (TA) modules of Escherichia coli. Transcription of mazEF and relBE was repressed by amino acid starvation, and relBE expression was repressed by low pH. Mutants lacking MazF, RelE, or both toxins (MRT1) grew in broth media and formed biofilms as well as the parent. Biofilm populations of MRT1 were more resistant to acid killing than the parent or single mutants. MRT1 also exhibited a longer diauxie during growth on glucose and inulin and displayed decreased phosphoenolpyruvate:sugar phosphotransferase activity. This is the first report that demonstrates a physiological role for TA modules in Gram-positive bacteria.
Collapse
Affiliation(s)
- José A C Lemos
- Department of Oral Biology, University of Florida College of Dentistry, 1600 SW Archer Road, Gainesville, FL 32610-0424, USA
| | | | | | | |
Collapse
|
46
|
Engelberg-Kulka H, Hazan R, Amitai S. mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria. J Cell Sci 2005; 118:4327-32. [PMID: 16179604 DOI: 10.1242/jcs.02619] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mazEF is a toxin-antitoxin module located on the Escherichia coli chromosome and that of some other bacteria, including pathogens. mazF specifies for a stable toxin, MazF, and mazE specifies for a labile antitoxin, MazE, that antagonizes MazF. MazF is a sequence-specific mRNA endoribonuclease that initiates a programmed cell death pathway in response to various stresses. The mazEF-mediated death pathway can act as a defense mechanism that prevents the spread of bacterial phage infection, allowing bacterial populations to behave like multicellular organisms.
Collapse
Affiliation(s)
- Hanna Engelberg-Kulka
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
47
|
Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 2005; 3:371-82. [PMID: 15864262 DOI: 10.1038/nrmicro1147] [Citation(s) in RCA: 845] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although toxin-antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin-antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin-antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.
Collapse
Affiliation(s)
- Kenn Gerdes
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | | | | |
Collapse
|
48
|
Lah J, Simic M, Vesnaver G, Marianovsky I, Glaser G, Engelberg-Kulka H, Loris R. Energetics of Structural Transitions of the Addiction Antitoxin MazE. J Biol Chem 2005; 280:17397-407. [PMID: 15735309 DOI: 10.1074/jbc.m501128200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli mazEF addiction module plays a crucial role in the cell death program that is triggered under various stress conditions. It codes for the toxin MazF and the antitoxin MazE, which interferes with the lethal action of the toxin. To better understand the role of various conformations of MazE in bacterial life, its order-disorder transitions were monitored by differential scanning calorimetry, spectropolarimetry, and fluorimetry. The changes in spectral and thermodynamic properties accompanying MazE dimer denaturation can be described in terms of a compensating reversible process of the partial folding of the unstructured C-terminal half (high mean net charge, low mean hydrophobicity) and monomerization coupled with the partial unfolding of the structured N-terminal half (low mean net charge, high mean hydrophobicity). At pH<or=4.5 and T<50 degrees C, the unstructured polypeptide chains of the MazE dimer fold into (pre)molten globule-like conformations that thermally stabilize the dimeric form of the protein. The simulation based on the thermodynamic and structural information on various addiction modules suggests that both the conformational adaptability of the dimeric antitoxin form (binding to the toxins and DNA) and the reversible transformation to the more flexible monomeric form are essential for the regulation of bacterial cell life and death.
Collapse
Affiliation(s)
- Jurij Lah
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Askerceva 5, 1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Amitai S, Yassin Y, Engelberg-Kulka H. MazF-mediated cell death in Escherichia coli: a point of no return. J Bacteriol 2005; 186:8295-300. [PMID: 15576778 PMCID: PMC532418 DOI: 10.1128/jb.186.24.8295-8300.2004] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mazEF is a stress-induced toxin-antitoxin module, located on the chromosome of Escherichia coli, that we have previously described to be responsible for programmed cell death in E. coli. mazF specifies a stable toxin, and mazE specifies a labile antitoxin. Recently, it was reported that inhibition of translation and cell growth by ectopic overexpression of the toxin MazF can be reversed by the action of the antitoxin MazE ectopically overexpressed at a later time. Based on these results, it was suggested that rather than inducing cell death, mazF induces a state of reversible bacteriostasis (K. Pederson, S. K. Christensen, and K. Gerdes, Mol. Microbiol. 45:501-510, 2002). Using a similar ectopic overexpression system, we show here that overexpression of MazE could reverse MazF lethality only over a short window of time. The size of that window depended on the nature of the medium in which MazF was overexpressed. Thus, we found "a point of no return," which occurred sooner in minimal M9 medium than it did in the rich Luria-Bertani medium. We also describe a state in which the effect of MazF on translation could be separated from its effect on cell death: MazE overproduction could completely reverse the inhibitory effect of MazF on translation, while not affecting the bacteriocidic effect of MazF at all. Our results reported here support our view that the mazEF module mediates cell death and is part of a programmed cell death network.
Collapse
Affiliation(s)
- Shahar Amitai
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|
50
|
Hazan R, Engelberg-Kulka H. Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1. Mol Genet Genomics 2004; 272:227-34. [PMID: 15316771 DOI: 10.1007/s00438-004-1048-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Accepted: 07/20/2004] [Indexed: 01/02/2023]
Abstract
The Escherichia coli gene pair mazEF is a regulatable chromosomal toxin-antitoxin module: mazF encodes a stable toxin and mazE encodes for a labile antitoxin that overcomes the lethal effect of MazF. Because MazE is labile, inhibition of mazE expression results in cell death. We studied the effect of mazEF on the development of bacteriophage P1 upon thermoinduction of the prophage P1CM c1ts and upon infection with virulent phage particles (P1vir). In several E. coli strains, we showed that the Delta mazEF derivative strains produced significantly more phages than did the parent strain. In addition, upon induction of K38(P1CM c1ts), nearly all of the Delta mazEF mutant cells lysed; in contrast, very few of the parental mazEF + K38 cells underwent lysis. However, most of these cells did not remain viable. Thus, while the Delta mazEF cells die as a result of the lytic action of the phage, most of the mazEF+ cells are killed by a different mechanism, apparently through the action of the chromosomal mazEF system itself. Furthermore, the introduction of lysogens into a growing non-lysogenic culture is lethal to Delta mazEF but not for mazEF+ cultures. Thus, although mazEF action causes individual cells to die, upon phage growth this is generally beneficial to the bacterial culture because it causes P1 phage exclusion from the bacterial population. These results provide additional support for the view that bacterial cultures may share some of the characteristics of multicellular organisms.
Collapse
Affiliation(s)
- R Hazan
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | | |
Collapse
|