1
|
Ikuze E, Grover S, Puri H, Kundu P, Sattler S, Louis J. Overexpression of the Sorghum CCoAOMT Gene Confers Enhanced Resistance to Sugarcane Aphids. PHYSIOLOGIA PLANTARUM 2025; 177:e70291. [PMID: 40405540 PMCID: PMC12099284 DOI: 10.1111/ppl.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/17/2025] [Accepted: 04/28/2025] [Indexed: 05/24/2025]
Abstract
Sorghum (Sorghum bicolor) plays a critical role in global agriculture, serving as a staple food source and contributing significantly to various industries. However, sorghum cultivation faces significant challenges, particularly from pests like the sugarcane aphid (SCA), which can cause substantial damage to crops. In this study, we investigated the role of the caffeoyl coenzyme-A O-methyltransferase (CCoAOMT) gene in sorghum defense against SCA. Feeding by SCA induced the expression of the SbCCoAOMT gene, which is involved in the monolignol biosynthesis pathway. Aphid no-choice and choice bioassays revealed that SbCCoAOMT overexpression in sorghum resulted in reduced SCA reproduction and decreased aphid settling, respectively, compared to wild-type (RTx430) plants. Furthermore, electrical penetration graph (EPG) studies revealed that SbCCoAOMT overexpression restricts aphid feeding from the sieve elements. SCA feeding also induced the accumulation of lignin in sorghum wild-type and SbCCoAOMT overexpression plants. Moreover, artificial diet aphid feeding bioassays with hydroxycinnamic acids, ferulic and sinapic acids, showed direct adverse effects on SCA reproduction. Our findings highlight the potential of genetic modification to enhance sorghum resistance to SCA and emphasize the importance of lignin-related genes in plant defense mechanisms. This study offers valuable insights into developing aphid-resistant sorghum varieties and suggests avenues for further research on enhancing plant defenses against biotic stresses.
Collapse
Affiliation(s)
- Edith Ikuze
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Sajjan Grover
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Heena Puri
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Pritha Kundu
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Scott Sattler
- Wheat, Sorghum, and Forage Research UnitU.S. Department of Agriculture‐Agricultural Research ServiceLincolnNebraskaUSA
| | - Joe Louis
- Department of EntomologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
2
|
Li G, Manzoor MA, Ren X, Huang S, Wei Y, Zhang S, Sun Y, Cai Y, Zhang M, Song C. Functional analysis of two caffeoyl-coenzyme 3 a-o-methyltransferase involved in pear lignin metabolism. Gene 2024; 928:148810. [PMID: 39089530 DOI: 10.1016/j.gene.2024.148810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Caffeoyl-coenzyme 3 A-O-methyltransferase (CCoAOMT) plays a crucial role in the lignin synthesis in many higher plants. In this study, nine PbCCoAOMT genes in total were identified from pear, and classified into six categories. We treated pear fruits with hormones abscisic acid (ABA) and methyl jasmonate (MeJA) and salicylic acid (SA) and observed differential expression levels of these genes. Through qRT-PCR, we also preliminarily identified candidate PbCCoAOMT gene, potentially involved in lignin synthesis in pear fruits. Additionally, the overexpression of PbCCoAOMT1/2 in Arabidopsis and pear fruits increased in lignin content. Enzymatic assays showed that recombinant PbCCoAOMT1/2 proteins have similar enzymatic activity in vitro. The Y1H (Yeast one-hybrid) and dual luciferase (dual-LUC) experiments demonstrated that PbMYB25 can bind to the AC elements in the promoter region of the PbCCoAOMT1 gene. Our findings suggested that the PbCCoAOMT1 and PbCCoAOMT2 genes may contribute to the synthesis of lignin and provide insights into the mechanism of lignin biosynthesis and stone cell development in pear fruits.
Collapse
Affiliation(s)
- Guohui Li
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Ren
- Anhui Agricultural University, Hefei 230036, China
| | - Shiping Huang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Yuxin Wei
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Shuo Zhang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Yanming Sun
- Anhui Agricultural University, Hefei 230036, China
| | - Yongping Cai
- Anhui Agricultural University, Hefei 230036, China
| | - Ming Zhang
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| | - Cheng Song
- Anhui Provincial Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| |
Collapse
|
3
|
Vanhevel Y, De Moor A, Muylle H, Vanholme R, Boerjan W. Breeding for improved digestibility and processing of lignocellulosic biomass in Zea mays. FRONTIERS IN PLANT SCIENCE 2024; 15:1419796. [PMID: 39129761 PMCID: PMC11310149 DOI: 10.3389/fpls.2024.1419796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 08/13/2024]
Abstract
Forage maize is a versatile crop extensively utilized for animal nutrition in agriculture and holds promise as a valuable resource for the production of fermentable sugars in the biorefinery sector. Within this context, the carbohydrate fraction of the lignocellulosic biomass undergoes deconstruction during ruminal digestion and the saccharification process. However, the cell wall's natural resistance towards enzymatic degradation poses a significant challenge during both processes. This so-called biomass recalcitrance is primarily attributed to the presence of lignin and ferulates in the cell walls. Consequently, maize varieties with a reduced lignin or ferulate content or an altered lignin composition can have important beneficial effects on cell wall digestibility. Considerable efforts in genetic improvement have been dedicated towards enhancing cell wall digestibility, benefiting agriculture, the biorefinery sector and the environment. In part I of this paper, we review conventional and advanced breeding methods used in the genetic improvement of maize germplasm. In part II, we zoom in on maize mutants with altered lignin for improved digestibility and biomass processing.
Collapse
Affiliation(s)
- Yasmine Vanhevel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Astrid De Moor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Hilde Muylle
- Plant Sciences Unit, Institute for Agricultural and Fisheries Research, Melle, Belgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
4
|
Genome Identification and Expression Profiles in Response to Nitrogen Treatment Analysis of the Class I CCoAOMT Gene Family in Populus. Biochem Genet 2021; 60:656-675. [PMID: 34410559 DOI: 10.1007/s10528-021-10112-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Lignin is essential for the characteristics and quality of timber. Nitrogen has significant effects on lignin contents in plants. Nitrogen has been found to affect wood quality in plantations and lignin content in plants. Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is an important methyltransferase in lignin biosynthesis. However, the classification of woody plant CCoAOMT gene family members and the regulation mechanism of nitrogen are not clear. Bioinformatics methods were used to predict the members, classification, and transcriptional distribution of the CCoAOMT gene family in Populus trichocarpa. The results showed that there were five PtCCoAOMTs identified, and they could be divided into three sub-groups according to their structural and phylogenetic features. The results of tissue expression specificity analysis showed that: PtCCoAOMT1 was highly expressed in roots and internodes; PtCCoAOMT2 was highly expressed in roots, nodes, and internodes, PtCCoAOMT3 was highly expressed in stems; PtCCoAOMT4 was highly expressed in young leaves, and, PtCCoAOMT5 was highly expressed in roots. Different forms and concentrations of nitrogen had varying effects on the expression patterns of genes in different plant tissue types. The results of real-time PCR showed that the expression levels of PtCCoAOMT1 and PtCCoAOMT2 in stems increased significantly under different forms of nitrogen. PtCCoAOMT3 and PtCCoAOMT4 were induced by nitrate nitrogen in upper stems and lower leaves, respectively. PtCCoAOMT4 and PtCCoAOMT5 were induced by different concentrations of nitrate nitrogen in lower stems and roots, respectively. These results could provide valuable information for revealing the differences between functions and expression patterns of the various CCoAOMT gene family members under different forms and concentrations of exogenous nitrogen in poplar.
Collapse
|
5
|
Fu Y, Zhu Y, Yang W, Xu W, Li Q, Chen M, Yang L. Isolation and functional identification of a Botrytis cinerea-responsive caffeoyl-CoA O-methyltransferase gene from Lilium regale wilson. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:379-389. [PMID: 33197727 DOI: 10.1016/j.plaphy.2020.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/27/2020] [Indexed: 05/28/2023]
Abstract
In plants, genes involved in the Phenylpropanoid/monolignol pathway play important roles in lignin biosynthesis and plant immunity. However, their biological function in Lilium remains poorly characterized. Comparative RNA sequencing of the expression profiles of the monolignol pathway genes from fungi-resistant species Lilium regale after inoculation with Botrytis cinerea was performed. One upregulated caffeoyl-CoA O-methyltransferase gene, LrCCoAOMT, was cloned for functional characterization by reverse genetic methods. LrCCoAOMT encodes a putative protein of 246 amino acids and is highly expressed in stem tissues and responsive to salicylic acid (SA) signaling and B. cinerea infection. LrCCoAOMT was largely directed to the cytoplasm. LrCCoAOMT overexpression in Arabidopsis resulted in an increased lignin deposition in vascular tissues and conferred resistance to B. cinerea infection in transgenic plants. Transient transformation of LrCCoAOMT in nonresistant Lilium sargentiae leaves also identified the defense function to B. cinerea. In addition, transcript levels of genes involved in the monolignol and SA-dependent signaling pathways were altered in transgenic Arabidopsis, suggesting that LrCCoAOMT might play vital roles in the resistance of L. regale to B. cinerea related to the levels of lignin and the regulation of SA signaling. This is the first report to functionally characterize a CCoAOMT gene in Lilium, a potential molecular target for lily molecular improvement.
Collapse
Affiliation(s)
- Yongyao Fu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Yiyong Zhu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Wei Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - WenJi Xu
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Qiang Li
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Mei Chen
- Clinical Laboratory, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, PR China.
| | - Liping Yang
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China.
| |
Collapse
|
6
|
Wang Y, Xu Y, Gupta S, Zhou Y, Wallwork H, Zhou G, Broughton S, Zhang XQ, Tan C, Westcott S, Moody D, Sun D, Loughman R, Zhang W, Li C. Fine mapping QSc.VR4, an effective and stable scald resistance locus in barley (Hordeum vulgare L.), to a 0.38-Mb region enriched with LRR-RLK and GLP genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2307-2321. [PMID: 32405768 DOI: 10.1007/s00122-020-03599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
An effective and stable quantitative resistance locus, QSc.VR4, was fine mapped, characterized and physically anchored to the short arm of 4H, conferring adult plant resistance to the fungus Rhynchosporium commune in barley. Scald caused by Rhynchosporium commune is one of the most destructive barley diseases worldwide. Accumulation of adult plant resistance (APR) governed by multiple resistance alleles is predicted to be effective and long-lasting against a broad spectrum of pathotypes. However, the molecular mechanisms that control APR remain poorly understood. Here, quantitative trait loci (QTL) analysis of APR and fine mapping were performed on five barley populations derived from a common parent Vlamingh, which expresses APR to scald. Two QTLs, designated QSc.VR4 and QSc.BR7, were detected from a cross between Vlamingh and Buloke. Our data confirmed that QSc.VR4 is an effective and stable APR locus, residing on the short arm of chromosome 4H, and QSc.BR7 derived from Buloke may be an allele of reported Rrs2. High-resolution fine mapping revealed that QSc.VR4 is located in a 0.38 Mb genomic region between InDel markers 4H2282169 and 4H2665106. The gene annotation analysis and sequence comparison suggested that a gene cluster containing two adjacent multigene families encoding leucine-rich repeat receptor kinase-like proteins (LRR-RLKs) and germin-like proteins (GLPs), respectively, is likely contributing to scald resistance. Adult plant resistance (APR) governed by QSc.VR4 may confer partial levels of resistance to the fungus Rhynchosporium commune and, furthermore, be an important resource for gene pyramiding that may contribute broad-based and more durable resistance.
Collapse
Affiliation(s)
- Yonggang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Yanhao Xu
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Sanjiv Gupta
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Yi Zhou
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Hugh Wallwork
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Sue Broughton
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Cong Tan
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Sharon Westcott
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - David Moody
- InterGrain Pty Ltd, South Perth, WA, Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Robert Loughman
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China.
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia.
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China.
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
7
|
Wu X, Yan Z, Dong X, Cao F, Peng J, Li M. Cloning and characterization of a CCoAOMT gene involved in rapid lignification of endocarp in dove tree (Davidia involucrata Baill.). BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2018.1525324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Xiaobo Wu
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| | - Ziwei Yan
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| | - Xujie Dong
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| | - Fuxiang Cao
- Department of Horticulture, College of Horticulture and Landscape, Hunan Agricultural University, Changsha, PR China
| | - Jiqing Peng
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| | - Meng Li
- Department of Bioengineering, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, PR China
| |
Collapse
|
8
|
Missihoun TD, Kotchoni SO, Bartels D. Active Sites of Reduced Epidermal Fluorescence1 (REF1) Isoforms Contain Amino Acid Substitutions That Are Different between Monocots and Dicots. PLoS One 2016; 11:e0165867. [PMID: 27798665 PMCID: PMC5087895 DOI: 10.1371/journal.pone.0165867] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022] Open
Abstract
Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic acid and sinapic acid in the phenylpropanoid pathway, respectively. This knowledge has been gained from works in the dicotyledon model species Arabidopsis thaliana then used to functionally annotate ALDH2C isoforms in other species, based on the orthology principle. However, the extent to which the ALDH isoforms differ between monocotyledons and dicotyledons has rarely been accessed side-by-side. In this study, we used a phylogenetic approach to address this question. We have analysed the ALDH genes in Brachypodium distachyon, alongside those of other sequenced monocotyledon and dicotyledon species to examine traits supporting either a convergent or divergent evolution of the ALDH2C/REF1-type proteins. We found that B. distachyon, like other grasses, contains more ALDH2C/REF1 isoforms than A. thaliana and other dicotyledon species. Some amino acid residues in ALDH2C/REF1 isoforms were found as being conserved in dicotyledons but substituted by non-equivalent residues in monocotyledons. One example of those substitutions concerns a conserved phenylalanine and a conserved tyrosine in monocotyledons and dicotyledons, respectively. Protein structure modelling suggests that the presence of tyrosine would widen the substrate-binding pocket in the dicotyledons, and thereby influence substrate specificity. We discussed the importance of these findings as new hints to investigate why ferulic acid contents and cell wall digestibility differ between the dicotyledon and monocotyledon species.
Collapse
Affiliation(s)
- Tagnon D. Missihoun
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Simeon O. Kotchoni
- Department of Biology, Rutgers University, Camden, New Jersey, United States of America
- Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey, United States of America
- * E-mail: (SOK); (TDM)
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
de Oliveira DM, Finger-Teixeira A, Mota TR, Salvador VH, Moreira-Vilar FC, Molinari HBC, Mitchell RAC, Marchiosi R, Ferrarese-Filho O, dos Santos WD. Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1224-32. [PMID: 25417596 DOI: 10.1111/pbi.12292] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 05/18/2023]
Abstract
In the near future, grasses must provide most of the biomass for the production of renewable fuels. However, grass cell walls are characterized by a large quantity of hydroxycinnamic acids such as ferulic and p-coumaric acids, which are thought to reduce the biomass saccharification. Ferulic acid (FA) binds to lignin, polysaccharides and structural proteins of grass cell walls cross-linking these components. A controlled reduction of FA level or of FA cross-linkages in plants of industrial interest can improve the production of cellulosic ethanol. Here, we review the biosynthesis and roles of FA in cell wall architecture and in grass biomass recalcitrance to enzyme hydrolysis.
Collapse
Affiliation(s)
- Dyoni Matias de Oliveira
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Aline Finger-Teixeira
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Thatiane Rodrigues Mota
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Victor Hugo Salvador
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | | | | | | | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Wanderley Dantas dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
10
|
Transcriptome profiling of indole-3-butyric acid-induced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1’ at different developmental stages. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0352-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Ibarra-Laclette E, Zamudio-Hernández F, Pérez-Torres CA, Albert VA, Ramírez-Chávez E, Molina-Torres J, Fernández-Cortes A, Calderón-Vázquez C, Olivares-Romero JL, Herrera-Estrella A, Herrera-Estrella L. De novo sequencing and analysis of Lophophora williamsii transcriptome, and searching for putative genes involved in mescaline biosynthesis. BMC Genomics 2015; 16:657. [PMID: 26330142 PMCID: PMC4557841 DOI: 10.1186/s12864-015-1821-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/07/2015] [Indexed: 12/04/2022] Open
Abstract
Background Lophophora williamsii (commonly named peyote) is a small, spineless cactus with psychoactive alkaloids, particularly mescaline. Peyote utilizes crassulacean acid metabolism (CAM), an alternative form of photosynthesis that exists in succulents such as cacti and other desert plants. Therefore, its transcriptome can be considered an important resource for future research focused on understanding how these plants make more efficient use of water in marginal environments and also for research focused on better understanding of the overall mechanisms leading to production of plant natural products and secondary metabolites. Results In this study, two cDNA libraries were generated from L. williamsii. These libraries, representing buttons (tops of stems) and roots were sequenced using different sequencing platforms (GS-FLX, GS-Junior and PGM, respectively). A total of 5,541,550 raw reads were generated, which were assembled into 63,704 unigenes with an average length of 564.04 bp. A total of 25,149 unigenes (62.19 %) was annotated using public databases. 681 unigenes were found to be differentially expressed when comparing the two libraries, where 400 were preferentially expressed in buttons and 281 in roots. Some of the major alkaloids, including mescaline, were identified by GC-MS and relevant metabolic pathways were reconstructed using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of preferentially expressed genes putatively involved in mescaline production were examined and validated by qRT-PCR. Conclusions High throughput transcriptome sequencing (RNA-seq) analysis allowed us to efficiently identify candidate genes involved in mescaline biosynthetic pathway in L. williamsii; these included tyrosine/DOPA decarboxylase, hydroxylases, and O-methyltransferases. This study sets the theoretical foundation for bioassay design directed at confirming the participation of these genes in mescaline production. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1821-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Enrique Ibarra-Laclette
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México. .,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, México.
| | - Flor Zamudio-Hernández
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| | - Claudia Anahí Pérez-Torres
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México. .,Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, México. .,Investigador Cátedra CONACyT, Instituto de Ecología A.C., 91070, Xalapa, Veracruz, México.
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, 14260, USA.
| | - Enrique Ramírez-Chávez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36821, Irapuato, Guanajuato, México.
| | - Jorge Molina-Torres
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36821, Irapuato, Guanajuato, México.
| | - Araceli Fernández-Cortes
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| | - Carlos Calderón-Vázquez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Instituto Politécnico Nacional, 81000, Guasave, Sinaloa, México.
| | | | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| | - Luis Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Centro de Investigación y Estudios Avanzados del IPN, 36500, Irapuato, Guanajuato, México.
| |
Collapse
|
12
|
Brandt W, Manke K, Vogt T. A catalytic triad--Lys-Asn-Asp--Is essential for the catalysis of the methyl transfer in plant cation-dependent O-methyltransferases. PHYTOCHEMISTRY 2015; 113:130-139. [PMID: 25596806 DOI: 10.1016/j.phytochem.2014.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/10/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
Crystal structure data of cation-dependent catechol O-methyltransferases (COMTs) from mammals and related caffeoyl coenzyme A OMTs (CCoAOMTs) from plants have suggested operative molecular mechanisms. These include bivalent cations that facilitate deprotonation of vicinal aromatic dihydroxy systems and illustrate a conserved arrangement of hydroxyl and carboxyl ligands consistent with the requirements of a metal-activated catalytic mechanism. The general concept of metal-dependent deprotonation via a complexed aspartate is only one part of a more pronounced proton relay, as shown by semiempirical and DFT quantum mechanical calculations and experimental validations. A previously undetected catalytic triad, consisting of Lys157-Asn181-Asp228 residues is required for complete methyl transfer in case of a cation-dependent phenylpropanoid and flavonoid OMT, as described in this report. This triad appears essential for efficient methyl transfer to catechol-like hydroxyl group in phenolics. The observation is consistent with a catalytic lysine in the case of mammalian COMTs, but jettisons existing assumptions on the initial abstraction of the meta-hydroxyl proton to the metal stabilizing Asp154 (PFOMT) or comparable Asp-carboxyl groups in type of cation-dependent enzymes in plants. The triad is conserved among all characterized plant CCoAOMT-like enzymes, which are required not only for methylation of soluble phenylpropanoids like coumarins or monolignol monomers, but is also present in the similar microbial and mammalian cation-dependent enzymes which methylate a comparable set of substrates.
Collapse
Affiliation(s)
- Wolfgang Brandt
- Leibniz Institute of Plant Biochemistry, Dept. Bioorganic Chemistry, Weinberg 3, D-06120 Halle(Saale), Germany.
| | - Kerstin Manke
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Weinberg 3, D-06120 Halle(Saale), Germany
| | - Thomas Vogt
- Leibniz Institute of Plant Biochemistry, Dept. Cell and Metabolic Biology, Weinberg 3, D-06120 Halle(Saale), Germany
| |
Collapse
|
13
|
Champion MD. Host-pathogen o-methyltransferase similarity and its specific presence in highly virulent strains of Francisella tularensis suggests molecular mimicry. PLoS One 2011; 6:e20295. [PMID: 21637805 PMCID: PMC3102702 DOI: 10.1371/journal.pone.0020295] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/28/2011] [Indexed: 12/28/2022] Open
Abstract
Whole genome comparative studies of many bacterial pathogens have shown an overall high similarity of gene content (>95%) between phylogenetically distinct subspecies. In highly clonal species that share the bulk of their genomes subtle changes in gene content and small-scale polymorphisms, especially those that may alter gene expression and protein-protein interactions, are more likely to have a significant effect on the pathogen's biology. In order to better understand molecular attributes that may mediate the adaptation of virulence in infectious bacteria, a comparative study was done to further analyze the evolution of a gene encoding an o-methyltransferase that was previously identified as a candidate virulence factor due to its conservation specifically in highly pathogenic Francisella tularensis subsp. tularensis strains. The o-methyltransferase gene is located in the genomic neighborhood of a known pathogenicity island and predicted site of rearrangement. Distinct o-methyltransferase subtypes are present in different Francisella tularensis subspecies. Related protein families were identified in several host species as well as species of pathogenic bacteria that are otherwise very distant phylogenetically from Francisella, including species of Mycobacterium. A conserved sequence motif profile is present in the mammalian host and pathogen protein sequences, and sites of non-synonymous variation conserved in Francisella subspecies specific o-methyltransferases map proximally to the predicted active site of the orthologous human protein structure. Altogether, evidence suggests a role of the F. t. subsp. tularensis protein in a mechanism of molecular mimicry, similar perhaps to Legionella and Coxiella. These findings therefore provide insights into the evolution of niche-restriction and virulence in Francisella, and have broader implications regarding the molecular mechanisms that mediate host-pathogen relationships.
Collapse
Affiliation(s)
- Mia D Champion
- Division of Pathogen Genomics, Translational Genomics Research Institute, Arizona, United States of America.
| |
Collapse
|
14
|
Abstract
Ripening of fleshy fruit is a differentiation process involving biochemical and biophysical changes that lead to the accumulation of sugars and subsequent changes in tissue texture. Also affected are phenolic compounds, which confer color, flavor/aroma, and resistance to pathogen invasion and adverse environmental conditions. These phenolic compounds, which are the products of branches of the phenylpropanoid pathway, appear to be closely linked to fruit ripening processes. Three key enzymes of the phenylpropanoid pathway, namely phenylalanine ammonia lyase, O-methyltransferase, and cinnamyl alcohol dehydrogenase (CAD) have been reported to modulate various end products including lignin and protect plants against adverse conditions. In addition, peroxidase, the enzyme following CAD in the phenylpropanoid pathway, has also been associated with injury, wound repair, and disease resistance. However, the role of these enzymes in fruit ripening is a matter of only recent investigation and information is lacking on the relationships between phenylpropanoid metabolism and fruit ripening processes. Understanding the role of these enzymes in fruit ripening and their manipulation may possibly be valuable for delineating the regulatory network that controls the expression of ripening genes in fruit. This review elucidates the functional characterization of these key phenylpropanoid biosynthetic enzymes/genes during fruit ripening processes.
Collapse
Affiliation(s)
- Rupinder Singh
- Authors Singh and Dwivedi are with Dept. of Biochemistry, Lucknow Univ., Lucknow 226007, India. Author Rastogi is with Dept. of Biotechnology, Integral Univ., Lucknow 226026, India. Direct inquiries to author Dwivedi (E-mail: )
| | - Smita Rastogi
- Authors Singh and Dwivedi are with Dept. of Biochemistry, Lucknow Univ., Lucknow 226007, India. Author Rastogi is with Dept. of Biotechnology, Integral Univ., Lucknow 226026, India. Direct inquiries to author Dwivedi (E-mail: )
| | - Upendra N Dwivedi
- Authors Singh and Dwivedi are with Dept. of Biochemistry, Lucknow Univ., Lucknow 226007, India. Author Rastogi is with Dept. of Biotechnology, Integral Univ., Lucknow 226026, India. Direct inquiries to author Dwivedi (E-mail: )
| |
Collapse
|
15
|
Rodriguez MCS, Edsgärd D, Hussain SS, Alquezar D, Rasmussen M, Gilbert T, Nielsen BH, Bartels D, Mundy J. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:212-228. [PMID: 20444235 DOI: 10.1111/j.1365-313x.2010.04243.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Studies of the resurrection plant Craterostigma plantagineum have revealed some of the mechanisms which these desiccation-tolerant plants use to survive environments with extreme dehydration and restricted seasonal water. Most resurrection plants are polyploid with large genomes, which has hindered efforts to obtain whole genome sequences and perform mutational analysis. However, the application of deep sequencing technologies to transcriptomics now permits large-scale analyses of gene expression patterns despite the lack of a reference genome. Here we use pyro-sequencing to characterize the transcriptomes of C. plantagineum leaves at four stages of dehydration and rehydration. This reveals that genes involved in several pathways, such as those required for vitamin K and thiamin biosynthesis, are tightly regulated at the level of gene expression. Our analysis also provides a comprehensive picture of the array of cellular responses controlled by gene expression that allow resurrection plants to survive desiccation.
Collapse
Affiliation(s)
| | - Daniel Edsgärd
- Department of Systems Biology, Technical University of Denmark, Kemitorvet 208, 2800 Lyngby, Denmark
| | - Syed S Hussain
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - David Alquezar
- Department of Biology, University of Copenhagen, Ole Maaloes vej. 5, 2200, Copenhagen, Denmark
| | - Morten Rasmussen
- Department of Biology, University of Copenhagen, Ole Maaloes vej. 5, 2200, Copenhagen, Denmark
| | - Thomas Gilbert
- Department of Biology, University of Copenhagen, Ole Maaloes vej. 5, 2200, Copenhagen, Denmark
| | - Bjørn H Nielsen
- Department of Systems Biology, Technical University of Denmark, Kemitorvet 208, 2800 Lyngby, Denmark
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - John Mundy
- Department of Biology, University of Copenhagen, Ole Maaloes vej. 5, 2200, Copenhagen, Denmark
| |
Collapse
|
16
|
Kirita M, Honma D, Tanaka Y, Usui S, Shoji T, Sami M, Yokota T, Tagashira M, Muranaka A, Uchiyama M, Kanda T, Maeda-Yamamoto M. Cloning of a novel O-methyltransferase from Camellia sinensis and synthesis of o-methylated EGCG and evaluation of their bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7196-7201. [PMID: 20476742 DOI: 10.1021/jf100493s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The gene of a novel O-methyltransferase was isolated from tea cultivars (Camellia sinensis L.). Using the recombinant enzyme, O-methylated (-)-epigallocatechin-3-O-gallate (EGCG) in all cases were synthesized. EGCG and the synthesized O-methylated EGCGs including (-)-epigallocatechin-3-O-(3-O-methyl)-gallate (EGCG3''Me), (-)-epigallocatechin-3-O- (4-O-methyl)-gallate(EGCG4''Me), (-)-epigallocatechin-3-O-(3,5-O-dimethyl)-gallate (EGCG3'',5''diMe), and (-)-3-O-methyl-epigallocatechin-3-O-(3,5-O-dimethyl)-gallate (EGCG3',3'',5''triMe) were assayed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and antibacterial activity. EGCG was the most effective of the O-methylated EGCGs. The antiallergic effects of EGCG and the other O-methylated EGCGs were measured by conducting histamine release assays using bone marrow-derived mouse mast cells, and the order of potency was EGCG3',3'',5''triMe = EGCG3'',5''diMe > EGCG3''Me > EGCG. These results indicated that reducing the number of hydroxyl groups decreases the effectiveness of DPPH radical scavenging and antibacterial activity. In contrast, the inhibition of histamine release was potentiated by an increase in the number of methyl groups in EGCG, especially in the galloyl moiety.
Collapse
Affiliation(s)
- Masanobu Kirita
- Research Laboratories for Fundamental Technology of Food, Asahi Breweries Limited, Moriya-shi, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lam KC, Ibrahim RK, Behdad B, Dayanandan S. Structure, function, and evolution of plant O-methyltransferases. Genome 2008; 50:1001-13. [PMID: 18059546 DOI: 10.1139/g07-077] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plant O-methyltransferases (OMTs) constitute a large family of enzymes that methylate the oxygen atom of a variety of secondary metabolites including phenylpropanoids, flavonoids, and alkaloids. O-Methylation plays a key role in lignin biosynthesis, stress tolerance, and disease resistance in plants. To gain insights into the evolution of the extraordinary diversity of plant O-methyltransferases, and to develop a framework phylogenetic tree for improved prediction of the putative function of newly identified OMT-like gene sequences, we performed a comparative and phylogenetic analysis of 61 biochemically characterized plant OMT protein sequences. The resulting phylogenetic tree revealed two major groups. One of the groups included two sister clades, one comprising the caffeoyl CoA OMTs (CCoA OMTs) that methylate phenolic hydroxyl groups of hydroxycinnamoyl CoA esters, and the other containing the carboxylic acid OMTs that methylate aliphatic carboxyl groups. The other group comprised the remaining OMTs, which act on a diverse group of metabolites including hydroxycinnamic acids, flavonoids, and alkaloids. The results suggest that some OMTs may have undergone convergent evolution, while others show divergent evolution. The high number of unique conserved regions within the CCoA OMTs and carboxylic acid OMTs provide an opportunity to design oligonucleotide primers to selectively amplify and characterize similar OMT genes from many plant species.
Collapse
Affiliation(s)
- Kevin C Lam
- Biology Department, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada
| | | | | | | |
Collapse
|
18
|
Yoshihara N, Fukuchi-Mizutani M, Okuhara H, Tanaka Y, Yabuya T. Molecular cloning and characterization of O-methyltransferases from the flower buds of Iris hollandica. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:415-22. [PMID: 17383769 DOI: 10.1016/j.jplph.2006.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 05/14/2023]
Abstract
In plants, O-methyltransferases (OMTs) play an important role in methylation of secondary metabolites, especially flavonoids and other phenylpropanoids, and two cDNA clones, IhOMT1 and IhOMT2 (Iris hollandica OMT), encoding OMTs were successfully isolated from a cDNA library of flower buds of I. hollandica. IhOMT1 encodes an open reading frame (ORF) of 365 amino acids with calculated molecular mass of 40,193Da and isoelectric point (pI) of 5.54, while IhOMT2, which shares 31.5% amino acid sequence identity with IhOMT1, encodes 369 amino acids with calculated molecular mass of 40,385Da and pI of 5.50. In addition, the molecular masses of both recombinant IhOMT1 and IhOMT2 proteins were estimated to be about 40kDa by protein gel blot analysis. Characterization of the enzymatic properties using the recombinant IhOMT1 protein confirmed that IhOMT1 cDNA encodes a S-adenosyl-L-methionine (SAM)-dependent caffeic acid 3-OMT, which catalyzes the transfer of the methyl moiety from SAM to caffeic acid to form ferulic acid. Its optimum activity was observed at pH 7.5-8.0 and at 35 degrees C. This is the first report of the isolation and characterization of a COMT cDNA clone involved in the phenylpropanoid biosynthesis of Iridaceae plants. In contrast, IhOMT2 showed no activity in SAM-dependent assays for various phenylpropanoids.
Collapse
Affiliation(s)
- Noriko Yoshihara
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | |
Collapse
|
19
|
Vassão DG, Davin LB, Lewis NG. Metabolic Engineering of Plant Allyl/Propenyl Phenol and Lignin Pathways: Future Potential for Biofuels/Bioenergy, Polymer Intermediates, and Specialty Chemicals? BIOENGINEERING AND MOLECULAR BIOLOGY OF PLANT PATHWAYS 2008. [DOI: 10.1016/s1755-0408(07)01013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Davin LB, Jourdes M, Patten AM, Kim KW, Vassão DG, Lewis NG. Dissection of lignin macromolecular configuration and assembly: Comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat Prod Rep 2008; 25:1015-90. [DOI: 10.1039/b510386j] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Yamada T, Ichimura K, Kanekatsu M, van Doorn WG. Gene expression in opening and senescing petals of morning glory (Ipomoea nil) flowers. PLANT CELL REPORTS 2007; 26:823-35. [PMID: 17221229 DOI: 10.1007/s00299-006-0285-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Revised: 12/10/2006] [Accepted: 12/14/2006] [Indexed: 05/13/2023]
Abstract
We isolated several senescence-associated genes (SAGs) from the petals of morning glory (Ipomoea nil) flowers, with the aim of furthering our understanding of programmed cell death. Samples were taken from the closed bud stage to advanced visible senescence. Actinomycin D, an inhibitor of transcription, if given prior to 4 h after opening, suppressed the onset of visible senescence, which occurred at about 9 h after flower opening. The isolated genes all showed upregulation. Two cell-wall related genes were upregulated early, one encoding an extensin and one a caffeoyl-CoA-3-O-methyltransferase, involved in lignin production. A pectinacetylesterase was upregulated after flower opening and might be involved in cell-wall degradation. Some identified genes showed high homology with published SAGs possibly involved in remobilisation processes: an alcohol dehydrogenase and three cysteine proteases. One transcript encoded a leucine-rich repeat receptor protein kinase, putatively involved in signal transduction. Another transcript encoded a 14-3-3 protein, also a protein kinase. Two genes have apparently not been associated previously with senescence: the first encoded a putative SEC14, which is required for Golgi vesicle transport, the second was a putative ataxin-2, which has been related to RNA metabolism. Induction of the latter has been shown to result in cell death in yeast, due to defects in actin filament formation. The possible roles of these genes in programmed cell death are discussed.
Collapse
Affiliation(s)
- Tetsuya Yamada
- National Institute of Floricultural Science, Ibaraki, Japan.
| | | | | | | |
Collapse
|
22
|
Szatmari A, Ott PG, Varga GJ, Besenyei E, Czelleng A, Klement Z, Bozsó Z. Characterisation of basal resistance (BR) by expression patterns of newly isolated representative genes in tobacco. PLANT CELL REPORTS 2006; 25:728-40. [PMID: 16456648 DOI: 10.1007/s00299-005-0110-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 11/25/2005] [Accepted: 12/14/2005] [Indexed: 05/06/2023]
Abstract
Increasing evidence indicates that plants, like animals, use basal resistance (BR), a component of the innate immune system, to defend themselves against foreign organisms. Contrary to the hypersensitive reaction (HR)-type cell death, recognition in the case of BR is unspecific, as intruders are recognised based on their common molecular patterns. Induction of BR is not associated with visible symptoms, in contrast to the HR-type cell death. To analyse the early events of BR in tobacco plants we have carried out a subtractive hybridisation between leaves treated with the HR-negative mutant strain Pseudomonas syringae pv. syringae 61 hrcC and non-treated control leaves. Random sequencing from the 304 EBR clones yielded 20 unique EST-s. Real-time PCR has proved that 8 out of 10 clones are activated during BR. Six of these EST-s were further analyzed. Gene expression patterns in a time course showed early peaks of most selected genes at 3-12 h after inoculation (hpi), which coincided with the development-time of BR. Upon treatments with different types of bacteria we found that incompatible pathogens, their hrp mutants, as well as non-pathogens induce high levels of expression while virulent pathogens induce only a limited gene-expression. Plant signal molecules like salicylic acid, methyl jasmonate, ethylene and spermine, known to be involved in plant defense were not able to induce the investigated genes, therefore, an unknown signalling mechanism is expected to operate in BR. In summary, we have identified representative genes associated with BR and have established important features of BR by analysing gene-expression patterns.
Collapse
Affiliation(s)
- Agnes Szatmari
- Plant Protection Institute, Hungarian Academy of Sciences, Herman O. u. 15., 1022, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
23
|
Burga L, Wellmann F, Lukacin R, Witte S, Schwab W, Schröder J, Matern U. Unusual pseudosubstrate specificity of a novel 3,5-dimethoxyphenol O-methyltransferase cloned from Ruta graveolens L. Arch Biochem Biophys 2005; 440:54-64. [PMID: 16023070 DOI: 10.1016/j.abb.2005.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 11/17/2022]
Abstract
A cDNA was cloned from Ruta graveolens cells encoding a novel O-methyltransferase (OMT) with high similarity to orcinol or chavicol/eugenol OMTs, but containing a serine-rich N-terminus and a 13 amino acid insertion between motifs IV and V. Expression in Escherichia coli revealed S-adenosyl-l-methionine-dependent OMT activity with methoxylated phenols only with an apparent Km of 20.4 for the prime substrate 3,5-dimethoxyphenol. The enzyme forms a homodimer of 84 kDa, and the activity was insignificantly affected by 2.0 mM Ca2+ or Mg2+, whereas Fe2+, Co2+, Zn2+, Cu2+ or Hg2+ were inhibitory (78-100%). Dithiothreitol (DTT) suppressed the OMT activity. This effect was examined further, and, in the presence of Zn2+ as a potential thiol methyltransferase (TMT) cofactor, the recombinant OMT methylated DTT to DTT-monomethylthioether. Sets of kinetic OMT experiments with 3,5-dimethoxyphenol at various Zn2+/DTT concentrations revealed the competitive binding of DTT with an apparent Ki of 52.0 microM. Thus, the OMT exhibited TMT activity with almost equivalent affinity to the thiol pseudosubstrate which is structurally unrelated to methoxyphenols.
Collapse
Affiliation(s)
- Laura Burga
- Institut für Pharmazeutische Biologie, Philipps-Universität Marburg, Deutschhausstrasse 17A, D-35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang Y, Yang L, Xu H, Li Q, Ma Z, Chu C. Differential proteomic analysis of proteins in wheat spikes induced by Fusarium graminearum. Proteomics 2005; 5:4496-503. [PMID: 16222720 DOI: 10.1002/pmic.200401317] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Scab, caused by Fusarium graminearum, is a serious spike disease in wheat. To identify proteins in resistant wheat cultivar Wangshuibai induced by F. graminearum infection, proteins extracted from spikes 6, 12 and 24 h after inoculation were separated by 2-DE. Thirty protein spots showing 3-fold change in abundance when compared with treatment without inoculation were characterized by MALDI-TOF MS and matched to proteins by querying the mass spectra in protein databases or the Triticeae EST translation database. Based on their volume profiles, these proteins were classified into four categories. The first one fell off rapidly at the initial inoculation and then rose at 12 or 24 hai, the second one decreased considerably after inoculation and remained at low level, the third one rose at the initial inoculation and then declined at 12 or 24 hai, the forth one showed steady increase after inoculation and maintained at a high level. Many of the proteins identified in the first two categories are related to carbon metabolism and photosynthesis. While most of proteins identified in the last two categories are related to stress defense of plants, indicating that proteins associated with the defense reactions were activated or translated shortly after inoculation.
Collapse
Affiliation(s)
- Yun Wang
- Laboratory of Applied Plant Genomics, Nanjing Agricultural University, China
| | | | | | | | | | | |
Collapse
|
25
|
Vincent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M. Water deficits affect caffeate O-methyltransferase, lignification, and related enzymes in maize leaves. A proteomic investigation. PLANT PHYSIOLOGY 2005; 137:949-60. [PMID: 15728345 PMCID: PMC1065396 DOI: 10.1104/pp.104.050815] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/10/2004] [Accepted: 12/21/2004] [Indexed: 05/18/2023]
Abstract
Drought is a major abiotic stress affecting all levels of plant organization and, in particular, leaf elongation. Several experiments were designed to study the effect of water deficits on maize (Zea mays) leaves at the protein level by taking into account the reduction of leaf elongation. Proteomic analyses of growing maize leaves allowed us to show that two isoforms of caffeic acid/5-hydroxyferulic 3-O-methyltransferase (COMT) accumulated mostly at 10 to 20 cm from the leaf point of insertion and that drought resulted in a shift of this region of maximal accumulation toward basal regions. We showed that this shift was due to the combined effect of reductions in growth and in total amounts of COMT. Several other enzymes involved in lignin and/or flavonoid synthesis (caffeoyl-CoA 3-O-methyltransferase, phenylalanine ammonia lyase, methylenetetrahydrofolate reductase, and several isoforms of S-adenosyl-l-methionine synthase and methionine synthase) were highly correlated with COMT, reinforcing the hypothesis that the zone of maximal accumulation corresponds to a zone of lignification. According to the accumulation profiles of the enzymes, lignification increases in leaves of control plants when their growth decreases before reaching their final size. Lignin levels analyzed by thioacidolysis confirmed that lignin is synthesized in the region where we observed the maximal accumulation of these enzymes. Consistent with the levels of these enzymes, we found that the lignin level was lower in leaves of plants subjected to water deficit than in those of well-watered plants.
Collapse
Affiliation(s)
- Delphine Vincent
- Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université Paris XI, Institut National Agronomique Paris-Grignon, la Ferme du Moulon, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
26
|
Lukacin R, Matern U, Specker S, Vogt T. Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus. FEBS Lett 2005; 577:367-70. [PMID: 15556611 DOI: 10.1016/j.febslet.2004.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 09/23/2004] [Accepted: 10/11/2004] [Indexed: 11/24/2022]
Abstract
Caffeoyl-coenzyme A O-methyltransferase cDNA was cloned from dark-grown Ammi majus L. (Apiaceae) cells treated with a crude fungal elicitor and the open reading frame was expressed in Escherichia coli. The translated polypeptide of 27.1-kDa shared significant identity to other members of this highly conserved class of proteins and was 98.8% identical to the corresponding O-methyltransferase from parsley. For biochemical characterization, the recombinant enzyme could be purified to apparent homogeneity by metal-affinity chromatography, although the recombinant enzyme did not contain any affinity tag. Based on sequence analysis and substrate specificity, the enzyme classifies as a cation-dependent O-methyltransferase with pronounced preference for caffeoyl coenzyme A, when assayed in the presence of Mg2+-ions. Surprisingly, however, the substrate specificity changed dramatically, when Mg2+ was replaced by Mn2+ or Co2+ in the assays. This effect could point to yet unknown functions and substrate specificities in situ and suggests promiscuous roles for the lignin specific cluster of plant O-methyltransferases.
Collapse
Affiliation(s)
- Richard Lukacin
- Institut für Pharmazeutische Biologie der Philipps-Universität Marburg, Deutschhausstr. 17A, D- 35037 Marburg/Lahn, Germany
| | | | | | | |
Collapse
|
27
|
Zhao H, Sheng Q, Lü S, Wang T, Song Y. Characterization of three riceCCoAOMT genes. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/bf03184129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Yang Q, Trinh HX, Imai S, Ishihara A, Zhang L, Nakayashiki H, Tosa Y, Mayama S. Analysis of the involvement of hydroxyanthranilate hydroxycinnamoyltransferase and caffeoyl-CoA 3-O-methyltransferase in phytoalexin biosynthesis in oat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:81-89. [PMID: 14714871 DOI: 10.1094/mpmi.2004.17.1.81] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two oat genes encoding hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyltransferase (HHT) and S-adenosyl-L-methionine:trans-caffeoyl-CoA 3-O-methyltransferase (CCoAOMT), both of which are possibly involved in the biosynthesis of oat avenanthramide phytoalexins, were cloned and their expression profiles in response to biological stress were studied. Four distinct cDNAs of oat HHT (AsHHT1-4) were isolated with the degenerative polymerase chain reaction method. The enzymatic activity of AsHHT1 expressed in E. coli was found using hydroxyanthranilate and hydroxycinnamoyl-CoAs as cosubstrates. Cloned oat CCoAOMT (AsCCoAOMT) encoded a polypeptide of 130 amino acid residues with 77.7 to 80.8% identities to the CCoAOMT sequences from other plant species. The accumulation of AsHHT1 and AsCCoAOMT transcripts increased concomitantly with phytoalexin accumulation by the treatment of victorin, a specific elicitor in oat lines carrying the Pc-2/Vb gene. Pharmacological approaches indicated the involvement of Ca2+, NO, and protein kinases in the signaling pathways of AsHHT1 and AsCCoAOMT mRNA induction. When oat leaves were inoculated with Puccinia coronata, the mRNA expression of AsHHT1 and AsCCOAOMT increased in both incompatible and compatible interactions but more rapidly in incompatible interaction. Interestingly, however, significant phytoalexin accumulation was observed only in incompatible interaction during the experimental period, suggesting that phytoalexin accumulation may be inhibited in one or more posttranscriptional processes in the compatible interaction.
Collapse
Affiliation(s)
- Qian Yang
- Laboratory of Plant Pathology, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ibdah M, Zhang XH, Schmidt J, Vogt T. A novel Mg(2+)-dependent O-methyltransferase in the phenylpropanoid metabolism of Mesembryanthemum crystallinum. J Biol Chem 2003; 278:43961-72. [PMID: 12941960 DOI: 10.1074/jbc.m304932200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon irradiation with elevated light intensities, the ice plant (Mesembryanthemum crystallinum) accumulates a complex pattern of methylated and glycosylated flavonol conjugates in the upper epidermal layer. Identification of a flavonol methylating activity, partial purification of the enzyme, and sequencing of the corresponding peptide fragments revealed a novel S-adenosyl-l-methionine-dependent O-methyltransferase that was specific for flavonoids and caffeoyl-CoA. Cloning and functional expression of the corresponding cDNA verified that the new methyltransferase is a multifunctional 26.6-kDa Mg(2+)-dependent enzyme, which shows a significant sequence similarity to the cluster of caffeoyl coenzyme A-methylating enzymes. Functional analysis of highly homologous members from chickweed (Stellaria longipes), Arabidopsis thaliana, and tobacco (Nicotiana tabacum) demonstrated that the enzymes from the ice plant, chickweed, and A. thaliana possess a broader substrate specificity toward o-hydroquinone-like structures than previously anticipated for Mg(2+)-dependent O-methyltransferases, and are distinctly different from the tobacco enzyme. Besides caffeoyl-CoA and flavonols, a high specificity was also observed for caffeoylglucose, a compound never before reported to be methylated by any plant O-methyltransferase. Based on phylogenetic analysis of the amino acid sequence and differences in acceptor specificities among both animal and plant O-methyltransferases, we propose that the enzymes from the Centrospermae, along with the predicted gene product from A. thaliana, form a novel subclass within the caffeoyl coenzyme A-dependent O-methyltransferases, with potential divergent functions not restricted to lignin monomer biosynthesis.
Collapse
Affiliation(s)
- Mwafaq Ibdah
- Department of Secondary Metabolism, the Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle/Saale, Germany
| | | | | | | |
Collapse
|
30
|
Costa MA, Collins RE, Anterola AM, Cochrane FC, Davin LB, Lewis NG. An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. PHYTOCHEMISTRY 2003; 64:1097-112. [PMID: 14568076 DOI: 10.1016/s0031-9422(03)00517-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis genome sequencing in 2000 gave to science the first blueprint of a vascular plant. Its successful completion also prompted the US National Science Foundation to launch the Arabidopsis 2010 initiative, the goal of which is to identify the function of each gene by 2010. In this study, an exhaustive analysis of The Institute for Genomic Research (TIGR) and The Arabidopsis Information Resource (TAIR) databases, together with all currently compiled EST sequence data, was carried out in order to determine to what extent the various metabolic networks from phenylalanine ammonia lyase (PAL) to the monolignols were organized and/or could be predicted. In these databases, there are some 65 genes which have been annotated as encoding putative enzymatic steps in monolignol biosynthesis, although many of them have only very low homology to monolignol pathway genes of known function in other plant systems. Our detailed analysis revealed that presently only 13 genes (two PALs, a cinnamate-4-hydroxylase, a p-coumarate-3-hydroxylase, a ferulate-5-hydroxylase, three 4-coumarate-CoA ligases, a cinnamic acid O-methyl transferase, two cinnamoyl-CoA reductases) and two cinnamyl alcohol dehydrogenases can be classified as having a bona fide (definitive) function; the remaining 52 genes currently have undetermined physiological roles. The EST database entries for this particular set of genes also provided little new insight into how the monolignol pathway was organized in the different tissues and organs, this being perhaps a consequence of both limitations in how tissue samples were collected and in the incomplete nature of the EST collections. This analysis thus underscores the fact that even with genomic sequencing, presumed to provide the entire suite of putative genes in the monolignol-forming pathway, a very large effort needs to be conducted to establish actual catalytic roles (including enzyme versatility), as well as the physiological function(s) for each member of the (multi)gene families present and the metabolic networks that are operative. Additionally, one key to identifying physiological functions for many of these (and other) unknown genes, and their corresponding metabolic networks, awaits the development of technologies to comprehensively study molecular processes at the single cell level in particular tissues and organs, in order to establish the actual metabolic context.
Collapse
Affiliation(s)
- Michael A Costa
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA
| | | | | | | | | | | |
Collapse
|
31
|
Marita JM, Ralph J, Hatfield RD, Guo D, Chen F, Dixon RA. Structural and compositional modifications in lignin of transgenic alfalfa down-regulated in caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase. PHYTOCHEMISTRY 2003; 62:53-65. [PMID: 12475619 DOI: 10.1016/s0031-9422(02)00434-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Isolated lignins from alfalfa deficient in caffeic acid 3-O-methyltransferase contained benzodioxanes resulting from the incorporation of the novel monomer, 5-hydroxyconiferyl alcohol. Due to the high level incorporated into the soluble lignin fraction and the use of sensitive NMR instrumentation, unique structural features were revealed. A new type of end-unit, the 5-hydroxyguaiacyl glycerol unit, was identified. It was possible to establish that coniferyl alcohol, sinapyl alcohol, and the novel 5-hydroxyconiferyl alcohol can cross-couple with the 5-hydroxyguaiacyl units that are formed in the lignin, the latter giving rise to extended chains of benzodioxane units. There is also evidence that 5-hydroxyconiferyl alcohol couples with normal (guaiacyl or syringyl) lignin units. Lignin in the alfalfa deficient in caffeoyl CoA 3-O-methyltransferase was structurally similar to the control lignin but the transgenic exhibited a dramatic decrease in lignin content (approximately 20%) and modest increase in cellulose (approximately 10%) reflecting a 30% increase in cellulose:lignin ratio. The compositional changes in both transgenics potentially allow enhanced utilization of alfalfa as a major forage crop by increasing the digestibility of its stem fraction.
Collapse
Affiliation(s)
- Jane M Marita
- US Dairy Forage Research Center, USDA-Agricultural Research Service, 1925 Linden Drive West, Madison, WI 53706-1108, USA
| | | | | | | | | | | |
Collapse
|
32
|
Anterola AM, Lewis NG. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. PHYTOCHEMISTRY 2002; 61:221-94. [PMID: 12359514 DOI: 10.1016/s0031-9422(02)00211-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A comprehensive assessment of lignin configuration in transgenic and mutant plants is long overdue. This review thus undertook the systematic analysis of trends manifested through genetic and mutational manipulations of the various steps associated with monolignol biosynthesis; this included consideration of the downstream effects on organized lignin assembly in the various cell types, on vascular function/integrity, and on plant growth and development. As previously noted for dirigent protein (homologs), distinct and sophisticated monolignol forming metabolic networks were operative in various cell types, tissues and organs, and form the cell-specific guaiacyl (G) and guaiacyl-syringyl (G-S) enriched lignin biopolymers, respectively. Regardless of cell type undergoing lignification, carbon allocation to the different monolignol pools is apparently determined by a combination of phenylalanine availability and cinnamate-4-hydroxylase/"p-coumarate-3-hydroxylase" (C4H/C3H) activities, as revealed by transcriptional and metabolic profiling. Downregulation of either phenylalanine ammonia lyase or cinnamate-4-hydroxylase thus predictably results in reduced lignin levels and impaired vascular integrity, as well as affecting related (phenylpropanoid-dependent) metabolism. Depletion of C3H activity also results in reduced lignin deposition, albeit with the latter being derived only from hydroxyphenyl (H) units, due to both the guaiacyl (G) and syringyl (S) pathways being blocked. Apparently the cells affected are unable to compensate for reduced G/S levels by increasing the amounts of H-components. The downstream metabolic networks for G-lignin enriched formation in both angiosperms and gymnosperms utilize specific cinnamoyl CoA O-methyltransferase (CCOMT), 4-coumarate:CoA ligase (4CL), cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) isoforms: however, these steps neither affect carbon allocation nor H/G designations, this being determined by C4H/C3H activities. Such enzymes thus fulfill subsidiary processing roles, with all (except CCOMT) apparently being bifunctional for both H and G substrates. Their severe downregulation does, however, predictably result in impaired monolignol biosynthesis, reduced lignin deposition/vascular integrity, (upstream) metabolite build-up and/or shunt pathway metabolism. There was no evidence for an alternative acid/ester O-methyltransferase (AEOMT) being involved in lignin biosynthesis. The G/S lignin pathway networks are operative in specific cell types in angiosperms and employ two additional biosynthetic steps to afford the corresponding S components, i.e. through introduction of an hydroxyl group at C-5 and its subsequent O-methylation. [These enzymes were originally classified as ferulate-5-hydroxylase (F5H) and caffeate O-methyltransferase (COMT), respectively.] As before, neither step has apparently any role in carbon allocation to the pathway; hence their individual downregulation/manipulation, respectively, gives either a G enriched lignin or formation of the well-known S-deficient bm3 "lignin" mutant, with cell walls of impaired vascular integrity. In the latter case, COMT downregulation/mutation apparently results in utilization of the isoelectronic 5-hydroxyconiferyl alcohol species albeit in an unsuccessful attempt to form G-S lignin proper. However, there is apparently no effect on overall G content, thereby indicating that deposition of both G and S moieties in the G/S lignin forming cells are kept spatially, and presumably temporally, fully separate. Downregulation/mutation of further downstream steps in the G/S network [i.e. utilizing 4CL, CCR and CAD isoforms] gives predictable effects in terms of their subsidiary processing roles: while severe downregulation of 4CL gave phenotypes with impaired vascular integrity due to reduced monolignol supply, there was no evidence in support of increased growth and/or enhanced cellulose biosynthesis. CCR and CAD downregulation/mutations also established that a depletion in monolignol supply reduced both lignin contents supply reduced both lignin contents and vascular integrity, with a concomitant shift towards (upstream) metabolite build-up and/or shunting. The extraordinary claims of involvement of surrogate monomers (2-methoxybenzaldehyde, feruloyl tyramine, vanillic acid, etc.) in lignification were fully disproven and put to rest, with the investigators themselves having largely retracted former claims. Furthermore analysis of the well-known bm1 mutation, a presumed CAD disrupted system, apparently revealed that both G and S lignin components were reduced. This seems to imply that there is no monolignol specific dehydrogenase, such as the recently described sinapyl alcohol dehydrogenase (SAD) for sinapyl alcohol formation. Nevertheless, different CAD isoforms of differing homology seem to be operative in different lignifying cell types, thereby giving the G-enriched and G/S-enriched lignin biopolymers, respectively. For the G-lignin forming network, however, the CAD isoform is apparently catalytically less efficient with all three monolignols than that additionally associated with the corresponding G/S lignin forming network(s), which can more efficiently use all three monolignols. However, since CAD does not determine either H, G, or S designation, it again serves in a subsidiary role-albeit using different isoforms for different cell wall developmental and cell wall type responses. The results from this analysis contrasts further with speculations of some early investigators, who had viewed lignin assembly as resulting from non-specific oxidative coupling of monolignols and subsequent random polymerization. At that time, though, the study of the complex biological (biochemical) process of lignin assembly had begun without any of the (bio)chemical tools to either address or answer the questions posed as to how its formation might actually occur. Today, by contrast, there is growing recognition of both sophisticated and differential control of monolignol biosynthetic networks in different cell types, which serve to underscore the fact that complexity of assembly need not be confused any further with random formation. Moreover, this analysis revealed another factor which continues to cloud interpretations of lignin downregulation/mutational analyses, namely the serious technical problems associated with all aspects of lignin characterization, whether for lignin quantification, isolation of lignin-enriched preparations and/or in determining monomeric compositions. For example, in the latter analyses, some 50-90% of the lignin components still cannot be detected using current methodologies, e.g. by thioacidolysis cleavage and nitrobenzene oxidative cleavage. This deficiency in lignin characterization thus represents one of the major hurdles remaining in delineating how lignin assembly (in distinct cell types) and their configuration actually occurs.
Collapse
Affiliation(s)
- Aldwin M Anterola
- Institute of Biological Chemistry, Washington State University, Pullman 99164-6340, USA
| | | |
Collapse
|
33
|
Abstract
Considerable interest in lignin biosynthesis has been fueled by the many roles that lignin plays in development and in resistance to biotic and abiotic stress, as well as its importance to industry and agriculture. Although the pathway leading to the lignin polymer has been studied for decades, new insights into the enzymes of the pathway have required a complete re-evaluation of how we think lignin precursors are synthesized. Although free hydroxycinnamic acids have long been thought to be key intermediates, it has become apparent that many of the hydroxylation and methylation steps in the pathway occur instead at the level of hydroxycinnamic acid esters, and their corresponding aldehydes and alcohols.
Collapse
Affiliation(s)
- John M Humphreys
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
34
|
Park JB, Schoene N. Synthesis and characterization of N-coumaroyltyramine as a potent phytochemical which arrests human transformed cells via inhibiting protein tyrosine kinases. Biochem Biophys Res Commun 2002; 292:1104-10. [PMID: 11944930 DOI: 10.1006/bbrc.2002.6752] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous phytochemicals are believed to have beneficial effects on human health. N-Coumaroyltyramine accumulates in plants in response to wounding and pathogen attack. Due to the scarcity of N-coumaroyltyramine, its biological activities have not been studied in human cells. In this study, N-coumaroyltyramine was chemically synthesized and then purified by an HPLC with a UV-visible absorbance detector. Retention times of major peaks were 14.3 and 20.7 min, and the peak at 20.7 min was confirmed by LC-MS as N-coumaroyltyramine with a mass/charge (m/z) unit of 284.1. The synthesis procedure was relatively easy and had an acceptable yield (approximately 55%). The compound exhibited a new activity, suppression of growth of human tumor cells such as U937 and Jurkat cells. In addition, the suppressed growth of the cells was strongly associated with an increased percentage of cells in the S phase of the cell cycle progression. Furthermore, N-coumaroyltyramine was able to inhibit the protein tyrosine kinases including epidermal growth factor receptor (EGFR). This is the first report of the growth suppressing activity of N-coumaroyltyramine and its arrest of cells at the S phase of the cell cycle, possibly by inhibition of protein tyrosine kinases.
Collapse
Affiliation(s)
- Jae B Park
- Phytonutrients Laboratory, U.S. Department of Agriculture, Beltsville, Maryland 20705, USA.
| | | |
Collapse
|
35
|
Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 30:47-59. [PMID: 11967092 DOI: 10.1046/j.1365-313x.2002.01267.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The end products of the phenylpropanoid pathway play important roles in plant structure and development, as well as in plant defense mechanisms against biotic and abiotic stresses. From a human perspective, phenylpropanoid pathway-derived metabolites influence both human health and the potential utility of plants in agricultural contexts. The last known enzyme of the phenylpropanoid pathway that has not been characterized is p-coumarate 3-hydroxylase (C3H). By screening for plants that fail to accumulate soluble fluorescent phenylpropanoid secondary metabolites, we have identified a number of Arabidopsis mutants that display a reduced epidermal fluorescence (ref) phenotype. We have now shown that the ref8 mutant is defective in the gene encoding C3H. Phenotypic characterization of the ref8 mutant has revealed that the lack of C3H activity in the mutant leads to diverse changes in phenylpropanoid metabolism. The ref8 mutant accumulates p-coumarate esters in place of the sinapoylmalate found in wild-type plants. The mutant also deposits a lignin formed primarily from p-coumaryl alcohol, a monomer that is at best a minor component in the lignin of other plants. Finally, the mutant displays developmental defects and is subject to fungal attack, suggesting that phenylpropanoid pathway products downstream of REF8 may be required for normal plant development and disease resistance.
Collapse
Affiliation(s)
- Rochus Franke
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907-1153, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hoffmann L, Maury S, Bergdoll M, Thion L, Erard M, Legrand M. Identification of the enzymatic active site of tobacco caffeoyl-coenzyme A O-methyltransferase by site-directed mutagenesis. J Biol Chem 2001; 276:36831-8. [PMID: 11459845 DOI: 10.1074/jbc.m104977200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Animal catechol O-methyltransferases and plant caffeoyl-coenzyme A O-methyltransferases share about 20% sequence identity and display common structural features. The crystallographic structure of rat liver catechol O-methyltransferase was used as a template to construct a homology model for tobacco caffeoyl-coenzyme A O-methyltransferase. Integrating substrate specificity data, the three-dimensional model identified several amino acid residues putatively involved in substrate binding. These residues were mutated by a polymerase chain reaction method and wild-type and mutant enzymes were each expressed in Escherichia coli and purified. Substitution of Arg-220 with Thr resulted in the total loss of enzyme activity, thus indicating that Arg-220 is involved in the electrostatic interaction with the coenzyme A moiety of the substrate. Changes of Asp-58 to Ala and Gln-61 to Ser were shown to increase K(m) values for caffeoyl coenzyme A and to decrease catalytic activity. Deletions of two amino acid sequences specific for plant enzymes abolished activity. The secondary structures of the mutants, as measured by circular dichroism, were essentially unperturbed as compared with the wild type. Similar changes in circular dichroism spectra were observed after addition of caffeoyl coenzyme A to the wild-type enzyme and the substitution mutants but not in the case of deletion mutants, thus revealing the importance of these sequences in substrate-enzyme interactions.
Collapse
Affiliation(s)
- L Hoffmann
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université Louis Pasteur, 12 rue du Général Zimmer, 67000 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
37
|
Steinert M, Flügel M, Schuppler M, Helbig JH, Supriyono A, Proksch P, Lück PC. The Lly protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila. FEMS Microbiol Lett 2001; 203:41-7. [PMID: 11557138 DOI: 10.1111/j.1574-6968.2001.tb10818.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The lly locus confers fluorescence, haemolysis, brown pigmentation and an increased resistance to light in Legionella pneumophila. In this study, we correlated the pigment production of two lly-positive L. pneumophila isolates and a recombinant lly-positive Escherichia coli strain with the presence of homogentisic acid (HGA) in the culture supernatant. The detection of HGA by high performance liquid chromatography and the data analysis of the deduced amino acid sequence of the lly gene indicate that the lly locus codes for a p-hydroxyphenylpyruvate dioxygenase (HPPD). This enzyme catalyses the transformation of p-hydroxyphenylpyruvate into HGA, which subsequently oxidises and polymerises into a melanin-like pigment. One open reading frame (ORF 1) in the lly region exhibited homologies with genes of Synechocystis sp., Petroselium crispum and Streptomyces mycarofaciens that code for methyltransferases. By screening a genomic library of L. pneumophila (serogroup 1) strain Corby with a monoclonal antibody against the legiolysin (lly), we identified two recombinant E. coli clones that did not produce the brown pigment and showed no haemolysis and fluorescence. DNA sequencing revealed that both clones contained 874 nucleotides of the N-terminal part of the lly gene. The recombinant strains expressed truncated legiolysin proteins of 39.5 and 35.7 kDa and did not produce HGA. Considering the highly conserved structure of legiolysin-like HPPD genes from other organisms, we suggest that the C-terminus of the legiolysin may be essential for the enzymatic activity that conferred pigmentation via HGA polymerisation, haemolysis and fluorescence.
Collapse
Affiliation(s)
- M Steinert
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ye ZH, Zhong R, Morrison WH, Himmelsbach DS. Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis. PHYTOCHEMISTRY 2001; 57:1177-85. [PMID: 11430990 DOI: 10.1016/s0031-9422(01)00051-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Lignin, a complex phenylpropanoid compound, is polymerized from the monolignols p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. These three monolignols differ only by the 3- and 5-methoxyl groups. Therefore, enzymatic reactions controlling the methylations of the 3- and 5-hydroxyls of monolignol precursors are critical to determine the lignin composition. Recent biochemical and transgenic studies have indicated that the methylation pathways in monolignol biosynthesis are much more complicated than we have previously envisioned. It has been demonstrated that caffeoyl CoA O-methyltransferase plays an essential role in the synthesis of guaiacyl lignin units as well as in the supply of substrates for the synthesis of syringyl lignin units. Caffeic acid O-methyltransferase has been found to essentially control the biosynthesis of syringyl lignin units. These new findings have greatly enriched our knowledge on the methylation pathways in monolignol biosynthesis.
Collapse
Affiliation(s)
- Z H Ye
- Department of Botany, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
39
|
Zhong R, Morrison WH, Himmelsbach DS, Poole FL, Ye ZH. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. PLANT PHYSIOLOGY 2000; 124:563-78. [PMID: 11027707 PMCID: PMC59163 DOI: 10.1104/pp.124.2.563] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2000] [Accepted: 06/12/2000] [Indexed: 05/17/2023]
Abstract
Caffeoyl coenzyme A O-methyltransferase (CCoAOMT) has recently been shown to participate in lignin biosynthesis in herbacious tobacco plants. Here, we demonstrate that CCoAOMT is essential in lignin biosynthesis in woody poplar (Populus tremula x Populus alba) plants. In poplar stems, CCoAOMT was found to be expressed in all lignifying cells including vessel elements and fibers as well as in xylem ray parenchyma cells. Repression of CCoAOMT expression by the antisense approach in transgenic poplar plants caused a significant decrease in total lignin content as detected by both Klason lignin assay and Fourier-transform infrared spectroscopy. The reduction in lignin content was the result of a decrease in both guaiacyl and syringyl lignins as determined by in-source pyrolysis mass spectrometry. Fourier-transform infrared spectroscopy indicated that the reduction in lignin content resulted in a less condensed and less cross-linked lignin structure in wood. Repression of CCoAOMT expression also led to coloration of wood and an elevation of wall-bound p-hydroxybenzoic acid. Taken together, these results indicate that CCoAOMT plays a dominant role in the methylation of the 3-hydroxyl group of caffeoyl CoA, and the CCoAOMT-mediated methylation reaction is essential to channel substrates for 5-methoxylation of hydroxycinnamates. They also suggest that antisense repression of CCoAOMT is an efficient means for genetic engineering of trees with low lignin content.
Collapse
Affiliation(s)
- R Zhong
- Department of Botany, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
40
|
Chen C, Meyermans H, Burggraeve B, De Rycke RM, Inoue K, De Vleesschauwer V, Steenackers M, Van Montagu MC, Engler GJ, Boerjan WA. Cell-specific and conditional expression of caffeoyl-coenzyme A-3-O-methyltransferase in poplar. PLANT PHYSIOLOGY 2000; 123:853-67. [PMID: 10889235 PMCID: PMC59049 DOI: 10.1104/pp.123.3.853] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/1999] [Accepted: 03/11/2000] [Indexed: 05/17/2023]
Abstract
Caffeoyl coenzyme A-3-O-methyltransferase (CCoAOMT) plays an important role in lignin biosynthesis and is encoded by two genes in poplar (Populus trichocarpa). Here, we describe the expression pattern conferred by the two CCoAOMT promoters when fused to the gus-coding sequence in transgenic poplar (Populus tremula x Populus alba). Both genes were expressed similarly in xylem and differentially in phloem. In xylem, expression was preferentially observed in vessels and contact rays, whereas expression was barely detectable in storage rays and fibers, suggesting different routes to monolignol biosynthesis in the different xylem types. Furthermore, after wounding, fungal infection, and bending, the expression of both genes was induced concomitantly with de novo lignin deposition. Importantly, upon bending and leaning of the stem, the cell-specific expression pattern was lost, and both genes were expressed in all cell types of the xylem. CCoAOMT promoter activity correlated well with the presence of the CCoAOMT protein, as shown by immunolocalization. These expression data may explain, at least in part, the heterogeneity in lignin composition that is observed between cell types and upon different environmental conditions.
Collapse
Affiliation(s)
- C Chen
- Vakgroep Moleculaire Genetica & Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:223-34. [PMID: 10849340 DOI: 10.1046/j.1365-313x.2000.00727.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Ferulate 5-hydroxylase (F5H) is a cytochrome P450-dependent monooxygenase that catalyses the hydroxylation of ferulic acid, coniferaldehyde and coniferyl alcohol in the pathways leading to sinapic acid and syringyl lignin biosynthesis. Earlier studies in Arabidopsis have demonstrated that F5H over-expression increases lignin syringyl monomer content and abolishes the tissue-specificity of its deposition. To determine whether this enzyme has a similar regulatory role in plants that undergo secondary growth, we over-expressed the F5H gene in tobacco and poplar. In tobacco, over-expression of F5H under the control of the cauliflower mosaic virus 35S promoter increased lignin syringyl monomer content in petioles, but had no detectable effect on lignification in stems. By contrast, when the cinnamate 4-hydroxylase (C4H) promoter was used to drive F5H expression, there was a significant increase in stem lignin syringyl monomer content. Yields of thioglycolic acid and Klason lignin in C4H-F5H lines were lower than in the wild-type, suggesting that F5H over-expression leads to a reduced deposition or an altered extractability of lignin in the transgenic plants. Histochemical analysis suggested that the novel lignin in C4H-F5H transgenic lines was altered in its content of hydroxycinnamyl aldehydes. Transgenic poplar trees carrying the C4H-F5H transgene also displayed enhanced lignin syringyl monomer content. Taken together, these data show that hydroxylation of guaiacyl-substituted lignin precursors controls lignin monomer composition in woody plants, and that F5H over-expression is a viable metabolic engineering strategy for modifying lignin biosynthesis in forest species.
Collapse
Affiliation(s)
- R Franke
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
42
|
The Methyltransferase Gene Superfamily: A Tree with Multiple Branches. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0079-9920(00)80012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
|
43
|
Christensen JH, Baucher M, O’Connell A, Van Montagu M, Boerjan W. Control of Lignin Biosynthesis. MOLECULAR BIOLOGY OF WOODY PLANTS 2000. [DOI: 10.1007/978-94-017-2311-4_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Maury S, Geoffroy P, Legrand M. Tobacco O-methyltransferases involved in phenylpropanoid metabolism. The different caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyltransferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns. PLANT PHYSIOLOGY 1999; 121:215-24. [PMID: 10482677 PMCID: PMC59370 DOI: 10.1104/pp.121.1.215] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/1999] [Accepted: 05/27/1999] [Indexed: 05/18/2023]
Abstract
The biosynthesis of lignin monomers involves two methylation steps catalyzed by orthodiphenol-O-methyltransferases: caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferases (COMTs) and caffeoyl-coenzyme A (CoA)/5-hydroxyferuloyl-CoA 3/5-O-methyltransferases (CCoAOMTs). Two COMT classes (I and II) were already known to occur in tobacco (Nicotiana tabacum) and three distinct CCoAOMT classes have now been characterized. These three CCoAOMT classes displayed a maximum level of expression at different stages of stem development, in accordance with their involvement in the synthesis of lignin guaiacyl units. Expression profiles upon tobacco mosaic virus infection of tobacco leaves revealed a biphasic pattern of induction for COMT I, COMT II, and CCoAOMTs. The different isoforms were expressed in Escherichia coli and our results showed that CCoAOMTs and, more surprisingly, COMTs efficiently methylated hydroxycinnamoyl-CoA esters. COMT I was also active toward 5-hydroxyconiferyl alcohol, indicating that COMT I that catalyzes syringyl unit synthesis in planta may operate at the free acid, CoA ester, or alcohol levels. COMT II that is highly inducible by infection also accepted caffeoyl-CoA as a substrate, thus suggesting a role in ferulate derivative deposition in the walls of infected cells. Tobacco appears to possess an array of O-methyltransferase isoforms with variable efficiency toward the diverse plant o-diphenolic substrates.
Collapse
Affiliation(s)
- S Maury
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg cedex, France
| | | | | |
Collapse
|
45
|
Wang J, Pichersky E. Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Arch Biochem Biophys 1999; 368:172-80. [PMID: 10415125 DOI: 10.1006/abbi.1999.1304] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among the large number of plant O-methyltransferases that are involved in secondary metabolism, only a few have been enzymatically characterized, and little information is available on the structure of their substrate binding site and the mechanism which determines their substrate specificity and methylation regiospecificity. We have previously reported the isolation of two O-methyltransferases, S-adenosyl-l-methionine:(iso)eugenol O-methyltransferase (IEMT) and S-adenosyl-l-methionine:caffeic acid O-methyltransferase (COMT) from Clarkia breweri, an annual plant from California. While IEMT and COMT (which methylate eugenol/isoeugenol and caffeic acid/5-hydroxyferulic acid, respectively) share 83% identity at the amino acid level, they have distinct substrate specificity and methylation regiospecificity. We report here that seven amino acids play a critical role in discriminating between eugenol/isoeugenol and caffeic acid/5-hydroxyferulic acid. When these amino acids in IEMT were replaced by the corresponding residues of COMT, the hybrid protein showed activity only with caffeic acid/5-hydroxyferulic acid. Conversely, when these amino acids in COMT were replaced by corresponding IEMT residues, the hybrid protein had activity only with eugenol/isoeugenol. These results provide strong evidence that O-methyltransferase substrate preference could be determined by a few amino acid residues and that new OMTs with different substrate specificity could begin to evolve from an existing OMT by mutation of a few amino acids. Phylogenetic analysis confirms that C. breweri IEMT evolved recently from COMT.
Collapse
Affiliation(s)
- J Wang
- Biology Department, University of Michigan, Ann Arbor, Michigan, 48109-1048, USA
| | | |
Collapse
|
46
|
Frick S, Kutchan TM. Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkaloid and phenylpropanoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:329-39. [PMID: 10205892 DOI: 10.1046/j.1365-313x.1999.00379.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In cell suspension cultures of the meadow rue Thalictrum tuberosum, biosynthesis of the anti-microbial alkaloid berberine can be induced by addition of methyl jasmonate to the culture medium. The activities of the four methyltransferases involved in the formation of berberine from L-tyrosine are increased in response to elicitor addition. Partial clones generated by RT-PCR with methyltransferase-specific primers were used as hybridization probes to isolate four cDNAs encoding O-methyltransferases from a cDNA library prepared from poly(A)+ RNA isolated from methyl jasmonate-induced cell suspension cultures of T. tuberosum. RNA gel blot hybridization indicated that the transcripts for the methyltransferases accumulated in response to addition of methyl jasmonate to the cell culture medium. The cDNAs were functionally expressed in Spodoptera frugiperda Sf9 cells and were shown to have varying and broad substrate specificities. A difference of a single amino acid residue between two of the enzymes was sufficient to alter the substrate specificity. The four cDNAs were expressed either as four homodimers or as six heterodimers by co-infection with all possible combinations of the four recombinant baculoviruses. These 10 isoforms thus produced displayed distinct substrate specificities and in some cases co-infection with two different recombinant baculoviruses led to the O-methylation of new substrates. The substrates that were O-methylated varied in structural complexity from simple catechols to phenylpropanoids, tetrahydrobenzylisoquinoline, protoberberine and tetrahydrophenethylisoquinoline alkaloids, suggesting that some biosynthetic enzymes may be common to both phenylpropanoid and alkaloid anabolism.
Collapse
Affiliation(s)
- S Frick
- Laboratorium für Molekulare Biologie, Universität München, Germany
| | | |
Collapse
|
47
|
Junghanns KT, Kneusel RE, Gröger D, Matern U. Differential regulation and distribution of acridone synthase in Ruta graveolens. PHYTOCHEMISTRY 1998; 49:403-411. [PMID: 9747538 DOI: 10.1016/s0031-9422(98)00104-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cell suspension cultures of Ruta graveolens L. accumulate polyketide metabolites such as acridone alkaloids and flavonoid pigments. Whereas flavonoid synthesis is induced by light, the production of alkaloids can be enhanced in dark-cultured cells by treatment with fungal elicitors. Acridone synthase (ACS) catalyzes the committed condensing reaction of acridone biosynthesis yielding 1,3-dihydroxy-N-methylacridone from N-methylanthraniloyl- and malonyl-CoAs. The reaction proceeds in a manner analogous to that of chalcone synthase (CHS) which catalyzes the first committed step in flavonoid biosynthesis and cDNA and protein sequences of Ruta ACS possess a high degree of sequence homology to heterologous CHSs. ACS transcript abundance and specific activity were monitored in cultured R. graveolens cells irradiated either continuously with white light or treated with fungal elicitor over a period of 24 h and found to increase transiently upon elicitor treatment and to decrease upon light irradiation. Immunodetection with a rabbit polyclonal ACS antiserum revealed that the amounts of ACS polypeptide decreased slightly in light-irradiated cells but increased in elicitor-treated Ruta cells. Fluorescence microscopy and tissue print hybridizations were employed to aid in localizing the sites of storage and biosynthesis of acridone alkaloids in Ruta plants. Yellow fluorescing alkaloids were detected particularly in root tissue adjacent to the rhizodermis, but also in the endodermis and vascular tissue of the hypocotyl. ACS transcript abundance in situ followed the same spatial pattern, indicating that the synthesis of acridones likely proceeds at all sites of deposition rather than exclusively in the root. Expression in planta and the induction response of ACS suggest that the alkaloids serve as phytoanticipins or phytoalexins in the defense of Ruta particularly to soil-borne pathogens or as feeding deterrents.
Collapse
Affiliation(s)
- K T Junghanns
- Biologisches Institut II, Lehrstuhl für Biochemie der Pflanzen, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | | |
Collapse
|
48
|
Batz O, Logemann E, Reinold S, Hahlbrock K. Extensive reprogramming of primary and secondary metabolism by fungal elicitor or infection in parsley cells. Biol Chem 1998; 379:1127-35. [PMID: 9792446 DOI: 10.1515/bchm.1998.379.8-9.1127] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The transcription rates of numerous plant genes have previously been shown to be strongly affected by pathogen infection or elicitor treatment. Here we estimate the extent and complexity of this response by analyzing the patterns of mRNA induction in fungal elicitor-treated parsley cells (Petroselinum crispum) for several representatives from various primary and secondary metabolic pathways, cytosolic as well as plastidic. As a reference, we use the biphasic accumulation curve for the coordinately induced mRNAs encoding the three core enzymes of general phenylpropanoid metabolism, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase and 4-coumarate:CoA ligase. Coincidence with this curve was observed for the mRNA induction kinetics of several, but not all, phenylpropanoid branch pathway-related reactions, whereas seven selected mRNAs from the pentose phosphate, glycolytic and shikimate pathways, including various cytosolic and plastidic isoforms, were induced with great differences in timing. Likewise unique and dissimilar from the reference curve were the induction patterns for various mRNAs encoding enzymes or proteins that are either more distantly or not at all related to phenylpropanoid metabolism. None of over 40 mRNAs tested so far remained unaffected. Using one strongly elicitor-responsive mRNA from carbohydrate metabolism, encoding a cytosolic glucose 6-phosphate dehydrogenase, for in situ RNA/RNA hybridization in fungus-infected parsley leaf tissue, we observed again the previously reported, close simulation of metabolic changes in true plant/fungus interactions by elicitor treatment of cultured cells. In addition to demonstrating extensive, highly complex functional, temporal and spatial patterns of changes in gene expression in infected plant cells, these results provide valuable information for the identification of pathogen-responsive promoters suitable for gene technology-assisted resistance breeding.
Collapse
Affiliation(s)
- O Batz
- Max-Planck-Institut für Züchtungsforschung, Köln, Germany
| | | | | | | |
Collapse
|
49
|
Inoue K, Sewalt VJ, Murray GB, Ni W, Stürzer C, Dixon RA. Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in relation to lignification. PLANT PHYSIOLOGY 1998; 117:761-70. [PMID: 9662519 PMCID: PMC34931 DOI: 10.1104/pp.117.3.761] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/1997] [Accepted: 03/24/1998] [Indexed: 05/21/2023]
Abstract
The biosynthesis of monolignols can potentially occur via two parallel pathways involving free acids or their coenzyme A (CoA) esters. Caffeic acid 3-O-methyltransferase (COMT) and caffeoyl CoA 3-O-methyltransferase (CCOMT) catalyze functionally identical reactions in these two pathways, resulting in the formation of mono- or dimethoxylated lignin precursors. The activities of the two enzymes increase from the first to the sixth internode in stems of alfalfa (Medicago sativa L.), preceding the deposition of lignin. Alfalfa CCOMT is highly similar at the amino acid sequence level to the CCOMT from parsley, although it contains a six-amino acid insertion near the N terminus. Transcripts encoding both COMT and CCOMT are primarily localized to vascular tissue in alfalfa stems. Alfalfa CCOMT expressed in Escherichia coli catalyzes O-methylation of caffeoyl and 5-hydroxyferuloyl CoA, with preference for caffeoyl CoA. It has low activity against the free acids. COMT expressed in E. coli is active against both caffeic and 5-hydroxyferulic acids, with preference for the latter compound. Surprisingly, very little extractable O-methyltransferase activity versus 5-hydroxyferuloyl CoA is present in alfalfa stem internodes, in which relative O-methyltransferase activity against 5-hy-droxyferulic acid increases with increasing maturity, correlating with increased lignin methoxyl content.
Collapse
Affiliation(s)
- K Inoue
- Plant Biology Division, Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | | | | | | | | | | |
Collapse
|
50
|
Chapple C, Carpita N. Plant cell walls as targets for biotechnology. CURRENT OPINION IN PLANT BIOLOGY 1998; 1:179-185. [PMID: 10066576 DOI: 10.1016/s1369-5266(98)80022-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plants are the sources of major food, feed, and fiber products that are used globally. This past year has seen advances in our understanding of the enzymes that modify wall architecture, the cloning of the first cellulose synthase gene, and revisions to the lignin biosynthetic pathway. These discoveries have facilitated the development of new strategies to alter cell wall properties in transgenic plants.
Collapse
Affiliation(s)
- C Chapple
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|