1
|
Mishra S, Dunkerly-Eyring BL, Keceli G, Ranek MJ. Phosphorylation Modifications Regulating Cardiac Protein Quality Control Mechanisms. Front Physiol 2020; 11:593585. [PMID: 33281625 PMCID: PMC7689282 DOI: 10.3389/fphys.2020.593585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many forms of cardiac disease, including heart failure, present with inadequate protein quality control (PQC). Pathological conditions often involve impaired removal of terminally misfolded proteins. This results in the formation of large protein aggregates, which further reduce cellular viability and cardiac function. Cardiomyocytes have an intricately collaborative PQC system to minimize cellular proteotoxicity. Increased expression of chaperones or enhanced clearance of misfolded proteins either by the proteasome or lysosome has been demonstrated to attenuate disease pathogenesis, whereas reduced PQC exacerbates pathogenesis. Recent studies have revealed that phosphorylation of key proteins has a potent regulatory role, both promoting and hindering the PQC machinery. This review highlights the recent advances in phosphorylations regulating PQC, the impact in cardiac pathology, and the therapeutic opportunities presented by harnessing these modifications.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brittany L Dunkerly-Eyring
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Zhang Y, Zeng L. Crosstalk between Ubiquitination and Other Post-translational Protein Modifications in Plant Immunity. PLANT COMMUNICATIONS 2020; 1:100041. [PMID: 33367245 PMCID: PMC7748009 DOI: 10.1016/j.xplc.2020.100041] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 05/05/2023]
Abstract
Post-translational modifications (PTMs) are central to the modulation of protein activity, stability, subcellular localization, and interaction with partners. They greatly expand the diversity and functionality of the proteome and have taken the center stage as key players in regulating numerous cellular and physiological processes. Increasing evidence indicates that in addition to a single regulatory PTM, many proteins are modified by multiple different types of PTMs in an orchestrated manner to collectively modulate the biological outcome. Such PTM crosstalk creates a combinatorial explosion in the number of proteoforms in a cell and greatly improves the ability of plants to rapidly mount and fine-tune responses to different external and internal cues. While PTM crosstalk has been investigated in depth in humans, animals, and yeast, the study of interplay between different PTMs in plants is still at its infant stage. In the past decade, investigations showed that PTMs are widely involved and play critical roles in the regulation of interactions between plants and pathogens. In particular, ubiquitination has emerged as a key regulator of plant immunity. This review discusses recent studies of the crosstalk between ubiquitination and six other PTMs, i.e., phosphorylation, SUMOylation, poly(ADP-ribosyl)ation, acetylation, redox modification, and glycosylation, in the regulation of plant immunity. The two basic ways by which PTMs communicate as well as the underlying mechanisms and diverse outcomes of the PTM crosstalk in plant immunity are highlighted.
Collapse
|
3
|
Abstract
Cell cycle progression is tightly regulated by cyclin-dependent kinases (CDKs). The ankyrin-repeat protein p19INK4d functions as a key regulator of G1/S transition; however, its molecular mode of action is unknown. Here, we combine cell and structural biology methods to unravel the mechanism by which p19INK4d controls cell cycle progression. We delineate how the stepwise phosphorylation of p19INK4d Ser66 and Ser76 by cell cycle-independent (p38) and -dependent protein kinases (CDK1), respectively, leads to local unfolding of the three N-terminal ankyrin repeats of p19INK4d This dissociates the CDK6-p19INK4d inhibitory complex and, thereby, activates CDK6. CDK6 triggers entry into S-phase, whereas p19INK4d is ubiquitinated and degraded. Our findings reveal how signaling-dependent p19INK4d unfolding contributes to the irreversibility of G1/S transition.
Collapse
|
4
|
Jacko AM, Nan L, Li S, Tan J, Zhao J, Kass DJ, Zhao Y. De-ubiquitinating enzyme, USP11, promotes transforming growth factor β-1 signaling through stabilization of transforming growth factor β receptor II. Cell Death Dis 2016; 7:e2474. [PMID: 27853171 PMCID: PMC5260874 DOI: 10.1038/cddis.2016.371] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022]
Abstract
The transforming growth factor β-1 (TGFβ-1) signaling pathway plays a central role in the pathogenesis of pulmonary fibrosis. Two TGFβ-1 receptors, TβRI and TβRII, mediate this pathway. TβRI protein stability, as mediated by the ubiquitin/de-ubiquitination system, has been well studied; however, the molecular regulation of TβRII still remains unclear. Here we reveal that a de-ubiquitinating enzyme, USP11, promotes TGFβ-1 signaling through de-ubiquitination and stabilization of TβRII. We elucidate the role that mitoxantrone (MTX), an USP11 inhibitor, has in the attenuation of TGFβ-1 signaling. Inhibition or downregulation of USP11 results in increases in TβRII ubiquitination and reduction of TβRII stability. Subsequently, TGFβ-1 signaling is greatly attenuated, as shown by the decreases in phosphorylation of SMAD2/3 levels as well as that of fibronectin (FN) and smooth muscle actin (SMA). Overexpression of USP11 reduces TβRII ubiquitination and increases TβRII stabilization, thereby elevating phosphorylation of SMAD2/3 and the ultimate expression of FN and SMA. Further, elevated expression of USP11 and TβRII were detected in lung tissues from bleomycin-challenged mice and IPF patients. Therefore, USP11 may contribute to the pathogenesis of pulmonary fibrosis by stabilization of TβRII and promotion of TGFβ-1 signaling. This study provides mechanistic evidence for development of USP11 inhibitors as potential antifibrotic drugs for pulmonary fibrosis.
Collapse
Affiliation(s)
- A M Jacko
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - L Nan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Anesthesia, The First Affiliated Hospital of Jilin University, Changchun, China
| | - S Li
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - J Tan
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - D J Kass
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Zhao
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Shen Q, Hu T, Bao M, Cao L, Zhang H, Song F, Xie Q, Zhou X. Tobacco RING E3 Ligase NtRFP1 Mediates Ubiquitination and Proteasomal Degradation of a Geminivirus-Encoded βC1. MOLECULAR PLANT 2016; 9:911-25. [PMID: 27018391 DOI: 10.1016/j.molp.2016.03.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 05/19/2023]
Abstract
The βC1 protein encoded by the Tomato yellow leaf curl China virus-associated betasatellite functions as a pathogenicity determinant. To better understand the molecular basis whereby βC1 functions in pathogenicity, a yeast two-hybrid screen of a tobacco cDNA library was carried out using βC1 as the bait. The screen revealed that βC1 interacts with a tobacco RING-finger protein designated NtRFP1, which was further confirmed by the bimolecular fluorescence complementation and co-immunoprecipitation assays in Nicotiana benthamiana cells. Expression of NtRFP1 was induced by βC1, and in vitro ubiquitination assays showed that NtRFP1 is a functional E3 ubiquitin ligase that mediates βC1 ubiquitination. In addition, βC1 was shown to be ubiquitinated in vivo and degraded by the plant 26S proteasome. After viral infection, plants overexpressing NtRFP1 developed attenuated symptoms, whereas plants with silenced expression of NtRFP1 showed severe symptoms. Other lines of evidence showed that NtRFP1 attenuates βC1-induced symptoms through promoting its degradation by the 26S proteasome. Taken together, our results suggest that tobacco RING E3 ligase NtRFP1 attenuates disease symptoms by interacting with βC1 to mediate its ubiquitination and degradation via the ubiquitin/26S proteasome system.
Collapse
Affiliation(s)
- Qingtang Shen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tao Hu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Min Bao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linge Cao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huawei Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengmin Song
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
6
|
Lysine11-Linked Polyubiquitination of the AnkB F-Box Effector of Legionella pneumophila. Infect Immun 2015; 84:99-107. [PMID: 26483404 DOI: 10.1128/iai.01165-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/10/2015] [Indexed: 12/12/2022] Open
Abstract
The fate of the polyubiquitinated protein is determined by the lysine linkages involved in the polymerization of the ubiquitin monomers, which has seven lysine residues (K(6), K(11), K(27), K(29), K(33), K(48), and K(63)). The translocated AnkB effector of the intravacuolar pathogen Legionella pneumophila is a bona fide F-box protein, which is localized to the cytosolic side of the Legionella-containing vacuole (LCV) and is essential for intravacuolar proliferation within macrophages and amoebae. The F-box domain of AnkB interacts with the host SCF1 E3 ubiquitin ligase that triggers the decoration of the LCV with K(48)-linked polyubiquitinated proteins that are targeted for proteasomal degradation. Here we report that AnkB becomes rapidly polyubiquitinated within the host cell, and this modification is independent of the F-box domain of AnkB, indicating host-mediated polyubiquitination. We show that the AnkB effector interacts specifically with the host E3 ubiquitin ligase Trim21. Mass spectrometry analyses have shown that AnkB is modified by K(11)-linked polyubiquitination, which has no effect on its stability. This work shows the first example of K(11)-linked polyubiquitination of a bacterial effector and its interaction with the host Trim21 ubiquitin ligase.
Collapse
|
7
|
Abstract
Protein ubiquitination is an important post-translational modification that regulates almost every aspect of cellular function and many cell signaling pathways in eukaryotes. Alterations of protein ubiquitination have been linked to many diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, immunological disorders and inflammatory diseases. To understand the roles of protein ubiquitination in these diseases and in cell signaling pathways, it is necessary to identify ubiquitinated proteins and their modification sites. However, owing to the nature of protein ubiquitination, it is challenging to identify the exact modification sites under physiological conditions. Recently, ubiquitin-remnant profiling, an immunoprecipitation approach, which uses monoclonal antibodies specifically to enrich for peptides derived from the ubiquitinated portion of proteins and mass spectrometry for their identification, was developed to determine ubiquitination events from cell lysates. This approach has now been widely applied to profile protein ubiquitination in several cellular contexts. In this review, we discuss mass-spectrometry-based methods for the identification of protein ubiquitination sites, analyze their advantages and disadvantages, and discuss their application for proteomic analysis of ubiquitination.
Collapse
Affiliation(s)
- Guoqiang Xu
- a Laboratory of Chemical Biology, Department of Pharmacology , College of Pharmaceutical Sciences, Soochow University , Suzhou , China
| | | |
Collapse
|
8
|
Shen Q, Liu Z, Song F, Xie Q, Hanley-Bowdoin L, Zhou X. Tomato SlSnRK1 protein interacts with and phosphorylates βC1, a pathogenesis protein encoded by a geminivirus β-satellite. PLANT PHYSIOLOGY 2011; 157:1394-406. [PMID: 21885668 PMCID: PMC3252149 DOI: 10.1104/pp.111.184648] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/29/2011] [Indexed: 05/19/2023]
Abstract
The βC1 protein of tomato yellow leaf curl China β-satellite functions as a pathogenicity determinant. To better understand the molecular basis of βC1 in pathogenicity, a yeast two-hybrid screen of a tomato (Solanum lycopersicum) cDNA library was carried out using βC1 as bait. βC1 interacted with a tomato SUCROSE-NONFERMENTING1-related kinase designated as SlSnRK1. Their interaction was confirmed using a bimolecular fluorescence complementation assay in Nicotiana benthamiana cells. Plants overexpressing SnRK1 were delayed for symptom appearance and contained lower levels of viral and satellite DNA, while plants silenced for SnRK1 expression developed symptoms earlier and accumulated higher levels of viral DNA. In vitro kinase assays showed that βC1 is phosphorylated by SlSnRK1 mainly on serine at position 33 and threonine at position 78. Plants infected with βC1 mutants containing phosphorylation-mimic aspartate residues in place of serine-33 and/or threonine-78 displayed delayed and attenuated symptoms and accumulated lower levels of viral DNA, while plants infected with phosphorylation-negative alanine mutants contained higher levels of viral DNA. These results suggested that the SlSnRK1 protein attenuates geminivirus infection by interacting with and phosphorylating the βC1 protein.
Collapse
|
9
|
Abstract
The discovery of the ubiquitin system was awarded with the Nobel Prize in Chemistry in 2004. Labeling of intracellular proteins for degradation by a multienzymatic complex, called the proteasome, was identified as the main function of this system. Subsequently, it was discovered that the attachment of ubiquitin to proteins can modify their function without degradation. Finally, a number of other molecules were recognized to be conjugated to proteins in a manner similar to ubiquitin and were henceforth called ubiquitin-like proteins. This review provides an overview of this class of molecules and its implication for function, subcellular location, and half-life of proteins.
Collapse
Affiliation(s)
- Joerg Herrmann
- Division of Cardiovascular Diseases, Mayo Clinic Rochester, Rochester, MN 55905, USA
| | | | | |
Collapse
|
10
|
Paolini R, Serra A, Molfetta R, Piccoli M, Frati L, Santoni A. Tyrosine kinase-dependent ubiquitination of CD16 zeta subunit in human NK cells following receptor engagement. Eur J Immunol 1999; 29:3179-87. [PMID: 10540329 DOI: 10.1002/(sici)1521-4141(199910)29:10<3179::aid-immu3179>3.0.co;2-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We investigated whether aggregation of the low-affinity immunoglobulin G receptor (CD16) on human NK cells results in receptor ubiquitination. We found that the CD16 zeta subunit becomes ubiquitinated in response to receptor engagement. We then investigated whether protein tyrosine kinase (PTK) activation is required for CD16-mediated receptor ubiquitination. Pretreatment with the PTK inhibitor genistein substantially decreased ligand-induced zeta ubiquitination, suggesting a requirement for PTK activation in receptor ubiquitination. We further analyzed PTK involvement in controlling receptor ubiquitination by using the vaccinia virus expression system. Overexpression of wild-type active lck, but not a kinase-deficient mutant, enhanced both ligand-induced tyrosine phosphorylation and ubiquitination of the CD16 zeta subunit. Taken together, our data demonstrate that CD16 engagement induces zeta chain ubiquitination and strongly suggest a role for lck in regulating this modification.
Collapse
Affiliation(s)
- R Paolini
- Department of Experimental Medicine and Pathology, Institute Pasteur-Fondazione Cenci Bolognetti, University "La Sapienza", Rome, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Spinedi A, Oliverio S, Di Sano F, Piacentini M. Calpain involvement in calphostin C-induced apoptosis. Biochem Pharmacol 1998; 56:1489-92. [PMID: 9827582 DOI: 10.1016/s0006-2952(98)00169-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A major problem in assessing the role of calpains in apoptosis induction concerns the fact that calpain inhibitors can also impair the activity of the proteasome, also reported to be involved in apoptosis. Herein we showed that apoptosis induced by calphostin C in U937 human promonocytic leukemia cells was associated, at its onset, with enhanced protein (poly)ubiquitination. This observation prompted us to study whether protein degradation through the ubiquitin/proteasome pathway was involved in apoptosis induction. We found that N-acetyl-Leu-Leu-norleucinal (50 microM), a proteasome as well as a calpain inhibitor, was able to reduce calphostin C-induced apoptosis by approximately 60%, whereas lactacystin (10 microM), a specific proteasome inhibitor, was ineffective. These results suggest that calphostin C-induced apoptosis is partly calpain-mediated, but does not require protein degradation through the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- A Spinedi
- Department of Biology, University of Rome Tor Vergata, Italy.
| | | | | | | |
Collapse
|
12
|
Lee SY, Kim HJ, Yoo SY, Ahn TI. Characterization of a monoclonal antibody and a cDNA for polyubiquitin of Amoeba proteus. J Eukaryot Microbiol 1998; 45:431-8. [PMID: 9703679 DOI: 10.1111/j.1550-7408.1998.tb05095.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A monoclonal antibody was obtained that reacts with many different proteins (14-200 kDa) of Amoeba proteus. By indirect immunofluorescence microscopy we found the antigens to be dispersed throughout the cytoplasm but were more concentrated in the nucleus. The antibody cross-reacted with proteins of Tetrahymena, Xenopus embryo, and mouse macrophages. Using the antibody as a probe we cloned a cDNA of 1.2 kb coding for ubiquitin in five repeats. Amino acid sequences of ameba's polyubiquitin showed the most variations among the nineteen polyubiquitins of other organisms compared. The well-conserved 20Ser and 55Thr residues were replaced with Gly and Ser, respectively. The 28Ala residue found in most organisms was replaced with Gln or Glu in the amoeba. Amoebae contained two ubiquitin-mRNAs that could be detected by Northern blot analysis using the cDNA as a probe. In an analysis for specificity, the antibody reacted with polyubiquitin and ubiquitin-fusion proteins larger than 14 kDa but not with monomeric ubiquitin. The antibody is a useful probe in the detection and characterization of proteins ubiquitinated in response to cellular stresses.
Collapse
Affiliation(s)
- S Y Lee
- Department of Biology Education, Seoul National University, Korea
| | | | | | | |
Collapse
|
13
|
Taylor A, Shang F, Obin M. Relationships between stress, protein damage, nutrition, and age-related eye diseases. Mol Aspects Med 1997; 18:305-414. [PMID: 9578986 DOI: 10.1016/s0098-2997(95)00049-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
14
|
Shang F, Gong X, Taylor A. Activity of ubiquitin-dependent pathway in response to oxidative stress. Ubiquitin-activating enzyme is transiently up-regulated. J Biol Chem 1997; 272:23086-93. [PMID: 9287309 DOI: 10.1074/jbc.272.37.23086] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Relations between the ubiquitin pathway and cellular stress have been noted, but data regarding responses of the ubiquitin pathway to oxidative stress are scanty. This paper documents the response of this pathway to oxidative stress in lens cells. A brief exposure of lens epithelial cells to physiologically relevant levels of H2O2 induces a transient increase in activity of the ubiquitin-dependent pathway. Ubiquitin conjugation activity was maximal and increased 3. 5-9.2-fold over the activity noted in untreated cells by 4 h after removal of H2O2. By 24 h after removal of H2O2, ubiquitin conjugation activity returned to the level noted in untreated cells. In parallel to the changes in ubiquitin conjugation activity, the activity of ubiquitin-activating enzyme (E1), as determined by thiol ester formation, increased 2-6.7-fold during recovery from oxidation. Addition of exogenous E1 resulted in an increase in ubiquitin conjugation activity and in the levels of ubiquitin carrier protein (E2)-ubiquitin thiol esters in both the untreated cells and the H2O2-treated cells. These data suggest that E1 is the rate-limiting enzyme in the ubiquitin conjugation process and that the increases in ubiquitin conjugation activity which are induced upon recovery from oxidation are primarily due to increased E1 activity. The oxidation- and recovery-induced up-regulation of E1 activity is primarily due to post-synthetic events. Substrate availability and up-regulation of E2 activities also appear to be related to the enhancement in ubiquitinylation upon recovery from oxidative stress. The oxidation-induced increases in ubiquitin conjugation activity were associated with an increase in intracellular proteolysis, suggesting that the transient increase in ubiquitinylation noted upon recovery from oxidative stress may play a role in removal of damaged proteins from the cells.
Collapse
Affiliation(s)
- F Shang
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
15
|
Affiliation(s)
- A M Weissman
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1152, USA.
| |
Collapse
|
16
|
Stephen AG, Trausch-Azar JS, Ciechanover A, Schwartz AL. The ubiquitin-activating enzyme E1 is phosphorylated and localized to the nucleus in a cell cycle-dependent manner. J Biol Chem 1996; 271:15608-14. [PMID: 8663123 DOI: 10.1074/jbc.271.26.15608] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ubiquitin-activating enzyme E1 exists as two isoforms, E1a (117 kDa) and E1b (110 kDa). E1a is phosphorylated, whereas E1b is not. In the present study we have demonstrated the cell cycle dependence of E1a phosphorylation: a 2-fold increase in the specific phosphorylation of E1a in G2 compared with the basal level of phosphorylation in the other stages of the cell cycle. Two-dimensional gel electrophoresis resolved E1 into the two isoforms E1a and E1b; E1a resolved further as three phosphorylated forms and one nonphosphorylated form, while E1b resolved as one nonphosphorylated form. E1a is found predominantly in the phosphorylated forms. However, the distribution of E1a among these different phosphorylated forms was not cell cycle-dependent. We next evaluated the enzymatic activity of E1 as well as its subcellular localization throughout the cell cycle. 32P-Pyrophosphate exchange activity of E1 did not vary along the cell cycle; however, the amount of ubiquitin-protein conjugates decreased by 50% in G2. Nuclear and cytosolic fractionation of cells revealed the nuclear to cytosolic ratio of phosphorylated E1a was 3-fold greater in G2 compared with the other stages of the cell cycle. Finally, purified nuclear extracts supported E1-dependent ubiquitin conjugation of exogenous substrates as did purified cytosol. However, in nuclear extracts but not in cytosol the amount of E1 activity was rate-limiting. Thus we establish nuclear E1-dependent protein ubiquitination and propose that an increase in phosphorylation of E1a in G2 functions to increase the import and/or retention of E1a in the nucleus and may modulate nuclear protein ubiquitination.
Collapse
Affiliation(s)
- A G Stephen
- Edward Mallincrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
17
|
Cenciarelli C, Wilhelm KG, Guo A, Weissman AM. T cell antigen receptor ubiquitination is a consequence of receptor-mediated tyrosine kinase activation. J Biol Chem 1996; 271:8709-13. [PMID: 8621503 DOI: 10.1074/jbc.271.15.8709] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Engagement of the T cell antigen receptor results in both its phosphorylation and its ubiquitination. T cell antigen receptor ubiquitination was evaluated in Jurkat, a well characterized human T leukemia cell line. Treatment of cells with the tyrosine kinase inhibitor herbimycin A resulted in an inhibition of receptor ubiquitination. Consistent with this, pervanadate, which increases cellular tyrosine phosphorylation, enhanced receptor ubiquitination. A requirement for receptor-mediated tyrosine kinase activity for ubiquitination was confirmed in cells lacking the tyrosine kinase p56lck and also in cells that are defective in expression of CD45, a tyrosine phosphatase that regulates the activity of p56lck. The need for tyrosine kinase activation for ubiquitination was not bypassed by directly activating protein kinase C and stimulating endocytosis of receptors. These observations establish ubiquitination of the T cell antigen receptor as a tyrosine kinase-dependent manifestation of transmembrane signaling and suggest a role for tyrosine phosphorylation in the ligand-dependent ubiquitination of mammalian transmembrane receptors.
Collapse
Affiliation(s)
- C Cenciarelli
- Laboratory of Immune Cell Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892-1152, USA
| | | | | | | |
Collapse
|
18
|
Gjertsen BT, Døskeland SO. Protein phosphorylation in apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1269:187-99. [PMID: 7488652 DOI: 10.1016/0167-4889(95)00117-b] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- B T Gjertsen
- University of Bergen, Department of Anatomy and Cell Biology, Norway
| | | |
Collapse
|
19
|
Abstract
Contrary to widespread belief, the regulation and mechanism of degradation for the mass of intracellular proteins (i.e. differential, selective protein turnover) in vertebrate tissues is still a major biological enigma. There is no evidence for the conclusion that ubiquitin plays any role in these processes. The primary function of the ubiquitin-dependent protein degradation pathway appears to lie in the removal of abnormal, misfolded, denatured or foreign proteins in some eukaryotic cells. ATP/ubiquitin-dependent proteolysis probably also plays a role in the degradation of some so-called 'short-lived' proteins. Evidence obtained from the covalent modification of such natural substrates as calmodulin, histones (H2A, H2B) and some cell membrane receptors with ubiquitin indicates that the reversible interconversion of proteins with ubiquitin followed by concomitant functional changes may be of prime importance.
Collapse
Affiliation(s)
- H P Jennissen
- Institut für Physiologische Chemie, Universität-GHS-Essen, Germany
| |
Collapse
|
20
|
Nagai Y, Kaneda S, Nomura K, Yasuda H, Seno T, Yamao F. Ubiquitin-activating enzyme, E1, is phosphorylated in mammalian cells by the protein kinase Cdc2. J Cell Sci 1995; 108 ( Pt 6):2145-52. [PMID: 7673335 DOI: 10.1242/jcs.108.6.2145] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ubiquitin-activating enzyme (E1) is the first enzyme in the pathway leading to formation of ubiquitin-protein conjugates. E1 was found to be phosphorylated in cells of a mouse mammary carcinoma cell line, FM3A. Peptide mapping of trypsin digests of labeled E1 indicated that two oligopeptides were mainly phosphorylated in vivo. The same oligopeptides were also labeled in vitro on Cdc2 kinase-mediated phosphorylation of E1, affinity-purified from the same cell line. The Cdc2 kinase is a key enzyme playing a pivotal role in G2/M transition in the cell cycle. The phosphorylation of one of the two oligopeptides was prominent at the G2/M phase of the cell cycle, and dependent upon the Cdc2 kinase activity in vivo since it was significantly reduced in tsFT210, a mutant cell line deficient in Cdc2 kinase. Mutation analysis indicated that the serine residue at the fourth position of the E1 enzyme was a phosphorylation site of Cdc2 kinase. These findings suggest that E1 is a target of Cdc2 kinase in the cell, implying that the ubiquitin system may be dynamically involved in cell cycle control through phosphorylation of this key enzyme.
Collapse
Affiliation(s)
- Y Nagai
- National Institute of Genetics, Shizuoka-ken, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Corsi D, Galluzzi L, Crinelli R, Magnani M. Ubiquitin is conjugated to the cytoskeletal protein alpha-spectrin in mature erythrocytes. J Biol Chem 1995; 270:8928-35. [PMID: 7721801 DOI: 10.1074/jbc.270.15.8928] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Ubiquitination of red blood cell (RBC) proteins was investigated by encapsulation of 125I-ubiquitin into human erythrocytes using a procedure of hypotonic dialysis, isotonic resealing, and reannealing. Incubation (37 degrees C, up to 2 h) of 125I-ubiquitin-loaded cells resulted in the recovery of 125I-ubiquitin with the cytosolic proteins (9.22 +/- 0.4 micrograms/ml RBC) and conjugated to membrane proteins (2.18 +/- 0.05 micrograms/ml RBC). This conjugation was time-dependent, and the predominant membrane protein band that became labeled showed an apparent molecular mass of 240 kDa on SDS-polyacrylamide gel electrophoresis (PAGE). Western blotting experiments with three different anti-ubiquitin antibodies revealed that this protein is also ubiquitinated in vivo. Cell-free experiments have shown that fraction II (a DEAE-bound protein fraction eluted by 0.5 M KCl) prepared from both mature erythrocytes and reticulocytes is able to conjugate ubiquitin to this protein. Ubiquitin conjugation was ATP-dependent (Km 0.09 mM), time-dependent, and fraction II-dependent (8 +/- 0.5 pmol of 125I-ubiquitin/h/mg of fraction II). Isolation of the major RBC membrane protein that is ubiquitinated was obtained by using biotinylated ubiquitin. Membrane proteins, once ubiquitinated with this derivative, were extracted and purified by affinity chromatography on immobilized avidin. The major components retained by the column were two peptides of molecular masses 220 and 240 kDa. Both proteins are recognized by a monoclonal anti-spectrin antibody, but only the 240-kDa component is detected by streptavidin peroxidase conjugate. That indeed the ubiquitinated membrane protein of 240-kDa is alpha-spectrin was confirmed by immunoaffinity chromatography using 125I-ubiquitin and a monoclonal anti-spectrin antibody. Antigen-antibody complexes were purified by protein A chromatography and analyzed by SDS-PAGE and autoradiography. Again two bands of 240 and 220 kDa were eluted (alpha- and beta-spectrin), but only one band corresponding to the electrophoretic mobility of alpha-spectrin was detected by autoradiography. Thus, alpha-spectrin is a substrate for the ATP-dependent ubiquitination system, suggesting that the cytoskeleton is covalently modified by ubiquitination both in reticulocytes and mature RBC.
Collapse
Affiliation(s)
- D Corsi
- Institute of Biological Chemistry G. Fornaini, University of Urbino, Italy
| | | | | | | |
Collapse
|
22
|
Human ubiquitin-activating enzyme, E1. Indication of potential nuclear and cytoplasmic subpopulations using epitope-tagged cDNA constructs. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30113-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Yee N, Hsiau C, Serve H, Vosseller K, Besmer P. Mechanism of down-regulation of c-kit receptor. Roles of receptor tyrosine kinase, phosphatidylinositol 3'-kinase, and protein kinase C. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31793-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Lawrence C. The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays 1994; 16:253-8. [PMID: 8031302 DOI: 10.1002/bies.950160408] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The RAD6 pathway of budding yeast, Saccharomyces cerevisiae, is responsible for a substantial fraction of this organism's resistance to DNA damage, and also for induced mutagenesis. The pathway appears to incorporate two different recovery processes, both regulated by RAD6. The error-prone recovery process accounts for only a small amount of RAD6-dependent resistance, but probably all induced mutagenesis. The underlying mechanism for error-prone recovery is very likely to be translesion synthesis. The error-free recovery process accounts for most of RAD6-dependent resistance, but its mechanism is less clear; it may entail error-free bypass by template switching and/or DNA gap filling by recombination. RAD6 regulates these activities by ubiquitinating target proteins, but the identities of these target proteins, and the roles they play in error-free and error-prone recovery, have not yet been established.
Collapse
Affiliation(s)
- C Lawrence
- Department of Biophysics, University of Rochester School of Medicine and Dentistry, NY 14642-8408
| |
Collapse
|
25
|
Takada K, Kanda T, Ohkawa K, Matsuda M. Ubiquitin and ubiquitin-protein conjugates in PC12h cells: changes during neuronal differentiation. Neurochem Res 1994; 19:391-8. [PMID: 8065495 DOI: 10.1007/bf00967315] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ubiquitin and ubiquitin-protein conjugates in PC12h cells were detected with in vitro [125I]ubiquitination, and quantified by immunoblotting. These levels were altered by nerve growth factor (NGF), which promotes neuronal differentiation. (i) Levels of high molecular weight (HMW) ubiquitin-protein conjugates ranging from 40 to 1,000 kDa were increased by 2 days of NGF treatment, and remained high up to 10 days of NGF treatment. (ii) Ubiquitin and a 23-kDa conjugate tended to be decreased from days 2 to 10 of NGF treatment. 10-Day culture with 10 nM staurosporine, n protein kinase inhibitor, that blocks NGF-induced neurite outgrowth suppressed the NGF-induced increases in levels of HMW conjugates. Cyclic AMP and forskolin, both of which promote neurite outgrowth, mimicked the NGF-induced changes in ubiquitin and HMW conjugates, but phorbol ester and epidermal growth factor had little effect. These findings suggest that changes in ubiquitin-protein conjugates are closely coupled with neuronal differentiation.
Collapse
Affiliation(s)
- K Takada
- Department of Research Laboratory, SRL, Inc., Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
|
27
|
Pfeifer K, Frank W, Schröder HC, Gamulin V, Rinkevich B, Batel R, Müller IM, Müller WE. Cloning of the polyubiquitin cDNA from the marine sponge Geodia cydonium and its preferential expression during reaggregation of cells. J Cell Sci 1993; 106 ( Pt 2):545-53. [PMID: 8282761 DOI: 10.1242/jcs.106.2.545] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ubiquitination of proteins is a critical step in the controlled degradation process of many polypeptides. Here we show that sponges, the simplest multicellular group of eukaryotic organisms, are also equipped with the ubiquitin pathway. The polyubiquitin cDNA was isolated and characterized from the marine sponge Geodia cydonium. The open reading frame contains six ubiquitin moieties, which are lined up head to tail without spacers. A comparison of the predicted amino acid sequence of the six sponge ubiquitin-coding units with those from other organisms revealed a high degree of homology (> 93%). The ubiquitin gene is expressed to almost the same extent in the two main compartments of the sponge, the cortex and the medulla. However, only in the cortex are detectable amounts of the ubiquitin protein synthesized. The ubiquitin protein isolated from the sponge organism was found to initiate protein degradation in the heterologous reticulocyte system in the same manner as bovine ubiquitin. In vitro studies with dissociated sponge cells revealed that the homologous aggregation factor causes (i) a strong increase in the steady-state level of mRNA coding for ubiquitin and (ii) a drastic increase in ubiquitin protein synthesis, while the homologous lectin failed to display that effect in isolated cells. These data suggest that ubiquitin may play a role in sponge morphogenesis.
Collapse
Affiliation(s)
- K Pfeifer
- Institut für Physiologische Chemie, Universität, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Purification and characterization of a multiprotein component of the Drosophila 26 S (1500 kDa) proteolytic complex. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52977-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Abstract
Immunochemical staining to detect ubiquitin has become an essential technique in evaluating neurodegenerative processes. Age related staining is seen in myelin, in nerve processes in lysosome-related dense bodies, and in corpora amylacea. There is a constant association between filamentous inclusions and the presence of ubiquitin. Intermediate filaments associated with ubiquitin, alpha B crystallin and enzymes of the ubiquitin pathway are the basis of Lewy bodies and Rosenthal fibres, as well as related bodies outside the nervous system. Neurofibrillary tangles in diverse diseases are associated with ubiquitin as are several other tau containing inclusions in both neurones and glia. Inclusions in motor neurones and non-motor cortex characterizing amyotrophic lateral sclerosis (ALS) and certain related forms of frontal lobe dementia can only be readily detected by anti-ubiquitin. Anti-ubiquitin also identifies both filamentous and lysosomal structures in neuronal processes as well as in some swollen neurones. Involvement of ubiquitin-containing elements of the lysosomal system appears important in pathogenesis of prion encephalopathies. Despite great advances in understanding cell biology of the ubiquitin pathway there are as yet few insights into the precise role played by ubiquitin in neuronal disease.
Collapse
Affiliation(s)
- J Lowe
- Department of Pathology, University of Nottingham Medical School, Queen's Medical Centre, U.K
| | | | | |
Collapse
|