1
|
Janardhan A, Kathera C, Darsi A, Ali W, He L, Yang Y, Luo L, Guo Z. Prominent role of histone lysine demethylases in cancer epigenetics and therapy. Oncotarget 2018; 9:34429-34448. [PMID: 30344952 PMCID: PMC6188137 DOI: 10.18632/oncotarget.24319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 12/04/2017] [Indexed: 12/14/2022] Open
Abstract
Protein methylation has an important role in the regulation of chromatin, gene expression and regulation. The protein methyl transferases are genetically altered in various human cancers. The enzymes that remove histone methylation have led to increased awareness of protein interactions as potential drug targets. Specifically, Lysine Specific Demethylases (LSD) removes methylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been reported that LSD1 and its downstream targets are involved in tumor-cell growth and metastasis. Functional studies of LSD1 indicate that it regulates activation and inhibition of gene transcription in the nucleus. Here we made a discussion about the summary of histone lysine demethylase and their functions in various human cancers.
Collapse
Affiliation(s)
- Avilala Janardhan
- The No. 7 People's Hospital of Changzhou, Changzhou, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chandrasekhar Kathera
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Amrutha Darsi
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wajid Ali
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yanhua Yang
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Libo Luo
- The No. 7 People's Hospital of Changzhou, Changzhou, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Veluthakal R, Amin R, Kowluru A. Interleukin-1β induces posttranslational carboxymethylation and alterations in subnuclear distribution of lamin B in insulin-secreting RINm5F cells. Am J Physiol Cell Physiol 2004; 287:C1152-62. [PMID: 15201138 DOI: 10.1152/ajpcell.00083.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We examined the effects of interleukin-1β (IL-1β) treatment on the distribution and degradation of lamin B in the nuclear fraction from insulin-secreting RINm5F cells. Western blot analysis indicated that IL-1β treatment caused significant alterations in the redistribution of lamin B, specifically between the Triton X-100-soluble (membrane) and -insoluble (matrix) fractions of the nucleus. IL-1β treatment also increased the lamin carboxymethyltransferase activity and the relative abundance of the carboxymethylated lamin in the nuclear fraction. A significant increase in the relative abundance of lamin B degradation products was also observed in the nuclear fraction from the IL-1β-treated cells. These findings are compatible with a measurable increase in the lamin-degrading caspase-6 activity in IL-1β-treated cells. Confocal microscopic observation of IL-1β-treated cells suggested a significant dissociation of lamin B from the nuclear lamina and its subsequent association with the DNA-rich elements within the nucleus. NG-monomethyl-l-arginine, a known inhibitor of inducible nitric oxide synthetase (iNOS), markedly inhibited IL-1β-induced iNOS gene expression, NO release, caspase-3 and caspase-6 activation, lamin B degradation, and loss of metabolic cell viability, indicating that the observed IL-1β-induced effects on nuclear lamin B involve the intermediacy of NO. Together, our data support the hypothesis that IL-1β treatment results in significant increase in the carboxymethylation of lamin B, which would place lamin B in a strategic location for its degradation mediated by caspases. This could possibly lead to dissolution of the nuclear envelope, culminating in the demise of the effete β-cell.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| | | | | |
Collapse
|
3
|
Kosted PJ, Gerhardt SA, Anderson CM, Stierle A, Sherwood JE. Structural requirements for activity of the pheromones of Ustilago hordei. Fungal Genet Biol 2000; 29:107-17. [PMID: 10919379 DOI: 10.1006/fgbi.2000.1191] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ustilago hordei, the cause of barley-covered smut, initiates mating with pheromones. Gene sequence analysis suggested that these pheromones, Uhmfa1 and Uhmfa2, would be farnesylated peptides. Although isolation of mating-type-specific activity was rarely possible, chromatographic separations of culture supernatants yielded fractions that stimulated or inhibited mating. Based on predicted amino acid sequences and mass spectra of stimulating fractions, a series of pheromone analogs were synthesized and their activities were determined. Underivatized Uhmfa1 (PGKSGSGLGYSTC) or Uhmfa2 (EGKGEPAPYC) peptides were inactive, while peptides that were farnesylated and/or methyl esterified specifically induced conjugation tubes by cells of the opposite mating type. Uhmfa1 truncated from the amino terminus beyond the lysine lost activity, while truncated Uhmfa2 remained partially active. In mating bioassays, a pheromone concentration-dependent default mating response was observed. In competition studies, shorter Uhmfa1 peptides lacking pheromone activity inhibited activity of full-length peptides most effectively when both had the same functional groups.
Collapse
Affiliation(s)
- P J Kosted
- Department of Plant Sciences, Montana State University, Bozeman 59717-3150, USA
| | | | | | | | | |
Collapse
|
4
|
Wang H, Yoshizumi M, Lai K, Tsai JC, Perrella MA, Haber E, Lee ME. Inhibition of growth and p21ras methylation in vascular endothelial cells by homocysteine but not cysteine. J Biol Chem 1997; 272:25380-5. [PMID: 9312159 DOI: 10.1074/jbc.272.40.25380] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although hyperhomocysteinemia has been recognized recently as a prevalent risk factor for myocardial infarction and stroke, the mechanisms by which it accelerates arteriosclerosis have not been elucidated, mostly because the biological effects of homocysteine can only be demonstrated at very high concentrations and can be mimicked by cysteine, which indicates a lack of specificity. We found that 10-50 microM of homocysteine (a range that overlaps levels observed clinically) but not cysteine inhibited DNA synthesis in vascular endothelial cells (VEC) and arrested their growth at the G1 phase of the cell cycle. Homocysteine in this same range had no effect on the growth of vascular smooth muscle cells (VSMC) or fibroblasts. Homocysteine decreased carboxyl methylation of p21(ras) (a G1 regulator whose activity is regulated by prenylation and methylation in addition to GTP-GDP exchange) by 50% in VEC but not VSMC, a difference that may be explained by the ability of homocysteine to dramatically increase levels of S-adenosylhomocysteine, a potent inhibitor of methyltransferase, in VEC but not VSMC. Moreover, homocysteine-induced hypomethylation in VEC was associated with a 66% reduction in membrane-associated p21(ras) and a 67% reduction in extracellular signal-regulated kinase 1/2, which is a member of the mitogen-activated protein (MAP) kinase family. Because the MAP kinases have been implicated in cell growth, the p21(ras)-MAP kinase pathway may represent one of the mechanisms that mediates homocysteine's effect on VEC growth. VEC damage is a hallmark of arteriosclerosis. Homocysteine-induced inhibition of VEC growth may play an important role in this disease process.
Collapse
Affiliation(s)
- H Wang
- Cardiovascular Biology Laboratory, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Boivin D, Lin W, Béliveau R. Essential arginine residues in isoprenylcysteine protein carboxyl methyltransferase. Biochem Cell Biol 1997. [DOI: 10.1139/o97-005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Abstract
We have described several quantitative and qualitative assays that have been utilized to learn the basic properties of RACE and amphibian and mammalian counterparts. Owing to powerful genetic tractability, high specific activity, and an apparently well-conserved substrate specificity, yeast is an attractive organism in which to study RACE. Efforts are currently in progress to characterize the functional role of the endoproteolytic processing step of many essential proteins.
Collapse
Affiliation(s)
- M N Ashby
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
7
|
Affiliation(s)
- C Volker
- Department of Molecular Biology and Chemistry, Lewis Thomas Laboratory, Princeton University, New Jersey 08544, USA
| | | |
Collapse
|
8
|
Boivin D, Potier M, Béliveau R. Functional size of C-terminal protein carboxyl methyltransferase from kidney basolateral plasma membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1207:114-9. [PMID: 8043600 DOI: 10.1016/0167-4838(94)90059-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The functional sizes of the C-terminal isoprenylcysteine protein carboxyl methyltransferase (PCMT) from kidney cortex basolateral plasma membranes and yeast membranes have been estimated by the radiation inactivation and fragmentation method. Attempts to solubilize the methyltransferase with detergents were unsuccessful as they resulted in the irreversible denaturation of its enzymatic activity. The radiation inactivation sizes of the methyltransferases were 98 and 24 kDa for kidney and yeast, respectively. Kinetic experiments showed that irradiation affects the Vmax of the reaction but not the apparent Km for either S-adenosyl-L-methionine and N-acetyl farnesylcysteine. The functional size reported here for the kidney membrane is about 4-times larger than the size predicted for the Saccharomyces cerevisiae C-terminal PCMT deduced from the nucleotide sequence of its gene (28 kDa). These results suggest that mammalian methyltransferase has a functional size different from that of the yeast; tetramerization of monomers is one possible hypothesis for this difference.
Collapse
Affiliation(s)
- D Boivin
- Laboratoire de Membranologie, Université du Québec à Montréal, Canada
| | | | | |
Collapse
|
9
|
Chapter 17. Ras Oncogene Directed Approaches in Cancer Chemotherapy. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1994. [DOI: 10.1016/s0065-7743(08)60730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
10
|
Sinensky M, Fantle K, Trujillo M, McLain T, Kupfer A, Dalton M. The processing pathway of prelamin A. J Cell Sci 1994; 107 ( Pt 1):61-7. [PMID: 8175923 DOI: 10.1242/jcs.107.1.61] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conversion of mammalian prelamin A to mature lamin A proceeds through the removal of 18 amino acids from the carboxyl terminus. The initial step in this processing is the isoprenylation of a CAAX box cysteine. This proteolytic event is distinctive for prelamin A among the known prenylated mammalian proteins. Since the carboxyl terminus of prelamin A is removed during maturation, it is not obvious that this protein would undergo the two reactions subsequent to prenylation observed in other CAAX box proteins--the endoproteolytic removal of the carboxyl-terminal 3 amino acids and the subsequent methylation of the now carboxyl-terminal cysteine. To characterize the maturation of prelamin A further, we have developed a CHO-K1 cell line that possesses a dexamethasone-inducible human prelamin A against a genetic background of high mevalonate uptake. Utilizing this cell line in association with antibodies specific to the transgenic prelamin A, we have been able to demonstrate directly in vivo that prelamin A undergoes farnesylation and carboxymethylation prior to conversion to lamin A, as is the case for other prenylated proteins. We have demonstrated previously that in the absence of isoprenylation, conversion of prelamin A to lamin A is blocked, but that unprocessed prelamin A is transported to the nucleus where it can still undergo maturation. Consistent with the implications of these prior studies, we now demonstrate the presence of both subunits of farnesyl-protein transferase in the nucleus.
Collapse
Affiliation(s)
- M Sinensky
- Eleanor Roosevelt Institute, Denver, CO 80206
| | | | | | | | | | | |
Collapse
|
11
|
Pillinger M, Volker C, Stock J, Weissmann G, Philips M. Characterization of a plasma membrane-associated prenylcysteine-directed alpha carboxyl methyltransferase in human neutrophils. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42282-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Abstract
Proteins can be enzymatically modified in several ways by the addition of methyl groups from S-adenosylmethionine. Reactions forming methyl esters on carboxyl groups are potentially reversible and can modulate the activity of the target protein; in the past year, advances have been made in understanding the physiological roles of four distinct systems that modify normal and abnormal carboxyl groups on proteins. On the other hand, methylation reactions occurring on nitrogen atoms in N-terminal and side-chain positions are generally irreversible. These reactions create new types of amino acid residues and can expand the repertoire of chemistry that a protein can perform.
Collapse
Affiliation(s)
- S Clarke
- University of California, Los Angeles
| |
Collapse
|