1
|
Huang X, Leroux JC, Castagner B. Well-Defined Multivalent Ligands for Hepatocytes Targeting via Asialoglycoprotein Receptor. Bioconjug Chem 2016; 28:283-295. [DOI: 10.1021/acs.bioconjchem.6b00651] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiangang Huang
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Bastien Castagner
- Department
of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
2
|
Mi Y, Lin A, Fiete D, Steirer L, Baenziger JU. Modulation of mannose and asialoglycoprotein receptor expression determines glycoprotein hormone half-life at critical points in the reproductive cycle. J Biol Chem 2014; 289:12157-12167. [PMID: 24619407 DOI: 10.1074/jbc.m113.544973] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate at which glycoproteins are cleared from the circulation has a critical impact on their biologic activity in vivo. We have shown that clearance rates for glycoproteins such as luteinizing hormone (LH) that undergo regulated release into the circulation determine their potency. Two highly abundant, carbohydrate-specific, endocytic receptors, the asialoglycoprotein receptor (ASGR) and the mannose receptor (ManR) are expressed in the liver by parenchymal and sinusoidal endothelial cells, respectively. We demonstrate that the ManR mediates the clearance of glycoproteins such as LH that bear N-linked glycans terminating with β1,4-linked GalNAc-4-SO4, as well as glycoproteins bearing glycans that terminate with Man. Steady state levels of mRNA encoding the ASGR and the ManR are regulated by progesterone in pregnant mice, reaching maximal levels on day 12.5 of pregnancy. Protein expression and glycan-specific binding activity also increase in the livers of pregnant mice. In contrast, ManR mRNA, but not ASGR mRNA, decreases in male mice at the time of sexual maturation. We show that levels of ManR and ASGR expression control the clearance rate for glycoproteins bearing recognized glycans. Thus, reduced expression of the ManR at the time of sexual maturation will increase the potency of LH in vivo, whereas increased expression during pregnancy will reduce LH potency until progesterone and receptor levels fall prior to parturition.
Collapse
Affiliation(s)
- Yiling Mi
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Angela Lin
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Dorothy Fiete
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Lindsay Steirer
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Jacques U Baenziger
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110.
| |
Collapse
|
3
|
Abstract
The Ashwell-Morell receptor (AMR) of hepatocytes, originally termed the hepatic asialoglycoprotein receptor, was the first cellular receptor to be identified and isolated and the first lectin to be detected in mammals. It is one of the multiple lectins of the C-type lectin family involved in recognition, binding, and clearance of asialoglycoproteins. We recently identified endogenous ligands of the AMR as desialylated prothrombotic components, including platelets and von Willebrand Factor [Ellies L. G., Ditto D., Levy G. G., Wahrenbrock M., Ginsburg D., Varki A., Le D. T., and Marth J. D. (2002). Sialyltransferase ST3Gal-IV operates as a dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc. Natl. Acad. Sci. USA 99: pp. 10042-10047; Grewal, P. K. Uchiyama, S., Ditto, D., Varki, N., Le, D. T., Nizet, V., Marth, J. D. (2008). The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat. Medicine 14, pp. 648-655]. Among these components, clearance by the liver's AMR is enhanced by exposure of terminal galactose on the glycan chains. A physiological role for engaging the AMR in rapid clearance was identified as mitigating disseminating intravascular coagulopathy in sepsis to promote survival. This chapter overviews the endogenous ligands of the AMR as components of the coagulatory system, describes clearance mechanisms of the liver, and details hematology and coagulation assays used in mouse coagulation studies.
Collapse
|
4
|
Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat Med 2008; 14:648-55. [PMID: 18488037 PMCID: PMC2853759 DOI: 10.1038/nm1760] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/26/2008] [Indexed: 12/12/2022]
Abstract
The Ashwell receptor, the major lectin of hepatocytes, rapidly clears from blood circulation glycoproteins bearing glycan ligands that include galactose and N-acetylgalactosamine. This asialoglycoprotein receptor activity remains a key factor in the development and administration of glycoprotein pharmaceuticals, yet a biological purpose of the Ashwell receptor has remained elusive. We have identified endogenous ligands of the Ashwell receptor as glycoproteins and regulatory components in blood coagulation and thrombosis that include von Willebrand factor (vWF) and platelets. The Ashwell receptor normally modulates vWF homeostasis and is responsible for thrombocytopenia during systemic Streptococcus pneumoniae infection by eliminating platelets desialylated by the bacterium's neuraminidase. Hemostatic adaptation by the Ashwell receptor moderates the onset and severity of disseminated intravascular coagulation during sepsis and improves the probability of host survival.
Collapse
Affiliation(s)
- Prabhjit K Grewal
- The Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Stockert RJ, Potvin B, Nath S, Wolkoff AW, Stanley P. New liver cell mutants defective in the endocytic pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:1741-9. [PMID: 17512493 PMCID: PMC1939891 DOI: 10.1016/j.bbamem.2007.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 03/06/2007] [Accepted: 04/02/2007] [Indexed: 11/17/2022]
Abstract
To isolate mutant liver cells defective in the endocytic pathway, a selection strategy using toxic ligands for two distinct membrane receptors was utilized. Rare survivors termed trafficking mutants (Trf2-Trf7) were stable and more resistant than the parental HuH-7 cells to both toxin conjugates. They differed from the previously isolated Trf1 HuH-7 mutant as they expressed casein kinase 2 alpha'' (CK2alpha'') which is missing from Trf1 cells and which corrects the Trf1 trafficking phenotype. Binding of (125)I-asialoorosomucoid (ASOR) and cell surface expression of asialoglycoprotein receptor (ASGPR) were reduced approximately 20%-60% in Trf2-Trf7 cells compared to parental HuH-7, without a reduction in total cellular ASGPR. Based on (125)I-transferrin binding, cell surface transferrin receptor activity was reduced between 13% and 88% in the various mutant cell lines. Distinctive phenotypic traits were identified in the differential resistance of Trf2-Trf7 to a panel of lectins and toxins and to UV light-induced cell death. By following the endocytic uptake and trafficking of Alexa(488)-ASOR, significant differences in endosomal fusion between parental HuH-7 and the Trf mutants became apparent. Unlike parental HuH-7 cells in which the fusion of endosomes into larger vesicles was evident as early as 20 min, ASOR endocytosed into the Trf mutants remained within small vesicles for up to 60 min. Identifying the biochemical and genetic mechanisms underlying these phenotypes should uncover novel and unpredicted protein-protein or protein-lipid interactions that orchestrate specific steps in membrane protein trafficking.
Collapse
Affiliation(s)
- Richard J Stockert
- The Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | |
Collapse
|
6
|
Huang T, Wolkoff AW, Stockert RJ. Adaptor heat shock protein complex formation regulates trafficking of the asialoglycoprotein receptor. Am J Physiol Gastrointest Liver Physiol 2006; 290:G369-76. [PMID: 16210473 DOI: 10.1152/ajpgi.00204.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the asialoglycoprotein receptor (ASGPR) endocytic pathway, internalized receptors pass through early, recycling, and sorting endosomal compartments before returning to the cell surface. Sorting motifs in the cytoplasmic domain (CD) and protein interactions with these sequences presumably direct receptor trafficking. Previous studies have shown that association of a potential sorting heat shock protein (HSP) heterocomplex with the ASGPR-CD was regulated by casein kinase 2 (CK2)-mediated phosphorylation. Mass spectrometry and immunoblot analyses identified five of these ASGPR-CD-associated proteins as the molecular chaperones glycoprotein 96, HSP70, HSP90, cyclophilin A, and FK 506 binding protein. The present study was undertaken to determine whether any of the adaptor protein complexes (AP1, AP2, or AP3) were selectivity associated with the ASGPR-CD. In conjunction with molecular chaperones, AP2 and AP1 were recovered from a CK2 phosphorylated agarose-GSH-GST-ASGPR-CD matrix. Binding of AP3 was independent of the phosphorylation status of the CD matrix. Inhibition of CK2-mediated phosphorylation with tetrabromobenzotriazole prevented AP recovery within an immunoadsorbed ASGPR complex. Rapamycin, which dissociates the HSP heterocomplex from ASGPR-CD, thereby altering receptor trafficking also, inhibited AP association. Similar results were obtained with an inhibitor of HSP90 heterocomplex formation, geldanmycin. The data presented provide evidence that recruitment of AP1 and AP2, which is necessary for appropriate receptor trafficking, is mediated by the interaction of AP with the ASGPR-CD-bound HSP complex.
Collapse
Affiliation(s)
- Tianmin Huang
- Albert Einstein College of Medicine, 1300 Morris Park Ave., Liver Research Center, Ullmann 611, Bronx, NY 10416, USA
| | | | | |
Collapse
|
7
|
Huang T, Deng H, Wolkoff AW, Stockert RJ. Phosphorylation-dependent interaction of the asialoglycoprotein receptor with molecular chaperones. J Biol Chem 2002; 277:37798-803. [PMID: 12167617 DOI: 10.1074/jbc.m204786200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A membrane protein trafficking mutant (Trf1) of HuH-7 alters the asialoglycoprotein (ASGPR) and transferrin receptor subcellular distribution. Expression cloning of a cDNA complementing the trf1 mutation led to the discovery of a novel casein Kinase 2 catalytic subunit (CK2alpha"). To purify potential CK2alpha" phosphorylation-dependent sorting proteins from cytosol, the ASGPR cytoplasmic domain was expressed as a GST fusion protein and immobilized on glutathione-agarose. In the absence of phosphorylation, only trace amounts of cytosol protein were bound and eluted. When the fusion protein was phosphorylated, a heterocomplex of potential sorting proteins was recovered. Mass spectrometer and immunoblot analysis identified five of these proteins as gp96, HSP70, HSP90, cyclophilin-A, and FKBP18. Treatment of HuH-7 with rapamycin to disrupt the heterocomplex reduced surface ASGPR binding activity by 65 +/- 5.7%. In Trf1 cells, surface-binding activity was 48 +/- 7% of that in HuH-7 and was not further reduced by rapamycin treatment. Immunoanalysis showed significantly fewer surface receptors on rapamycin-treated HuH7 cells than on nontreated cells, with no affect on the level of surface receptors in Trf1 cells. The data presented provide evidence that phosphorylation of the ASGPR cytoplasmic domain is required for the binding of specific molecular chaperones with the potential to regulate receptor trafficking.
Collapse
Affiliation(s)
- Tianmin Huang
- Marion Bessin Liver Research Center and the Departments of Medicine and Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
8
|
Yik JHN, Saxena A, Weigel PH. The minor subunit splice variants, H2b and H2c, of the human asialoglycoprotein receptor are present with the major subunit H1 in different hetero-oligomeric receptor complexes. J Biol Chem 2002; 277:23076-83. [PMID: 11943787 DOI: 10.1074/jbc.m202748200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hepatic asialoglycoprotein receptor (ASGP-R) is an endocytic receptor that mediates the internalization of desialylated glycoproteins and their delivery to lysosomes. The human ASGP-R is a hetero-oligomeric complex composed of H1 and H2 subunits. There are three naturally occurring H2 splice variants, designated H2a, H2b, and H2c, although the expression of the H2c protein had not been reported. Following deglycosylation of purified ASGP-R, we detected the H2b and H2c proteins in HepG2 and HuH-7 hepatoma cells, using an antibody directed against a COOH-terminal peptide common to all H2 isoforms (anti-H2-COOH) and another antibody against a 19-amino acid cytoplasmic insert found only in H2b (anti-H2-Cyto19). H1 and both H2b and H2c were co-purified by affinity chromatography, using asialo-orosomucoid (ASOR)-, anti-H1-, or anti-H2-COOH-Sepharose, whereas only H1 and H2b were immunoprecipitated with anti-H2-Cyto19. These results indicate that H2b and H2c are not present in the same ASGP-R complexes with H1. Similar to the H2b isoform, H2c was also palmitoylated, indicating that the 19-residue cytoplasmic insert does not regulate palmitoylation. Stably transfected SK-Hep-1 cell lines expressing ASGP-R complexes containing H1 and either H2b or H2c had similar binding affinities for ASOR and endocytosed and degraded ASOR at similar rates. The pH dissociation profiles of ASOR.ASGP-R complexes were also identical for complexes containing either H2b or H2c. We conclude that the H2b and H2c isoforms are both functional but are not present with H1 in the same hetero-oligomeric ASGP-R complexes. This structural difference between two functional subpopulations of ASGP-Rs may provide a molecular basis for the existence of two different pathways, designated State 1 and State 2, by which several types of recycling receptors mediate endocytosis.
Collapse
Affiliation(s)
- Jasper H N Yik
- Department of Biochemistry & Molecular Biology, and The Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | |
Collapse
|
9
|
Higashi N, Fujioka K, Denda-Nagai K, Hashimoto SI, Nagai S, Sato T, Fujita Y, Morikawa A, Tsuiji M, Miyata-Takeuchi M, Sano Y, Suzuki N, Yamamoto K, Matsushima K, Irimura T. The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J Biol Chem 2002; 277:20686-93. [PMID: 11919201 DOI: 10.1074/jbc.m202104200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lectins on antigen presenting cells are potentially involved in the antigen uptake and the cellular recognition and trafficking. Serial analysis of gene expression in monocyte-derived dendritic cells (DCs), monocytes, and macrophages revealed that 7 of the 19 C-type lectin mRNA were present in immature DCs. Two of these, the macrophage mannose receptor and the macrophage lectin specific for galactose/N-acetylgalactosamine (MGL), were found only in immature DCs, as confirmed by reverse transcriptase-PCR and flow cytometric analysis. By subcloning and sequencing the amplified mRNA, we obtained nucleotide sequences encoding seven different human MGL (hMGL) subtypes, which were apparently derived from alternatively spliced mRNA. In addition, the hMGL gene locus on human chromosome 17p13 contains one gene. A single nucleotide polymorphism was identified at a position in exon 3 that corresponds to the cytoplasmic region proximal to the transmembrane domain. Of all the splicing variants, the hMGL variant 6C was expressed at the highest levels on immature DCs from all donors tested. Immature DCs could incorporate alpha-GalNAc-modified soluble acrylamide polymers, and this was significantly inhibited by pretreatment of the cells with an anti-hMGL monoclonal antibody that blocks the lectin-carbohydrate interaction. We propose that hMGL is a marker of imDCs and that it functions as an endocytic receptor for glycosylated antigens.
Collapse
Affiliation(s)
- Nobuaki Higashi
- Graduate School of Pharmaceutical Sciences and the Department of Molecular Preventive Medicine, School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shi X, Potvin B, Huang T, Hilgard P, Spray DC, Suadicani SO, Wolkoff AW, Stanley P, Stockert RJ. A novel casein kinase 2 alpha-subunit regulates membrane protein traffic in the human hepatoma cell line HuH-7. J Biol Chem 2001; 276:2075-82. [PMID: 11038365 DOI: 10.1074/jbc.m008583200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previously isolated endocytic trafficking mutant (TRF1) isolated from HuH-7 cells is defective in the distribution of subpopulations of cell-surface receptors for asialoorosomucoid (asialoglycoprotein receptor (ASGR)), transferrin, and mannose-terminating glycoproteins. The pleiotropic phenotype of TRF1 also includes an increased sensitivity to Pseudomonas toxin and deficient assembly and function of gap junctions. HuH-7xTRF1 hybrids exhibited a normal subcellular distribution of ASGR, consistent with the TRF1 mutation being recessive. A cDNA expression library derived from HuH-7 mRNA was transfected into TRF1 cells, which were subsequently selected for resistance to Pseudomonas toxin. Sequence analysis of a recovered cDNA revealed a unique isoform of casein kinase 2 (CK2), CK2alpha". Western blot analysis of TRF1 proteins revealed a 60% reduction in total CK2alpha expression. Consistent with this finding, the hybrids HuH-7xHuH-7 and HuH-7xTRF1 expressed equivalent amounts of total CK2alpha. Immunoblots using antibodies against peptides unique to the previously described CK2 isoforms CK2alpha and CK2alpha' and the novel CK2alpha" isoform showed that, although TRF1 and parental HuH-7 cells expressed comparable amounts of CK2alpha and CK2alpha', the mutant did not express CK2alpha". Based on the genomic DNA sequence, RNA transcripts encoding CK2alpha" apparently originate from alternative splicing of a primary transcript. Protein overexpression following transfection of TRF1 cells with cDNAs encoding either CK2alpha or the newly cloned CK2alpha" restored the parental HuH-7 phenotype, including Pseudomonas toxin resistance, cell-surface ASGR binding activity, phosphorylation, and the assembly of gap junctions. This study suggests that HuH-7 cells express at least three CK2alpha isoforms and that the pleiotropic TRF1 phenotype is a consequence of a reduction in total CK2 expression.
Collapse
Affiliation(s)
- X Shi
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tolchinsky S, Yuk MH, Ayalon M, Lodish HF, Lederkremer GZ. Membrane-bound versus secreted forms of human asialoglycoprotein receptor subunits. Role of a juxtamembrane pentapeptide. J Biol Chem 1996; 271:14496-503. [PMID: 8662943 DOI: 10.1074/jbc.271.24.14496] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The H2a alternatively spliced variant of the human asialoglycoprotein receptor H2 subunit differs from the H2b variant by an extra pentapeptide, EGHRG, present in the ectodomain next to the membrane-span. This difference causes retention and degradation in the endoplasmic reticulum (ER) of H2a when expressed without the H1 subunit in 3T3 cells. In contrast, a significant portion of singly expressed H2b is Golgi-processed and reaches the cell surface. Using a new specific anti-H2a antibody, we found that in HepG2 cells, H2a is rapidly cleaved to a 35-kDa fragment, comprising the entire ectodomain, most of which is secreted into the medium. The cleavage site for the secreted fragment was located at the lumenal end of the membrane span. No membrane-bound H2a exits the ER, indicating that the pentapeptide is a signal for ER retention and degradation of the membrane form but does not hinder secretion of the cleaved soluble form. H2a does not form a membrane receptor complex with H1 as H2b does. H2a is therefore not a subunit of the receptor but a precursor for a secreted form of the protein; signal peptidase is probably responsible for the cleavage to the soluble fragment. Therefore, the juxtamembrane sequence regulates the function of the transmembrane domain of a type II membrane protein as either a signal-anchor sequence (H2b) or as a cleaved signal sequence, which generates a secreted product (H2a).
Collapse
Affiliation(s)
- S Tolchinsky
- Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
12
|
Treichel U, Paietta E, Poralla T, Meyer zum Büschenfelde KH, Stockert RJ. Effects of cytokines on synthesis and function of the hepatic asialoglycoprotein receptor. J Cell Physiol 1994; 158:527-34. [PMID: 8126076 DOI: 10.1002/jcp.1041580319] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this study we have investigated whether cytokines, critical mediators of the immune response, might have a direct effect on the expression and/or function of the human hepatic asialoglycoprotein receptor (ASGPR). Binding and uptake of asialoglycoproteins by the human hepatoma cell line, HepG2, and by freshly isolated rat hepatocytes were inhibited by 50% after 3-6 hours and completely abolished following a 24 hour exposure to tumor necrosis factor (TNF) alpha, interferon (INF) alpha or gamma, or interleukin-2 (IL-2). The loss of ASGPR binding activity mediated by IL-2 was reversible up to 4 hours of exposure and accompanied by the selective phosphorylation of the cell-surface receptor. Steady-state levels of total cellular ASGPR protein remained unchanged over the first 6 hours of IL-2 incubation but declined in a dose dependent manner thereafter. This down regulation of ASGPR expression was due to reduced synthesis as a result of reduced receptor transcript levels. No loss was detected, however, of cell surface-associated receptor protein even after 24 hours of IL-2 incubation, suggesting that cytokine induced phosphorylation constitutes a mechanism to regulate receptor activity.
Collapse
Affiliation(s)
- U Treichel
- Department of Medicine and Biochemistry, Albert Einstein College of Medicine, Marion Bessin Liver Research Center, Bronx, New York 10461
| | | | | | | | | |
Collapse
|
13
|
Fuhrer C, Geffen I, Huggel K, Spiess M. The two subunits of the asialoglycoprotein receptor contain different sorting information. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41859-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
14
|
|
15
|
Barker P, Lomen-Hoerth C, Gensch E, Meakin S, Glass D, Shooter E. Tissue-specific alternative splicing generates two isoforms of the trkA receptor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82449-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Drickamer K. Evolution of Ca2+-dependent Animal Lectins. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993. [DOI: 10.1016/s0079-6603(08)60870-3] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
17
|
Lombardo C, Willardson B, Low P. Localization of the protein 4.1-binding site on the cytoplasmic domain of erythrocyte membrane band 3. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50124-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|