1
|
Yoshihara E, Nabil A, Iijima M, Ebara M. A Comparative Study of "Grafting to" and "Grafting from" Conjugation Methods for the Preparation of Antibody-Temperature-Responsive Polymer Conjugates. ACS OMEGA 2024; 9:22043-22050. [PMID: 38799371 PMCID: PMC11112704 DOI: 10.1021/acsomega.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 05/29/2024]
Abstract
Early diagnosis of infectious diseases is still challenging particularly in a nonlaboratory environment or limited resources areas. Thus, sensitive, inexpensive, and easily handled diagnostic approaches are required. The lateral flow immunoassay (LFIA) is commonly used in the screening of infectious diseases despite its poor sensitivity, especially with low pathogenic loads (early stages of infection). This article introduces a novel polymeric material that might help in the enrichment and concentration of pathogens to overcome the LFIA misdiagnosis. To achieve this, we evaluated the efficiency of introducing poly(N-isopropylacrylamide) (PNIPAAm) into immunoglobulin G (IgG) as a model antibody using two different conjugation methods: grafting to (GT) and grafting from (GF). The IgG-PNIPAAm conjugates were characterized using SDS-PAGE, DLS, and temperature-responsive phase transition behavior. SDS-PAGE analysis revealed that the GF method was more efficient in introducing the polymer than the GT method, with calculated polymer introduction ratios of 61% and 34%, respectively. The GF method proved to be less susceptible to steric hindrance and more efficient in introducing high-molecular-weight polymers into proteins. These results are consistent with previous studies comparing the GT and GF methods in similar systems. This study represents an important step toward understanding how the choice of polymer incorporation method affects the properties of IgG-PNIPAAm conjugates. The synthesized polymer allowed binding and enrichment of mouse IgG that was used as a model antigen with a clear LFIA band. On the basis of our findings, this system might help in improving the sensitivity of simple diagnostics.
Collapse
Affiliation(s)
- Erika Yoshihara
- Research
Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Ahmed Nabil
- Research
Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Biotechnology
and Life Sciences Department, Faculty of Postgraduate Studies for
Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
- Egyptian
Liver Research Institute and Hospital (ELRIAH), El Mansoura 35511, Egypt
| | - Michihiro Iijima
- Department
of Materials Chemistry and Bioengineering, National Institute of Technology, Oyama College (NIT, Oyama College), 771 Nakakuki, Oyama 323-0806, Japan
| | - Mitsuhiro Ebara
- Research
Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
- Graduate
School of Industrial Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-0825, Japan
| |
Collapse
|
2
|
Sigdel TK, Sur S, Boada P, McDermott SM, Arlehamn CSL, Murray KO, Bockenstedt LK, Kerwin M, Reed EF, Harris E, Stuart K, Peters B, Sesma A, Montgomery RR, Sarwal MM. Proteome Analysis for Inflammation Related to Acute and Convalescent Infection. Inflammation 2024; 47:346-362. [PMID: 37831367 PMCID: PMC10799112 DOI: 10.1007/s10753-023-01913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 09/24/2023] [Indexed: 10/14/2023]
Abstract
Infectious diseases are a significant burden in global healthcare. Pathogens engage with different host defense mechanisms. However, it is currently unknown if there are disease-specific immune signatures and/or if different pathogens elicit common immune-associated molecular entities to common therapeutic interventions. We studied patients enrolled through the Human Immunology Project Consortium (HIPC), which focuses on immune responses to various infections. Blood samples were collected and analyzed from patients during infection and follow-up time points at the convalescent stage. The study included samples from patients with Lyme disease (LD), tuberculosis (TB), malaria (MLA), dengue virus (DENV), and West Nile virus (WNV), as well as kidney transplant patients with cytomegalovirus (CMV) and polyomavirus (BKV) infections. Using an antibody-based assay, we quantified ~ 350 cell surface markers, cytokines, and chemokines involved in inflammation and immunity. Unique protein signatures were identified specific to the acute phase of infection irrespective of the pathogen type, with significant changes during convalescence. In addition, tumor necrosis factor receptor superfamily member 6 (TNR6), C-C Motif Chemokine Receptor 7 (CCR7), and C-C motif chemokine ligand-1 (CCL1) were increased in the acute and convalescent phases across all viral, bacterial, and protozoan compared to blood from healthy donors. Furthermore, despite the differences between pathogens, proteins were enriched in common biological pathways such as cell surface receptor signaling pathway and response to external stimulus. In conclusion, we demonstrated that irrespective of the pathogen type, there are common immunoregulatory and proinflammatory signals.
Collapse
Affiliation(s)
- Tara K Sigdel
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA
| | - Swastika Sur
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA
| | - Patrick Boada
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA
| | | | - Cecilia S Lindestam Arlehamn
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Maggie Kerwin
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eva Harris
- University of California Berkeley, Berkeley, CA, USA
| | - Ken Stuart
- Seattle Children Research Institute, Seattle, WA, USA
| | - Bjoern Peters
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ana Sesma
- Mount Sinai School of Medicine, New York, NY, USA
| | | | - Minnie M Sarwal
- Division of Multi-Organ Transplantation, Department of Surgery, University of California San Francisco, 513 Parnassus Ave, Med Sciences Bldg, Room S1268, San Francisco, CA, 94143, USA.
| |
Collapse
|
3
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
4
|
He Q, Ding H. Bioinformatics analysis of rheumatoid arthritis tissues identifies genes and potential drugs that are expressed specifically. Sci Rep 2023; 13:4508. [PMID: 36934132 PMCID: PMC10024744 DOI: 10.1038/s41598-023-31438-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/11/2023] [Indexed: 03/20/2023] Open
Abstract
Studies have implicated necroptosis mechanisms in orthopaedic-related diseases, since necroptosis is a unique regulatory cell death pattern. However, the role of Necroptosis-related genes in rheumatoid arthritis (RA) has not been well described. We downloaded RA-related data information and Necroptosis-related genes from the Gene Expression Omnibus (GEO), Kyoto Gene and Genome Encyclopedia (KEGG) database, and Genome Enrichment Analysis (GSEA), respectively. We identified 113 genes associated with RA-related necroptosis, which was closely associated with the cytokine-mediated signaling pathway, necroptosis and programmed necrosis. Subsequently, FAS, MAPK8 and TNFSF10 were identified as key genes among 48 Necroptosis-associated differential genes by three machine learning algorithms (LASSO, RF and SVM-RFE), and the key genes had good diagnostic power in distinguishing RA patients from healthy controls. According to functional enrichment analysis, these genes may regulate multiple pathways, such as B-cell receptor signaling, T-cell receptor signaling pathways, chemokine signaling pathways and cytokine-cytokine receptor interactions, and play corresponding roles in RA. Furthermore, we predicted 48 targeted drugs against key genes and 31 chemical structural formulae based on targeted drug prediction. Moreover, key genes were associated with complex regulatory relationships in the ceRNA network. According to CIBERSORT analysis, FAS, MAPK8 and TNFSF10 may be associated with changes in the immune microenvironment of RA patients. Our study developed a diagnostic validity and provided insight to the mechanisms of RA. Further studies will be required to test its diagnostic value for RA before it can be implemented in clinical practice.
Collapse
Affiliation(s)
- Qingshan He
- Nanyang Medical College, Henan, 473000, China
| | | |
Collapse
|
5
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
6
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, Welbon C, James CD, Morgan IM, Spanos WC, Pyeon D. HPV upregulates MARCHF8 ubiquitin ligase and inhibits apoptosis by degrading the death receptors in head and neck cancer. PLoS Pathog 2023; 19:e1011171. [PMID: 36867660 PMCID: PMC10016708 DOI: 10.1371/journal.ppat.1011171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/15/2023] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
The membrane-associated RING-CH-type finger ubiquitin ligase MARCHF8 is a human homolog of the viral ubiquitin ligases Kaposi's sarcoma herpesvirus K3 and K5 that promote host immune evasion. Previous studies have shown that MARCHF8 ubiquitinates several immune receptors, such as the major histocompatibility complex II and CD86. While human papillomavirus (HPV) does not encode any ubiquitin ligase, the viral oncoproteins E6 and E7 are known to regulate host ubiquitin ligases. Here, we report that MARCHF8 expression is upregulated in HPV-positive head and neck cancer (HNC) patients but not in HPV-negative HNC patients compared to normal individuals. The MARCHF8 promoter is highly activated by HPV oncoprotein E6-induced MYC/MAX transcriptional activation. The knockdown of MARCHF8 expression in human HPV-positive HNC cells restores cell surface expression of the tumor necrosis factor receptor superfamily (TNFRSF) death receptors, FAS, TRAIL-R1, and TRAIL-R2, and enhances apoptosis. MARCHF8 protein directly interacts with and ubiquitinates the TNFRSF death receptors. Further, MARCHF8 knockout in mouse oral cancer cells expressing HPV16 E6 and E7 augments cancer cell apoptosis and suppresses tumor growth in vivo. Our findings suggest that HPV inhibits host cell apoptosis by upregulating MARCHF8 and degrading TNFRSF death receptors in HPV-positive HNC cells.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Craig Welbon
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
7
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
Affiliation(s)
- Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Nicolas Guedeney
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Animesh Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Patrick Legembre
- CRIBL UMR CNRS 7276 INSERM 1262, Université de Limoges, Rue Marcland, Limoges, France
| |
Collapse
|
8
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
9
|
Wang P, Chang Z, Meng J, Cui X, Chai J, Dang T. CCN1 suppresses cell proliferation of esophageal squamous cell carcinoma through amyloid precursor protein without DR6 participation. Cell Signal 2022; 96:110374. [PMID: 35654297 DOI: 10.1016/j.cellsig.2022.110374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/21/2023]
Abstract
Esophageal cancer is commonly seen as either squamous cell carcinoma (ESCC) or adenocarcinoma (EAC), two very different cancers. CCN1 is a matricellular protein that induces apoptosis in EAC cells through upregulation of DR5, a death receptor, while its role in ESCC is unclear. DR6 is another death receptor, which has been reported to induce apoptosis, necroptosis, or pyroptosis in various cell systems with or without the engagement of its putative ligand amyloid precursor protein (APP). In this study, we found that CCN1 and DR6 were both highly expressed in ESCC but downregulated in EAC. Overexpression of CCN1 in ESCC cells inhibited cell proliferation through upregulation of APP and its association with p53 without DR6 involvement. Overexpression of APP stopped cell growth, but overexpression of DR6 did not affect cell growth or cell death whatsoever.
Collapse
Affiliation(s)
- Pei Wang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Zhiheng Chang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Jing Meng
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Xia Cui
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China.
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, The Second Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, 30 Hudemulin Rd, Baotou 014030, China.
| |
Collapse
|
10
|
Risso V, Lafont E, Le Gallo M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis 2022; 13:248. [PMID: 35301281 PMCID: PMC8931059 DOI: 10.1038/s41419-022-04688-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Cell death plays a pivotal role in the maintenance of tissue homeostasis. Key players in the controlled induction of cell death are the Death Receptors (DR). CD95 is a prototypic DR activated by its cognate ligand CD95L triggering programmed cell death. As a consequence, alterations in the CD95/CD95L pathway have been involved in several disease conditions ranging from autoimmune diseases to inflammation and cancer. CD95L-induced cell death has multiple roles in the immune response since it constitutes one of the mechanisms by which cytotoxic lymphocytes kill their targets, but it is also involved in the process of turning off the immune response. Furthermore, beyond the canonical pro-death signals, CD95L, which can be membrane-bound or soluble, also induces non-apoptotic signaling that contributes to its tumor-promoting and pro-inflammatory roles. The intent of this review is to describe the role of CD95/CD95L in the pathophysiology of cancers, autoimmune diseases and chronic inflammation and to discuss recently patented and emerging therapeutic strategies that exploit/block the CD95/CD95L system in these diseases.
Collapse
Affiliation(s)
- Vesna Risso
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Elodie Lafont
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Matthieu Le Gallo
- INSERM U1242, Oncogenesis Stress Signaling, University of Rennes, Rennes, France.
- Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
11
|
Agnihotri SK, Kumar B, Jain A, Anjali A, Negi MPS, Sachan R, Bhatt MLB, Tripathi RK, Sachdev M. Clinical Significance of Circulating Serum Levels of sCD95 and TNF-α in Cytoprotection of Cervical Cancer. Rep Biochem Mol Biol 2022; 10:711-721. [PMID: 35291617 PMCID: PMC8903371 DOI: 10.52547/rbmb.10.4.711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/01/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND This study correlates the serum levels of sCD95 & TNF-α with a simple cell-based assay to evaluate the capacity of the serum sample to induce apoptosis in Jurkat cells. Interlinking of these parameters can be explored to design a minimum invasive diagnostic strategy for cervical cancer (CC). METHODS Sera samples were assessed to induce apoptosis in Jurkat cells through FACS. Serum levels of sCD95 and TNF-α were measured by ELISA. JNK phosphorylation was evaluated in sera incubated Jurkat cells. Data was scrutinized through statistical analysis. RESULTS Significantly higher serum levels of sCD95 and lower TNF-α levels were observed in CC patients; their sera samples inhibited induction of apoptosis in Jurkat cells through reduced JNK phosphorylation. Statistical analysis linked these three parameters for the early screening of CC. CONCLUSION Distinct sera levels of sCD95 & TNF-α in CC patients showed an anti-apoptotic effect, which can be considered for early detection of CC.
Collapse
Affiliation(s)
- Saurabh Kumar Agnihotri
- Department of Radiotherapy, King George’s Medical University, Lucknow 226 003, India.
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- The first and the second authors contributed equally to this work.
| | - Balawant Kumar
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- The first and the second authors contributed equally to this work.
| | - Ankita Jain
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
| | - Anjali Anjali
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow 226 003, India.
| | - Mahendra Pal Singh Negi
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
| | - Rekha Sachan
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow 226 003, India.
| | | | - Raj Kamal Tripathi
- Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- Department of Obstetrics & Gynaecology, King George’s Medical University, Lucknow 226 003, India.
| | - Monika Sachdev
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
12
|
Yenmis G, Soydas T, Ekmekci CG, Yazici Guvercin AC, Kucuk OS, Sultuybek GK. Fas and microRNAs Variations as a Possible Risk for Behçet Disease. J Clin Rheumatol 2021; 27:306-310. [PMID: 32000230 DOI: 10.1097/rhu.0000000000001254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Behçet disease (BD) belongs to a disease family that has a transparent borderline between autoinflammatory and autoimmune disorders. Fas and some miRNAs have revealed to display remarkable roles in both autoimmune and autoinflammatory processes, and they can play important roles in defective apoptosis in BD. We investigated the association of the susceptibility of BD with Fas, miRNA variations, and their both single and combined presence in a Turkish population as a case-control study. METHODS The distributions of FAS-670 A>G rs1800682, mir146a rs2910164, and mir196a rs11614913 polymorphisms are analyzed with the polymerase chain reaction-restriction fragment length polymorphism method in 115 BD patients and 220 controls in 6-month period. RESULTS Statistical analysis indicates that in the case of Fas-670 A/G rs1800682, AA genotype and A allele have a protective role in BD (p = 0.0004 and p = 0.0009, respectively). The dominant model (AA + AG/GG) also displays a protective effect on BD unlike the recessive model (p = 0.03). In addition, both homozygous genotype (CC) of rs2910164 of mir-146a (p = 0.04) and the dominant model (CC + CG vs. GG) have protective effects on BD unlike the recessive model (p < 0.0001). Both mir-196a2 rs1800682 polymorphism and combined genotype analysis of rs1800682-rs2910164 and rs1800682-rs11614913 gave no statistically significant differences within the groups for genotypes and either of the alleles (p > 0.05). CONCLUSIONS These findings indicate that both Fas rs1800682 and mir-146a rs2910164 variants might be important factors participating in the protection against BD in the Turkish population.
Collapse
Affiliation(s)
- Guven Yenmis
- From the Department of Medical Biology and Genetics, Faculty of Medicine, Biruni University
| | - Tugba Soydas
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydin University
| | | | | | - Ozlem Su Kucuk
- Dermato-Venereology of Bezmialem Vakif University Hospital, Bezmialem Vakif University, Istanbul, Turkey
| | | |
Collapse
|
13
|
Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. Int J Mol Sci 2021; 22:ijms222212466. [PMID: 34830349 PMCID: PMC8618802 DOI: 10.3390/ijms222212466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Research in biomedical sciences has changed dramatically over the past fifty years. There is no doubt that the discovery of apoptosis and autophagy as two highly synchronized and regulated mechanisms in cellular homeostasis are among the most important discoveries in these decades. Along with the advancement in molecular biology, identifying the genetic players in apoptosis and autophagy has shed light on our understanding of their function in physiological and pathological conditions. In this review, we first describe the history of key discoveries in apoptosis with a molecular insight and continue with apoptosis pathways and their regulation. We touch upon the role of apoptosis in human health and its malfunction in several diseases. We discuss the path to the morphological and molecular discovery of autophagy. Moreover, we dive deep into the precise regulation of autophagy and recent findings from basic research to clinical applications of autophagy modulation in human health and illnesses and the available therapies for many diseases caused by impaired autophagy. We conclude with the exciting crosstalk between apoptosis and autophagy, from the early discoveries to recent findings.
Collapse
|
14
|
Xu X, Zhang QY, Chu XY, Quan Y, Lv BM, Zhang HY. Facilitating Antiviral Drug Discovery Using Genetic and Evolutionary Knowledge. Viruses 2021; 13:v13112117. [PMID: 34834924 PMCID: PMC8626054 DOI: 10.3390/v13112117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Over the course of human history, billions of people worldwide have been infected by various viruses. Despite rapid progress in the development of biomedical techniques, it is still a significant challenge to find promising new antiviral targets and drugs. In the past, antiviral drugs mainly targeted viral proteins when they were used as part of treatment strategies. Since the virus mutation rate is much faster than that of the host, such drugs feature drug resistance and narrow-spectrum antiviral problems. Therefore, the targeting of host molecules has gradually become an important area of research for the development of antiviral drugs. In recent years, rapid advances in high-throughput sequencing techniques have enabled numerous genetic studies (such as genome-wide association studies (GWAS), clustered regularly interspersed short palindromic repeats (CRISPR) screening, etc.) for human diseases, providing valuable genetic and evolutionary resources. Furthermore, it has been revealed that successful drug targets exhibit similar genetic and evolutionary features, which are of great value in identifying promising drug targets and discovering new drugs. Considering these developments, in this article the authors propose a host-targeted antiviral drug discovery strategy based on knowledge of genetics and evolution. We first comprehensively summarized the genetic, subcellular location, and evolutionary features of the human genes that have been successfully used as antiviral targets. Next, the summarized features were used to screen novel druggable antiviral targets and to find potential antiviral drugs, in an attempt to promote the discovery of new antiviral drugs.
Collapse
Affiliation(s)
| | - Qing-Ye Zhang
- Correspondence: (Q.-Y.Z.); (H.-Y.Z.); Tel.: +86-27-8728-0877 (H.-Y.Z.)
| | | | | | | | - Hong-Yu Zhang
- Correspondence: (Q.-Y.Z.); (H.-Y.Z.); Tel.: +86-27-8728-0877 (H.-Y.Z.)
| |
Collapse
|
15
|
Zhang K, Yin Y, Pei C, Wu C. MicroRNA-124 regulates lens epithelial cell apoptosis by affecting Fas alternative splicing by targeting polypyrimidine tract-binding protein in age-related cataract. Clin Exp Ophthalmol 2021; 49:591-605. [PMID: 34008270 DOI: 10.1111/ceo.13946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Age-related cataract (ARC) is a primary cause of visual blindness worldwide. Lens epithelial cell (LEC) apoptosis, in which Fas plays an essential role, is a vital cytological basis for cataractogenesis. However, the regulatory mechanism of Fas-dependent LEC apoptosis is not well understood. This study aimed to investigate whether MicroRNA (miRNA)-124 can regulate LEC apoptosis by targeting polypyrimidine tract-binding protein (PTB) and thereby affecting Fas alternative splicing in ARC. METHODS Lens capsule samples from patients with ARC and cornea donors with a transparent lens were collected. HLE-B3 cells were cultured and treated with hydrogen peroxide (H2 O2 ) to establish an apoptosis model in LECs. The expression of miRNA-124, PTB, Fas, and Fas isoforms in tissues and cell lines was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), western blotting, polyacrylamide gel electrophoresis, and flow cytometry. The miRNA-124 mimic and inhibitor were transfected into HLE-B3 cells, and the effects of the miRNA-124/PTB/Fas pathway in LECs were assessed by analysis of their related targets. RESULTS High expression of miRNA-124 and membrane Fas (mFas) mRNA and decreased PTB expression were observed in the lens capsule samples. In cells undergoing H2 O2 -induced apoptosis, mFas expression was increased, accompanied by decreased PTB and increased miRNA-124 expression. Subsequently, miRNA-124 upregulation suppressed PTB expression, elevated the mFas level without affecting total Fas expression and promoted apoptosis; miRNA-124 downregulation exerted the opposite effects. CONCLUSION This study revealed that miRNA-124 promotes LEC apoptosis in ARC by upregulating mFas through targeted inhibition of PTB. Moreover, the identification of the miRNA-124/PTB/Fas pathway provides novel insight into Fas-dependent LEC apoptosis.
Collapse
Affiliation(s)
- Kaiyun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yue Yin
- School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Changrui Wu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Cytotoxic Efficacy and Resistance Mechanism of a TRAIL and VEGFA-Peptide Fusion Protein in Colorectal Cancer Models. Int J Mol Sci 2021; 22:ijms22063160. [PMID: 33808900 PMCID: PMC8003782 DOI: 10.3390/ijms22063160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/16/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane protein capable of selectively inducing apoptosis in cancer cells by binding to its cognate receptors. Here, we examined the anticancer efficacy of a recently developed chimeric AD-O51.4 protein, a TRAIL fused to the VEGFA-originating peptide. We tested AD-O51.4 protein activity against human colorectal cancer (CRC) models and investigated the resistance mechanism in the non-responsive CRC models. The quantitative comparison of apoptotic activity between AD-O51.4 and the native TRAIL in nine human colorectal cancer cell lines revealed dose-dependent toxicity in seven of them; the immunofluorescence-captured receptor abundance correlated with the extent of apoptosis. AD-O51.4 reduced the growth of CRC patient-derived xenografts (PDXs) with good efficacy. Cell lines that acquired AD-O51.4 resistance showed a significant decrease in surface TRAIL receptor expression and apoptosis-related proteins, including Caspase-8, HSP60, and p53. These results demonstrate the effectiveness of AD-O51.4 protein in CRC preclinical models and identify the potential mechanism underlying acquired resistance. Progression of AD-O51.4 to clinical trials is expected.
Collapse
|
17
|
Annibaldi A, Walczak H. Death Receptors and Their Ligands in Inflammatory Disease and Cancer. Cold Spring Harb Perspect Biol 2020; 12:a036384. [PMID: 31988141 PMCID: PMC7461759 DOI: 10.1101/cshperspect.a036384] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
On binding to their cognate ligands, death receptors can initiate a cascade of events that can result in two distinct outcomes: gene expression and cell death. The study of three different death receptor-ligand systems, the tumor necrosis factor (TNF)-TNF receptor 1 (TNFR1), the CD95L-CD95, and the TNF-related apoptosis-inducing ligand (TRAIL)-TRAIL-R1/2 system, has drawn the attention of generations of scientists over the past 50 years. This scientific journey, as often happens in science, has been anything but a straight line to success and discoveries in this field were often made by serendipity, catching the scientists by surprise. However, as Louis Pasteur pointed out, luck prefers the prepared mind. It is therefore not surprising that the most impactful discovery of the field to date, the fact that TNF inhibition serves as an effective treatment for several inflammatory and autoimmune diseases, has been like this. Luckily, the scientists who made this discovery were prepared and, most importantly, determined to harness their discovery for therapeutic benefit. Today's research on these death receptor-ligand systems has led to the discovery of a causal link between cell death induced by a variety of these systems and inflammation. In this review, we explain why we predict that therapeutic exploitation of this discovery may profoundly impact the future treatment of inflammatory disease and cancer.
Collapse
Affiliation(s)
- Alessandro Annibaldi
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Henning Walczak
- Center for Biochemistry, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College, London WC1E 6BT, United Kingdom
| |
Collapse
|
18
|
Vallinoto ACR, Cayres-Vallinoto I, Freitas Queiroz MA, Ishak MDOG, Ishak R. Influence of Immunogenetic Biomarkers in the Clinical Outcome of HTLV-1 Infected Persons. Viruses 2019; 11:v11110974. [PMID: 31652745 PMCID: PMC6893456 DOI: 10.3390/v11110974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
Human T-lymphotropic virus 1, a member of the Retroviridae family, causes a neglected, silent, persistent infection affecting circa 5 to 10 million people around the world, with biology, immune pathology, clinical diseases, epidemiology, and laboratory issues still unsolved. Most of the infected subjects are asymptomatic, but severe clinical disorders appear as a neurodegenerative disease (HTLV-1 associated myelopathy—HAM) or a lymphoprolipherative disorder (Adult T Leukemia/Lymphoma—ATLL) and in other target organs of the human body. HTLV-1 infections are frequently asymptomatic, but there is a large spectrum of diseases that have been described along the years. The mechanisms by which the virus interacts with the host, the different modes of response of the host to the infection, and the immunogenic characteristics of the host are some of the interesting and unanswered questions that may direct the outcome of the disease. The most relevant published results dealing with the genetic variations of the host, the immune response to HTLV-1 infection, and the outcome of the infection are presented herein, including Human Leucocyte Antigen (HLA), Killer Immunoglobulin-like Receptors (KIR), interleukin 6, 10, 28, Fas and Fas ligand, IFN-gamma, TNF-A, and Mannose-binding lectin. In summary, there are still several unmet research needs in the field of useful biomarkers on HTLV-1 pathogenesis.
Collapse
Affiliation(s)
| | - Izaura Cayres-Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológica, Universidade Federal do Pará, Belém 66.075-110, Brazil.
| | - Maria Alice Freitas Queiroz
- Laboratório de Virologia, Instituto de Ciências Biológica, Universidade Federal do Pará, Belém 66.075-110, Brazil.
| | | | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológica, Universidade Federal do Pará, Belém 66.075-110, Brazil.
| |
Collapse
|
19
|
Dostert C, Grusdat M, Letellier E, Brenner D. The TNF Family of Ligands and Receptors: Communication Modules in the Immune System and Beyond. Physiol Rev 2019; 99:115-160. [DOI: 10.1152/physrev.00045.2017] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark; and Life Sciences Research Unit, Molecular Disease Mechanisms Group, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
20
|
Sirtl S, Knoll G, Trinh DT, Lang I, Siegmund D, Gross S, Schuler-Thurner B, Neubert P, Jantsch J, Wajant H, Ehrenschwender M. Hypertonicity-enforced BCL-2 addiction unleashes the cytotoxic potential of death receptors. Oncogene 2018; 37:4122-4136. [PMID: 29706657 PMCID: PMC6062497 DOI: 10.1038/s41388-018-0265-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/20/2018] [Accepted: 03/23/2018] [Indexed: 01/20/2023]
Abstract
Attempts to exploit the cytotoxic activity of death receptors (DR) for treating cancer have thus far been disappointing. DR activation in most malignant cells fails to trigger cell death and may even promote tumor growth by activating cell death-independent DR-associated signaling pathways. Overcoming apoptosis resistance is consequently a prerequisite for successful clinical exploitation of DR stimulation. Here we show that hyperosmotic stress in the tumor microenvironment unleashes the deadly potential of DRs by enforcing BCL-2 addiction of cancer cells. Hypertonicity robustly enhanced cytotoxicity of tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and other DR ligands in various cancer entities. Initial events in TRAIL DR signaling remained unaffected, but hypertonic conditions unlocked activation of the mitochondrial death pathway and thus amplified the apoptotic signal. Mechanistically, we demonstrate that hyperosmotic stress imposed a BCL-2-addiction on cancer cells to safeguard the integrity of the outer mitochondrial membrane (OMM), essentially exhausting the protective capacity of BCL-2-like pro-survival proteins. Deprivation of these mitochondrial safeguards licensed DR-generated truncated BH3-interacting domain death agonist (tBID) to activate BCL-2-associated X protein (BAX) and initiated mitochondrial outer membrane permeabilization (MOMP). Our work highlights that hyperosmotic stress in the tumor environment primes mitochondria for death and lowers the threshold for DR-induced apoptosis. Beyond TRAIL-based therapies, our findings could help to strengthen the efficacy of other apoptosis-inducing cancer treatment regimens.
Collapse
Affiliation(s)
- Simon Sirtl
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Gertrud Knoll
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Dieu Thuy Trinh
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Daniela Siegmund
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Stefanie Gross
- Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Ulmenweg 18, Erlangen, 91054, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Ulmenweg 18, Erlangen, 91054, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Röntgenring 11, Würzburg, 97070, Germany
| | - Martin Ehrenschwender
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, Regensburg, 93053, Germany.
| |
Collapse
|
21
|
Huang D, Xiao J, Deng X, Ma K, Liang H, Shi D, Wu F, Shao Z. Association between Fas/FasL gene polymorphism and musculoskeletal degenerative diseases: a meta-analysis. BMC Musculoskelet Disord 2018; 19:137. [PMID: 29734947 PMCID: PMC5938814 DOI: 10.1186/s12891-018-2057-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/23/2018] [Indexed: 12/28/2022] Open
Abstract
Background It was reported that Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) gene polymorphism might be related to the risk of musculoskeletal degenerative diseases (MSDD), such as osteoarthritis (OA), intervertebral disc degeneration (IVDD) and rheumatoid arthritis (RA). However, data from different studies was inconsistent. Here we aim to elaborately summarize and explore the association between the Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) and MSDD. Methods Literatures were selected from PubMed, Web of Science, Embase, Scopus and Medline in English and VIP, SinoMed, Wanfang and the China National Knowledge Infrastructure (CNKI) in Chinese up to August 21, 2017. All the researches included are case-control studies about human. We calculated the pooled odds ratios (ORs) with 95% confidence intervals (95% CI) to evaluate the strengths of the associations of Fas (rs1800682, rs2234767) and FasL (rs5030772, rs763110) polymorphisms with MSDD risk. Results Eleven eligible studies for rs1800682 with 1930 cases and 1720 controls, 6 eligible studies for rs2234767 with 1794 cases and 1909 controls, 3 eligible studies for rs5030772 with 367 cases and 313 controls and 8 eligible studies for rs763110 with 2010 cases and 2105 controls were included in this analysis. The results showed that the G allele of Fas (rs1800682) is associated with an increased risk of IVDD in homozygote and recessive models. The G allele of Fas (rs2234767) is linked to a decreased risk of RA but an enhanced risk of OA in allele and recessive models. In addition, the T allele of FasL (rs763110) is correlated with a reduced risk of IVDD in all of models. However, no relationship was found between FasL (rs5030772) and these three types of MSDD in any models. Conclusions Fas (rs1800682) and FasL (rs763110) polymorphism were associated with the risk of IVDD and Fas (rs2234767) was correlated to the susceptibility of OA and RA. Fas (rs1800682) and Fas (rs2234767) are more likely to be associated with MSDD for Chinese people. FasL (rs763110) is related to the progression of MSDD for both Caucasoid and Chinese race groups. But FasL (rs5030772) might not be associated with any types of MSDD or any race groups statistically. Electronic supplementary material The online version of this article (10.1186/s12891-018-2057-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donghua Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Jinrong Xiao
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiangyu Deng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Kaige Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Hang Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
| |
Collapse
|
22
|
Should We Keep Walking along the Trail for Pancreatic Cancer Treatment? Revisiting TNF-Related Apoptosis-Inducing Ligand for Anticancer Therapy. Cancers (Basel) 2018; 10:cancers10030077. [PMID: 29562636 PMCID: PMC5876652 DOI: 10.3390/cancers10030077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/05/2023] Open
Abstract
Despite recent advances in oncology, diagnosis, and therapy, treatment of pancreatic ductal adenocarcinoma (PDAC) is still exceedingly challenging. PDAC remains the fourth leading cause of cancer-related deaths worldwide. Poor prognosis is due to the aggressive growth behavior with early invasion and distant metastasis, chemoresistance, and a current lack of adequate screening methods for early detection. Consequently, novel therapeutic approaches are urgently needed. Many hopes for cancer treatment have been placed in the death ligand tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) since it was reported to induce apoptosis selectively in tumor cells in vitro and in vivo. TRAIL triggers apoptosis through binding of the trans-membrane death receptors TRAIL receptor 1 (TRAIL-R1) also death receptor 4 (DR4) and TRAIL receptor 2 (TRAIL-R2) also death receptor 5 (DR5) thereby inducing the formation of the death-inducing signaling complex (DISC) and activation of the apoptotic cascade. Unlike chemotherapeutics, TRAIL was shown to be able to induce apoptosis in a p53-independent manner, making TRAIL a promising anticancer approach for p53-mutated tumors. These cancer-selective traits of TRAIL led to the development of TRAIL-R agonists, categorized into either recombinant variants of TRAIL or agonistic antibodies against TRAIL-R1 or TRAIL-R2. However, clinical trials making use of these agonists in various tumor entities including pancreatic cancer were disappointing so far. This is thought to be caused by TRAIL resistance of numerous primary tumor cells, an insufficient agonistic activity of the drug candidates tested, and a lack of suitable biomarkers for patient stratification. Nevertheless, recently gained knowledge on the biology of the TRAIL-TRAIL-R system might now provide the chance to overcome intrinsic or acquired resistance against TRAIL and TRAIL-R agonists. In this review, we summarize the status quo of clinical studies involving TRAIL-R agonists for the treatment of pancreatic cancer and critically discuss the suitability of utilizing the TRAIL-TRAIL-R system for successful treatment.
Collapse
|
23
|
Site-Specific Detection of Tyrosine Phosphorylated CD95 Following Protein Separation by Conventional and Phospho-Protein Affinity SDS-PAGE. Methods Mol Biol 2018; 1557:173-188. [PMID: 28078592 DOI: 10.1007/978-1-4939-6780-3_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Phosphorylation of two tyrosines in the death domain of CD95 is a critical mechanism in determining the receptor's choices between cell death and survival signals. Recently, site-specific monoclonal antibodies against phosphorylated tyrosines of CD95 have been generated and used to successfully detect each phosphorylated death domain tyrosine of CD95 directly and separately by immunoblotting. Here we provide detailed protocols and useful tips for a successful site-specific detection of phosphorylated death domain tyrosine of CD95 following a protein separation by sizes (conventional SDS-PAGE) and by degrees of phosphorylation (phospho-protein affinity, mobility shift SDS-PAGE).
Collapse
|
24
|
Yang P, Gong YJ, Wang YX, Liang XX, Liu Q, Liu C, Chen YJ, Sun L, Lu WQ, Zeng Q. Effect modification by apoptosis-related gene polymorphisms on the associations of phthalate exposure with spermatozoa apoptosis and semen quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:694-702. [PMID: 28850937 DOI: 10.1016/j.envpol.2017.08.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Human studies indicate that phthalate exposure is associated with adverse male reproductive health, and this association may be modified by genetic polymorphisms. OBJECTIVES We investigated whether apoptosis-related gene polymorphisms modified the associations of phthalate exposure with spermatozoa apoptosis and semen quality. METHODS In this Chinese population who sought for semen examination in an infertility clinic, we measured 8 phthalate metabolites in two urine samples to assess the individual's exposure levels. Apoptosis-related gene (Fas, FasL, and caspase3) polymorphisms were performed by real-time PCR. Spermatozoa apoptosis and semen quality parameters were evaluated by Annexin V/PI assay and computer-aided semen analysis, respectively. RESULTS We found that Fas rs2234767, FasL rs763110, and caspase3 rs12108497 gene polymorphisms significantly modified the associations between urinary phthalate metabolites and spermatozoa apoptosis. For example, urinary monobutyl phthalate (MBP) associated with an increased percentage of Annexin V+/PI- spermatozoa of 25.11% (95% CI: 4.08%, 50.53%) were only observed among men with CT/TT genotype of FasL rs763110. In addition, we found that caspase3 rs12108497 gene polymorphisms significantly modified the associations of urinary mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) with decreased sperm concentration and sperm count (both p-values for interactions = 0.02). CONCLUSION Our results provided the first evidence that apoptosis-related gene polymorphisms might contribute to the effects of phthalate exposure on male reproductive health.
Collapse
Affiliation(s)
- Pan Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ya-Jie Gong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yi-Xin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xin-Xiu Liang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qing Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ying-Jun Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li Sun
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
25
|
von Karstedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 2017; 17:352-366. [PMID: 28536452 DOI: 10.1038/nrc.2017.28] [Citation(s) in RCA: 406] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery that the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis of cancer cells without causing toxicity in mice has led to the in-depth study of pro-apoptotic TRAIL receptor (TRAIL-R) signalling and the development of biotherapeutic drug candidates that activate TRAIL-Rs. The outcome of clinical trials with these TRAIL-R agonists has, however, been disappointing so far. Recent evidence indicates that many cancers, in addition to being TRAIL resistant, use the endogenous TRAIL-TRAIL-R system to their own advantage. However, novel insight on two fronts - how resistance of cancer cells to TRAIL-based pro-apoptotic therapies might be overcome, and how the pro-tumorigenic effects of endogenous TRAIL might be countered - gives reasonable hope that the TRAIL system can be harnessed to treat cancer. In this Review we assess the status quo of our understanding of the biology of the TRAIL-TRAIL-R system - as well as the gaps therein - and discuss the opportunities and challenges in effectively targeting this pathway.
Collapse
Affiliation(s)
- Silvia von Karstedt
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonella Montinaro
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
26
|
Zhang M, Wu C, Li B, Du W, Zhang C, Chen Z. Quantitative assessment of the association between Fas/FasL gene polymorphism and susceptibility to esophageal carcinoma in a north Chinese population. Cancer Med 2016; 5:760-6. [PMID: 26819081 PMCID: PMC4831295 DOI: 10.1002/cam4.633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 12/22/2022] Open
Abstract
The case–control study aims to investigate the association of Fas and FasL genetic polymorphisms (Fas‐670A/G (rs1800682), Fas‐1377G/A (rs2234767) and FasL‐844T/C (rs763110)) with esophageal carcinoma susceptibility in a north Chinese population. A total of 204 patients with esophageal carcinoma and 248 healthy controls were enrolled from Henan, China and genotyped by the polymerase chain reaction and restriction fragment length polymorphism method. There were no significant differences in distributions of their genotypes frequencies between patients and controls in Fas‐670A/G, Fas‐1377G/A and FasL‐844T/C polymorphisms (P > 0.05). Stratified analysis showed that no significant association was found between esophageal carcinoma and gene polymorphisms of Fas‐670 A/G, Fas‐1377G/A, and FasL‐844T/C (P > 0.05). Genetic polymorphisms in the death pathway genes Fas and FasL were not associated with risk of developing esophageal carcinoma in a north Chinese population.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Cuiping Wu
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Baohuan Li
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenjun Du
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chuanzhen Zhang
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ziping Chen
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
27
|
Yazdani R, Fatholahi M, Ganjalikhani-Hakemi M, Abolhassani H, Azizi G, Hamid KM, Rezaei N, Aghamohammadi A. Role of apoptosis in common variable immunodeficiency and selective immunoglobulin A deficiency. Mol Immunol 2016; 71:1-9. [PMID: 26795881 DOI: 10.1016/j.molimm.2015.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
Common variable immunodeficiency (CVID) and selective IgA deficiency (SIgAD) are the most common primary immunodeficiencies in human. Both diseases share clinical manifestation and molecular defects. Increased apoptosis may be one of the mechanisms involved in the pathogenesis of CVID and SIgAD. Elevated apoptosis in this disorder leads to defective long-term survival of B-cells, reduced antibody production, decreased lymphocyte proliferation and defective cytokine secretion. For the first time, we reviewed the role of apoptosis in CVID and SIgAD.
Collapse
Affiliation(s)
- Reza Yazdani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Fatholahi
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | | | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at the Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gholamreza Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Kabir Magaji Hamid
- Immunology Department, School of Public Health, Tehran University of Medical Sciences-International Campus (TUMS-IC), Tehran, Iran; Immunology Department, Faculty of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
28
|
Kim SC, Lee SH, Lee JW, Kim TH, Choi BH. Identification of Single Nucleotide Polymorphism Marker and Association Analysis of Marbling Score in Fas Gene of Hanwoo. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:23-8. [PMID: 26732324 PMCID: PMC4698685 DOI: 10.5713/ajas.14.0812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/02/2014] [Accepted: 06/15/2015] [Indexed: 11/27/2022]
Abstract
The Fas (APO-1, TNFRSF6) gene known as a member of the tumor necrosis factor receptor superfamily was selected for DNA marker development in Korean cattle. It is a cell membrane protein and mediates programmed cell death (apoptosis). We discovered single nucleotide polymorphisms (SNPs) within Fas gene in order to develop novel DNA markers related to economical traits at the genomic level. The sequences of whole exon and 1 kb range of both front and back of the gene were determined by direct-sequencing methods using 24 cattle. A total of 55 SNPs were discovered and we selected 31 common polymorphic sites considering their allele frequencies, haplotype-tagging status and linkage disequilibrium (LD) for genotyping in larger-scale subjects. The SNPs were confirmed genotype through the SNaPshot method (n = 274) and were examined for a possible genetic association between Fas polymorphisms and marbling score. So, the SNPs that were identified significant are g.30256G>C, g.31474C>A, g.31940A>G, and g.32982G>A. These results suggest that SNPs of Fas gene were associated with intramuscular fat content of meat quality traits in Korean cattle.
Collapse
Affiliation(s)
- Seung-Chang Kim
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Seung-Hwan Lee
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Ji-Woong Lee
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Tae-Hun Kim
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| | - Bong-Hwan Choi
- Devision of Animal Science, Institute of Agricultural Science and Technology, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
29
|
Association of promoter polymorphisms of Fas –FasL genes with development of Chronic Myeloid Leukemia. Tumour Biol 2015; 37:5475-84. [DOI: 10.1007/s13277-015-4295-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/20/2015] [Indexed: 01/24/2023] Open
|
30
|
FAS Haploinsufficiency Caused by Extracellular Missense Mutations Underlying Autoimmune Lymphoproliferative Syndrome. J Clin Immunol 2015; 35:769-76. [DOI: 10.1007/s10875-015-0210-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/03/2015] [Indexed: 11/25/2022]
|
31
|
Hermes RB, Santana BB, Lima SS, Neris Martins Feitosa R, de Oliveira Guimarães Ishak M, Ishak R, Vallinoto ACR. FAS -670 A/G polymorphism may be associated with the depletion of CD4(+) T lymphocytes in HIV-1 infection. Hum Immunol 2015; 76:742-6. [PMID: 26429326 DOI: 10.1016/j.humimm.2015.09.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 08/12/2015] [Accepted: 09/27/2015] [Indexed: 11/24/2022]
Abstract
In this study, the polymorphisms in the FAS and FASL genes was investigated in a sample of 198 HIV-1-seropositive individuals and 191 seronegative controls to evaluate a possible association between polymorphisms and the infection. The identification of the A and G alleles of the FAS -670 polymorphism was accomplished through polymerase chain reaction assays followed by digestion with the restriction enzyme MvaI. The identification of the A and G alleles of the FAS -124 polymorphism and the T and delT alleles of the FAS -169 polymorphism were performed using the amplification-created restriction site method followed by restriction fragment length polymorphism reactions. The comparative analysis of allelic and genotypic frequencies between the groups did not reveal any significant differences. However, the quantitative analysis of CD4(+) T lymphocytes suggests that the G allele of the FAS -670 A/G polymorphism can be a protective factor against the depletion of these cells in the course of an HIV-1 infection. Polymorphisms in the FAS and FASL genes were not associated with the number of CD8(+) T lymphocytes or the plasma viral load. Our findings suggest that the FAS -670 polymorphism may be associated with apoptosis of CD4(+) T lymphocytes after infection by HIV-1.
Collapse
Affiliation(s)
- Renata Bezerra Hermes
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Bárbara Brasil Santana
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Sandra Souza Lima
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Rosimar Neris Martins Feitosa
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Marluísa de Oliveira Guimarães Ishak
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology (Laboratório de Virologia), Institute of Biological Sciences (Instituto de Ciências Biológicas), Federal University of Pará (Universidade Federal do Pará), Belém, Pará, Brazil.
| |
Collapse
|
32
|
Zhang F, Sturgis EM, Sun Y, Zhang Y, Wei Q, Zhang C, Zheng H, Li G. Apoptotic variants as predictors of risk of oropharyngeal cancer recurrence after definitive radiotherapy. Int J Cancer 2015; 137:2454-61. [PMID: 25976983 DOI: 10.1002/ijc.29604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/07/2015] [Accepted: 04/27/2015] [Indexed: 11/11/2022]
Abstract
Single nucleotide polymorphisms (SNPs) in the promoter region of FAS and FASLG may alter their transcriptional activity. Thus, we determined the associations between four FAS and FASLG promoter variants (FAS1377G>A, rs2234767; 670A>G, rs1800682; FASLG844T>C, rs763110 and 124A>G, rs5030772) and the risk of recurrence of squamous cell carcinoma of the oropharynx (SCCOP). We evaluated the associations between FAS and FASLG genetic variants and the risk of recurrence in a cohort of 1,008 patients. The log-rank test and multivariate Cox models were used to evaluate the associations. Compared with patients with common homozygous genotypes of FAS670 and FASLG844 polymorphisms, patients with variant genotypes had lower disease-free survival rates (log-rank p < 0.0001 and p < 0.0001, respectively) and an approximately threefold higher risk of SCCOP recurrence (HR, 3.2;95% CI, 2.2-4.6; and HR, 3.1; 95% CI, 2.2-4.4, respectively) after multivariate adjustment. Furthermore, among patients with HPV16-positive tumors, those with variant genotypes of these two polymorphisms had lower disease-free survival rates (log-rank, p < 0.0001 and p < 0.0001, respectively) and a higher recurrence risk than did patients with common homozygous genotypes (HR, 12.9; 95% CI, 3.8-43.6; and HR, 8.1; 95% CI, 3.6-18.6, respectively), whereas no significant associations were found for FAS1377 and FASLG124 polymorphisms. Our findings suggest that FAS670 and FASLG844 polymorphisms modulate the risk of recurrence of SCCOP, particularly in patients with HPV16-positive tumors. Larger studies are needed to validate these results.
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX.,Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Erich M Sturgis
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yan Sun
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Otolaryngology-Head and Neck Surgery, Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yang Zhang
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery Capital Medical University, Ministry of Education, Beijing, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC
| | - Caiyun Zhang
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hongliang Zheng
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Otorhinolaryngology-Head and Neck Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Guojun Li
- Department of Head and Neck Surgery, the University of Texas MD Anderson Cancer Center, Houston, TX.,Department of Epidemiology, the University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
33
|
Arish N, Cohen PY, Golan-Gerstl R, Fridlender Z, Dayan MR, Zisman P, Breuer R, Wallach-Dayan SB. Overexpression of Telomerase Protects Human and Murine Lung Epithelial Cells from Fas- and Bleomycin-Induced Apoptosis via FLIP Upregulation. PLoS One 2015; 10:e0126730. [PMID: 25951185 PMCID: PMC4423936 DOI: 10.1371/journal.pone.0126730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
High doses of bleomycin administered to patients with lymphomas and other tumors lead to significant lung toxicity in general, and to apoptosis of epithelial cells, in particular. Apoptosis of alveolar epithelium is an important step in the pathogenesis of bleomycin-induced pulmonary fibrosis. The Fas-FasL pathway is one of the main apoptotic pathways involved. Telomerase is a ribonucleoprotein RNA-dependent DNA polymerase complex consisting of an RNA template and a catalytic protein, telomerase reverse transcriptase (TERT). Telomerase also possess extra-telomeric roles, including modulation of transcription of anti-apoptotic genes, differentiation signals, and more. We hypothesized that telomerase overexpression affects Fas-induced epithelial cell apoptosis by an extra-telomeric role such as regulation of anti-apoptotic genes, specifically FLICE-like inhibitory protein (FLIP). Telomerase in mouse (MLE) and human (A549) lung epithelial cell lines was upregulated by transient transfection using cDNA hTERT expression vector. Telomerase activity was detected using a real-time PCR-based system. Bleomycin, and bleomycin-induced Fas-mediated apoptosis following treatment with anti-Fas activating mAb or control IgG, were assessed by Annexin V staining, FACS analysis, and confocal microscopy; caspase cleavage by Western blot; FLIP or Fas molecule detection by Western blot and flow cytometry. hTERT transfection of lung epithelial cells resulted in a 100% increase in their telomerase activity. Fas-induced lung epithelial cell apoptosis was significantly reduced in hTERT-transfected cells compared to controls in all experiments. Lung epithelial cells with increased telomerase activity had higher levels of FLIP expression but membrane Fas expression was unchanged. Upregulation of hTERT+ in human lung epithelial cells and subsequent downregulation of FLIP by shFLIP-RNA annulled hTERT-mediated resistance to apoptosis. Telomerase-mediated FLIP overexpression may be a novel mechanism to confer protection from apoptosis in bleomycin-exposed human lung epithelial cells.
Collapse
Affiliation(s)
- Nissim Arish
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Pazit Y. Cohen
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Regina Golan-Gerstl
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi Fridlender
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- Department of Pulmonary and Critical Care Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mark Richter Dayan
- Department of Emergency Medicine, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Philip Zisman
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Raphael Breuer
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- Department of Pathology, Boston University School of Medicine, Boston, MA, United States of America
| | - Shulamit B. Wallach-Dayan
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
34
|
Lipid rafts and raft-mediated supramolecular entities in the regulation of CD95 death receptor apoptotic signaling. Apoptosis 2015; 20:584-606. [DOI: 10.1007/s10495-015-1104-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Wang X, Wei K, Zhang Q, Zeng S, Lin J, Qiao L, Liu L. Expression of cluster of differentiation-95 and relevant signaling molecules in liver cancer. Mol Med Rep 2014; 11:3375-81. [PMID: 25543761 PMCID: PMC4368072 DOI: 10.3892/mmr.2014.3129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022] Open
Abstract
The present study investigated the protein expression levels of cluster of differentiation (CD)95, caspase‑8, caspase‑3 and poly(ADP‑ribose) polymerase 1 (PARP1) in liver cancer and its association with clinical pathological parameters. The results demonstrated that the expression of CD95 correlated with histological differentiation, liver cirrhosis, lymph node metastasis and distant metastasis (P<0.05), however, no correlations with gender, age, quantity of tumor nodules or T stage were observed (P>0.05). The expression of CD95 was upregulated using a plasmid, which led to an increase in the expression levels of caspase‑8 and caspase‑3 and a decrease in the expression of PARP1. Upregulation of CD95 also promoted the apoptosis of the liver cancer cells. These results indicated that CD95 was associated with liver cancer and promoted the apoptosis of liver cancer cells by caspase‑8, caspase‑3 and PARP1.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Pathology, Guilin Medical University, Guilin 541001, P.R. China
| | - Kanglai Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiongguang Zhang
- State Key Laboratory of Virology, National Laboratory of Antiviral and Tumor of Traditional Chinese Medicine, Institute of Medical Virology, Research Center of Food and Drug Evaluation, School of Medicine, Wuhan University, Wuhan, Hubei 430056, P.R. China
| | - Sien Zeng
- Department of Pathology, Guilin Medical University, Guilin 541001, P.R. China
| | - Jing Lin
- Department of Pathology, Guilin Medical University, Guilin 541001, P.R. China
| | - Li Qiao
- Office of Graduate Student Affairs, Guilin Medical University, Guilin 541001, P.R. China
| | - Lijiang Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan Economy and Technology Development Zone, Wuhan, Hubei 430056, P.R. China
| |
Collapse
|
36
|
Nallapalle SR, Daripally S, Prasad VTSV. Promoter polymorphism of FASL confers protection against female-specific cancers and those of FAS impact the cancers divergently. Tumour Biol 2014; 36:2709-24. [DOI: 10.1007/s13277-014-2896-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/26/2014] [Indexed: 12/20/2022] Open
|
37
|
Liu HN, Shi HR, Zhao XL, Zhang RT, Liu GZ, Zhang JX. The TLR3, PI3K, survin, FasL, and Fas genes as major risk factors of occurrence and development of cervical cancer disease. Gene 2014; 550:27-32. [DOI: 10.1016/j.gene.2014.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/17/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
|
38
|
Abstract
Apoptosis is a fundamental process contributing to tissue homeostasis, immune response, and development. CD95, also called Fas, is a member of the tumor necrosis factor receptor (TNF-R) superfamily. Its ligand, CD95L, was initially detected at the plasma membrane of activated T lymphocytes and natural killer (NK) cells where it contributes to the elimination of transformed and infected cells. Given its implication in immune homeostasis and immune surveillance combined with the fact that various lineages of malignant cells exhibit loss-of-function mutations, CD95 was initially classified as a tumor suppressor gene. Nonetheless, in different pathophysiological contexts, this receptor is able to transmit non-apoptotic signals and promote inflammation and carcinogenesis. Although the different non-apoptotic signaling pathways (NF-κB, MAPK, and PI3K) triggered by CD95 are known, the initial molecular events leading to these signals, the mechanisms by which the receptor switches from an apoptotic function to an inflammatory role, and, more importantly, the biological functions of these signals remain elusive.
Collapse
Affiliation(s)
- Nima Rezaei
- Children's Medical Center Hospital, Tehran University of Medical Sciences Research Center for Immunodeficiencies, Tehran, Iran
| |
Collapse
|
39
|
Fouqué A, Debure L, Legembre P. The CD95/CD95L signaling pathway: a role in carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:130-141. [PMID: 24780723 DOI: 10.1016/j.bbcan.2014.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 11/18/2022]
Abstract
Apoptosis is a fundamental process that contributes to tissue homeostasis, immune responses, and development. The receptor CD95, also called Fas, is a member of the tumor necrosis factor receptor (TNF-R) superfamily. Its cognate ligand, CD95L, is implicated in immune homeostasis and immune surveillance, and various lineages of malignant cells exhibit loss-of-function mutations in this pathway; therefore, CD95 was initially classified as a tumor suppressor gene. However, more recent data indicate that in different pathophysiological contexts, this receptor can transmit non-apoptotic signals, promote inflammation, and contribute to carcinogenesis. A comparison with the initial molecular events of the TNF-R signaling pathway leading to non-apoptotic, apoptotic, and necrotic pathways reveals that CD95 is probably using different molecular mechanisms to transmit its non-apoptotic signals (NF-κB, MAPK, and PI3K). As discussed in this review, the molecular process by which the receptor switches from an apoptotic function to an inflammatory role is unknown. More importantly, the biological functions of these signals remain elusive.
Collapse
Affiliation(s)
- Amélie Fouqué
- Université Rennes-1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France; INSERM U1085, IRSET, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France; Equipe Labellisée Ligue Contre Le Cancer "Death Receptors and Tumor Escape", 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France; Centre Eugène Marquis, rue bataille Flandres Dunkerque, Rennes, France
| | - Laure Debure
- Université Rennes-1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France; INSERM U1085, IRSET, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France; Equipe Labellisée Ligue Contre Le Cancer "Death Receptors and Tumor Escape", 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France; Centre Eugène Marquis, rue bataille Flandres Dunkerque, Rennes, France
| | - Patrick Legembre
- Université Rennes-1, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France; INSERM U1085, IRSET, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France; Equipe Labellisée Ligue Contre Le Cancer "Death Receptors and Tumor Escape", 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France; Centre Eugène Marquis, rue bataille Flandres Dunkerque, Rennes, France.
| |
Collapse
|
40
|
Lemke J, von Karstedt S, Zinngrebe J, Walczak H. Getting TRAIL back on track for cancer therapy. Cell Death Differ 2014; 21:1350-64. [PMID: 24948009 PMCID: PMC4131183 DOI: 10.1038/cdd.2014.81] [Citation(s) in RCA: 377] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 02/07/2023] Open
Abstract
Unlike other members of the TNF superfamily, the TNF-related apoptosis-inducing ligand (TRAIL, also known as Apo2L) possesses the unique capacity to induce apoptosis selectively in cancer cells in vitro and in vivo. This exciting discovery provided the basis for the development of TRAIL-receptor agonists (TRAs), which have demonstrated robust anticancer activity in a number of preclinical studies. Subsequently initiated clinical trials testing TRAs demonstrated, on the one hand, broad tolerability but revealed, on the other, that therapeutic benefit was rather limited. Several factors that are likely to account for TRAs' sobering clinical performance have since been identified. First, because of initial concerns over potential hepatotoxicity, TRAs with relatively weak agonistic activity were selected to enter clinical trials. Second, although TRAIL can induce apoptosis in several cancer cell lines, it has now emerged that many others, and importantly, most primary cancer cells are resistant to TRAIL monotherapy. Third, so far patients enrolled in TRA-employing clinical trials were not selected for likelihood of benefitting from a TRA-comprising therapy on the basis of a valid(ated) biomarker. This review summarizes and discusses the results achieved so far in TRA-employing clinical trials in the light of these three shortcomings. By integrating recent insight on apoptotic and non-apoptotic TRAIL signaling in cancer cells, we propose approaches to introduce novel, revised TRAIL-based therapeutic concepts into the cancer clinic. These include (i) the use of recently developed highly active TRAs, (ii) the addition of efficient, but cancer-cell-selective TRAIL-sensitizing agents to overcome TRAIL resistance and (iii) employing proteomic profiling to uncover resistance mechanisms. We envisage that this shall enable the design of effective TRA-comprising therapeutic concepts for individual cancer patients in the future.
Collapse
Affiliation(s)
- J Lemke
- 1] Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK [2] Clinic of General and Visceral Surgery, University of Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - S von Karstedt
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - J Zinngrebe
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - H Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
41
|
FAS-670 gene polymorphism and cervical carcinogenesis risk: A meta-analysis. Biomed Rep 2014; 1:889-894. [PMID: 24649048 DOI: 10.3892/br.2013.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/16/2013] [Indexed: 01/15/2023] Open
Abstract
FAS is a cell surface receptor that plays an important role in the etiology of cancer. Previous studies on the association between FAS-670 polymorphism and cervical carcinogenesis failed to reach a consensus; therefore, this meta-analysis was conducted to estimate the association of FAS-670 polymorphism and the risk of cervical cancer. This meta-analysis included 10 studies on FAS-670 genotyping, including a total of 2,901 cases and 2,831 controls. The complete overdominant model was applied in our meta-analysis [AB vs. AA: odds ratio (OR)=0.879, 95% confidence interval (CI): 0.775-0.998, P=0.046; BB vs. AA: OR=0.903, 95% CI: 0.775-1.052, P=0.190]. The random effects OR was 1.13 (95% CI: 0.95-1.34, I2=52.7%, Pheterogeneity=0.03). An ethnic subgroup analysis was subsequently performed. The OR for Asians was 1.25 (6 comparisons, 95% CI: 1.05-1.48, I2=23.5%, Pheterogeneity=0.03), whereas for Caucasians, no significant association was observed between FAS-670 polymorphism and cervical carcinogenesis (4 comparisons, OR=0.96, 95% CI: 0.75-1.24, I2=45.9%, Pheterogeneity=0.14).
Collapse
|
42
|
Villa-Morales M, Cobos MA, González-Gugel E, Álvarez-Iglesias V, Martínez B, Piris MA, Carracedo A, Benítez J, Fernández-Piqueras J. FAS system deregulation in T-cell lymphoblastic lymphoma. Cell Death Dis 2014; 5:e1110. [PMID: 24603338 PMCID: PMC3973220 DOI: 10.1038/cddis.2014.83] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/17/2014] [Accepted: 02/04/2014] [Indexed: 11/09/2022]
Abstract
The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations.
Collapse
Affiliation(s)
- M Villa-Morales
- 1] Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [3] Instituto de Investigación Sanitario Fundación Jiménez Díaz, ISCIII, Madrid, Spain
| | - M A Cobos
- 1] Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [3] Instituto de Investigación Sanitario Fundación Jiménez Díaz, ISCIII, Madrid, Spain
| | - E González-Gugel
- Musculoskeletal Research Center, NYU Hospital for Joint Diseases, New York, NY, USA
| | - V Álvarez-Iglesias
- Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - B Martínez
- 1] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [2] Instituto de Investigación de Enfermedades Raras, ISCIII, Madrid, Spain
| | - M A Piris
- Hospital Universitario Marqués de Valdecilla, Fundación IFIMAV, Santander, Spain
| | - A Carracedo
- 1] Grupo de Medicina Xenómica, CIBERER, Universidade de Santiago de Compostela, Santiago de Compostela, Spain [2] Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, KSA
| | - J Benítez
- 1] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [2] Human Genetics Group, CNIO, Madrid, Spain
| | - J Fernández-Piqueras
- 1] Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain [2] Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain [3] Instituto de Investigación Sanitario Fundación Jiménez Díaz, ISCIII, Madrid, Spain
| |
Collapse
|
43
|
Association of the polymorphisms in the Fas/FasL promoter regions with cancer susceptibility: a systematic review and meta-analysis of 52 studies. PLoS One 2014; 9:e90090. [PMID: 24598538 PMCID: PMC3943814 DOI: 10.1371/journal.pone.0090090] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/28/2014] [Indexed: 01/31/2023] Open
Abstract
Fas and its ligand (FasL) play an important role in apoptosis and carcinogenesis. Therefore, the potential association of polymorphisms in the Fas (-670A>G, rs1800682; -1377G>A, rs2234767) and FasL (-844C>T, rs763110) with cancer risk has been widely investigated. However, all the currently available results are not always consistent. In this work, we performed a meta-analysis to further determine whether carriers of the polymorphisms in Fas and FasL of interest could confer an altered susceptibility to cancer. All relevant data were retrieved by PubMed and Web of Science, and 52 eligible studies were chosen for this meta-analysis. There was no association of the Fas -670A>G polymorphism with cancer risk in the pooled data. For the Fas -1377G>A and FasL -844C>T polymorphisms, results revealed that the homozygotes of -1377A and -844C were associated with elevated risk of cancer as a whole. Further stratified analysis indicated markedly increased risk for developing breast cancer, gastric cancer, and esophageal cancer, in particular in Asian population. We conclude that carriers of the Fas-1377A and the FasL -844C are more susceptible to the majority of cancers than non-carriers.
Collapse
|
44
|
Oh HK, Lee E, Jang HN, Lee J, Moon H, Sheng Z, Jun Y, Loh TJ, Cho S, Zhou J, Green MR, Zheng X, Shen H. hnRNP A1 contacts exon 5 to promote exon 6 inclusion of apoptotic Fas gene. Apoptosis 2013; 18:825-35. [PMID: 23430061 DOI: 10.1007/s10495-013-0824-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fas is a transmembrane cell surface protein recognized by Fas ligand (FasL). When FasL binds to Fas, the target cells undergo apoptosis. A soluble Fas molecule that lacks the transmembrane domain is produced from skipping of exon 6 encoding this region in alternative splicing procedure. The soluble Fas molecule has the opposite function of intact Fas molecule, protecting cells from apoptosis. Here we show that knockdown of hnRNP A1 promotes exon 6 skipping of Fas pre-mRNA, whereas overexpression of hnRNP A1 reduces exon 6 skipping. Based on the bioinformatics approach, we have hypothesized that hnRNP A1 functions through interrupting 5' splice site selection of exon 5 by interacting with its potential binding site close to 5' splice site of exon 5. Consistent with our hypothesis, we demonstrate that mutations of the hnRNP A1 binding site on exon 5 disrupted the effects of hnRNP A1 on exon 6 inclusion. RNA pull-down assay and then western blot analysis with hnRNP A1 antibody prove that hnRNP A1 contacts the potential binding site RNA sequence on exon 5 but not the mutant sequence. In addition, we show that the mutation of 5' splice site on exon 5 to a less conserved sequence destructed the effects of hnRNP A1 on exon 6 inclusion. Therefore we conclude that hnRNP A1 interacts with exon 5 to promote distal exon 6 inclusion of Fas pre-mRNA. Our study reveals a novel alternative splicing mechanism of Fas pre-mRNA.
Collapse
Affiliation(s)
- Hyun kyung Oh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
FAS−1377 A/G polymorphism in breast cancer: a meta-analysis. Tumour Biol 2013; 35:2575-81. [DOI: 10.1007/s13277-013-1339-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/16/2013] [Indexed: 01/04/2023] Open
|
46
|
Relation of the Fas and FasL gene polymorphisms with susceptibility to and severity of rheumatoid arthritis. Rheumatol Int 2013; 33:2637-45. [DOI: 10.1007/s00296-013-2793-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
|
47
|
Kalkan G, Ateş O, Karakuş N, Sezer S. Functional polymorphisms in cell death pathway genes FAS and FAS ligand and risk of alopecia areata. Arch Dermatol Res 2013; 305:909-15. [PMID: 23591741 DOI: 10.1007/s00403-013-1354-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 01/13/2023]
Abstract
FAS and FAS ligand (FASLG) are important proapoptotic proteins that have a significant function in regulating cell growth and apoptosis and play essential roles in many human autoimmune diseases. Alopecia areata (AA) is hypothesized to be an organ-specific autoimmune disease mediated by T cells to the hair follicles. The concept of an autoimmune mechanism as the basis for AA led us to investigate a possible association between the FAS and FASLG polymorphism with AA susceptibility and disease progression on AA patients in Turkish population. The study group consisted of 118 unrelated patients with AA and 118 unrelated healthy controls. We genotyped FAS-670 A/G and FASLG-124 A/G polymorphisms and assessed their association with AA risk. A statistically significant difference was observed between patients and controls according to genotype frequencies of FAS gene (p = 0.0002). GG genotype of 670 A/G polymorphism was found to be protective against AA (p = 0.000, OR 0.07, 95 % CI 0.00-0.41). It can be concluded there is a reduced risk of AA risk appeared to be associated with FAS-670 A/G. No association was observed between AA patients and controls according to genotype and allele distribution of FASLG gene 124 A/G polymorphism (p = 0.1297, p = 453, respectively). In conclusion, we provide evidence that FAS/FASLG polymorphisms may have an effect on the risk of AA in the Turkish population. These findings provide an additional support to a genetic basis for AA development.
Collapse
Affiliation(s)
- Göknur Kalkan
- Department of Dermatology, Gaziosmanpasa University School of Medicine, Tokat, 60100, Turkey,
| | | | | | | |
Collapse
|
48
|
Martin-Villalba A, Llorens-Bobadilla E, Wollny D. CD95 in cancer: tool or target? Trends Mol Med 2013; 19:329-35. [PMID: 23540716 DOI: 10.1016/j.molmed.2013.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/22/2013] [Accepted: 03/04/2013] [Indexed: 12/13/2022]
Abstract
The role of CD95 (Fas/Apo1) in cancer has been a matter of debate for over 30 years. First discovered as an apoptosis-inducing molecule, CD95 soon emerged as a potential anticancer therapy. Yet accumulating evidence indicates a profound role for CD95 in alternative nonapoptotic signaling pathways that increase tumorigenesis. This fact challenges the initial clinical idea of using CD95 as a 'tumor killer' while setting the stage for clinical studies targeting the nonapoptotic signaling branch of CD95. This review summarizes the findings surrounding manipulation of the CD95 pathway for cancer therapy, considering how one receptor can both promote and prevent cell growth.
Collapse
Affiliation(s)
- Ana Martin-Villalba
- Molecular Neurobiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
49
|
Apoptosis-related Fas and FasL gene polymorphisms' associations with knee osteoarthritis. Rheumatol Int 2013; 33:2039-43. [PMID: 23392773 DOI: 10.1007/s00296-013-2688-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
To investigate the associations between Fas and FasL gene polymorphisms and susceptibility to knee osteoarthritis. Genomic DNA was obtained from 146 patients with knee osteoarthritis and 102 healthy controls. Genotype distributions and allelic frequencies of four polymorphisms of Fas (-670 G>A rs1800682, -1377 G>A rs2234767) and FasL (IVS2nt-124 A>G rs5030772, -844 T>C rs763110) genes were compared between the groups. Thereafter, this association was investigated between patients and controls of the same sex. There were significant differences between patients with knee osteoarthritis and controls regarding the genotype distributions and allelic frequencies of Fas-1377 G>A polymorphism (P = 0.0001 and P = 0.005, respectively). The Fas-1377 GG genotype and G allele were significantly more frequent in patients with knee osteoarthritis than in controls. Genotype distributions and allelic frequencies of Fas-670 G>A, FasL-844 T>C, and FasL IVS2nt-124 A>G polymorphisms did not differ between the groups (P > 0.05). However, there were no significant differences between patients and controls of the same sex (P > 0.05). These findings suggest that the Fas-1377 G>A polymorphism in the Fas gene related with apoptosis may contribute to susceptibility to knee osteoarthritis in the Turkish population. There is a need for further studies to evaluate the role of apoptosis in large cohorts.
Collapse
|
50
|
Li Y, Hao YL, Kang S, Zhou RM, Wang N, Qi BL. Genetic polymorphisms in the Fas and FasL genes are associated with epithelial ovarian cancer risk and clinical outcomes. Gynecol Oncol 2012; 128:584-9. [PMID: 23234803 DOI: 10.1016/j.ygyno.2012.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022]
Abstract
AIM In this study, we evaluated whether functional polymorphisms within the Fas and FasL genes were associated with the risk of developing epithelial ovarian cancer (EOC) and survival of patients with EOC. METHODS A case-control study was performed in 342 EOC patients and 344 control women. The genotypes of three promoter region polymorphisms (Fas -1377G/A, -670A/G and FasL -844T/C) were determined using ligase detection reaction-polymerase chain reaction (LDR-PCR). The clinical outcomes in 202 EOC patients were compared across genotypes. RESULTS The genotype frequencies of the FasL -844 T/C polymorphism were significantly different between the case and control groups (P=0.034). Compared to the T/T and T/C genotypes, the C/C genotype significantly increased the risk of developing EOC (OR=1.46, 95% CI=1.08-1.99). The survival analysis showed that the Fas -1377G/A and -670A/G polymorphisms were related to prognosis in EOC patients. Compared with patients with the G/G genotype of the -1377G/A polymorphism, patients carrying the A allele had a shorter PFS and OS, as determined by univariate and multivariate analysis (HR=1.81, 95% CI=1.26-2.62 and HR=1.86, 95% CI=1.15-3.00, respectively). Similarly, Kaplan-Meier and Cox proportional hazard model analyses indicated that patients carrying the G allele of Fas -670A/G polymorphisms had shorter PFS and OS than those carrying the AA genotype (HR=1.67, 95% CI=1.15-2.42 and HR=1.80, 95% CI=1.10-2.94, respectively). CONCLUSIONS Functional polymorphisms in the Fas and FasL genes may be involved in epithelial ovarian cancer development and progression in northern Chinese women.
Collapse
Affiliation(s)
- Yan Li
- Department of Molecular Biology, Hebei Medical University, Fourth Hospital, Shijiazhuang, China.
| | | | | | | | | | | |
Collapse
|