1
|
Silverstein TP. Oxidative Phosphorylation Does Not Violate the Second Law of Thermodynamics. J Phys Chem B 2024; 128:8448-8458. [PMID: 39167050 PMCID: PMC11382260 DOI: 10.1021/acs.jpcb.4c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In a recent series of papers, James W. Lee reported that mitochondrial oxidative phosphorylation violates the second law of thermodynamics and that it is allowed to do so because it is a "Type-B" process that features lateral and longitudinal membrane asymmetry. We show here that these contentions are based on problematic interpretations of the literature. More reliable values of ΔGredox and ΔGATP synthesis show that the second law is not violated. More recent reports on the structures of the redox-driven proton pumps (Complexes I, III, and IV) suggest that longitudinal membrane asymmetry does not exist. Finally, Lee's predictions for the concentration of protons localized at the P-side surface of the bioenergetic membrane are likely to be much too high due to several errors; thus, his predicted high values of ΔpHsurface that violate the second law are likely to be wrong. There is currently no strong experimental or theoretical evidence to support the contention that oxidative phosphorylation violates the second law of thermodynamics.
Collapse
Affiliation(s)
- Todd P Silverstein
- Department of Chemistry (emeritus), Willamette University, Salem, Oregon 97301,United States
| |
Collapse
|
2
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Mencía M. The archaeal-bacterial lipid divide, could a distinct lateral proton route hold the answer? Biol Direct 2020; 15:7. [PMID: 32317017 PMCID: PMC7171761 DOI: 10.1186/s13062-020-00262-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
The archaea-bacteria lipid divide is one of the big evolutionary enigmas concerning these two domains of life. In short, bacterial membranes are made of fatty-acid esters whereas archaeal ones contain isoprenoid ethers, though at present we do not have a good understanding on why they evolved differently. The lateral proton transfer mode of energy transduction in membranes posits that protons utilize the solvation layer of the membrane interface as the main route between proton pumps and ATPases, avoiding dissipation of energy to the bulk phase. In this article I present the hypothesis on a proton-transport route through the ester groups of bacterial phospholipids as an explanation for the evolutionary divergence seen between bacteria and archaea. REVIEWERS: This article was reviewed by Uri Gophna (Editorial Board member) and Víctor Sojo.
Collapse
Affiliation(s)
- Mario Mencía
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid - Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Adaptation in Haloalkaliphiles and Natronophilic Bacteria. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Relationship between rates of respiratory proton extrusion and ATP synthesis in obligately alkaliphilic Bacillus clarkii DSM 8720(T). J Bioenerg Biomembr 2012; 44:265-72. [PMID: 22437739 DOI: 10.1007/s10863-012-9430-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 02/29/2012] [Indexed: 10/28/2022]
Abstract
To elucidate the energy production mechanism of alkaliphiles, the relationship between the rate of proton extrusion via the respiratory chain and the corresponding ATP synthesis rate was examined in obligately alkaliphilic Bacillus clarkii DSM 8720(T) and neutralophilic Bacillus subtilis IAM 1026. The oxygen consumption rate of B. subtilis IAM 1026 cells at pH 7 was approximately 2.5 times higher than that of B. clarkii DSM 8720(T) cells at pH 10. The H⁺/O ratio of B. clarkii DSM 8720(T) cells was approximately 1.8 times higher than that of B. subtilis IAM 1026 cells. On the basis of oxygen consumption rate and H⁺/O ratio, the rate of proton translocation via the respiratory chain in B. subtilis IAM 1026 is expected to be approximately 1.4 times higher than that in B. clarkii DSM 8720(T). Conversely, the rate of ATP synthesis in B. clarkii DSM 8720(T) at pH 10 was approximately 7.5 times higher than that in B. subtilis IAM 1026 at pH 7. It can be predicted that the difference in rate of ATP synthesis is due to the effect of transmembrane electrical potential (Δψ) on protons translocated via the respiratory chain. The Δψ values of B. clarkii DSM 8720(T) and B. subtilis IAM 1026 were estimated as -192 mV (pH 10) and -122 mV (pH 7), respectively. It is considered that the discrepancy between the rates of proton translocation and ATP synthesis between the strains used in this study is due to the difference in ATP production efficiency per translocated proton between the two strains caused by the difference in Δψ.
Collapse
|
6
|
Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:985-92. [PMID: 18485887 PMCID: PMC2695506 DOI: 10.1016/j.bbabio.2008.04.028] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
All living cells routinely expel Na(+) ions, maintaining lower concentration of Na(+) in the cytoplasm than in the surrounding milieu. In the vast majority of bacteria, as well as in mitochondria and chloroplasts, export of Na(+) occurs at the expense of the proton-motive force. Some bacteria, however, possess primary generators of the transmembrane electrochemical gradient of Na(+) (sodium-motive force). These primary Na(+) pumps have been traditionally seen as adaptations to high external pH or to high temperature. Subsequent studies revealed, however, the mechanisms for primary sodium pumping in a variety of non-extremophiles, such as marine bacteria and certain bacterial pathogens. Further, many alkaliphiles and hyperthermophiles were shown to rely on H(+), not Na(+), as the coupling ion. We review here the recent progress in understanding the role of sodium-motive force, including (i) the conclusion on evolutionary primacy of the sodium-motive force as energy intermediate, (ii) the mechanisms, evolutionary advantages and limitations of switching from Na(+) to H(+) as the coupling ion, and (iii) the possible reasons why certain pathogenic bacteria still rely on the sodium-motive force.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Pavel Dibrov
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
7
|
Detkova EN, Pusheva MA. Energy metabolism in halophilic and alkaliphilic acetogenic bacteria. Microbiology (Reading) 2006. [DOI: 10.1134/s0026261706010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Wang Z, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA. Replacement of amino acid sequence features of a- and c-subunits of ATP synthases of Alkaliphilic Bacillus with the Bacillus consensus sequence results in defective oxidative phosphorylation and non-fermentative growth at pH 10.5. J Biol Chem 2004; 279:26546-54. [PMID: 15024007 DOI: 10.1074/jbc.m401206200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitchell's (Mitchell, P. (1961) Nature 191, 144-148) chemiosmotic model of energy coupling posits a bulk electrochemical proton gradient (Deltap) as the sole driving force for proton-coupled ATP synthesis via oxidative phosphorylation (OXPHOS) and for other bioenergetic work. Two properties of proton-coupled OXPHOS by alkaliphilic Bacillus species pose a challenge to this tenet: robust ATP synthesis at pH 10.5 that does not correlate with the magnitude of the Deltap and the failure of artificially imposed potentials to substitute for respiration-generated potentials in energizing ATP synthesis at high pH (Krulwich, T. (1995) Mol. Microbiol. 15, 403-410). Here we show that these properties, in alkaliphilic Bacillus pseudofirmus OF4, depend upon alkaliphile-specific features in the proton pathway through the a- and c-subunits of ATP synthase. Site-directed changes were made in six such features to the corresponding sequence in Bacillus megaterium, which reflects the consensus sequence for non-alkaliphilic Bacillus. Five of the six single mutants assembled an active ATPase/ATP synthase, and four of these mutants exhibited a specific defect in non-fermentative growth at high pH. Most of these mutants lost the ability to generate the high phosphorylation potentials at low bulk Deltap that are characteristic of alkaliphiles. The aLys(180) and aGly(212) residues that are predicted to be in the proton uptake pathway of the a-subunit were specifically implicated in pH-dependent restriction of proton flux through the ATP synthase to and from the bulk phase. The evidence included greatly enhanced ATP synthesis in response to an artificially imposed potential at high pH. The findings demonstrate that the ATP synthase of extreme alkaliphiles has special features that are required for non-fermentative growth and OXPHOS at high pH.
Collapse
Affiliation(s)
- ZhenXiong Wang
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
9
|
Dimroth P, Cook GM. Bacterial Na+- or H+-coupled ATP Synthases Operating at Low Electrochemical Potential. Adv Microb Physiol 2004; 49:175-218. [PMID: 15518831 DOI: 10.1016/s0065-2911(04)49004-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In certain strictly anaerobic bacteria, the energy for growth is derived entirely from a decarboxylation reaction. A prominent example is Propionigenium modestum, which converts the free energy of the decarboxylation of (S)-methylmalonyl-CoA to propionyl-CoA (DeltaG degrees =-20.6 kJ/mol) into an electrochemical Na(+) ion gradient across the membrane. This energy source is used as a driving force for ATP synthesis by a Na(+)-translocating F(1)F(0) ATP synthase. According to bioenergetic considerations, approximately four decarboxylation events are necessary to support the synthesis of one ATP. This unique feature of using Na(+) instead of H(+) as the coupling ion has made this ATP synthase the paradigm to study the ion pathway across the membrane and its relationship to rotational catalysis. The membrane potential (Deltapsi) is the key driving force to convert ion translocation through the F(0) motor components into torque. The resulting rotation elicits conformational changes at the catalytic sites of the peripheral F(1) domain which are instrumental for ATP synthesis. Alkaliphilic bacteria also face the challenge of synthesizing ATP at a low electrochemical potential, but for entirely different reasons. Here, the low potential is not the result of insufficient energy input from substrate degradation, but of an inverse pH gradient. This is a consequence of the high environmental pH where these bacteria grow and the necessity to keep the intracellular pH in the neutral range. In spite of this unfavorable bioenergetic condition, ATP synthesis in alkaliphilic bacteria is coupled to the proton motive force (DeltamuH(+)) and not to the much higher sodium motive force (DeltamuNa(+)). A peculiar feature of the ATP synthases of alkaliphiles is the specific inhibition of their ATP hydrolysis activity. This inhibition appears to be an essential strategy for survival at high external pH: if the enzyme were to operate as an ATPase, protons would be pumped outwards to counteract the low DeltamuH(+), thus wasting valuable ATP and compromising acidification of the cytoplasm at alkaline pH.
Collapse
Affiliation(s)
- Peter Dimroth
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
10
|
Gilmour R, Messner P, Guffanti AA, Kent R, Scheberl A, Kendrick N, Krulwich TA. Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol 2000; 182:5969-81. [PMID: 11029415 PMCID: PMC94729 DOI: 10.1128/jb.182.21.5969-5981.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large majority of proteins of alkaliphilic Bacillus pseudofirmus OF4 grown at pH 7.5 and 10.5, as studied by two-dimensional gel electrophoresis analyses, did not exhibit significant pH-dependent variation. A new surface layer protein (SlpA) was identified in these studies. Although the prominence of some apparent breakdown products of SlpA in gels from pH 10.5-grown cells led to discovery of the alkaliphile S-layer, the largest and major SlpA forms were present in large amounts in gels from pH 7.5-grown cells as well. slpA RNA abundance was, moreover, unchanged by growth pH. SlpA was similar in size to homologues from nonalkaliphiles but contained fewer Arg and Lys residues. An slpA mutant strain (RG21) lacked an exterior S-layer that was identified in the wild type by electron microscopy. Electrophoretic analysis of whole-cell extracts further indicated the absence of a 90-kDa band in the mutant. This band was prominent in wild-type extracts from both pH 7.5- and 10.5-grown cells. The wild type grew with a shorter lag phase than RG21 at either pH 10.5 or 11 and under either Na(+)-replete or suboptimal Na(+) concentrations. The extent of the adaptation deficit increased with pH elevation and suboptimal Na(+). By contrast, the mutant grew with a shorter lag and faster growth rate than the wild type at pH 7. 5 under Na(+)-replete and suboptimal Na(+) conditions, respectively. Logarithmically growing cells of the two strains exhibited no significant differences in growth rate, cytoplasmic pH regulation, starch utilization, motility, Na(+)-dependent transport of alpha-aminoisobutyric acid, or H(+)-dependent synthesis of ATP. However, the capacity for Na(+)-dependent pH homeostasis was diminished in RG21 upon a sudden upward shift of external pH from 8. 5 to 10.5. The energy cost of retaining the SlpA layer at near-neutral pH is apparently adverse, but the constitutive presence of SlpA enhances the capacity of the extremophile to adjust to high pH.
Collapse
Affiliation(s)
- R Gilmour
- Department of Biochemistry and Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA. Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 1999; 40:401-38. [PMID: 9889983 DOI: 10.1016/s0065-2911(08)60136-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The challenge of maintaining a cytoplasmic pH that is much lower than the external pH is central to the adaptation of extremely alkaliphilic Bacillus species to growth at pH values above 10. The success with which this challenge is met may set the upper limit of pH for growth in these bacteria, all of which also exhibit a low content of basic amino acids in proteins or protein segments that are exposed to the outside bulk phase liquid. The requirement for an active Na(+)-dependent cycle and possible roles of acidic cell wall components in alkaliphile pH homeostasis are reviewed. The gene loci that encode Na+/H+ antiporters that function in the active cycle are described and compared with the less Na(+)-specific homologues thus far found in non-alkaliphilic Gram-positive prokaryotes. Alkaliphilic Bacillus species carry out oxidative phosphorylation using an exclusively H(+)-coupled ATPase (synthase). Nonetheless, ATP synthesis is more rapid and reaches a higher phosphorylation potential at highly alkaline pH than at near-neutral pH even though the bulk electrochemical proton gradient across the coupling membrane is lower at highly alkaline pH. It is possible that some of the protons extruded by the respiratory chain are conveyed to the ATP synthase without first equilibrating with the external bulk phase. Mechanisms that might apply to oxidative phosphorylation in this type of extensively studied alkaliphile are reviewed, and note is made of the possibility of different kinds of solutions to the problem that may be found in new alkaliphilic bacteria that are yet to be isolated or characterized.
Collapse
Affiliation(s)
- T A Krulwich
- Department of Biochemistry, Mount Sinai School of Medicine of CUNY, New York, USA
| | | | | | | | | |
Collapse
|
12
|
Trchounian A. Ion Exchange in Facultative Anaerobes: Does a Proton-potassium Pump Exist in AnaerobicEscherichia Coli? Anaerobe 1997; 3:355-71. [PMID: 16887611 DOI: 10.1006/anae.1997.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1997] [Accepted: 05/27/1997] [Indexed: 11/22/2022]
Affiliation(s)
- A Trchounian
- Department of Biophysics, Biological Faculty of Yerevan State University, 375049, Yerevan, Armenia.
| |
Collapse
|
13
|
Gilmour R, Krulwich TA. Construction and characterization of a mutant of alkaliphilic Bacillus firmus OF4 with a disrupted cta operon and purification of a novel cytochrome bd. J Bacteriol 1997; 179:863-70. [PMID: 9006044 PMCID: PMC178771 DOI: 10.1128/jb.179.3.863-870.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The caa3-type terminal oxidase of Bacillus firmus OF4 has been proposed to play an important role in the growth and bioenergetics of this alkaliphile (A. A. Guffanti and T. A. Krulwich, J. Biol. Chem. 267:9580-9588, 1992). A mutant strain was generated in which the cta operon encoding the oxidase was disrupted by insertion of a spectinomycin resistance cassette. The mutant was unable to oxidize ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). Absorption spectra of membranes confirmed the loss of the enzyme and indicated the presence of a cytochrome bd-type terminal oxidase. The mutant could grow on glucose but was unable to grow on malate or other nonfermentative carbon sources, despite the presence of the cytochrome bd. The cytochrome bd was purified from the mutant. The enzyme consisted of two subunits and, with menadiol as substrate, consumed oxygen with a specific activity of 12 micromol of O2 x min(-1) x mg(-1). In contrast to both cytochromes bd of Escherichia coli, the enzyme did not utilize TMPD as an electron source. A number of additional features, including subunit size and spectral properties, distinguish this cytochrome bd from its counterparts in E. coli and Azotobacter vinelandii.
Collapse
Affiliation(s)
- R Gilmour
- Department of Biochemistry, Mount Sinai School of Medicine of CUNY, New York, New York 10029, USA
| | | |
Collapse
|
14
|
Gilmour R, Krulwich TA. Purification and characterization of the succinate dehydrogenase complex and CO-reactive b-type cytochromes from the facultative alkaliphile Bacillus firmus OF4. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:57-63. [PMID: 8764891 DOI: 10.1016/0005-2728(96)00028-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The presence of a cytochrome bo-type terminal oxidase in Bacillus firmus OF4 had been suggested from the effects of CO on the spectra of reduced membrane cytochromes (Hicks, D.B., Plass, R.J. and Quirk, P.G. (1991) J. Bacteriol. 173, 5010-5016). In that study the CO-binding b-type cytochrome was partially purified by anion exchange chromatography. No further purification was attempted but later HPLC analysis indicated the absence of significant heme O in the B. firmus OF4 membranes. The current work shows that the partially purified cytochrome b is actually composed of three different b-type cytochromes which can be separated and purified by a combination of ion-exchange, hydroxyapatite and gel filtration chromatographies. Two of the cytochromes were CO-reactive but lacked the characteristic multisubunit composition of known terminal oxidases. Neither purified cytochrome catalyzed quinol or ferrocytochrome c oxidation. The more abundant CO-reactive b-type cytochrome (cytochrome b560) had an apparent molecular mass of 10 kDa, whereas the other, more minor component (cytochrome b558), was partially purified and showed two bands of 23 and 17 kDa on SDS-PAGE. The functions of the cytochromes b560 and b558 remain unknown but together they account for the spectrum originally attributed to cytochrome bo. The third, non-CO reactive, cytochrome b was associated with substantial succinate dehydrogenase activity and was purified as a three subunit succinate dehydrogenase complex with high specific activity (17.7 mumol/min/mg). Limited N-terminal sequence of each subunit demonstrated marked similarity to the complex from Bacillus subtilis. The cytochrome b of the alkaliphile enzyme was reduced about 50% by succinate compared to the level of reduction achieved by dithionite. The enzyme reacted with both napthoquinones and benzoquinones. The results presented indicate that Bacillus firmus OF4 contains a succinate dehydrogenase complex with very similar properties to the enzyme from Bacillus subtilis, but does not contain a cytochrome o-type terminal oxidase under the growth conditions studied.
Collapse
Affiliation(s)
- R Gilmour
- Department of Biochemistry, Mount Sinai School of Medicine of CUNY, New York 10029, USA
| | | |
Collapse
|
15
|
Verkhovskaya ML, Verkhovsky MI, Wikström M. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1273:207-16. [PMID: 8616158 DOI: 10.1016/0005-2728(95)00142-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Respiration-driven Na+ transport from Escherichia coli cells and right-side-out membrane vesicles is strictly dependent on K+. Cells from an E. colic mutant deficient in three major K+ transport systems were incapable of accumulating K+ or expelling Na+ unless valinomycin was added. Membrane vesicles from an E. coli mutant from which the genes encoding the two known electrogenic Na+/nH+ antiporters nhaA and nhaB were deleted transported Na+ as well as did vesicles from wild-type cells. Quantitative analysis of Delta psi and Delta pH showed a high driving force for electrogenic Na+/nH+ antiport whether K+ was present or not, although Na+ transport occurred only in its presence. These results suggest that an Na+/nH+ antiporter is not responsible for the Na+ transport. Respiration-driven efflux of Na+ from vesicles was found to be accompanied by primary uphill efflux of K+. Also, no respiration-dependent efflux of K+ was observed in the absence of Na+. Such coupling between Na+ and K+ fluxes may be explained by the operation of an Na+, K+/H+ antiporter previously described in E. coli membrane vesicles (Verkhovskay, M.L., Verkhovsky, M.I. and Wikström, M. (1995) FEBS Lett. 363, 46-48). Active Na+ transport is abolished when delta mu H+ is eliminated by a protonophore, but at low concentrations the protonophore actually accelerated Na+ transport. Such an effect may be expected if the Na+, K+/H+ antiporter normally operates in tight conjunction with respiratory chain complexes, thus exhibiting some phenomenological properties of a primary redox-linked sodium pump.
Collapse
Affiliation(s)
- M L Verkhovskaya
- Helsinki Bioenergetics Group, Institute of Biomedical Sciences, Department of Medical Chemistry, University of Helsinki, Finland
| | | | | |
Collapse
|
16
|
Hicks DB, Krulwich TA. The respiratory chain of alkaliphilic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1229:303-14. [PMID: 7748882 DOI: 10.1016/0005-2728(95)00024-d] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- D B Hicks
- Department of Biochemistry, Mount Sinai School of Medicine of the City University of New York, NY 10029, USA
| | | |
Collapse
|
17
|
Abstract
Alkaliphilic Bacillus species provide experimental opportunities for examination of physiological processes under conditions in which the stress of the extreme environment brings issues of general biological importance into special focus. The alkaliphile, like many other cells, uses Na+/H+ antiporters in pH regulation, but its array of these porters, and other ion-flux pathways that energize and support their activity, result in an extraordinary capacity for pH homeostasis; this process nonetheless becomes the factor that limits growth at the upper edge of the pH range. Above pH 9.5, aerobic alkaliphiles maintain a cytoplasmic pH that is two or more units below the external pH. This chemiosmotically adverse delta pH is bypassed by use of an electrochemical gradient of Na+ rather than of protons to energize solute uptake and motility. By contrast, ATP synthesis occurs via completely proton-coupled oxidative phosphorylation that proceeds just as well, or better, at pH 10 and above as it does in the same bacteria growing at lower pH, without the adverse pH gradient. Various mechanisms that might explain this conundrum are described, and the current state of the evidence supporting them is summarized.
Collapse
Affiliation(s)
- T A Krulwich
- Department of Biochemistry, Mount Sinai School of Medicine of CUNY, New York 10029, USA
| |
Collapse
|
18
|
Na+ as coupling ion in energy transduction in extremophilic Bacteria and Archaea. World J Microbiol Biotechnol 1995; 11:58-70. [DOI: 10.1007/bf00339136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Affiliation(s)
- H K Hall
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile 36688, USA
| | | | | |
Collapse
|
20
|
Abstract
Uncoupler resistance presents a potential challenge to the conventional chemiosmotic coupling mechanism. In E. coli, an adaptive response to uncouplers was found in cell growing under conditions requiring oxidative phosphorylation. It is suggested that uncoupler-resistant mutants described in the earlier literature might represent a constitutive state of expression of this "low energy shock" adaptive response. In the environment, bacteria are confronted by nonclassical uncoupling factors such as organic solvents, heat, and extremes of pH. It is suggested that the low energy shock response will aid the cell in coping with the effects of natural uncoupling factors. The genetic analysis of uncoupler resistance has only recently began, and is yielding interesting and largely unexpected results. In Bacillus subtilis, a mutation in fatty acid desaturase causes an increased content of saturated fatty acids in the membrane and increased uncoupler resistance. The protonophoric efficiency of uncouplers remains unchanged in the mutants, inviting nonorthodox interpretations of the mechanism of resistance. In E. coli, two loci conferring resistance to CCCP and TSA were cloned and were found to encode multidrug resistance pumps. Resistance to one of the uncouplers, TTFB, remained unchanged in strains mutated for the MDRs, suggesting a resistance mechanism different from uncoupler extrusion.
Collapse
Affiliation(s)
- K Lewis
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
21
|
Trchounian AA, Vassilian AV. Relationship between the F0F1-ATPase and the K(+)-transport system within the membrane of anaerobically grown Escherichia coli. N,N'-dicyclohexylcarbodiimide-sensitive ATPase activity in mutants with defects in K(+)-transport. J Bioenerg Biomembr 1994; 26:563-71. [PMID: 7896771 DOI: 10.1007/bf00762741] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A considerable (2-fold) stimulation of the DCCD-sensitive ATPase activity by K+ or Rb+, but not by Na+, over the range of zero to 100 mM was shown in the isolated membranes of E. coli grown anaerobically in the presence of glucose. This effect was observed only in parent and in the trkG, but not in the trkA, trkE, or trkH mutants. The trkG or the trkH mutant with an unc deletion had a residual ATPase activity not sensitive to DCCD. A stimulation of the DCCD-sensitive ATPase activity by K+ was absent in the membranes from bacteria grown anaerobically in the presence of sodium nitrate. Growth of the trkG, but not of other trk mutants, in the medium with moderate K+ activity did not depend on K+ concentration. Under upshock, K+ accumulation was essentially higher in the trkG mutant than in the other trk mutant. The K(+)-stimulated DCCD-sensitive ATPase activity in the membranes isolated from anaerobically grown E. coli has been shown to depend absolutely on both the F0F1 and the Trk system and can be explained by a direct interaction between these transport systems within the membrane of anaerobically grown bacteria with the formation of a single supercomplex functioning as a H(+)-K+ pump. The trkG gene is most probably not functional in anaerobically grown bacteria.
Collapse
Affiliation(s)
- A A Trchounian
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | | |
Collapse
|
22
|
Guffanti A, Krulwich T. Oxidative phosphorylation by ADP + P(i)-loaded membrane vesicles of alkaliphilic Bacillus firmus OF4. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31843-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Gabriel B, Prats M, Teissié J. Proton lateral conduction along a lipid monolayer spread on a physiological subphase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1186:172-6. [PMID: 8043591 DOI: 10.1016/0005-2728(94)90176-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A localized lateral proton pathway is present along the phospholipid polar heads and bound water molecules when the lipids are spread in monolayers at the air/water interface. Conduction can be detected on concentrated buffers as found under physiological conditions if the lateral proton gradient is large enough. The localized movement supports the occurrence of microlocalized proton circuits along a membrane and of lateral proton gradients.
Collapse
Affiliation(s)
- B Gabriel
- Laboratoire de pharmacologie et toxicologie fondamentales du CNRS, Département III-Glycoconjugués et Biomembranes, Toulouse, France
| | | | | |
Collapse
|
24
|
Quirk PG, Guffanti AA, Clejan S, Cheng J, Krulwich TA. Isolation of Tn917 insertional mutants of Bacillus subtilis that are resistant to the protonophore carbonyl cyanide m-chlorophenylhydrazone. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1186:27-34. [PMID: 8011666 DOI: 10.1016/0005-2728(94)90131-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tn917 transposition libraries prepared from Bacillus subtilis were screened for mutants that had insertions in the chromosome resulting in resistance to the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP). Five such strains were characterized. Three of these were found to have distinct insertion sites that resulted in changes in fatty acid composition of the membrane lipids. The lipid changes were qualitatively similar to changes observed earlier in CCCP-resistant strains of B. subtilis that had been isolated after chemical mutagenesis. However, the extent of the changes was more modest, correlating with a lower level of protonophore-resistance. One of these mutants was disrupted in a gene homologous to the Escherichia coli rho gene, as reported earlier (Quirk et al. (1993) J. Bacteriol. 175, 647-654), one was disrupted in a new member of the two-component signalling systems, and the third was disrupted in a new gene of unknown function that apparently forms an operon with transporter genes. The other two CCCP-resistant mutants were disrupted in genes that are likely to encode membrane transporters; the disruption of these genes may have reduced the transmembrane ion leaks during growth, thus conferring modest protonophore-resistance. In one of these strains, the disrupted gene is part of an apparent operon that is a homologue of iron uptake operons from other prokaryotes.
Collapse
Affiliation(s)
- P G Quirk
- Department of Biochemistry, Mount Sinai School of Medicine of the City University of New York, NY 10029
| | | | | | | | | |
Collapse
|
25
|
Sturr MG, Guffanti AA, Krulwich TA. Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 1994; 176:3111-6. [PMID: 8195065 PMCID: PMC205478 DOI: 10.1128/jb.176.11.3111-3116.1994] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The effect of external pH on growth of alkaliphilic Bacillus firmus OF4 was studied in steady-state, pH-controlled cultures at various pH values. Generation times of 54 and 38 min were observed at external pH values of 7.5 and 10.6, respectively. At more alkaline pH values, generation times increased, reaching 690 min at pH 11.4; this was approximately the upper limit of pH for growth with doubling times below 12 h. Decreasing growth rates above pH 11 correlated with an apparent decrease in the ability to tightly regulate cytoplasmic pH and with the appearance of chains of cells. Whereas the cytoplasmic pH was maintained at pH 8.3 or below up to external pH values of 10.8, there was an increase up to pH 8.9 and 9.6 as the growth pH was increased to 11.2 and 11.4, respectively. Both the transmembrane electrical potential and the phosphorylation potential (delta Gp) generally increased over the total pH range, except for a modest fall-off in the delta Gp at pH 11.4. The capacity for pH homeostasis rather than that for oxidative phosphorylation first appeared to become limiting for growth at the high edge of the pH range. No cytoplasmic or membrane-associated organelles were observed at any growth pH, confirming earlier conclusions that structural sequestration of oxidative phosphorylation was not used to resolve the discordance between the total electrochemical proton gradient (delta p) and the delta Gp as the external pH is raised. Were a strictly bulk chemiosmotic coupling mechanism to account for oxidative phosphorylation over the entire range, the deltaGp/deltap ration (which would equal the H+/ATP ratio) would rise from about 3 at pH 7.5 to 13 at pH 11.2, dropping to 7 at pH 11.4 only because of the rise in cytoplasmic pH relative to other parameters. Moreover, the molar growth yields on malate were higher at pH 10.5 than at pH 7.5, indicating greater rather than lesser efficiency in the use of substrate at the more alkaline pH.
Collapse
Affiliation(s)
- M G Sturr
- Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, New York 10029
| | | | | |
Collapse
|
26
|
A direct interaction between the H+-F1F0-ATPase and the K+ transport within the membrane of anaerobically grown bacteria. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0302-4598(94)87026-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Cloning of the cta operon from alkaliphilic Bacillus firmus OF4 and characterization of the pH-regulated cytochrome caa3 oxidase it encodes. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)54205-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Krulwich TA, Guffanti AA. Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria. J Bioenerg Biomembr 1992; 24:587-99. [PMID: 1334072 DOI: 10.1007/bf00762351] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative phosphorylation, which involves an exclusively proton-coupled ATP synthase, and pH homeostasis, which depends upon electrogenic antiport of cytoplasmic Na+ in exchange for H+, are the two known bioenergetic processes that require inward proton translocation in extremely alkaliphilic bacteria. Energy coupling to oxidative phosphorylation is particularly difficult to fit to a strictly chemiosmotic model because of the low bulk electrochemical proton gradient that follows from the maintenance of a cytoplasmic pH just above 8 during growth at pH 10.5 and higher. A large quantitative and variable discrepancy between the putative chemiosmotic driving force and the phosphorylation potential results. This is compounded by a nonequivalence between respiration-dependent bulk gradients and artificially imposed ones in energizing ATP synthesis, and by an apparent requirement for specific respiratory chain complexes that do not relate solely to their role in generation of bulk gradients. Special features of the synthase may contribute to the mode of energization, just as novel features of the Na+ cycle may relate to the extraordinary capacity of the extreme alkaliphiles to achieve pH homeostasis during growth at, or sudden shifts to, an external pH of 10.5 and above.
Collapse
Affiliation(s)
- T A Krulwich
- Department of Biochemistry, Mount Sinai School of Medicine, City University of New York, New York 10029
| | | |
Collapse
|
29
|
Ivey DM, Krulwich TA. Two unrelated alkaliphilic Bacillus species possess identical deviations in sequence from those of other prokaryotes in regions of F0 proposed to be involved in proton translocation through the ATP synthase. Res Microbiol 1992; 143:467-70. [PMID: 1448623 DOI: 10.1016/0923-2508(92)90092-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The a and c subunits of two unrelated alkaliphilic Bacillus species contain unusual motifs in regions previously implicated by others in H(+)-coupled oxidative phosphorylation. The facultative alkaliphile B. firmus OF4 apparently does not contain genes encoding an alternative F0, supporting other evidence that a single species of proton-translocating F1F0-ATPase catalyses oxidative phosphorylation both at low and high pH. The unusual F0 sequence motifs may be part of the adaptation of the extreme alkaliphiles to growth at very high pH.
Collapse
Affiliation(s)
- D M Ivey
- Department of Biochemistry, Mount Sinai School of Medicine of CUNY, NY 10029
| | | |
Collapse
|