1
|
Debatisse K, Lopez P, Poli M, Rousseau P, Campos M, Coddeville M, Cocaign-Bousquet M, Le Bourgeois P. Redefining the bacteriophage mv4 site-specific recombination system and the sequence specificity of its attB and core-attP sites. Mol Microbiol 2024; 121:1200-1216. [PMID: 38705589 DOI: 10.1111/mmi.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024]
Abstract
Through their involvement in the integration and excision of a large number of mobile genetic elements, such as phages and integrative and conjugative elements (ICEs), site-specific recombination systems based on heterobivalent tyrosine recombinases play a major role in genome dynamics and evolution. However, despite hundreds of these systems having been identified in genome databases, very few have been described in detail, with none from phages that infect Bacillota (formerly Firmicutes). In this study, we reanalyzed the recombination module of Lactobacillus delbrueckii subsp. bulgaricus phage mv4, previously considered atypical compared with classical systems. Our results reveal that mv4 integrase is a 369 aa protein with all the structural hallmarks of recombinases from the Tn916 family and that it cooperatively interacts with its recombination sites. Using randomized DNA libraries, NGS sequencing, and other molecular approaches, we show that the 21-bp core-attP and attB sites have structural similarities to classical systems only if considering the nucleotide degeneracy, with two 7-bp inverted regions corresponding to mv4Int core-binding sites surrounding a 7-bp strand-exchange region. We also examined the different compositional constraints in the core-binding regions, which define the sequence space of permissible recombination sites.
Collapse
Affiliation(s)
- Kevin Debatisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Pierre Lopez
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Maryse Poli
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Philippe Rousseau
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Manuel Campos
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | - Michèle Coddeville
- CBI, LMGM, Université de Toulouse, CNRS, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| | | | - Pascal Le Bourgeois
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- Université Toulouse III - Paul Sabatier, Toulouse, France
| |
Collapse
|
2
|
Lunt BL, Hatfull GF. Brujita Integrase: A Simple, Arm-Less, Directionless, and Promiscuous Tyrosine Integrase System. J Mol Biol 2016; 428:2289-2306. [PMID: 27113630 DOI: 10.1016/j.jmb.2016.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022]
Abstract
Mycobacteriophage Brujita is an unusual temperate phage in which establishment of superinfection immunity is dependent on chromosomal integration. Integration is mediated by a non-canonical tyrosine integrase (Int) lacking an N-terminal domain typically associated with binding to arm-type sites within the phage attachment site (attP). This raises the question as to how these Ints bind their DNA substrates, if they form higher-order protein DNA complexes, and how site selection and recombinational directionality are determined. Here we show that Brujita Int is a simple recombinase, whose properties more closely resemble those of FLP and Cre than it does the canonical phage Ints. Brujita Int uses relatively small DNA substrates, fails to discriminate between attP and attB, cleaves attachment site DNA to form a 6-base overlap region, and lacks directional control. Brujita Int also has an unusual pattern of binding to its DNA substrates. It binds to two half sites (B and B') at attB, although binding to the B half site is strongly dependent on occupancy of B'. In contrast, binding to the P half site is not observed, even when Int is bound at P'. However, an additional Int binding site (P1) is displaced to the left of the crossover site at attP, is required for recombination and is predicted to facilitate binding of Int to the P half site during synapsis. These simple phage Int systems may reflect ancestral states of phage evolution with the complexities of higher-order complex formation and directional control representing subsequent adaptations.
Collapse
Affiliation(s)
- Bryce L Lunt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
3
|
Nilsson H, Cardoso-Palacios C, Haggård-Ljungquist E, Nilsson AS. Phylogenetic structure and evolution of regulatory genes and integrases of P2-like phages. BACTERIOPHAGE 2014; 1:207-218. [PMID: 23050214 PMCID: PMC3448106 DOI: 10.4161/bact.1.4.18470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The phylogenetic relationships and structural similarities of the proteins encoded within the regulatory region (containing the integrase gene and the lytic–lysogenic transcriptional switch genes) of P2-like phages were analyzed, and compared with the phylogenetic relationship of P2-like phages inferred from four structural genes. P2-like phages are thought to be one of the most genetically homogenous phage groups but the regulatory region nevertheless varies extensively between different phage genomes.
The analyses showed that there are many types of regulatory regions, but two types can be clearly distinguished; regions similar either to the phage P2 or to the phage 186 regulatory regions. These regions were also found to be most frequent among the sequenced P2-like phage or prophage genomes, and common in phages using Escherichia coli as a host. Both the phylogenetic and the structural analyses showed that these two regions are related. The integrases as well as the cox/apl genes show a common monophyletic origin but the immunity repressor genes, the type P2 C gene and the type 186 cI gene, are likely of different origin. There was no indication of recombination between the P2–186 types of regulatory genes but the comparison of the phylogenies of the regulatory region with the phylogeny based on four structural genes revealed recombinational events between the regulatory region and the structural genes.
Less common regulatory regions were phylogenetically heterogeneous and typically contained a fusion of genes from distantly related or unknown phages and P2-like genes.
Collapse
Affiliation(s)
- Hanna Nilsson
- Department of Genetics, Microbiology, and Toxicology; Stockholm University; Stockholm, Sweden
| | | | | | | |
Collapse
|
4
|
Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM. New applications for phage integrases. J Mol Biol 2014; 426:2703-16. [PMID: 24857859 PMCID: PMC4111918 DOI: 10.1016/j.jmb.2014.05.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. Phage integrases are site-specific recombinases that mediate controlled and precise DNA integration and excision. The serine integrases, such as ϕC31 integrase, can be used for efficient recombination in heterologous hosts as they use short recombination substrates, they are directional and they do not require host factors. Both serine and tyrosine integrases, such as λ integrase, are versatile tools for DNA cloning and assembly in vivo and in vitro. Controlled expression of orthologous serine integrases and their cognate recombination directionality factors can be used to generate living biocomputers. Serine integrases are increasingly being exploited for synthetic biology applications.
Collapse
Affiliation(s)
- Paul C M Fogg
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean Colloms
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh EH9 3JR, UK
| | - Marshall Stark
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
5
|
Michael GB, Kadlec K, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Murray RW, Watts JL, Schwarz S. ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer. J Antimicrob Chemother 2011; 67:91-100. [DOI: 10.1093/jac/dkr411] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Highlander SK, Weissenberger S, Alvarez LE, Weinstock GM, Berget PB. Complete nucleotide sequence of a P2 family lysogenic bacteriophage, ϕMhaA1-PHL101, from Mannheimia haemolytica serotype A1. Virology 2006; 350:79-89. [PMID: 16631219 DOI: 10.1016/j.virol.2006.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/11/2006] [Accepted: 03/15/2006] [Indexed: 11/21/2022]
Abstract
The 34,525 nucleotide sequence of a double-stranded DNA bacteriophage (phiMhaA1-PHL101) from Mannheimia haemolytica serotype A1 has been determined. The phage encodes 50 open reading frames. Twenty-three of the proteins are similar to proteins of the P2 family of phages. Other protein sequences are most similar to possible prophage sequences from the draft genome of Histophilus somni 2336. Fourteen open reading frames encode proteins with no known homolog. The P2 orthologues are collinear in phiMhaA1-PHL101, with the exception of the phage tail protein gene T, which maps in a unique location between the S and V genes. The phage ORFs can be arranged into 17 possible transcriptional units and many of the genes are predicted to be translationally coupled. Southern blot analysis revealed phiMhaA1-PHL101 sequences in other A1 isolates as well as in serotype A5, A6, A9, and A12 strains of M. haemolytica, but not in the related organisms, Mannheimia glucosida or Pasteurella trehalosi.
Collapse
Affiliation(s)
- Sarah K Highlander
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
7
|
Blaha B, Semsey S, Ferenczi S, Csiszovszki Z, Papp PP, Orosz L. A proline tRNA(CGG) gene encompassing the attachment site of temperate phage 16-3 is functional and convertible to suppressor tRNA. Mol Microbiol 2005; 54:742-54. [PMID: 15491364 DOI: 10.1111/j.1365-2958.2004.04300.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several temperate bacteriophage utilize chromosomal sequences encoding putative tRNA genes for phage attachment. However, whether these sequences belong to genes which are functional as tRNA is generally not known. In this article, we demonstrate that the attachment site of temperate phage 16-3 (attB) nests within an active proline tRNA gene in Rhizobium meliloti 41. A loss-of-function mutation in this tRNA gene leads to significant delay in switching from lag to exponential growth phase. We converted the putative Rhizobium gene to an active amber suppressor gene which suppressed amber mutant alleles of genes of 16-3 phage and of Escherichia coli origin in R. meliloti 41 and in Agrobacterium tumefaciens GV2260. Upon lysogenization of R. meliloti by phage 16-3, the proline tRNA gene retained its structural and functional integrity. Aspects of the co-evolution of a temperate phage and its bacterium host is discussed. The side product of this work, i.e. construction of amber suppressor tRNA genes in Rhizobium and Agrobacterium, for the first time widens the options of genetic study.
Collapse
Affiliation(s)
- Béla Blaha
- Institute of Genetics, Agricultural Biotechnology Center, Gödöllõ, Szent-Györgyi A. 4., H-2100, Hungary
| | | | | | | | | | | |
Collapse
|
8
|
Rutkai E, Dorgai L, Sirot R, Yagil E, Weisberg RA. Analysis of insertion into secondary attachment sites by phage lambda and by int mutants with altered recombination specificity. J Mol Biol 2003; 329:983-96. [PMID: 12798688 DOI: 10.1016/s0022-2836(03)00442-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
When phage lambda lysogenizes a cell that lacks the primary bacterial attachment site, integrase catalyzes insertion of the phage chromosome into one of many secondary sites. Here, we characterize the secondary sites that are preferred by wild-type lambda and by lambda int mutants with altered insertion specificity. The sequences of these secondary sites resembled that of the primary site: they contained two imperfect inverted repeats flanking a short spacer. The imperfect inverted repeats of the primary site bind integrase, while the 7 bp spacer, or overlap region, swaps strands with a complementary sequence in the phage attachment site during recombination. We found substantial sequence conservation in the imperfect inverted repeats of secondary sites, and nearly perfect conservation in the leftmost three bases of the overlap region. By contrast, the rightmost bases of the overlap region were much more variable. A phage with an altered overlap region preferred to insert into secondary sites with the corresponding bases. We suggest that this difference between the left and right segments is a result of the defined order of strand exchanges during integrase-promoted recombination. This suggestion accounts for the unexpected segregation pattern of the overlap region observed after insertion into several secondary sites. Some of the altered specificity int mutants differed from wild-type in secondary site preference, but we were unable to identify simple sequence motifs that account for these differences. We propose that insertion into secondary sites is a step in the evolutionary change of phage insertion specificity and present a model of how this might occur.
Collapse
Affiliation(s)
- Edit Rutkai
- Bay Zoltán Institute for Biotechnology, Derkovits Faser 2, H-6726 Szeged, Hungary
| | | | | | | | | |
Collapse
|
9
|
Abstract
Insertion of viral DNA into host chromosomes is an ancient process essential for propagation in the proviral form. Many present-day bacteriophages insert at specific sites on the host chromosome. Insertion by two coliphage families (lambdoid and P4-like) is compared. For both families, insertion sites frequently lie within tRNA genes. The lambdoid phages insert at anticodon loops, whereas the p4-like phages insert in the TpsiC loops downstream from them. The association of both groups with tRNA genes suggests that the primordial insertion site of both groups may have been within a tRNA gene. The integrase proteins used in phage insertion may have originated at that stage, with subsequent diversification of specificity.
Collapse
Affiliation(s)
- Allan Campbell
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Abstract
A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least four different integrase subfamilies have independently evolved specificity for ssrA, and almost every strain analyzed presents a unique set of integrated elements. Even elements using essentially the same integrase can be very diverse, as is a group with an ssrA-specific integrase of the P4 subfamily. This same integrase appears to promote damage routinely at attachment sites, which may be adaptive. Elements in arrays can recombine; one such event mediated by invertible DNA segments within neighboring elements likely explains the monophasic nature of Salmonella enterica serovar Typhi. One of a limited set of conserved sequences occurs at the attachment site of each enterobacterial element, apparently serving as a transcriptional terminator for ssrA. Elements were usually found integrated into tRNA-like sequence at the 3' end of ssrA, at subsites corresponding to those used in tRNA genes; an exception was found at the non-tRNA-like 3' end produced by ssrA gene permutation in cyanobacteria, suggesting that, during the evolution of new site specificity by integrases, tropism toward a conserved 3' end of an RNA gene may be as strong as toward a tRNA-like sequence. The proximity of ssrA and smpB, which act in concert, was also surveyed.
Collapse
Affiliation(s)
- Kelly P Williams
- Department of Biology, Indiana University, 1001 E. Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
11
|
Collins DM, De Zoete M, Cavaignac SM. Mycobacterium avium subsp. paratuberculosis strains from cattle and sheep can be distinguished by a PCR test based on a novel DNA sequence difference. J Clin Microbiol 2002; 40:4760-2. [PMID: 12454189 PMCID: PMC154624 DOI: 10.1128/jcm.40.12.4760-4762.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2002] [Revised: 09/02/2002] [Accepted: 09/22/2002] [Indexed: 11/20/2022] Open
Abstract
A DNA sequence differing between sheep and cattle types of Mycobacterium avium subsp. paratuberculosis was identified and used to develop a PCR test. The test unequivocally distinguished all sheep types from cattle types and was negative for a wide range of other strains from the Mycobacterium avium-Mycobacterium intracellulare complex. The test will be useful for epidemiological purposes, particularly in hosts such as deer that can be easily infected with either type.
Collapse
Affiliation(s)
- Desmond M Collins
- AgResearch, Wallaceville Animal Research Centre, Upper Hutt, New Zealand.
| | | | | |
Collapse
|
12
|
Gyohda A, Furuya N, Kogure N, Komano T. Sequence-specific and non-specific binding of the Rci protein to the asymmetric recombination sites of the R64 shufflon. J Mol Biol 2002; 318:975-83. [PMID: 12054795 DOI: 10.1016/s0022-2836(02)00195-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Specific cleavages within the shufflon-specific recombination site of plasmid R64 were detected by primer extension when a DNA fragment carrying the recombination site was incubated with the shufflon-specific Rci recombinase. Rci-dependent cleavages occurred in the form of a 5' protruding 7 bp staggered cut, suggesting that DNA cleavage and rejoining in the shufflon system take place at these positions. As a result, shufflon crossover sites were designated as sfx sequences consisting of a central 7 bp spacer sequence, and left and right 12 bp arms. R64 sfx sequences are unique among various site-specific recombination sites, since only the spacer sequence and the right arm sequence are conserved among various R64 sfxs, whereas the left arm sequence is not conserved and is not related to the right arm sequence. From nuclease protection analyses, Rci protein was shown to bind to entire R64 and artificial sfx sequences, suggesting that one Rci molecule binds to the conserved sfx right arm in a sequence-specific manner and the second to the sfx left arm in a non-specific manner. The sfx left arm sequences as well as the right arm sequences were shown to determine affinity to Rci and subsequently inversion frequency. Asymmetry of the sfx sequence may be the reason why Rci protein acts only on the inverted sfx sequences.
Collapse
Affiliation(s)
- Atsuko Gyohda
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, 192-0397, Japan
| | | | | | | |
Collapse
|
13
|
Serre MC, Letzelter C, Garel JR, Duguet M. Cleavage properties of an archaeal site-specific recombinase, the SSV1 integrase. J Biol Chem 2002; 277:16758-67. [PMID: 11875075 DOI: 10.1074/jbc.m200707200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SSV1 is a virus infecting the extremely thermophilic archaeon Sulfolobus shibatae. The viral-encoded integrase is responsible for site-specific integration of SSV1 into its host genome. The recombinant enzyme was expressed in Escherichia coli, purified to homogeneity, and its biochemical properties investigated in vitro. We show that the SSV1 integrase belongs to the tyrosine recombinases family and that Tyr(314) is involved in the formation of a 3'-phosphotyrosine intermediate. The integrase cleaves both strands of a synthetic substrate in a temperature-dependent reaction, the cleavage efficiency increasing with temperature. A discontinuity was observed in the Arrhenius plot above 50 degrees C, suggesting that a conformational transition may occur in the integrase at this temperature. Analysis of cleavage time course suggested that noncovalent binding of the integrase to its substrate is rate-limiting in the cleavage reaction. The cleavage positions were localized on each side of the anticodon loop of the tRNA gene where SSV1 integration takes place. Finally, the SSV1 integrase is able to cut substrates harboring mismatches in the binding site. For the cleavage step, the chemical nature of the base in position -1 of cleavage seems to be more important than its pairing to the opposite strand.
Collapse
Affiliation(s)
- Marie-Claude Serre
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS Bat. 34, avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
14
|
Zhao S, Williams KP. Integrative genetic element that reverses the usual target gene orientation. J Bacteriol 2002; 184:859-60. [PMID: 11790760 PMCID: PMC139527 DOI: 10.1128/jb.184.3.859-860.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic element integrating site specifically into a prokaryotic gene usually carries a copy of the 3' portion of that gene that restores the active gene even as the original is disrupted. A cryptic element in Mesorhizobium loti instead carries a copy of the 5' end of the tRNA gene into which it integrated. This has implications for the evolution of new integrase-site combinations.
Collapse
Affiliation(s)
- Sihui Zhao
- Department of Biology, Indiana University, 1001 East Third St., Bloomington, IN 47405, USA
| | | |
Collapse
|
15
|
Semsey S, Blaha B, Köles K, Orosz L, Papp PP. Site-specific integrative elements of rhizobiophage 16-3 can integrate into proline tRNA (CGG) genes in different bacterial genera. J Bacteriol 2002; 184:177-82. [PMID: 11741858 PMCID: PMC134759 DOI: 10.1128/jb.184.1.177-182.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrase protein of the Rhizobium meliloti 41 phage 16-3 has been classified as a member of the Int family of tyrosine recombinases. The site-specific recombination system of the phage belongs to the group in which the target site of integration (attB) is within a tRNA gene. Since tRNA genes are conserved, we expected that the target sequence of the site-specific recombination system of the 16-3 phage could occur in other species and integration could take place if the required putative host factors were also provided by the targeted cells. Here we report that a plasmid (pSEM167) carrying the attP element and the integrase gene (int) of the phage can integrate into the chromosomes of R. meliloti 1021 and eight other species. In all cases integration occurred at so-far-unidentified, putative proline tRNA (CGG) genes, indicating the possibility of their common origin. Multiple alignment of the sequences suggested that the location of the att core was different from that expected previously. The minimal attB was identified as a 23-bp sequence corresponding to the anticodon arm of the tRNA.
Collapse
Affiliation(s)
- Szabolcs Semsey
- Institute of Genetics, Agricultural Biotechnology Center, Gödöllö, Szent-Györgyi A. 4., H-2100, Hungary
| | | | | | | | | |
Collapse
|
16
|
Esposito D, Thrower JS, Scocca JJ. Protein and DNA requirements of the bacteriophage HP1 recombination system: a model for intasome formation. Nucleic Acids Res 2001; 29:3955-64. [PMID: 11574677 PMCID: PMC60247 DOI: 10.1093/nar/29.19.3955] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A fundamental step in site-specific recombination reactions involves the formation of properly arranged protein-DNA structures termed intasomes. The contributions of various proteins and DNA binding sites in the intasome determine not only whether recombination can occur, but also in which direction the reaction is likely to proceed and how fast the reaction will go. By mutating individual DNA binding sites and observing the effects of various mixtures of recombination proteins on the mutated substrates, we have begun to categorize the requirements for intasome formation in the site-specific recombination system of bacteriophage HP1. These experiments define the binding site occupancies in both integrative and excessive recombination for the three recombination proteins: HP1 integrase, HP1 Cox and IHF. This data has allowed us to create a model which explains many of the biochemical features of HP1 recombination, demonstrates the importance of intasome components on the directionality of the reaction and predicts further ways in which the role of the intasome can be explored.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
17
|
Auvray F, Coddeville M, Ordonez RC, Ritzenthaler P. Unusual structure of the attB site of the site-specific recombination system of Lactobacillus delbrueckii bacteriophage mv4. J Bacteriol 1999; 181:7385-9. [PMID: 10572145 PMCID: PMC103704 DOI: 10.1128/jb.181.23.7385-7389.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3' end of a tRNA(Ser) gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNA(Ser) gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model.
Collapse
Affiliation(s)
- F Auvray
- Laboratoire de Microbiologie et de Génétique Moléculaire du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | |
Collapse
|
18
|
Mayer MP, Bueno LC, Hansen EJ, DiRienzo JM. Identification of a cytolethal distending toxin gene locus and features of a virulence-associated region in Actinobacillus actinomycetemcomitans. Infect Immun 1999; 67:1227-37. [PMID: 10024565 PMCID: PMC96451 DOI: 10.1128/iai.67.3.1227-1237.1999] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic locus for a cytolethal distending toxin (CDT) was identified in a polymorphic region of the chromosome of Actinobacillus actinomycetemcomitans, a predominant oral pathogen. The locus was comprised of three open reading frames (ORFs) that had significant amino acid sequence similarity and more than 90% sequence identity to the cdtABC genes of some pathogenic Escherichia coli strains and Haemophilus ducreyi, respectively. Sonic extracts from recombinant E. coli, containing the A. actinomycetemcomitans ORFs, caused the distension and killing of Chinese hamster ovary cells characteristic of a CDT. Monoclonal antibodies made reactive with the CdtA, CdtB, and CdtC proteins of H. ducreyi recognized the corresponding gene products from the recombinant strain. CDT-like activities were no longer expressed by the recombinant strain when an OmegaKan-2 interposon was inserted into the cdtA and cdtB genes. Expression of the CDT-like activities in A. actinomycetemcomitans was strain specific. Naturally occurring expression-negative strains had large deletions within the region of the cdt locus. The cdtABC genes were flanked by an ORF (virulence plasmid protein), a partial ORF (integrase), and DNA sequences (bacteriophage integration site) characteristic of virulence-associated regions. These results provide evidence for a functional CDT in a human oral pathogen.
Collapse
Affiliation(s)
- M P Mayer
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6002, USA
| | | | | | | |
Collapse
|
19
|
Van Mellaert L, Mei L, Lammertyn E, Schacht S, Ann J. Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 12):3351-3358. [PMID: 9884227 DOI: 10.1099/00221287-144-12-3351] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The temperate bacteriophage VWB integrates into the chromosome of Streptomyces venezuelae ETH14630 via site-specific integration. Following recombination of the VWB attP region with the chromosomal attB sequence, the host-phage junctions attL and attR are formed. Nucleotide sequence analysis of attP, attB, attL and attR revealed a 45 bp common core sequence. In attB this 45 bp sequence consists of the 3' end of a putative tRNA Arg(AGG) gene with a 3'-terminal CCA sequence which is typical for prokaryotic tRNAs. Phage DNA integration restores the putative tRNA Arg(AGG) gene in attL. However, following recombination the CCA sequence is missing as is the case for most Streptomyces tRNA genes described so far. Adjacent to VWB attP, an ORF encoding a 427 aa protein was detected. The C-terminal region of this protein shows high similarity to the conserved C-terminal domain of site-specific recombinases belonging to the integrase family. To prove the functionality of this putative integrase gene (int), an integrative vector pKT02 was constructed. This vector consists of a 2.3 kb HindIII-SphI restriction fragment of VWB DNA containing attP and int cloned in a non-replicative Escherichia coli vector carrying a thiostrepton-resistance (tsr) gene. Integration of pKT02 was obtained after transformation of Streptomyces venezuelae ETH14630 and Streptomyces lividans TK24 protoplasts. This vector will thus be useful for a number of additional Streptomyces species in which a suitable tRNA gene can be functional as integration site.
Collapse
|
20
|
Vasanthakrishna M, Rumpal N, Varshney U. Organization and copy number of initiator tRNA genes in slow- and fast-growing mycobacteria. J Biosci 1998. [DOI: 10.1007/bf02703001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Hickman AB, Waninger S, Scocca JJ, Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell 1997; 89:227-37. [PMID: 9108478 DOI: 10.1016/s0092-8674(00)80202-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HP1 integrase promotes site-specific recombination of the HP1 genome into that of Haemophilus influenzae. The isolated C-terminal domain (residues 165-337) of the protein interacts with the recombination site and contains the four catalytic residues conserved in the integrase family. This domain represents a novel fold consisting principally of well-packed alpha helices, a surface beta sheet, and an ordered 17-residue C-terminal tail. The conserved triad of basic residues and the active-site tyrosine are contributed by a single monomer and occupy fixed positions in a defined active-site cleft. Dimers are formed by mutual interactions of the tail of one monomer with an adjacent monomer; this orients active-site clefts antiparallel to each other.
Collapse
Affiliation(s)
- A B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
22
|
Esposito D, Scocca JJ. Purification and characterization of HP1 Cox and definition of its role in controlling the direction of site-specific recombination. J Biol Chem 1997; 272:8660-70. [PMID: 9079698 DOI: 10.1074/jbc.272.13.8660] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The protein that activates site-specific excision of the HP1 genome from the Hemophilus influenzae chromosome, HP1 Cox, was purified. Native Cox consists of four 8.9-kDa protomers. Tetrameric Cox self-associates to octamers; the apparent dissociation constant was 8 microM protomer, suggesting that under reaction conditions Cox is largely tetrameric. Cox binding sites consist of two direct repeats of the consensus motif 5'-GGTMAWWWWA; one Cox tetramer binds to each motif. Cox binding interfered with the interaction of HP1 integrase with one of its binding sites, IBS5. This competition is central to directional control, as shown by studies on mutated sites. Both Cox binding sites were necessary for Cox to fully inhibit integration and activate excision, although Cox continued to affect recombination when the single binding site proximal to IBS5 remained intact. Eliminating the IBS5 site completely prevented integration but greatly enhanced excision. Excisive recombination continued to require Cox even when IBS5 was inactivated. Cox must therefore play a positive role in assembling the nucleoprotein complexes producing excisive recombination, by inducing the formation of a critical conformation in those complexes.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, The Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
23
|
|
24
|
Smith-Mungo L, Chan I, Landy A. Structure of the P22 att site. Conservation and divergence in the lambda motif of recombinogenic complexes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32063-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Abstract
Transposon insertion mutagenesis and transformation were used to locate genes responsible for excision in the temperature phage HP1 of Haemophilus influenzae. A 6.5 kb segment of DNA near the left end of the phage genome was sequenced, and 11 new open reading frames were identified. Two face-to-face overlapping promoter sequences organized these open reading frames into two operons transcribed in opposite directions. Interruption of the first open reading frame in the rightward operon created lysogens unable to produce phages. Provision of the uninterrupted open reading frame in trans restored phage production. The gene identified by this procedure, cox, was cloned and the protein product was expressed at high levels in Escherichia coli. The Cox protein is a 79-residue basic protein with a predicted strong helix-turn-helix DNA-binding motif. Extracts induced to express high levels of Cox contained a 9 kDa protein. These extracts inhibited integrative recombination and were required for excisive recombination mediated by HP1 integrase. The HP1 cox gene location is similar to that of the homologous excisive and regulatory genes from coliphages P2 and 186. These phages appear to share a distinctive organization of recombination proteins and transcriptional domains differing markedly from phage lambda and its relatives.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205
| | | |
Collapse
|
26
|
Kirby JE, Trempy JE, Gottesman S. Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J Bacteriol 1994; 176:2068-81. [PMID: 7511583 PMCID: PMC205313 DOI: 10.1128/jb.176.7.2068-2081.1994] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Escherichia coli K-12 alpA gene product, when overproduced from a multicopy plasmid, leads to suppression of the capsule overproduction and UV sensitivity phenotypes of cells mutant for the Lon ATP-dependent protease. This suppression has previously been shown to correlate with increased in vivo activity of a previously unknown energy-dependent proteolytic activity capable of degrading Lon substrates, the Alp protease. We show in an accompanying paper that alpA, which has homology to a short open reading frame in bacteriophage P4, acts as a positive transcriptional regulator of slpA, a gene linked to alpA and necessary for suppression of lon mutants (J. E. Trempy, J. E. Kirby, and S. Gottesman, J. Bacteriol. 176:2061-2067). The sequence of slpA suggests that it encodes an integrase gene closely related to P4 int and that both alpA and slpA are part of a cryptic P4-like prophage. AlpA expression increases SlpA synthesis. Increased SlpA leads, in turn, to the excision and loss of the cryptic prophage. Excision is dependent on integration host factor as well as on SlpA. Prophage excision is necessary but not sufficient for full expression of the Alp protease. A second function (named AHA) allows full protease expression; this function can be provided by the kanamycin resistance element from Tn903 when the element is present on a multicopy plasmid. Excision and loss of the cryptic prophage apparently allow expression of the Alp protease by inactivating a small stable RNA (10Sa RNA) encoded by the ssrA gene. The precursor of this RNA has its 3' end within the cryptic prophage; the mature 3' end lies within the prophage attL site. Inactivation of ssrA by insertional mutagenesis is sufficient to allow expression of the suppressing Alp protease, even in the presence of the cryptic prophage. Therefore, 10Sa RNA acts as a negative regulator of protease synthesis or activity, and prophage excision must inactivate this inhibitory function of the RNA.
Collapse
Affiliation(s)
- J E Kirby
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | |
Collapse
|
27
|
Brown DP, Idler KB, Backer DM, Donadio S, Katz L. Characterization of the genes and attachment sites for site-specific integration of plasmid pSE101 in Saccharopolyspora erythraea and Streptomyces lividans. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:185-93. [PMID: 8159169 DOI: 10.1007/bf00391012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The 11.3 kb plasmid pSE101 integrates into the chromosome of Saccharopolyspora erythraea at a specific attB site and into the chromosome of Streptomyces lividans at many sites. Multisite integration in S. lividans was also observed when a 1.9 kb segment of pSE101 containing attP and adjacent plasmid sequence was used to transform a pSE101- S. lividans host. Nucleotide sequencing of this segment revealed the presence of a complete open reading frame (ORF) designated int, encoding a putative polypeptide of 448 amino acids that shows similarities to site-specific recombinases of the integrase family. Sequencing of the 1.3 kb segment upstream of int revealed the presence of three additional ORFs: the one most distal to int encodes a putative 76 amino acid basic polypeptide analogous to the Xis proteins of a number of bacteriophages. Nucleotide sequencing of attP, and the attB, attL and attR sites from Sac. erythraea revealed a 46 bp sequence common to all sites with no duplications of chromosomal sequences in the integrated state. A putative structural gene for a tRNA(Thr) was found to overlap the 46 bp common sequence at attB. Sequencing of four pSE101 integration sites (attB') and corresponding attL' and attR' sites in S. lividans showed that the 46 bp sequence was present at each attR' site, whereas only the first three bases, CTT, were retained at each attL' and attB' site. A feature common to the four attB' sites and to attB is a highly conserved 21 bp segment with inverted repeats flanking the CTT sequence.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D P Brown
- Department of Molecular Biology, Abbott Laboratories, Abbott Park, IL 60064
| | | | | | | | | |
Collapse
|
28
|
Abstract
Mycobacteriophage L5, a temperate phage of the mycobacteria, forms stable lysogens in Mycobacterium smegmatis via site-specific integration of the phage genome. Recombination occurs within specific phage and bacterial attachment sites and is catalyzed by the phage-encoded integrase protein in vivo. We describe here the overexpression and purification of L5 integrase and its ability to mediate integrative recombination in vitro. We find that L5 integrase-mediated recombination is greatly stimulated by extracts of M. smegmatis but not by Escherichia coli extracts, purified E. coli integration host factor, or purified HU, indicating the presence of a novel mycobacterial integration host factor.
Collapse
Affiliation(s)
- M H Lee
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | |
Collapse
|
29
|
Papp I, Dorgai L, Papp P, Jónás E, Olasz F, Orosz L. The bacterial attachment site of the temperate Rhizobium phage 16-3 overlaps the 3' end of a putative proline tRNA gene. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:258-64. [PMID: 7689141 DOI: 10.1007/bf00277064] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacteriophage 16-3 inserts its genome into the chromosome of Rhizobium meliloti strain 41 (Rm41) by site-specific recombination. The DNA regions around the bacterial attachment site (attB) and one of the hybrid attachment sites bordering the integrated prophage (attL) were cloned and their nucleotide sequences determined. We demonstrated that the 51 bp region, where the phage and bacterial DNA sequences are identical, is active as a target site for phage integration. Furthermore it overlaps the 3' end of a putative proline tRNA gene. This gene shows 79% similarity to the corresponding proline tRNA-like genomic target sequence of certain integrative plasmids in Actinomycetes.
Collapse
Affiliation(s)
- I Papp
- Institute for Molecular Genetics, Agricultural Biotechnology Center, Gödöllô Szent-Györgyi, Hungary
| | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- A M Campbell
- Department of Biological Sciences, Stanford University, California 94305
| |
Collapse
|
31
|
Hauser MA, Scocca JJ. Site-specific integration of the Haemophilus influenzae bacteriophage HP1: location of the boundaries of the phage attachment site. J Bacteriol 1992; 174:6674-7. [PMID: 1383194 PMCID: PMC207650 DOI: 10.1128/jb.174.20.6674-6677.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plasmids containing DNA segments from the attachment region of phage HP1 were constructed and tested for the ability to replace the phage attachment site substrate in site-specific recombination reactions. The distance separating the boundaries of the functional site was 418 bp. Replacements within the 11-residue segment 5'-GGCGGTTATCG at the left boundary or within the 12-residue segment 5'-GGATTTTTTGAA at the right boundary abolished substrate activity. A segment of the 418-residue sequence preserves the integrity of an operon of three Haemophilus influenzae tRNA genes after HP1 insertion within the coding sequence.
Collapse
Affiliation(s)
- M A Hauser
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205
| | | |
Collapse
|