1
|
Shleeva MO, Kondratieva DA, Kaprelyants AS. Bacillus licheniformis: A Producer of Antimicrobial Substances, including Antimycobacterials, Which Are Feasible for Medical Applications. Pharmaceutics 2023; 15:1893. [PMID: 37514078 PMCID: PMC10383908 DOI: 10.3390/pharmaceutics15071893] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Bacillus licheniformis produces several classes of antimicrobial substances, including bacteriocins, which are peptides or proteins with different structural composition and molecular mass: ribosomally synthesized by bacteria (1.4-20 kDa), non-ribosomally synthesized peptides and cyclic lipopeptides (0.8-42 kDa) and exopolysaccharides (>1000 kDa). Different bacteriocins act against Gram-positive or Gram-negative bacteria, fungal pathogens and amoeba cells. The main mechanisms of bacteriocin lytic activity include interaction of peptides with membranes of target cells resulting in structural alterations, pore-forming, and inhibition of cell wall biosynthesis. DNase and RNase activity for some bacteriocines are also postulated. Non-ribosomal peptides are synthesized by special non-ribosomal multimodular peptide synthetases and contain unnatural amino acids or fatty acids. Their harmful effect is due to their ability to form pores in biological membranes, destabilize lipid packaging, and disrupt the peptidoglycan layer. Lipopeptides, as biosurfactants, are able to destroy bacterial biofilms. Secreted polysaccharides are high molecular weight compounds, composed of repeated units of sugar moieties attached to a carrier lipid. Their antagonistic action was revealed in relation to bacteria, viruses, and fungi. Exopolysaccharides also inhibit the formation of biofilms by pathogenic bacteria and prevent their colonization on various surfaces. However, mechanism of the harmful effect for many secreted antibacterial substances remains unknown. The antimicrobial activity for most substances has been studied in vitro only, but some substances have been characterized in vivo and they have found practical applications in medicine and veterinary. The cyclic lipopeptides that have surfactant properties are used in some industries. In this review, special attention is paid to the antimycobacterials produced by B. licheniformis as a possible approach to combat multidrug-resistant and latent tuberculosis. In particular, licheniformins and bacitracins have shown strong antimycobacterial activity. However, the medical application of some antibacterials with promising in vitro antimycobacterial activity has been limited by their toxicity to animals and humans. As such, similar to the enhancement in the antimycobacterial activity of natural bacteriocins achieved using genetic engineering, the reduction in toxicity using the same approach appears feasible. The unique capability of B. licheniformis to synthesize and produce a range of different antibacterial compounds means that this organism can act as a natural universal vehicle for antibiotic substances in the form of probiotic cultures and strains to combat various types of pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Margarita O Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria A Kondratieva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| | - Arseny S Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology', Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
2
|
Leonida MD, Benzecry A, Lozanovska B, Mahmoud Z, Reid A, Belbekhouche S. Impact of tannic acid on nisin encapsulation in chitosan particles. Int J Biol Macromol 2023; 233:123489. [PMID: 36736978 DOI: 10.1016/j.ijbiomac.2023.123489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
This study investigates the effect of addition of tannic acid on nisin encapsulated in chitosan matrices. Composite materials were prepared using a mild, environmentally friendly procedure, ionotropic gelation of chitosan by sodium tripolyphosphate in the presence of nisin (N) at different concentrations. In two parallel sets of preparations, tannic acid (TA) was added at 10:1 and 5:1 N:TA, respectively. The obtained particles were characterized by FTIR, SEM, size, zeta potential, encapsulation efficiency, loading capacity, and ratio of residual free amino groups. The kinetics of nisin release from the particles was studied to assess the role of TA as a potential modulator thereof. Its addition resulted in enhanced release, higher at lower N:TA ratio. An additional benefit was that TA, a strong antioxidant, imparted antioxidant activity to the composites. Antimicrobial turbidimetric tests were performed against one gram-positive bacterium (Staphylococcus aureus) and two gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), all relevant for the food, pharmaceutical, and cosmetic industries. All the composites showed synergistic effects against all the bacteria tested. The positive coaction was stronger against the gram-negative species. This is remarkable since nisin by itself has not known activity against them.
Collapse
Affiliation(s)
- Mihaela D Leonida
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA.
| | - Alice Benzecry
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Bisera Lozanovska
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Zainab Mahmoud
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Ashley Reid
- Department of Chemistry and Biochemistry, Fairleigh Dickinson University, Teaneck, NJ 07666, USA
| | - Sabrina Belbekhouche
- Université Paris Est Créteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
3
|
Lahiri D, Nag M, Dutta B, Sarkar T, Pati S, Basu D, Abdul Kari Z, Wei LS, Smaoui S, Wen Goh K, Ray RR. Bacteriocin: A natural approach for food safety and food security. Front Bioeng Biotechnol 2022; 10:1005918. [PMID: 36353741 PMCID: PMC9637989 DOI: 10.3389/fbioe.2022.1005918] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
The call to cater for the hungry is a worldwide problem in the 21st century. Food security is the utmost prime factor for the increasing demand for food. Awareness of human health when using chemical preservatives in food has increased, resulting in the use of alternative strategies for preserving food and enhancing its shelf-life. New preservatives along with novel preservation methods have been instigated, due to the intensified demand for extended shelf-life, along with prevention of food spoilage of dairy products. Bacteriocins are the group of ribosomally synthesized antimicrobial peptides; they possess a wide range of biological activities, having predominant antibacterial activity. The bacteriocins produced by the lactic acid bacteria (LAB) are considered to be of utmost importance, due to their association with the fermentation of food. In recent times among various groups of bacteriocins, leaderless and circular bacteriocins are gaining importance, due to their extensive application in industries. These groups of bacteriocins have been least studied as they possess peculiar structural and biosynthetic mechanisms. They chemically possess N-to-C terminal covalent bonds having a predominant peptide background. The stability of the bacteriocins is exhibited by the circular structure. Up till now, very few studies have been performed on the molecular mechanisms. The structural genes associated with the bacteriocins can be combined with the activity of various proteins which are association with secretion and maturation. Thus the stability of the bacteriocins can be used effectively in the preservation of food for a longer period of time. Bacteriocins are thermostable, pH-tolerant, and proteolytically active in nature, which make their usage convenient to the food industry. Several research studies are underway in the domain of biopreservation which can be implemented in food safety and food security.
Collapse
Affiliation(s)
- Dibyajit Lahiri
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Moupriya Nag
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Bandita Dutta
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Govt of West Bengal, Malda, India
| | - Siddhartha Pati
- NatNov Bioscience Private Limited, Balasore, India
- Skills Innovation and Academic Network (SIAN) Institute, Association for Biodiversity Conservation and Research (ABC), Balasore, India
| | - Debarati Basu
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Lee Seong Wei
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Kelantan, Malaysia
| | - Slim Smaoui
- Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Sfax, Tunisia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, Kolkata, India
| |
Collapse
|
4
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
5
|
Wenski SL, Thiengmag S, Helfrich EJ. Complex peptide natural products: Biosynthetic principles, challenges and opportunities for pathway engineering. Synth Syst Biotechnol 2022; 7:631-647. [PMID: 35224231 PMCID: PMC8842026 DOI: 10.1016/j.synbio.2022.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/03/2023] Open
Abstract
Complex peptide natural products exhibit diverse biological functions and a wide range of physico-chemical properties. As a result, many peptides have entered the clinics for various applications. Two main routes for the biosynthesis of complex peptides have evolved in nature: ribosomally synthesized and post-translationally modified peptide (RiPP) biosynthetic pathways and non-ribosomal peptide synthetases (NRPSs). Insights into both bioorthogonal peptide biosynthetic strategies led to the establishment of universal principles for each of the two routes. These universal rules can be leveraged for the targeted identification of novel peptide biosynthetic blueprints in genome sequences and used for the rational engineering of biosynthetic pathways to produce non-natural peptides. In this review, we contrast the key principles of both biosynthetic routes and compare the different biochemical strategies to install the most frequently encountered peptide modifications. In addition, the influence of the fundamentally different biosynthetic principles on past, current and future engineering approaches is illustrated. Despite the different biosynthetic principles of both peptide biosynthetic routes, the arsenal of characterized peptide modifications encountered in RiPP and NRPS systems is largely overlapping. The continuous expansion of the biocatalytic toolbox of peptide modifying enzymes for both routes paves the way towards the production of complex tailor-made peptides and opens up the possibility to produce NRPS-derived peptides using the ribosomal route and vice versa.
Collapse
Affiliation(s)
- Sebastian L. Wenski
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Sirinthra Thiengmag
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| | - Eric J.N. Helfrich
- Institute for Molecular Bio Science, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), 60325, Frankfurt am Main, Germany
| |
Collapse
|
6
|
van Staden ADP, van Zyl WF, Trindade M, Dicks LMT, Smith C. Therapeutic Application of Lantibiotics and Other Lanthipeptides: Old and New Findings. Appl Environ Microbiol 2021; 87:e0018621. [PMID: 33962984 PMCID: PMC8231447 DOI: 10.1128/aem.00186-21] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lanthipeptides are ribosomally synthesized and posttranslationally modified peptides, with modifications that are incorporated during biosynthesis by dedicated enzymes. Various modifications of the peptides are possible, resulting in a highly diverse group of bioactive peptides that offer a potential reservoir for use in the fight against a plethora of diseases. Their activities range from the antimicrobial properties of lantibiotics, especially against antibiotic-resistant strains, to antiviral activity, immunomodulatory properties, antiallodynic effects, and the potential to alleviate cystic fibrosis symptoms. Lanthipeptide biosynthetic genes are widespread within bacterial genomes, providing a substantial repository for novel bioactive peptides. Using genome mining tools, novel bioactive lanthipeptides can be identified, and coupled with rapid screening and heterologous expression technologies, the lanthipeptide drug discovery pipeline can be significantly sped up. Lanthipeptides represent a group of bioactive peptides that hold great potential as biotherapeutics, especially at a time when novel and more effective therapies are required. With this review, we provide insight into the latest developments made toward the therapeutic applications and production of lanthipeptides, specifically looking at heterologous expression systems.
Collapse
Affiliation(s)
- Anton Du Preez van Staden
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Carine Smith
- Division of Clinical Pharmacology, Department Medicine, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Karczewski J, Krasucki SP, Asare-Okai PN, Diehl C, Friedman A, Brown CM, Maezato Y, Streatfield SJ. Isolation, Characterization and Structure Elucidation of a Novel Lantibiotic From Paenibacillus sp. Front Microbiol 2020; 11:598789. [PMID: 33324379 PMCID: PMC7721686 DOI: 10.3389/fmicb.2020.598789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/26/2020] [Indexed: 01/01/2023] Open
Abstract
We have isolated and characterized a novel antibacterial peptide, CMB001, following an extensive screening effort of bacterial species isolated from diverse environmental sources. The bacterium that produces CMB001 is characterized as a Gram (+) bacillus sharing approximately 98.9% 16S rRNA sequence homology with its closest match, Paenibacillus kyungheensis. The molecule has been purified to homogeneity from its cell-free supernatant by a three-step preparative chromatography process. Based on its primary structure, CMB001 shares 81% identity with subtilin and 62% with nisin. CMB001 is active mainly against Gram-positive bacteria and Mycobacteriaceae but it is also active against certain Gram-negative bacteria, including multi-drug resistant Acinetobacter baumannii. It retains full antibacterial activity at neutral pH and displays a low propensity to select for resistance among targeted bacteria. Based on NMR and mass spectrometry, CMB001 forms a unique 3D-structure comprising of a compact backbone with one α-helix and two pseudo-α-helical regions. Screening the structure against the Protein Data Bank (PDB) revealed a partial match with nisin-lipid II (1WCO), but none of the lantibiotics with known structures showed significant structural similarity. Due to its unique structure, resistance profile, relatively broad spectrum and stability under physiological conditions, CMB001 is a promising drug candidate for evaluation in animal models of bacterial infection.
Collapse
Affiliation(s)
- Jerzy Karczewski
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Stephen P Krasucki
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Papa Nii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, United States
| | | | - Andrew Friedman
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Christine M Brown
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | - Yukari Maezato
- Fraunhofer USA Center for Molecular Biotechnology, Newark, DE, United States
| | | |
Collapse
|
8
|
Ritter SC, Yang ML, Kaznessis YN, Hackel BJ. Multispecies activity screening of microcin J25 mutants yields antimicrobials with increased specificity toward pathogenic Salmonella species relative to human commensal Escherichia coli. Biotechnol Bioeng 2018; 115:2394-2404. [PMID: 29940080 DOI: 10.1002/bit.26772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/05/2018] [Accepted: 06/18/2018] [Indexed: 12/13/2022]
Abstract
Modern large-scale agricultural practices that incorporate high density farming with subtherapeutic antibiotic dosing are considered a major contributor to the rise of antibiotic-resistant bacterial infections of humans with species of Salmonella being a leading agriculture-based bacterial infection. Microcin J25, a potent and highly stable antimicrobial peptide active against Enterobacteriaceae, is a candidate antimicrobial against multiple Salmonella species. Emerging evidence supports the hypothesis that the composition of the microbiota of the gastrointestinal tract prevents a variety of diseases by preventing infectious agents from proliferating. Reducing clearance of off-target bacteria may decrease susceptibility to secondary infection. Of the Enterobacteriaceae susceptible to microcin J25, Escherichia coli are the most abundant within the human gut. To explore the modulation of specificity, a collection of 207 mutants encompassing 12 positions in both the ring and loop of microcin J25 was built and tested for activity against Salmonella and E. coli strains. As has been found previously, mutational tolerance of ring residues was lower than loop residues, with 22% and 51% of mutations, respectively, retaining activity toward at least one target within the target organism test panel. The multitarget screening elucidated increased mutational tolerance at position G2, G3, and G14 than previously identified in panels composed of single targets. Multiple mutations conferred differential response between the different targets. Examination of specificity differences between mutants found that 30% showed significant improvements to specificity toward any of the targets. Generation and testing of a combinatorial library designed from the point-mutant study revealed that microcin J25I13T reduces off-target activity toward commensal human-derived E. coli isolates by 81% relative to Salmonella enterica serovar Enteritidis. These in vitro specificity improvements are likely to improve in vivo treatment efficacy by reducing clearance of commensal bacteria in the gastrointestinal tract of hosts.
Collapse
Affiliation(s)
- Seth C Ritter
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Mike L Yang
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Yiannis N Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Benjamin J Hackel
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
9
|
Grant A, Gay CG, Lillehoj HS. Bacillus spp. as direct-fed microbial antibiotic alternatives to enhance growth, immunity, and gut health in poultry. Avian Pathol 2018; 47:339-351. [PMID: 29635926 DOI: 10.1080/03079457.2018.1464117] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The increasing occurrence of antibiotic-resistant bacteria combined with regulatory pressure and consumer demands for foods produced without antibiotics has caused the agricultural industry to restrict its practice of using antibiotic growth promoters (AGP) in food animals. The poultry industry is not immune to this trend, and has been actively seeking natural alternatives to AGP that will improve the health and growth performance of commercial poultry flocks. Bacillus probiotics have been gaining in popularity in recent years as an AGP alternative because of their health-promoting benefits and ability to survive the harsh manufacturing conditions of chicken feed production. This review provides an overview of several modes of action of some Bacillus direct-fed microbials as probiotics. Among the benefits of these direct-fed microbials are their production of naturally synthesized antimicrobial peptides, gut flora modulation to promote beneficial microbiota along the gastrointestinal tract, and various immunological and gut morphological alterations. The modes of action for increased performance are not well defined, and growth promotion is not equal across all Bacillus species or within strains. Appropriate screening and characterization of Bacillus isolates prior to commercialization are necessary to maximize poultry growth to meet the ultimate goal of eliminating AGP usage in animal husbandry.
Collapse
Affiliation(s)
- Ar'Quette Grant
- a Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service , US Department of Agriculture , Beltsville , MD , USA
| | - Cyril G Gay
- b National Program Staff - Animal Health, Agricultural Research Service , US Department of Agriculture , Beltsville , MD , USA
| | - Hyun S Lillehoj
- a Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service , US Department of Agriculture , Beltsville , MD , USA
| |
Collapse
|
10
|
Johnson EM, Jung DYG, Jin DYY, Jayabalan DR, Yang DSH, Suh JW. Bacteriocins as food preservatives: Challenges and emerging horizons. Crit Rev Food Sci Nutr 2017; 58:2743-2767. [PMID: 28880573 DOI: 10.1080/10408398.2017.1340870] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The increasing demand for fresh-like food products and the potential health hazards of chemically preserved and processed food products have led to the advent of alternative technologies for the preservation and maintenance of the freshness of the food products. One such preservation strategy is the usage of bacteriocins or bacteriocins producing starter cultures for the preservation of the intended food matrixes. Bacteriocins are ribosomally synthesized smaller polypeptide molecules that exert antagonistic activity against closely related and unrelated group of bacteria. This review is aimed at bringing to lime light the various class of bacteriocins mainly from gram positive bacteria. The desirable characteristics of the bacteriocins which earn them a place in food preservation technology, the success story of the same in various food systems, the various challenges and the strategies employed to put them to work efficiently in various food systems has been discussed in this review. From the industrial point of view various aspects like the improvement of the producer strains, downstream processing and purification of the bacteriocins and recent trends in engineered bacteriocins has also been briefly discussed in this review.
Collapse
Affiliation(s)
- Eldin Maliyakkal Johnson
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Yong-Gyun Jung
- c Interdisciplinary Program of Biomodulation , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Ying-Yu Jin
- d Myongji University Bioefficiency Research Centre , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Rasu Jayabalan
- b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Seung Hwan Yang
- e Department of Biotechnology , Chonnam National University-Yeosu Campus , Yeosu , Korea
| | - Joo Won Suh
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,f Division of Bioscience and Bioinformatics , College of Natural Science, Myongji University , Yongin , Korea
| |
Collapse
|
11
|
Specificity of Subtilin-Mediated Activation of Histidine Kinase SpaK. Appl Environ Microbiol 2017; 83:AEM.00781-17. [PMID: 28710266 DOI: 10.1128/aem.00781-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 12/29/2022] Open
Abstract
Autoinduction via two-component systems is a widespread regulatory mechanism that senses environmental and metabolic changes. Although the lantibiotics nisin and subtilin are closely related and share the same lanthionine ring structure, they autoinduce their biosynthesis in a highly specific manner. Subtilin activates only the two-component system SpaRK of Bacillus subtilis, whereas nisin activates solely the two-component system NisRK of Lactococcus lactis To identify components that determine the specificity of subtilin autoinduction, several variants of the respective lantibiotics were analyzed for their autoinductive capacities. Here, we show that amino acid position 20 is crucial for SpaK activation, as an engineered nisin molecule with phenylalanine at position 20 (nisin N20F) was able to activate SpaK in a specific manner. In combination with the N-terminal tryptophan of subtilin (nisin I1W/N20F), SpaK autoinduction reached almost the level of subtilin-mediated autoinduction. Furthermore, the overall structure of subtilin is also important for its association with the histidine kinase. The destruction of the second lanthionine ring (subtilin C11A, ring B), as well as mutations that interfere with the flexibility of the hinge region located between lanthionine rings C and D (subtilin L21P/Q22P), abolished SpaK autoinduction. Although the C-terminal part of subtilin is needed for efficient SpaK autoinduction, the destruction of lanthionine rings D and E had no measurable impact. Based on these findings, a model for the interaction of subtilin with histidine kinase SpaK was established.IMPORTANCE Although two-component systems are important regulatory systems that sense environmental changes, very little information on the molecular mechanism of sensing or the interaction of the sensor with its respective kinase is available. The strong specificity of linear lantibiotics such as subtilin and nisin for their respective kinases provides an excellent model system to unravel the structural needs of these lantibiotics for activating histidine kinases in a specific manner. More than that, the biosyntheses of lantibiotics are autoinduced via two-component systems. Therefore, an understanding of their interactions with histidine kinases is needed for the biosynthesis of newly engineered peptide antibiotics. Using a Bacillus subtilis-based reporter system, we were able to identify the molecular constraints that are necessary for specific SpaK activation and to provide SpaK specificity to nisin with just two point mutations.
Collapse
|
12
|
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic Understanding of Lanthipeptide Biosynthetic Enzymes. Chem Rev 2017; 117:5457-5520. [PMID: 28135077 PMCID: PMC5408752 DOI: 10.1021/acs.chemrev.6b00591] [Citation(s) in RCA: 373] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Lanthipeptides
are ribosomally synthesized and post-translationally
modified peptides (RiPPs) that display a wide variety of biological
activities, from antimicrobial to antiallodynic. Lanthipeptides that
display antimicrobial activity are called lantibiotics. The post-translational
modification reactions of lanthipeptides include dehydration of Ser
and Thr residues to dehydroalanine and dehydrobutyrine, a transformation
that is carried out in three unique ways in different classes of lanthipeptides.
In a cyclization process, Cys residues then attack the dehydrated
residues to generate the lanthionine and methyllanthionine thioether
cross-linked amino acids from which lanthipeptides derive their name.
The resulting polycyclic peptides have constrained conformations that
confer their biological activities. After installation of the characteristic
thioether cross-links, tailoring enzymes introduce additional post-translational
modifications that are unique to each lanthipeptide and that fine-tune
their activities and/or stability. This review focuses on studies
published over the past decade that have provided much insight into
the mechanisms of the enzymes that carry out the post-translational
modifications.
Collapse
Affiliation(s)
- Lindsay M Repka
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jonathan R Chekan
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Satish K Nair
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wilfred A van der Donk
- Howard Hughes Medical Institute and Department of Chemistry, ‡Department of Biochemistry, and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Rodríguez J. Revisión: Espectro antimicrobiano, estructura, propiedades y mode de acción de la nisina, una bacteriocina producida por Lactococcus lactis/Review: Antimicrobial spectrum, structure, properties and mode of action of nisin, a bacteriocin produced by Lactococcus lactis. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/108201329600200202] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nisin is a 34 amino acid antibacterial peptide produced by certain strains of Lactococcus lactis. This bacteriocin has found wide application as a food preservative owing to its non-toxic nature, its heat stability at acidic pH, its inactivation by proteolytic enzymes in the digestive tract and, especially, to its antimicrobial activity against a broad range of Gram-positive organisms, including food pathogens of concern in food industry such as Clostridium botulinum and Listeria monocytogenes. However, the use of nisin has the limitation that its solubility and stability decrease progressively as the environ mental pH increases. The two natural variants of nisin, named nisin A and nisin Z, are ribosomally synthesized as 57 amino acid precursor peptides which are subjected to further modifications. The mature peptide displays several unusual features, such as the presence of dehydrated amino acids and lanthionine rings. Insertion of the peptide into the cytoplasmic membrane of susceptible cells leads to the formation of pores, dissipating the membrane potential and pH gradients.
Collapse
Affiliation(s)
- J.M. Rodríguez
- Departamento de Nutrición y Bromatología , Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, España
| |
Collapse
|
14
|
Spieß T, Korn SM, Kötter P, Entian KD. Autoinduction Specificities of the Lantibiotics Subtilin and Nisin. Appl Environ Microbiol 2015; 81:7914-23. [PMID: 26341212 PMCID: PMC4616960 DOI: 10.1128/aem.02392-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/01/2015] [Indexed: 12/23/2022] Open
Abstract
The biosynthesis of the lantibiotics subtilin and nisin is regulated by autoinduction via two-component systems. Although subtilin is structurally closely related to nisin and contains the same lanthionine ring structure, both lantibiotics specifically autoinduce their biosynthesis. Subtilin and also the subtilin-like lantibiotics entianin and ericin autoinduce the two-component system SpaRK of Bacillus subtilis, whereas the biosynthesis of nisin is autoinduced via the two-component system NisRK of Lactococcus lactis. Autoinduction is highly specific for the respective lantibiotic and therefore of major importance for the functional expression of genetically engineered subtilin-like lantibiotics. To identify the structural features required for subtilin autoinduction, subtilin-nisin hybrids and specific point mutations of amino acid position 1 were generated. For subtilin autoinduction, the N-terminal tryptophan is the most important for full SpaK activation. The failure of subtilin to autoinduce the histidine kinase NisK mainly depends on the N-terminal tryptophan, as its single exchange to the aliphatic amino acid residues isoleucine, leucine, and valine provided NisK autoinduction. In addition, the production of subtilin variants which did not autoinduce their own biosynthesis could be rescued upon heterologous coexpression in B. subtilis DSM15029 by the autoinducing subtilin-like lantibiotic entianin.
Collapse
Affiliation(s)
- Tobias Spieß
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany
| | | | - Peter Kötter
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Karl-Dieter Entian
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
15
|
Activation of Histidine Kinase SpaK Is Mediated by the N-Terminal Portion of Subtilin-Like Lantibiotics and Is Independent of Lipid II. Appl Environ Microbiol 2015; 81:5335-43. [PMID: 26025904 DOI: 10.1128/aem.01368-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 12/11/2022] Open
Abstract
The biosynthesis of the lantibiotic subtilin is autoinduced in a quorum-sensing mechanism via histidine kinase SpaK. Subtilin-like lantibiotics, such as entianin, ericin S, and subtilin, specifically activated SpaK in a comparable manner, whereas the structurally similar nisin did not provide the signal for SpaK activation at nontoxic concentrations. Surprisingly, nevertheless, nisin if applied together with entianin partly quenched SpaK activation. The N-terminal entianin1-20 fragment (comprising N-terminal amino acids 1 to 20) was sufficient for SpaK activation, although higher concentrations were needed. The N-terminal nisin1-20 fragment also interfered with entianin-mediated activation of SpaK and, remarkably, at extremely high concentrations also activated SpaK. Our data show that the N-terminal entianin1-20 fragment is sufficient for SpaK activation. However, if present, the C-terminal part of the molecule further strongly enhances the activation, possibly by its interference with the cellular membrane. As shown by using lipid II-interfering substances and a lipid II-deficient mutant strain, lipid II is not needed for the sensing mechanism.
Collapse
|
16
|
Ruffner DE, Schmidt EW, Heemstra JR. Assessing the combinatorial potential of the RiPP cyanobactin tru pathway. ACS Synth Biol 2015; 4:482-92. [PMID: 25140729 PMCID: PMC4410914 DOI: 10.1021/sb500267d] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ribosomally produced natural products, the RiPPs, exhibit features that are potentially useful in the creation of large chemical libraries using simple mutagenesis. RiPPs are encoded on ribosomal precursor peptides, but they are extensively posttranslationally modified, endowing them with properties that are useful in drug discovery and biotechnology. In order to determine which mutations are acceptable, strategies are required to determine sequence selectivity independently of the context of flanking amino acids. Here, we examined the absolute sequence selectivity of the trunkamide cyanobactin pathway, tru. A series of random double and quadruple simultaneous mutants were synthesized and produced in Escherichia coli. Out of a total of 763 mutated amino acids examined in 325 unique sequences, 323 amino acids were successfully incorporated in 159 sequences, leading to >300 new compounds. Rules for tru sequence selectivity were determined, which will be useful for the design and synthesis of combinatorial biosynthetic libraries. The results are also interpreted in comparison to the known natural products of tru and pat cyanobactin pathways.
Collapse
Affiliation(s)
- Duane E. Ruffner
- Symbion Discovery,
Inc., Salt Lake City, Utah 84112, United States
| | - Eric W. Schmidt
- Skaggs
Pharmacy Institute, Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - John R. Heemstra
- Symbion Discovery,
Inc., Salt Lake City, Utah 84112, United States
| |
Collapse
|
17
|
Alvarez Z, Abel-Santos E. Potential use of inhibitors of bacteria spore germination in the prophylactic treatment of anthrax andClostridium difficile-associated disease. Expert Rev Anti Infect Ther 2014; 5:783-92. [PMID: 17914913 DOI: 10.1586/14787210.5.5.783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spore germination is the first step in establishing Bacillus and Clostridium infections. Germination is triggered by the binding of small molecules by the resting spore. Subsequently, the activated spore secretes dipicolinic acid and calcium, the spore core is rehydrated and spore structures are degraded. Inhibition of any of the germination-related events will prevent development to the vegetative stage. Inhibition of spore germination has been studied intensively in the prevention of food spoilage. In this perspective, we propose that similar approaches could be used in the prophylactic control of Bacillus anthracis and Clostridium difficile infections. Inhibition of B. anthracis spore germination could protect military and first-line emergency personnel at high risk for anthrax exposure. Inhibition of C. difficile could prevent human C. difficile-associated disease during antibiotic treatment of immunocompromised patients.
Collapse
Affiliation(s)
- Zadkiel Alvarez
- Department of Chemistry, University of Nevada, 4505 Maryland Parkway, Campus Box 4003, Las Vegas, NV 89154, USA.
| | | |
Collapse
|
18
|
|
19
|
Field D, Molloy EM, Iancu C, Draper LA, O' Connor PM, Cotter PD, Hill C, Ross RP. Saturation mutagenesis of selected residues of the α-peptide of the lantibiotic lacticin 3147 yields a derivative with enhanced antimicrobial activity. Microb Biotechnol 2013; 6:564-75. [PMID: 23433070 PMCID: PMC3918158 DOI: 10.1111/1751-7915.12041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 11/30/2012] [Accepted: 12/27/2012] [Indexed: 01/12/2023] Open
Abstract
The lantibiotic lacticin 3147 consists of two ribosomally synthesized and post-translationally modified antimicrobial peptides, Ltnα and Ltnβ, which act synergistically against a wide range of Gram-positive microorganisms. We performed saturation mutagenesis of specific residues of Ltnα to determine their functional importance. The results establish that Ltnα is more tolerant to change than previously suggested by alanine scanning mutagenesis. One substitution, LtnαH23S, was identified which improved the specific activity of lacticin 3147 against one pathogenic strain, Staphylococcus aureus NCDO1499. This represents the first occasion upon which the activity of a two peptide lantibiotic has been enhanced through bioengineering.
Collapse
Affiliation(s)
- Des Field
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, Cotter PD, Craik DJ, Dawson M, Dittmann E, Donadio S, Dorrestein PC, Entian KD, Fischbach MA, Garavelli JS, Göransson U, Gruber CW, Haft DH, Hemscheidt TK, Hertweck C, Hill C, Horswill AR, Jaspars M, Kelly WL, Klinman JP, Kuipers OP, Link AJ, Liu W, Marahiel MA, Mitchell DA, Moll GN, Moore BS, Müller R, Nair SK, Nes IF, Norris GE, Olivera BM, Onaka H, Patchett ML, Piel J, Reaney MJT, Rebuffat S, Ross RP, Sahl HG, Schmidt EW, Selsted ME, Severinov K, Shen B, Sivonen K, Smith L, Stein T, Süssmuth RD, Tagg JR, Tang GL, Truman AW, Vederas JC, Walsh CT, Walton JD, Wenzel SC, Willey JM, van der Donk WA. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep 2013; 30:108-60. [PMID: 23165928 DOI: 10.1039/c2np20085f] [Citation(s) in RCA: 1552] [Impact Index Per Article: 129.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.
Collapse
Affiliation(s)
- Paul G Arnison
- Prairie Plant Systems Inc, Botanical Alternatives Inc, Suite 176, 8B-3110 8th Street E, Saskatoon, SK, S7H 0W2, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
While the bacteriocin Nisin has been employed by the food industry for 60 y, it remains the only bacteriocin to be extensively employed as a food preservative. This is despite the fact that the activity of Nisin against several food spoilage and pathogenic bacteria is poor and the availability of many other bacteriocins with significant potential in this regard. An alternative route to address the deficiencies of Nisin is the application of bioengineered derivatives of the peptide which, despite differing only subtly, possess enhanced capabilities of commercial value. The career path which has taken me from learning for the first time what bacteriocins are to understanding the potential of bacteriocin bioengineering has been a hugely enjoyable experience and promises to get even more interesting in the years to come.
Collapse
Affiliation(s)
- Paul D Cotter
- Teagasc Food Research Centre; Moorepark, Cork, Ireland.
| |
Collapse
|
22
|
Carroll J, Field D, O'Connor PM, Cotter PD, Coffey A, Hill C, Ross RP, O'Mahony J. Gene encoded antimicrobial peptides, a template for the design of novel anti-mycobacterial drugs. Bioeng Bugs 2011; 1:408-12. [PMID: 21468208 DOI: 10.4161/bbug.1.6.13642] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 12/17/2022] Open
Abstract
Nisin A is the most widely characterized lantibiotic investigated to date. It represents one of the many antimicrobial peptides which have been the focus of much interest as potential therapeutic agents. This has resulted in the search for novel lantibiotics and more commonly, the engineering of novel variants from existing peptides with a view to increasing their activity, stability and solubility.The aim of this study was to compare the activities of nisin A and novel bioengineered hinge derivatives, nisin S, nisin T and nisin V. The microtitre alamar blue assay (MABA) was employed to identify the enhanced activity of these novel variants against M. tuberculosis (H37Ra), M. kansasii (CIT11/06), M. avium subsp. hominissuis (CIT05/03) and M. avium subsp. paratuberculosis (MAP) (ATCC 19698). All variants displayed greater anti-mycobacterial activity than nisin A. Nisin S was the most potent variant against M. tuberculosis, M. kansasii and M. avium subsp. hominissuis, retarding growth by a maximum of 29% when compared with nisin A. Sub-species variations of inhibition were also observed with nisin S reducing growth of Mycobacterium avium subsp. hominissuis by 28% and Mycobacterium avium subsp. paratuberculosis by 19% and nisin T contrastingly reducing growth of MAP by 27% and MAC by 16%.Nisin S, nisin T and nisin V are potent novel anti-mycobacterial compounds, which have the capacity to be further modified, potentially generating compounds with additional beneficial characteristics. This is the first report to demonstrate an enhancement of efficacy by any bioengineered bacteriocin against mycobacteria.
Collapse
Affiliation(s)
- James Carroll
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gut IM, Blanke SR, van der Donk WA. Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin. ACS Chem Biol 2011; 6:744-52. [PMID: 21517116 PMCID: PMC3178273 DOI: 10.1021/cb1004178] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The lantibiotic nisin inhibits growth of vegetative Gram-positive bacteria by binding to lipid II, which disrupts cell wall biosynthesis and facilitates pore formation. Nisin also inhibits the outgrowth of bacterial spores, including spores of Bacillus anthracis, whose structural and biochemical properties are fundamentally different from those of vegetative bacteria. The molecular basis of nisin inhibition of spore outgrowth had not been identified, as previous studies suggested that inhibition of spore outgrowth involved either covalent binding to a spore target or loss of membrane integrity; disruption of cell wall biosynthesis via binding to lipid II had not been investigated. To provide insights into the latter possibility, the effects of nisin were compared with those of vancomycin, another lipid II binding antibiotic that inhibits cell wall biosynthesis but does not form pores. Nisin and vancomycin both inhibited the replication of vegetative cells, but only nisin inhibited the transition from a germinated spore to a vegetative cell. Moreover, vancomycin prevented nisin’s activity in competition studies, suggesting that the nisin-lipid II interaction is important for inhibition of spore outgrowth. In experiments with fluorescently labeled nisin, no evidence was found for a covalent mechanism for inhibition of spore outgrowth. Interestingly, mutants in the hinge region (N20P/M21P and M21P/K22P) that still bind lipid II but cannot form pores had potent antimicrobial activity against vegetative B. anthracis cells but did not inhibit spore outgrowth. Therefore, pore formation is essential for the latter activity but not the former. Collectively, these studies suggest that nisin utilizes lipid II as the germinated spore target during outgrowth inhibition and that nisin-mediated membrane disruption is essential to inhibit spore development into vegetative cells.
Collapse
Affiliation(s)
- Ian M. Gut
- Department of Microbiology, ‡Howard Hughes Medical Institute, §Institute for Genomic Biology, and ∥Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Steven R. Blanke
- Department of Microbiology, ‡Howard Hughes Medical Institute, §Institute for Genomic Biology, and ∥Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Microbiology, ‡Howard Hughes Medical Institute, §Institute for Genomic Biology, and ∥Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Al-Mahrous MM, Upton M. Discovery and development of lantibiotics; antimicrobial agents that have significant potential for medical application. Expert Opin Drug Discov 2011; 6:155-70. [PMID: 22647134 DOI: 10.1517/17460441.2011.545387] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Antimicrobial drug resistance is driving the need for novel therapeutics. Amongst the most promising antibacterial agents that are being investigated as replacements for current therapeutic antibiotics are antibacterial peptides, such as the lanthionine-containing peptide antibiotics (lantibiotics). AREAS COVERED This review focuses on the current methods used for discovery of potentially exploitable lantibiotics for medical applications and discusses relevant recent innovations that will have a positive impact on the discovery of useful lantibiotics. EXPERT OPINION Recent technological advances in a number of fields mean that increased research into the identification and characterisation of new lantibiotics is feasible. We need to increase our understanding of the various mechanisms of antibacterial action exhibited by lantibiotics and apply this knowledge to peptide engineering or novel practical applications. The advent of next-generation sequencing approaches now negate the need for extensive reverse genetics and employment of bioinformatics approaches is greatly assisting the identification of potentially useful inhibitors in the genomes of a range of clinically significant bacteria. These advances in genetic analysis and engineering will facilitate increased exploitation of lantibiotics in medical therapy.
Collapse
Affiliation(s)
- Mohammed M Al-Mahrous
- University of Manchester, School of Translational Medicine, Department of Medical Microbiology, Clinical Sciences Building, Manchester Royal Infirmary, Oxford Road, Manchester, M13 9WL, UK +44 1 161 276 8828 ; +44 0 161 276 8826 ;
| | | |
Collapse
|
25
|
Oman TJ, van der Donk WA. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 2010; 6:9-18. [PMID: 20016494 PMCID: PMC3799897 DOI: 10.1038/nchembio.286] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The avalanche of genomic information in the past decade has revealed that natural product biosynthesis using the ribosomal machinery is much more widespread than originally anticipated. Nearly all of these compounds are crafted through post-translational modifications of a larger precursor peptide that often contains the marching orders for the biosynthetic enzymes. We review here the available information for how the peptide sequences in the precursors govern the post-translational tailoring processes for several classes of natural products. In addition, we highlight the great potential these leader peptide-directed biosynthetic systems offer for engineering conformationally restrained and pharmacophore-rich products with structural diversity that greatly expands the proteinogenic repertoire.
Collapse
Affiliation(s)
- Trent J. Oman
- Department of Chemistry, Howard Hughes Medical Institute, and Institute for Genomic Biology. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Telephone: (217) 244 5360, FAX: (217) 244 8533
| | - Wilfred A. van der Donk
- Department of Chemistry, Howard Hughes Medical Institute, and Institute for Genomic Biology. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Telephone: (217) 244 5360, FAX: (217) 244 8533
| |
Collapse
|
26
|
Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 2009; 107:475-87. [PMID: 19393544 DOI: 10.1016/j.jbiosc.2009.01.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 11/20/2022]
Abstract
Lantibiotics are one of the most promising alternative candidates for future antibiotics that maintain their antibacterial efficacy through many mechanisms. Of these mechanisms, some modes of activity have recently been reported, providing opportunities to show these peptides as potential candidates for forthcoming applications. Many findings providing new insight into the detailed molecular activities of numerous lantibiotics are constantly being uncovered. The combination of antibiotic mechanisms in one lantibiotic molecule shows its diverse antimicrobial usefulness as a future generation of antibiotic. Since lantibiotics do not have any known candidate resistance mechanisms, the discovered distinct modes of activity may revolutionize the design of anti-infective drugs through the knowledge provided by these super molecules. In this review, we discuss the rising assortment of lantibiotics, with special emphasis on their structure-function relationships, addressing the unique activities involved in their individual modes of action.
Collapse
|
27
|
|
28
|
Li B, Cooper LE, van der Donk WA. Chapter 21 In Vitro Studies of Lantibiotic Biosynthesis. Methods Enzymol 2009; 458:533-58. [DOI: 10.1016/s0076-6879(09)04821-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Field D, Connor PMO, Cotter PD, Hill C, Ross RP. The generation of nisin variants with enhanced activity against specific Gram-positive pathogens. Mol Microbiol 2008; 69:218-30. [DOI: 10.1111/j.1365-2958.2008.06279.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Sahl HG, Jack RW, Bierbaum G. Biosynthesis and Biological Activities of Lantibiotics with Unique Post-Translational Modifications. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0827g.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Kaiser A, Montville T. The influence of pH and growth rate on production of the bacteriocin, bavaricin MN, in batch and continuous fermentations. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1993.tb01591.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
The lantibiotic nisin is produced by Lactococcus lactis. In the biosynthesis of nisin, the enzyme NisB dehydrates nisin precursor, and the enzyme NisC is needed for lanthionine formation. In this study, the nisA gene encoding the nisin precursor, and the genes nisB and nisC of the lantibiotic modification machinery were expressed together in vitro by the Rapid Translation System (RTS). Analysis of the RTS mixture showed that fully modified nisin precursor was formed. By treating the mixture with trypsin, active nisin was obtained. However, no nisin could be detected in the mixture without zinc supplementation, explained by the fact that NisC requires zinc for its function. The results revealed that the modification of nisin precursor, which is supposed to occur at the inner side of the membrane by an enzyme complex consisting of NisB, NisC, and the transporter NisT, can take place without membrane association and without NisT. This in vitro production system for nisin opens up the possibility to produce nisin variants that cannot be producedin vivo. Moreover, the system is a promising tool for utilizing the NisB and NisC enzymes for incorporation of thioether rings into medical peptides and hormones for increased stability.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
33
|
Field D, Collins B, Cotter PD, Hill C, Ross RP. A System for the Random Mutagenesis of the Two-Peptide Lantibiotic Lacticin 3147: Analysis of Mutants Producing Reduced Antibacterial Activities. J Mol Microbiol Biotechnol 2007; 13:226-34. [PMID: 17827973 DOI: 10.1159/000104747] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lantibiotics are antimicrobial peptides that contain several unusual amino acids resulting from a series of enzyme-mediated posttranslational modifications. As a consequence of being gene-encoded, the implementation of peptide bioengineering systems has the potential to yield lantibiotic variants with enhanced chemical and physical properties. Here we describe a functional two-plasmid expression system which has been developed to allow random mutagenesis of the two-component lantibiotic, lacticin 3147. One of these plasmids contains a randomly mutated version of the two structural genes, ltnA1 and ltnA2, and the associated promoter, Pbac, while the other encodes the remainder of the proteins required for the biosynthesis of, and immunity to, lacticin 3147. To test this system, a bank of approximately 1,500 mutant strains was generated and screened to identify mutations that have a detrimental impact on the bioactivity of lacticin 3147. This strategy established/confirmed the importance of specific residues in the structural peptides and their associated leaders and revealed that a number of alterations which mapped to the -10 or -35 regions of Pbac abolished promoter activity.
Collapse
Affiliation(s)
- Des Field
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
34
|
Rink R, Wierenga J, Kuipers A, Kluskens LD, Driessen AJM, Kuipers OP, Moll GN. Dissection and modulation of the four distinct activities of nisin by mutagenesis of rings A and B and by C-terminal truncation. Appl Environ Microbiol 2007; 73:5809-16. [PMID: 17660303 PMCID: PMC2074915 DOI: 10.1128/aem.01104-07] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nisin A is a pentacyclic antibiotic peptide produced by various Lactococcus lactis strains. Nisin displays four different activities: (i) it autoinduces its own synthesis; (ii) it inhibits the growth of target bacteria by membrane pore formation; (iii) it inhibits bacterial growth by interfering with cell wall synthesis; and, in addition, (iv) it inhibits the outgrowth of spores. Here we investigate the structural requirements and relevance of the N-terminal thioether rings of nisin by randomization of the ring A and B positions. The data demonstrate that: (i) mutation of ring A results in variants with enhanced activity and a modulated spectrum of target cells; (ii) for the cell growth-inhibiting activity of nisin, ring A is rather promiscuous with respect to its amino acid composition, whereas the bulky amino acid residues in ring B abolish antimicrobial activity; (iii) C-terminally truncated nisin A mutants lacking rings D and E retain significant antimicrobial activity but are unable to permeabilize the target membrane; (iv) the dehydroalanine in ring A is not essential for the inhibition of the outgrowth of Bacillus cells; (v) some ring A mutants have significant antimicrobial activities but have decreased autoinducing activities; (vi) the opening of ring B eliminates antimicrobial activity while retaining autoinducing activity; and (vii) some ring A mutants escape the nisin immune system(s) and are toxic to the nisin-producing strain NZ9700. These data demonstrate that the various activities of nisin can be engineered independently and provide a basis for the design and synthesis of tailor-made analogs with desired activities.
Collapse
Affiliation(s)
- Rick Rink
- BiOMaDe Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Sebei S, Zendo T, Boudabous A, Nakayama J, Sonomoto K. Characterization, N-terminal sequencing and classification of cerein MRX1, a novel bacteriocin purified from a newly isolated bacterium: Bacillus cereus MRX1. J Appl Microbiol 2007; 103:1621-31. [DOI: 10.1111/j.1365-2672.2007.03395.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Rink R, Wierenga J, Kuipers A, Kluskens LD, Driessen AJM, Kuipers OP, Moll GN. Production of dehydroamino acid-containing peptides by Lactococcus lactis. Appl Environ Microbiol 2007; 73:1792-6. [PMID: 17261515 PMCID: PMC1828803 DOI: 10.1128/aem.02350-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/09/2007] [Indexed: 11/20/2022] Open
Abstract
Nisin is a pentacyclic peptide antibiotic produced by some Lactococcus lactis strains. Nisin contains dehydroresidues and thioether rings that are posttranslationally introduced by a membrane-associated enzyme complex, composed of a serine and threonine dehydratase NisB and the cyclase NisC. In addition, the transporter NisT is necessary for export of the modified peptide. We studied the potential of L. lactis expressing NisB and NisT to produce peptides whose serines and threonines are dehydrated. L. lactis containing the nisBT genes and a plasmid coding for a specific leader peptide fusion construct efficiently produced peptides with a series of non-naturally occurring multiple flanking dehydrobutyrines. We demonstrated NisB-mediated dehydration of serines and threonines in a C-terminal nisin(1-14) extension of nisin, which implies that also residues more distant from the leader peptide than those occurring in prenisin or any other lantibiotic can be modified. Furthermore, the feasibility and efficiency of generating a library of peptides containing dehydroresidues were demonstrated. In view of the particular shape and reactivity of dehydroamino acids, such a library provides a novel source for screening for peptides with desired biological and physicochemical properties.
Collapse
Affiliation(s)
- Rick Rink
- BiOMaDe Technology Foundation, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
Cotter PD, Deegan LH, Lawton EM, Draper LA, O'Connor PM, Hill C, Ross RP. Complete alanine scanning of the two-component lantibiotic lacticin 3147: generating a blueprint for rational drug design. Mol Microbiol 2007; 62:735-47. [PMID: 17076667 DOI: 10.1111/j.1365-2958.2006.05398.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lantibiotics are post-translationally modified antimicrobial peptides which are active at nanomolar concentrations. Some lantibiotics have been shown to function by targeting lipid II, the essential precursor of cell wall biosynthesis. Given that lantibiotics are ribosomally synthesized and amenable to site-directed mutagenesis, they have the potential to serve as biological templates for the production of novel peptides with improved functionalities. However, if a rational approach to novel lantibiotic design is to be adopted, an appreciation of the roles of each individual amino acid (and each domain) is required. To date no lantibiotic has been subjected to such rigorous analysis. To address this issue we have carried out complete scanning mutagenesis of each of the 59 amino acids in lacticin 3147, a two-component lantibiotic which acts through the synergistic activity of the peptides LtnA1 (30 amino acids) and LtnA2 (29 amino acids). All mutations were performed in situ in the native 60 kb plasmid, pMRC01. A number of mutations resulted in the elimination of detectable bioactivity and seem to represent an invariable core within these and related peptides. Significantly however, of the 59 amino acids, at least 36 can be changed without resulting in a complete loss of activity. Many of these are clustered to form variable domains within the peptides. The information generated in this study represents a blue-print that will be critical for the rational design of lantibiotic-based antimicrobial compounds.
Collapse
Affiliation(s)
- Paul D Cotter
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
38
|
Nagao JI, Asaduzzaman SM, Aso Y, Okuda KI, Nakayama J, Sonomoto K. Lantibiotics: insight and foresight for new paradigm. J Biosci Bioeng 2006; 102:139-49. [PMID: 17046525 DOI: 10.1263/jbb.102.139] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 05/18/2006] [Indexed: 11/17/2022]
Abstract
Lantibiotics are a unique type of antimicrobial peptide produced by a large number of gram-positive bacteria that contain unusual amino acids, such as lanthionine and dehydrated amino acids. Ribosomally synthesized lantibiotic prepeptide consists of an N-terminal leader peptide followed by a C-terminal propeptide moiety that undergoes several post-translational modification events to yield a biologically active lantibiotic. Research on lantibiotics has drawn much attention in recent years and has undergone extensive progress as a step forward to the next paradigm. Unusual amino acids in lantibiotics solely contribute to their biological activity and also enhance their structural stability. Thus, enzymes involved in lantibiotic biosynthesis would have a high potential for peptide engineering by introducing unusual amino acids into desired peptides, which may establish a universal approach to advance the structural design of novel peptides, termed lantibiotic engineering. In this review, we focus on recent development with contemporary innovations and perspective of lantibiotic research.
Collapse
Affiliation(s)
- Jun-ichi Nagao
- Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Dufour A, Hindré T, Haras D, Le Pennec JP. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 2006; 31:134-67. [PMID: 17096664 DOI: 10.1111/j.1574-6976.2006.00045.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lantibiotics are antimicrobial peptides from the bacteriocin family, secreted by Gram-positive bacteria. These peptides differ from other bacteriocins by the presence of (methyl)lanthionine residues, which result from enzymatic modification of precursor peptides encoded by structural genes. Several groups of lantibiotics have been distinguished, the largest of which is the lacticin 481 group. This group consists of at least 16 members, including lacticin 481, streptococcin A-FF22, mutacin II, nukacin ISK-1, and salivaricins. We present the first review devoted to this lantibiotic group, knowledge of which has increased significantly within the last few years. After updating the group composition and defining the common properties of these lantibiotics, we highlight the most recent developments. The latter concern: transcriptional regulation of the lantibiotic genes; understanding the biosynthetic machinery, in particular the ability to perform in vitro prepeptide maturation; characterization of a novel type of immunity protein; and broad application possibilities. This group differs in many aspects from the best known lantibiotic group (nisin group), but shares properties with less-studied groups such as the mersacidin, cytolysin and lactocin S groups.
Collapse
Affiliation(s)
- Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, Université de Bretagne Sud, Lorient, France.
| | | | | | | |
Collapse
|
40
|
Tsuge K, Inoue S, Ano T, Itaya M, Shoda M. Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrob Agents Chemother 2006; 49:4641-8. [PMID: 16251307 PMCID: PMC1280175 DOI: 10.1128/aac.49.11.4641-4648.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iturin A and its derivatives are lipopeptide antibiotics produced by Bacillus subtilis and several closely related bacteria. Three iturin group operons (i.e., iturin A, mycosubtilin, and bacillomycin D) of those antibiotic-producing strains have been cloned and sequenced thus far, strongly implying the horizontal transfer of these operons. To examine the nature of such horizontal transfer in terms of antibiotic production, a 42-kb region of the B. subtilis RB14 genome, which contains a complete 38-kb iturin A operon, was transferred via competent cell transformation to the genome of a non-iturin A producer, B. subtilis 168, using a method based on double-crossover homologous recombination with two short landing pad sequences (LPSs) in the genome. The recombinant was positively selected by confirming the elimination of the cI repressor gene, which was localized between the two LPSs and substituted by the transferred segment. The iturin A operon-transferred strain 168 was then converted into an iturin A producer by the introduction of an sfp gene, which encodes 4'-phosphopantetheinyl transferase and is mutated in strain 168. By inserting the pleiotropic regulator degQ, the productivity of iturin A increased sevenfold and was restored to about half that of the donor strain RB14, without the transfer of additional genes, such as regulatory or self-resistance genes.
Collapse
Affiliation(s)
- Kenji Tsuge
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|
41
|
Abstract
Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.
Collapse
Affiliation(s)
- Paul D Cotter
- Alimentary Pharmabiotic Centre, Microbiology Department, University College Cork, Cork, Ireland
| | | | | |
Collapse
|
42
|
Nagao JI, Harada Y, Shioya K, Aso Y, Zendo T, Nakayama J, Sonomoto K. Lanthionine introduction into nukacin ISK-1 prepeptide by co-expression with modification enzyme NukM in Escherichia coli. Biochem Biophys Res Commun 2005; 336:507-13. [PMID: 16143300 DOI: 10.1016/j.bbrc.2005.08.125] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Accepted: 08/17/2005] [Indexed: 11/20/2022]
Abstract
We demonstrated lanthionine introduction into hexa-histidine-tagged (His-tagged) nukacin ISK-1 prepeptide NukA by modification enzyme NukM in Escherichia coli. Co-expression of nukA and nukM, purification of the resulting His-tagged prepeptide by affinity chromatography, and subsequent mass spectrometry analysis showed that the prepeptide was converted into a postulated peptide with decrease in mass of 72Da which resulted from dehydration of four amino acids. Characterization of the resultant prepeptide indicated the presence of unusual amino acids, such as dehydrated amino acid, lanthionine or 3-methyllanthionine, in its C-terminal propeptide moiety. The modified prepeptide encompassing the leader peptide attached to the post-translationally modified propeptide moiety was readily obtained by one-step purification. Our findings will thus be a powerful tool for introducing unusual amino acids aimed at peptide engineering and also helpful to provide new insight for further understanding of lanthionine-forming enzymes for lantibiotics.
Collapse
Affiliation(s)
- Jun-Ichi Nagao
- Laboratory of Microbial Technology, Division of Microbial Science and Technology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Chatterjee C, Paul M, Xie L, van der Donk WA. Biosynthesis and mode of action of lantibiotics. Chem Rev 2005; 105:633-84. [PMID: 15700960 DOI: 10.1021/cr030105v] [Citation(s) in RCA: 569] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Champak Chatterjee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
44
|
Hsu STD, Breukink E, Tischenko E, Lutters MAG, de Kruijff B, Kaptein R, Bonvin AMJJ, van Nuland NAJ. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 2004; 11:963-7. [PMID: 15361862 DOI: 10.1038/nsmb830] [Citation(s) in RCA: 416] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 07/16/2004] [Indexed: 11/09/2022]
Abstract
The emerging antibiotics-resistance problem has underlined the urgent need for novel antimicrobial agents. Lantibiotics (lanthionine-containing antibiotics) are promising candidates to alleviate this problem. Nisin, a member of this family, has a unique pore-forming activity against bacteria. It binds to lipid II, the essential precursor of cell wall synthesis. As a result, the membrane permeabilization activity of nisin is increased by three orders of magnitude. Here we report the solution structure of the complex of nisin and lipid II. The structure shows a novel lipid II-binding motif in which the pyrophosphate moiety of lipid II is primarily coordinated by the N-terminal backbone amides of nisin via intermolecular hydrogen bonds. This cage structure provides a rationale for the conservation of the lanthionine rings among several lipid II-binding lantibiotics. The structure of the pyrophosphate cage offers a template for structure-based design of novel antibiotics.
Collapse
Affiliation(s)
- Shang-Te D Hsu
- Department of NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Xie L, Miller LM, Chatterjee C, Averin O, Kelleher NL, van der Donk WA. Lacticin 481: In Vitro Reconstitution of Lantibiotic Synthetase Activity. Science 2004; 303:679-81. [PMID: 14752162 DOI: 10.1126/science.1092600] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lantibiotic lacticin 481 is synthesized on ribosomes as a prepeptide (LctA) and posttranslationally modified to its mature form. These modifications include dehydration of serines and threonines, followed by intramolecular addition of cysteines to the unsaturated amino acids, which generates cyclic thioethers. This process breaks eight chemical bonds and forms six newbonds and is catalyzed by one enzyme, LctM. We have characterized the in vitro activity of LctM, which completely processed a series of LctA mutants, displaying a permissive substrate specificity that holds promise for antibiotic engineering.
Collapse
Affiliation(s)
- Lili Xie
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL61801, USA
| | | | | | | | | | | |
Collapse
|
46
|
Szekat C, Jack RW, Skutlarek D, Färber H, Bierbaum G. Construction of an expression system for site-directed mutagenesis of the lantibiotic mersacidin. Appl Environ Microbiol 2003; 69:3777-83. [PMID: 12839744 PMCID: PMC165212 DOI: 10.1128/aem.69.7.3777-3783.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lantibiotic (i.e., lanthionine-containing antibiotic) mersacidin is an antimicrobial peptide of 20 amino acids which is produced by Bacillus sp. strain HIL Y-85,54728. Mersacidin inhibits bacterial cell wall biosynthesis by binding to the precursor molecule lipid II. The structural gene of mersacidin (mrsA) and the genes for the enzymes of the biosynthesis pathway, dedicated transporters, producer self-protection proteins, and regulatory factors are organized in a biosynthetic gene cluster. For site-directed mutagenesis of lantibiotics, the engineered genes must be expressed in an expression system that contains all of the factors necessary for biosynthesis, export, and producer self-protection. In order to express engineered mersacidin peptides, a system in which the engineered gene replaces the wild-type gene on the chromosome was constructed. To test the expression system, three mutants were constructed. In S16I mersacidin, the didehydroalanine residue (Dha) at position 16 was replaced with the Ile residue found in the closely related lantibiotic actagardine. S16I mersacidin was produced only in small amounts. The purified peptide had markedly reduced antimicrobial activity, indicating an essential role for Dha16 in biosynthesis and biological activity of mersacidin. Similarly, Glu17, which is thought to be an essential structure in mersacidin, was exchanged for alanine. E17A mersacidin was obtained in good yields but also showed markedly reduced activity, thus confirming the importance of the carboxylic acid function at position 17 in the biological activity of mersacidin. Finally, the exchange of an aromatic for an aliphatic hydrophobic residue at position 3 resulted in the mutant peptide F3L mersacidin; this peptide showed only moderately reduced activity.
Collapse
Affiliation(s)
- Christiane Szekat
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany
| | | | | | | | | |
Collapse
|
47
|
Rose N, Palcic M, Sporns P, McMullen L. Nisin: A Novel Substrate for Glutathione S-Transferase Isolated from Fresh Beef. J Food Sci 2002. [DOI: 10.1111/j.1365-2621.2002.tb09542.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Abstract
Lantibiotics are a subgroup of bacteriocins that are characterized by the presence of the unusual thioether amino acids lanthionine and 3-methyllanthionine generated through posttranslational modification. The biosynthesis of lantibiotics follows a defined pathway comprising modifications of the prepeptide, proteolytic activation, and export. The genes encoding the biosynthesis apparatus and the lantibiotic prepeptide are organized in clusters, which also include information for proteins involved in regulation and producer self-protection. The elongated cationic lantibiotics primarily act through the formation of pores and recent progress with nisin and epidermin has shown that specific docking molecules such as lipid II play an essential role in this mechanism. Mersacidin and actagardine inhibit cell wall biosynthesis by complexing the precursor lipid II, whereas the cinnamycin-like peptides bind to phosphoethanolamine thus inhibiting phospholipase A2.
Collapse
Affiliation(s)
- A Guder
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, Sigmund-Freud-Str. 25, D-53105 Bonn, Germany
| | | | | |
Collapse
|
49
|
Altena K, Guder A, Cramer C, Bierbaum G. Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Appl Environ Microbiol 2000; 66:2565-71. [PMID: 10831439 PMCID: PMC110582 DOI: 10.1128/aem.66.6.2565-2571.2000] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthetic gene cluster (12.3 kb) of mersacidin, a lanthionine-containing antimicrobial peptide, is located on the chromosome of the producer, Bacillus sp. strain HIL Y-85,54728 in a region that corresponds to 348 degrees on the chromosome of Bacillus subtilis 168. It consists of 10 open reading frames and contains, in addition to the previously described mersacidin structural gene mrsA (G. Bierbaum, H. Brötz, K.-P. Koller, and H.-G. Sahl, FEMS Microbiol. Lett. 127:121-126, 1995), two genes, mrsM and mrsD, coding for enzymes involved in posttranslational modification of the prepeptide; one gene, mrsT, coding for a transporter with an associated protease domain; and three genes, mrsF, mrsG, and mrsE, encoding a group B ABC transporter that could be involved in producer self-protection. Additionally, three regulatory genes are part of the gene cluster, i.e., mrsR2 and mrsK2, which encode a two-component regulatory system which seems to be necessary for the transcription of the mrsFGE operon, and mrsR1, which encodes a protein with similarity to response regulators. Transcription of mrsA sets in at early stationary phase (between 8 and 16 h of culture).
Collapse
Affiliation(s)
- K Altena
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, D-53105 Bonn, Germany
| | | | | | | |
Collapse
|
50
|
|