1
|
Zhang P, Ji L, Yan W, Chen L, Zhu X, Lu Z, Dong F. Whole-genome sequencing and transcriptome-characterized mechanism of streptomycin resistance in Vibrio parahaemolyticus O10: K4. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 117:105540. [PMID: 38114043 DOI: 10.1016/j.meegid.2023.105540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Streptomycin resistance in V. parahaemolyticus has been widespread in both clinical and environmental isolates. Therefore, it is of great significance to characterize the mechanism of streptomycin resistance in V. parahaemolyticus. O10:K4 has emerged and becoming the new dominant serotype since 2020. In this study, we isolated a total of 36 strains of V. parahaemolyticus O10:K4 from 2020 to 2022 and found that more than half of them were resistant to streptomycin. We obtained streptomycin resistant and sensitive strains by detecting the resistance profiles. Whole-genome sequencing showed that VP_RS10735 and VP_RS05605 were the predominant mutations in streptomycin resistant O10:K4 clinical isolates. In addition, this study provided global insight into the characteristics of the transcriptome signature of streptomycin resistance, revealing that efflux transporters play a key role in streptomycin resistance. Finally, we found that streptomycin resistant strain was more virulent than sensitive strain. The results of this study should advance our understanding of the mechanisms of aminoglycoside resistance.
Collapse
Affiliation(s)
- Peng Zhang
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Lei Ji
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Wei Yan
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Xiaohua Zhu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Zhonghao Lu
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China
| | - Fenfen Dong
- Huzhou Center for Disease Control and Prevention, 999 Changxing Road, Huzhou, Zhejiang 313000, China.
| |
Collapse
|
2
|
Zhou W, Hao B, Bricker TM, Theg SM. A real-time analysis of protein transport via the twin arginine translocation pathway in response to different components of the protonmotive force. J Biol Chem 2023; 299:105286. [PMID: 37742925 PMCID: PMC10641609 DOI: 10.1016/j.jbc.2023.105286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
The twin arginine translocation (Tat) pathway transports folded protein across the cytoplasmic membrane in bacteria, archaea, and across the thylakoid membrane in plants as well as the inner membrane in some mitochondria. In plant chloroplasts, the Tat pathway utilizes the protonmotive force (PMF) to drive protein translocation. However, in bacteria, it has been shown that Tat transport depends only on the transmembrane electrical potential (Δψ) component of PMF in vitro. To investigate the comprehensive PMF requirement in Escherichia coli, we have developed the first real-time assay to monitor Tat transport utilizing the NanoLuc Binary Technology in E. coli spheroplasts. This luminescence assay allows for continuous monitoring of Tat transport with high-resolution, making it possible to observe subtle changes in transport in response to different treatments. By applying the NanoLuc assay, we report that, under acidic conditions (pH = 6.3), ΔpH, in addition to Δψ, contributes energetically to Tat transport in vivo in E. coli spheroplasts. These results provide novel insight into the mechanism of energy utilization by the Tat pathway.
Collapse
Affiliation(s)
- Wenjie Zhou
- Department of Plant Biology, University of California, Davis, California, USA
| | - Binhan Hao
- Department of Plant Biology, University of California, Davis, California, USA
| | - Terry M Bricker
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Steven M Theg
- Department of Plant Biology, University of California, Davis, California, USA.
| |
Collapse
|
3
|
Giacometti SI, MacRae MR, Dancel-Manning K, Bhabha G, Ekiert DC. Lipid Transport Across Bacterial Membranes. Annu Rev Cell Dev Biol 2022; 38:125-153. [PMID: 35850151 DOI: 10.1146/annurev-cellbio-120420-022914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.
Collapse
Affiliation(s)
- Sabrina I Giacometti
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Mark R MacRae
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Kristen Dancel-Manning
- Office of Science and Research, New York University School of Medicine, New York, NY, USA;
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Turgeson A, Morley L, Giles D, Harris B. Simulated Docking Predicts Putative Channels for the Transport of Long-Chain Fatty Acids in Vibrio cholerae. Biomolecules 2022; 12:biom12091269. [PMID: 36139109 PMCID: PMC9496633 DOI: 10.3390/biom12091269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/04/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Fatty acids (FA) play an important role in biological functions, such as membrane homeostasis, metabolism, and as signaling molecules. FadL is the only known protein that uptakes long-chain fatty acids in Gram-negative bacteria, and this uptake has traditionally been thought to be limited to fatty acids up to 18 carbon atoms in length. Recently however, it was found Vibrio cholerae has the ability to uptake fatty acids greater than 18 carbon atoms and this uptake corresponds to bacterial survivability. Using E. coli’s FadL as a template, V. cholerae FadL homologs vc1042, vc1043, and vca0862 have been computationally folded, simulated on an atomistic level using Molecular Dynamics, and docked in silico to analyze the FadL transport channels. For the vc1042 and vc1043 homologs, these transport channels have more structural accommodations for the many rigid unsaturated bonds of long-chain polyunsaturated fatty acids, while the vca0862 homolog was found to lack transport channels within the signature beta barrel of FadL proteins.
Collapse
Affiliation(s)
- Andrew Turgeson
- Department of Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Lucas Morley
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Giles
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Bradley Harris
- Department of Chemical Engineering, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
- Correspondence: ; Tel.: +1-423-425-2209
| |
Collapse
|
5
|
Czolkoss S, Borgert P, Poppenga T, Hölzl G, Aktas M, Narberhaus F. Synthesis of the unusual lipid bis(monoacylglycero)phosphate in environmental bacteria. Environ Microbiol 2021; 23:6993-7008. [PMID: 34528360 DOI: 10.1111/1462-2920.15777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023]
Abstract
The bacterial membrane is constantly remodelled in response to environmental conditions and the external supply of precursor molecules. Some bacteria are able to acquire exogenous lyso-phospholipids and convert them to the corresponding phospholipids. Here, we report that some soil-dwelling bacteria have alternative options to metabolize lyso-phosphatidylglycerol (L-PG). We find that the plant-pathogen Agrobacterium tumefaciens takes up this mono-acylated phospholipid and converts it to two distinct isoforms of the non-canonical lipid bis(monoacylglycero)phosphate (BMP). Chromatographic separation and quadrupole-time-of-flight MS/MS analysis revealed the presence of two possible BMP stereo configurations acylated at either of the free hydroxyl groups of the glycerol head group. BMP accumulated in the inner membrane and did not visibly alter cell morphology and growth behaviour. The plant-associated bacterium Sinorhizobium meliloti was also able to convert externally provided L-PG to BMP. Other bacteria like Pseudomonas fluorescens and Escherichia coli metabolized L-PG after cell disruption, suggesting that BMP production in the natural habitat relies both on dedicated uptake systems and on head-group acylation enzymes. Overall, our study adds two previously overlooked phospholipids to the repertoire of bacterial membrane lipids and provides evidence for the remarkable condition-responsive adaptation of bacterial membranes.
Collapse
Affiliation(s)
- Simon Czolkoss
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Pia Borgert
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Tessa Poppenga
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, 53115 Bonn, Germany
| | - Meriyem Aktas
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
6
|
Liu J, Gumbart JC. Membrane thinning and lateral gating are consistent features of BamA across multiple species. PLoS Comput Biol 2020; 16:e1008355. [PMID: 33112853 PMCID: PMC7652284 DOI: 10.1371/journal.pcbi.1008355] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/09/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
In Gram-negative bacteria, the folding and insertion of β-barrel outer membrane proteins (OMPs) to the outer membrane are mediated by the β-barrel assembly machinery (BAM) complex. Two leading models of this process have been put forth: the hybrid barrel model, which claims that a lateral gate in BamA’s β-barrel can serve as a template for incoming OMPs, and the passive model, which claims that a thinned membrane near the lateral gate of BamA accelerates spontaneous OMP insertion. To examine the key elements of these two models, we have carried out 45.5 μs of equilibrium molecular dynamics simulations of BamA with and without POTRA domains from Escherichia coli, Salmonella enterica, Haemophilus ducreyi and Neisseria gonorrhoeae, together with BamA’s homolog, TamA from E. coli, in their native, species-specific outer membranes. In these equilibrium simulations, we consistently observe membrane thinning near the lateral gate for all proteins. We also see occasional spontaneous lateral gate opening and sliding of the β-strands at the gate interface for N. gonorrhoeae, indicating that the gate is dynamic. An additional 14 μs of free-energy calculations shows that the energy necessary to open the lateral gate in BamA/TamA varies by species, but is always lower than the Omp85 homolog, FhaC. Our combined results suggest OMP insertion utilizes aspects of both the hybrid barrel and passive models. Gram-negative bacteria such as Escherichia coli have a second, outer membrane surrounding them. This outer membrane provides an additional layer of protection, but also presents an additional challenge in its construction, exacerbated by the lack of chemical energy in this region of the bacterial cell. For example, proteins in the outer membrane are inserted via BamA, itself an integral membrane protein. The precise mechanisms by which BamA assists in the insertion process are still unclear. Here, we use extensive simulations in atomistic detail of BamA from multiple species in its native outer membrane environment to shed light on this process. We find that the lateral gate of BamA, a proposed pathway into the membrane, is dynamic, although to a degree varying by species. On the other hand, thinning of the outer membrane near BamA’s lateral gate is observed consistently across all simulations. We conclude that multiple features of BamA contribute to protein insertion into the outer membrane.
Collapse
Affiliation(s)
- Jinchan Liu
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Tang Aoqing Honors Program in Science, College of Chemistry, Jilin University, Changchun, Jilin Province, China
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Black PN. A revolution in biochemistry and molecular biology education informed by basic research to meet the demands of 21st century career paths. J Biol Chem 2020; 295:10653-10661. [PMID: 32527726 DOI: 10.1074/jbc.aw120.011104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The National Science Foundation estimates that 80% of the jobs available during the next decade will require math and science skills, dictating that programs in biochemistry and molecular biology must be transformative and use new pedagogical approaches and experiential learning for careers in industry, research, education, engineering, health-care professions, and other interdisciplinary fields. These efforts require an environment that values the individual student and integrates recent advances from the primary literature in the discipline, experimentally directed research, data collection and analysis, and scientific writing. Current trends shaping these efforts must include critical thinking, experimental testing, computational modeling, and inferential logic. In essence, modern biochemistry and molecular biology education must be informed by, and integrated with, cutting-edge research. This environment relies on sustained research support, commitment to providing the requisite mentoring, access to instrumentation, and state-of-the-art facilities. The academic environment must establish a culture of excellence and faculty engagement, leading to innovation in the classroom and laboratory. These efforts must not lose sight of the importance of multidimensional programs that enrich science literacy in all facets of the population, students and teachers in K-12 schools, nonbiochemistry and molecular biology students, and other stakeholders. As biochemistry and molecular biology educators, we have an obligation to provide students with the skills that allow them to be innovative and self-reliant. The next generation of biochemistry and molecular biology students must be taught proficiencies in scientific and technological literacy, the importance of the scientific discourse, and skills required for problem solvers of the 21st century.
Collapse
Affiliation(s)
- Paul N Black
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Gregson BH, Metodieva G, Metodiev MV, Golyshin PN, McKew BA. Differential Protein Expression During Growth on Medium Versus Long-Chain Alkanes in the Obligate Marine Hydrocarbon-Degrading Bacterium Thalassolituus oleivorans MIL-1. Front Microbiol 2018; 9:3130. [PMID: 30619200 PMCID: PMC6304351 DOI: 10.3389/fmicb.2018.03130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 02/02/2023] Open
Abstract
The marine obligate hydrocarbonoclastic bacterium Thalassolituus oleivorans MIL-1 metabolizes a broad range of aliphatic hydrocarbons almost exclusively as carbon and energy sources. We used LC-MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on medium- (n-C14) or long-chain (n-C28) alkanes. During growth on n-C14, T. oleivorans expresses an alkane monooxygenase system involved in terminal oxidation including two alkane 1-monooxygenases, a ferredoxin, a ferredoxin reductase and an aldehyde dehydrogenase. In contrast, during growth on long-chain alkanes (n-C28), T. oleivorans may switch to a subterminal alkane oxidation pathway evidenced by significant upregulation of Baeyer-Villiger monooxygenase and an esterase, proteins catalyzing ketone and ester metabolism, respectively. The metabolite (primary alcohol) generated from terminal oxidation of an alkane was detected during growth on n-C14 but not on n-C28 also suggesting alternative metabolic pathways. Expression of both active and passive transport systems involved in uptake of long-chain alkanes was higher when compared to the non-hydrocarbon control, including a TonB-dependent receptor, a FadL homolog and a specialized porin. Also, an inner membrane transport protein involved in the export of an outer membrane protein was expressed. This study has demonstrated the substrate range of T. oleivorans is larger than previously reported with growth from n-C10 up to n-C32. It has also greatly enhanced our understanding of the fundamental physiology of T. oleivorans, a key bacterium that plays a significant role in natural attenuation of marine oil pollution, by identifying key enzymes expressed during the catabolism of n-alkanes.
Collapse
Affiliation(s)
- Benjamin H Gregson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Gergana Metodieva
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Bangor, United Kingdom.,School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, United Kingdom
| | - Boyd A McKew
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
9
|
Nazarova EV, Montague CR, La T, Wilburn KM, Sukumar N, Lee W, Caldwell S, Russell DG, VanderVen BC. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. eLife 2017; 6:e26969. [PMID: 28708968 PMCID: PMC5487216 DOI: 10.7554/elife.26969] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/07/2017] [Indexed: 01/05/2023] Open
Abstract
Pathogenic bacteria have evolved highly specialized systems to extract essential nutrients from their hosts. Mycobacterium tuberculosis (Mtb) scavenges lipids (cholesterol and fatty acids) to maintain infections in mammals but mechanisms and proteins responsible for the import of fatty acids in Mtb were previously unknown. Here, we identify and determine that the previously uncharacterized protein Rv3723/LucA, functions to integrate cholesterol and fatty acid uptake in Mtb. Rv3723/LucA interacts with subunits of the Mce1 and Mce4 complexes to coordinate the activities of these nutrient transporters by maintaining their stability. We also demonstrate that Mce1 functions as a fatty acid transporter in Mtb and determine that facilitating cholesterol and fatty acid import via Rv3723/LucA is required for full bacterial virulence in vivo. These data establish that fatty acid and cholesterol assimilation are inexorably linked in Mtb and reveals a key function for Rv3723/LucA in in coordinating thetransport of both these substrates.
Collapse
Affiliation(s)
- Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Christine R Montague
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Thuy La
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Neelima Sukumar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Wonsik Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Shannon Caldwell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| |
Collapse
|
10
|
van den Berg B. Bacterial cleanup: lateral diffusion of hydrophobic molecules through protein channel walls. Biomol Concepts 2015; 1:263-70. [PMID: 25962002 DOI: 10.1515/bmc.2010.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria forms a very efficient barrier against the permeation of both hydrophilic and hydrophobic compounds, owing to the presence of lipopolysaccharides on the outside of the cell. Although much is known about the OM passage of hydrophilic molecules, it is much less clear how hydrophobic molecules cross this barrier. Members of the FadL channel family, which are widespread in Gram-negative bacteria, are so far the only proteins with an established role in the uptake of hydrophobic molecules across the OM. Recent structural and biochemical research has shown that these channels operate according to a unique lateral diffusion mechanism, in which the substrate moves from the lumen of the barrel into the OM via an unusual opening in the wall of the barrel. Understanding how hydrophobic molecules cross the OM is not only of fundamental importance but could also have applications in the design of novel, hydrophobic drugs, biofuel production and the generation of more efficient bacterial biodegrader strains.
Collapse
|
11
|
Proteomic analysis of the response of Escherichia coli to short-chain fatty acids. J Proteomics 2015; 122:86-99. [PMID: 25845584 DOI: 10.1016/j.jprot.2015.03.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/13/2015] [Accepted: 03/29/2015] [Indexed: 01/03/2023]
Abstract
UNLABELLED Given their simple and easy-to-manipulate chemical structures, short-chain fatty acids (SCFAs) are valuable feedstocks for many industrial applications. While the microbial production of SCFAs by engineered Escherichia coli has been demonstrated recently, productivity and yields are limited by their antimicrobial properties. In this work, we performed a comparative proteomic analysis of E. coli under octanoic acid stress (15 mM) and identified the underlying mechanisms of SCFA toxicity. Out of a total of 33 spots differentially expressed at a p-value ≤ 0.05, nine differentially expressed proteins involved in transport and structural roles (OmpF, HPr, and FliC), oxidative stress (SodA, SodB, and TrxA), protein synthesis (PPiB and RpsA) and metabolic functions (HPr, PflB) were selected for further investigation. Our studies suggest that membrane damage and oxidative stress are the main routes of inhibition by SCFAs in E. coli. The outer membrane porin OmpF had the greatest impact on SCFA tolerance. Intracellular pH analysis on ompF mutants grown under octanoic acid stress indicated that this porin facilitates transport of SCFAs into the cell. The same response was observed under hexanoic acid stress, further supporting the role of OmpF in response to the presence of SCFAs. Furthermore, analysis of membrane protein expression revealed that other outer membrane porins are also involved in the response of E. coli to SCFAs. BIOLOGICAL SIGNIFICANCE This work covers the first known proteomic analysis to assess the inhibitory effect of SCFAs in E. coli. SCFAs are molecules of great interest in the industry, but their microbial production is limited by their antimicrobial properties. This work allowed identification of differentially expressed proteins in response to SCFA stress and demonstrated the relevance of short- and medium-chain FA transport across the cell membrane via outer membrane porins, providing valuable insights on the toxicity mechanism of SCFAs in E. coli. These results could also benefit future engineering efforts by guiding the design and construction of industrial strains that produce SCFAs with increased tolerance and productivity.
Collapse
|
12
|
Krol E, Becker A. Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals. Proc Natl Acad Sci U S A 2014; 111:10702-7. [PMID: 25002473 PMCID: PMC4115515 DOI: 10.1073/pnas.1404929111] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quorum sensing (QS) using N-acyl homoserine lactones (AHLs) as signal molecules is a common strategy used by diverse Gram-negative bacteria. A widespread mechanism of AHL sensing involves binding of these molecules by cytosolic LuxR-type transcriptional regulators, which requires uptake of external AHLs. The outer membrane is supposed to be an efficient barrier for diffusion of long-chain AHLs. Here we report evidence that in Sinorhizobium meliloti, sensing of AHLs with acyl chains composed of 14 or more carbons is facilitated by the outer membrane protein FadLSm, a homolog of the Escherichia coli FadLEc long-chain fatty acid transporter. The effect of fadLSm on AHL sensing was more prominent for longer and more hydrophobic signal molecules. Using reporter gene fusions to QS target genes, we found that fadLSm increased AHL sensitivity and accelerated the course of QS. In contrast to FadLEc, FadLSm did not support uptake of oleic acid, but did contribute to growth on palmitoleic acid. FadLSm homologs from related symbiotic α-rhizobia and the plant pathogen Agrobacterium tumefaciens differed in their ability to facilitate long-chain AHL sensing or to support growth on oleic acid. FadLAt was found to be ineffective toward long-chain AHLs. We obtained evidence that the predicted extracellular loop 5 of FadLSm and further α-rhizobial FadL proteins contains determinants of specificity to long-chain AHLs. Replacement of a part of loop 5 by the corresponding region from α-rhizobial FadL proteins transferred sensitivity for long-chain AHLs to FadLAt.
Collapse
Affiliation(s)
- Elizaveta Krol
- LOEWE Center for Synthetic Microbiology, Department of Biology, Philipps-University Marburg, 35032 Marburg, Germany
| | - Anke Becker
- LOEWE Center for Synthetic Microbiology, Department of Biology, Philipps-University Marburg, 35032 Marburg, Germany
| |
Collapse
|
13
|
Characterization of the Vibrio cholerae VolA surface-exposed lipoprotein lysophospholipase. J Bacteriol 2014; 196:1619-26. [PMID: 24532770 DOI: 10.1128/jb.01281-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial lipases play important roles in bacterial metabolism and environmental response. Our laboratory recently discovered that a novel lipoprotein lysophospholipase, VolA, localizes on the surface of the Gram-negative aquatic pathogen Vibrio cholerae. VolA functions to cleave exogenous lysophosphatidylcholine, freeing the fatty acid moiety for use by V. cholerae. This fatty acid is transported into the cell and can be used as a nutrient and, more importantly, as a way to alter the membrane architecture via incorporation into the phospholipid biosynthesis pathway. There are few examples of Gram-negative, surface-exposed lipoproteins, and VolA is unique, as it has a previously undercharacterized function in V. cholerae membrane remodeling. Herein, we report the biochemical characterization of VolA. We show that VolA is a canonical lipoprotein via mass spectrometry analysis and demonstrate the in vitro activity of VolA under a variety of conditions. Additionally, we show that VolA contains a conserved Gly-Xaa-Ser-Xaa-Gly motif typical of lipases. Interestingly, we report the observation of VolA homologs in other aquatic pathogens. An Aeromonas hydrophila VolA homolog complements a V. cholerae VolA mutant in growth on lysophosphatidylcholine as the sole carbon source and in enzymatic assays. These results support the idea that the lipase activity of surface-exposed VolA likely contributes to the success of V. cholerae, improving the overall adaptation and survival of the organism in different environments.
Collapse
|
14
|
Martínez E, Estupiñán M, Pastor FJ, Busquets M, Díaz P, Manresa A. Functional characterization of ExFadLO, an outer membrane protein required for exporting oxygenated long-chain fatty acids in Pseudomonas aeruginosa. Biochimie 2013; 95:290-8. [DOI: 10.1016/j.biochi.2012.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 09/23/2012] [Indexed: 01/29/2023]
|
15
|
Wang J, Du XJ, Lu XN, Wang S. Immunoproteomic identification of immunogenic proteins in Cronobacter sakazakii strain BAA-894. Appl Microbiol Biotechnol 2013; 97:2077-91. [PMID: 23371297 DOI: 10.1007/s00253-013-4720-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/12/2013] [Accepted: 01/15/2013] [Indexed: 11/30/2022]
Abstract
Cronobacter spp. are emerging opportunistic pathogens. Cronobacter sakazakii is considered as the predominant species in all infections. So far, our understanding of the species' immunogens and potential virulence factors of Cronobacter spp. remains limited. In this study, an immunoproteomic approach was used to investigate soluble and insoluble proteins from the genome-sequenced strain C. sakazakii ATCC BAA-894. Proteins were separated using two-dimensional electrophoresis, detected by Western blotting with polyclonal antibodies of C. sakazakii BAA-894, and identified using tandem mass spectrometry (MALDI-MS and MALDI-MS/MS, MS/MSMS). A total of 11 immunoreactive proteins were initially identified in C. sakazakii BAA-894, including two outer membrane proteins, four periplasmic proteins, and five cytoplasmic proteins. In silico functional analysis of the 11 identified proteins indicated three proteins that were initially described as immunogens of pathogenic bacteria. For the remaining eight proteins, one protein was categorized as a potential virulence factor involved in protection against reactive oxygen species, and seven proteins were considered to play potential roles in adhesion, invasion, and biofilm formation. To our knowledge, this is the first time that immunogenic proteins of C. sakazakii BAA-894 have been identified as immunogens and potential virulence factors by an immunoproteomics approach. Future studies should investigate the roles of these proteins in bacterial pathogenesis and modulation of host immune responses during infection to identify their potential as molecular therapeutic targets.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Vainer B. Intercellular adhesion molecule-1 (ICAM-1) in ulcerative colitis: presence, visualization, and significance. APMIS 2010:1-43. [PMID: 20653648 DOI: 10.1111/j.1600-0463.2010.02647.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ben Vainer
- Department of Pathology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
17
|
van den Berg B. Going forward laterally: transmembrane passage of hydrophobic molecules through protein channel walls. Chembiochem 2010; 11:1339-43. [PMID: 20533493 PMCID: PMC3013500 DOI: 10.1002/cbic.201000105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Indexed: 01/21/2023]
Abstract
Regular phospholipid bilayers do not pose efficient barriers for the transport of hydrophobic molecules. The outer membrane (OM) surrounding Gram-negative bacteria is a nontypical, asymmetric bilayer with an outer layer of lipopolysaccharide (LPS). The sugar molecules of the LPS layer prevent spontaneous diffusion of hydrophobic molecules across the OM. As regular OM channels such as porins do not allow passage of hydrophobic molecules, specialized OM transport proteins are required for their uptake. Such proteins, exemplified by channels of the FadL family, transport their substrates according to a lateral diffusion mechanism. Here, substrates diffuse from the lumen of the beta-barrel laterally into the OM, through a stable opening in the wall of the barrel. In this way, the lipopolysaccharide barrier is bypassed and, by depositing the substrates into the OM, a driving force for uptake is provided. Lateral diffusion through protein channel walls also occurs in alpha-helical inner membrane proteins, and could represent a widespread mechanism for proteins that transport and interact with hydrophobic substrates.
Collapse
Affiliation(s)
- Bert van den Berg
- University of Massachusetts Medical School, Program in Molecular Medicine, 373 Plantation Street, Worcester, MA 01606, USA.
| |
Collapse
|
18
|
Shen CJ, Kuo TY, Lin CC, Chow LP, Chen WJ. Proteomic identification of membrane proteins regulating antimicrobial peptide resistance inVibrio parahaemolyticus. J Appl Microbiol 2010; 108:1398-407. [DOI: 10.1111/j.1365-2672.2009.04544.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B. Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 2009; 458:367-70. [PMID: 19182779 DOI: 10.1038/nature07678] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 11/28/2008] [Indexed: 11/09/2022]
Abstract
Membrane proteins that transport hydrophobic compounds have important roles in multi-drug resistance and can cause a number of diseases, underscoring the importance of protein-mediated transport of hydrophobic compounds. Hydrophobic compounds readily partition into regular membrane lipid bilayers, and their transport through an aqueous protein channel is energetically unfavourable. Alternative transport models involving acquisition from the lipid bilayer by lateral diffusion have been proposed for hydrophobic substrates. So far, all transport proteins for which a lateral diffusion mechanism has been proposed function as efflux pumps. Here we present the first example of a lateral diffusion mechanism for the uptake of hydrophobic substrates by the Escherichia coli outer membrane long-chain fatty acid transporter FadL. A FadL mutant in which a lateral opening in the barrel wall is constricted, but which is otherwise structurally identical to wild-type FadL, does not transport substrates. A crystal structure of FadL from Pseudomonas aeruginosa shows that the opening in the wall of the beta-barrel is conserved and delineates a long, hydrophobic tunnel that could mediate substrate passage from the extracellular environment, through the polar lipopolysaccharide layer and, by means of the lateral opening in the barrel wall, into the lipid bilayer from where the substrate can diffuse into the periplasm. Because FadL homologues are found in pathogenic and biodegrading bacteria, our results have implications for combating bacterial infections and bioremediating xenobiotics in the environment.
Collapse
Affiliation(s)
- Elizabeth M Hearn
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | |
Collapse
|
20
|
Temperature and growth phase influence the outer-membrane proteome and the expression of a type VI secretion system in Yersinia pestis. Microbiology (Reading) 2009; 155:498-512. [DOI: 10.1099/mic.0.022160-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Yersinia pestis cells were grown in vitro at 26 and 37 °C, the ambient temperatures of its flea vector and its mammalian hosts, respectively, and subjected to subcellular fractionation. Abundance changes at 26 vs 37 °C were observed for many outer-membrane (OM) proteins. The cell adhesion protein Ail (y1324) and three putative small β-barrel OM proteins (y1795, y2167 and y4083) were strongly increased at 37 °C. The Ail/Lom family protein y1682 (OmpX) was strongly increased at 26 °C. Several porins and TonB-dependent receptors, which control small molecule transport through the OM, were also altered in abundance in a temperature-dependent manner. These marked differences in the composition of the OM proteome are probably important for the adaptation of Y. pestis to its in vivo life stages. Thirteen proteins that appear to be part of an intact type VI secretion system (T6SS) were identified in membrane fractions of stationary-phase cells grown at 26 °C, but not at 37 °C. The corresponding genes are clustered in the Y. pestis KIM gene locus y3658–y3677. The proteins y3674 and y3675 were particularly abundant and co-fractionated in a M
r range indicative of participation in a multi-subunit complex. The soluble haemolysin-coregulated protein y3673 was even more abundant. Its release into the extracellular medium was triggered by treatment of Y. pestis cells with trypsin. Proteases and other stress-response-inducing factors may constitute environmental cues resulting in the activation of the T6SS in Y. pestis.
Collapse
|
21
|
Sardiñas G, Yero D, Climent Y, Caballero E, Cobas K, Niebla O. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential. J Med Microbiol 2009; 58:196-208. [DOI: 10.1099/jmm.0.004820-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.
Collapse
Affiliation(s)
- Gretel Sardiñas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Evelin Caballero
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Karem Cobas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Olivia Niebla
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| |
Collapse
|
22
|
Burgess NK, Dao TP, Stanley AM, Fleming KG. Beta-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J Biol Chem 2008; 283:26748-58. [PMID: 18641391 PMCID: PMC3258919 DOI: 10.1074/jbc.m802754200] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 07/18/2008] [Indexed: 11/06/2022] Open
Abstract
Little is known about the dynamic process of membrane protein folding, and few models exist to explore it. In this study we doubled the number of Escherichia coli outer membrane proteins (OMPs) for which folding into lipid bilayers has been systematically investigated. We cloned, expressed, and folded nine OMPs: outer membrane protein X (OmpX), OmpW, OmpA, the crcA gene product (PagP), OmpT, outer membrane phospholipase A (OmpLa), the fadl gene product (FadL), the yaet gene product (Omp85), and OmpF. These proteins fold into the same bilayer in vivo and share a transmembrane beta-barrel motif but vary in sequence and barrel size. We quantified the ability of these OMPs to fold into a matrix of bilayer environments. Several trends emerged from these experiments: higher pH values, thinner bilayers, and increased bilayer curvature promote folding of all OMPs. Increasing the incubation temperature promoted folding of several OMPs but inhibited folding of others. We discovered that OMPs do not have the same ability to fold into any single bilayer environment. This suggests that although environmental factors influence folding, OMPs also have intrinsic qualities that profoundly modulate their folding. To rationalize the differences in folding efficiency, we performed kinetic and thermal denaturation experiments, the results of which demonstrated that OMPs employ different strategies to achieve the observed folding efficiency.
Collapse
Affiliation(s)
| | | | | | - Karen G. Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University,
Baltimore, Maryland 21218
| |
Collapse
|
23
|
Zou H, Zheng M, Luo X, Zhu W, Chen K, Shen J, Jiang H. Dynamic mechanism of fatty acid transport across cellular membranes through FadL: molecular dynamics simulations. J Phys Chem B 2008; 112:13070-8. [PMID: 18811191 DOI: 10.1021/jp710964x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FadL is an important member of the family of fatty acid transport proteins within membranes. In this study, 11 conventional molecular dynamics (CMD) and 25 steered molecular dynamics (SMD) simulations were performed to investigate the dynamic mechanism of transport of long-chain fatty acids (LCFAs) across FadL. The CMD simulations addressed the intrinsically dynamic behavior of FadL. Both the CMD and SMD simulations revealed that a fatty acid molecule can move diffusively to a high-affinity site (HAS) from a low-affinity site (LAS). During this process, the swing motion of the L3 segment and the hydrophobic interaction between the fatty acid and FadL could play important roles. Furthermore, 22 of the SMD simulations revealed that fatty acids can pass through the gap between the hatch domain and the transmembrane domain (TMD) by different pathways. SMD simulations identified nine possible pathways for dodecanoic acid (DA) threading the barrel of FadL. The binding free energy profiles between DA and FadL along the MD trajectories indicate that all of the possible pathways are energetically favorable for the transport of fatty acids; however, one pathway (path VI) might be the most probable pathway for DA transport. The reasonability and reliability of this study were further demonstrated by correlating the MD simulation results with the available mutagenesis results. On the basis of the simulations, a mechanism for the full-length transport process of DA from the extracellular side to the periplasmic space mediated by FadL is proposed.
Collapse
Affiliation(s)
- Hanjun Zou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Rudnick DA, McWherter CA, Gokel GW, Gordon JI. MyristoylCoA:protein N-myristoyltransferase. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:375-430. [PMID: 8322618 DOI: 10.1002/9780470123133.ch5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D A Rudnick
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO
| | | | | | | |
Collapse
|
25
|
Moore SL, Denyer SP, Hanlon GW, Olliff CJ, Lansley AB, Rabone K, Jones M. Alcohol ethoxylates mediate their bacteriostatic effect by altering the cell membrane of Escherichia coli NCTC 8196. Int J Antimicrob Agents 2006; 28:503-13. [PMID: 17101263 DOI: 10.1016/j.ijantimicag.2006.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 08/01/2006] [Indexed: 12/01/2022]
Abstract
The minimum inhibitory concentration (MIC) of a homologous series of alcohol ethoxylates with the same head group size (E6) but differing in the number of carbon atoms in their 'tail group' from 10 to 16 was determined for Staphylococcus aureus NCTC 4163 and Escherichia coli NCTC 8196 using a turbidimetric assay. All the surfactants tested demonstrated bacteriostatic activity against both organisms. A tetrazolium assay showed that C14E6 and C16E6 had little effect on the membrane-bound dehydrogenase enzyme activity of E. coli NCTC 8196 compared with C10E6 and C12E6. C10E6 caused leakage both of K(+) and nucleotides in a concentration-dependent manner above its MIC of 0.2 mM. C12E6 caused some leakage at concentrations below its MIC (0.12 mM).
Collapse
Affiliation(s)
- S L Moore
- Reckitt Benckiser, Dansom Lane, Hull, East Yorkshire, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Hazlett KRO, Cox DL, Decaffmeyer M, Bennett MP, Desrosiers DC, La Vake CJ, La Vake ME, Bourell KW, Robinson EJ, Brasseur R, Radolf JD. TP0453, a concealed outer membrane protein of Treponema pallidum, enhances membrane permeability. J Bacteriol 2005; 187:6499-508. [PMID: 16159783 PMCID: PMC1236642 DOI: 10.1128/jb.187.18.6499-6508.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Treponema pallidum, the non-cultivable agent of venereal syphilis, contains a paucity of protein(s) which has yet to be definitively identified. In contrast, the outer membranes of gram-negative bacteria contain abundant immunogenic membrane-spanning beta-barrel proteins mainly involved in nutrient transport. The absence of orthologs of gram-negative porins and outer membrane nutrient-specific transporters in the T. pallidum genome predicts that nutrient transport across the outer membrane must differ fundamentally in T. pallidum and gram-negative bacteria. Here we describe a T. pallidum outer membrane protein (TP0453) that, in contrast to all integral outer membrane proteins of known structure, lacks extensive beta-sheet structure and does not traverse the outer membrane to become surface exposed. TP0453 is a lipoprotein with an amphiphilic polypeptide containing multiple membrane-inserting, amphipathic alpha-helices. Insertion of the recombinant, non-lipidated protein into artificial membranes results in bilayer destabilization and enhanced permeability. Our findings lead us to hypothesize that TP0453 is a novel type of bacterial outer membrane protein which may render the T. pallidum outer membrane permeable to nutrients while remaining inaccessible to antibody.
Collapse
Affiliation(s)
- Karsten R O Hazlett
- Center for Microbial Pathogenesis, University of Connecticut Health Center, 263 Farmington Ave., Farmington, Connecticut 06030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dirusso CC, Black PN. Bacterial long chain fatty acid transport: gateway to a fatty acid-responsive signaling system. J Biol Chem 2004; 279:49563-6. [PMID: 15347640 DOI: 10.1074/jbc.r400026200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Concetta C Dirusso
- Center for Metabolic Diseases, Ordway Research Institute and Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | |
Collapse
|
28
|
van den Berg B, Black PN, Clemons WM, Rapoport TA. Crystal Structure of the Long-Chain Fatty Acid Transporter FadL. Science 2004; 304:1506-9. [PMID: 15178802 DOI: 10.1126/science.1097524] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mechanisms by which hydrophobic molecules, such as long-chain fatty acids, enter cells are poorly understood. In Gram-negative bacteria, the lipopolysaccharide layer in the outer membrane is an efficient barrier for fatty acids and aromatic hydrocarbons destined for biodegradation. We report crystal structures of the long-chain fatty acid transporter FadL from Escherichia coli at 2.6 and 2.8 angstrom resolution. FadL forms a 14-stranded beta barrel that is occluded by a central hatch domain. The structures suggest that hydrophobic compounds bind to multiple sites in FadL and use a transport mechanism that involves spontaneous conformational changes in the hatch.
Collapse
Affiliation(s)
- Bert van den Berg
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
29
|
Schmelter T, Trigatti BL, Gerber GE, Mangroo D. Biochemical demonstration of the involvement of fatty acyl-CoA synthetase in fatty acid translocation across the plasma membrane. J Biol Chem 2004; 279:24163-70. [PMID: 15067008 DOI: 10.1074/jbc.m313632200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acyl-CoA synthetase, the first enzyme of the beta-oxidation pathway, has been proposed to be involved in long chain fatty acid translocation across the plasma membrane of prokaryotic and eukaryotic cells. To test this proposal, we used an in vitro system consisting of Escherichia coli inner (plasma) membrane vesicles containing differing amounts of trapped fatty acyl-CoA synthetase and its substrates CoA and ATP. This system allowed us to investigate the involvement of fatty acyl-CoA synthetase independently of other proteins that are involved in fatty acid translocation across the outer membrane and in downstream steps in beta-oxidation, because these proteins are not retained in the inner membrane vesicles. Fatty acid uptake in vesicles containing fatty acyl-CoA synthetase was dependent on the amount of exogenous ATP and CoASH trapped by freeze-thawing. The uptake of fatty acid in the presence of non-limiting amounts of ATP and CoASH was dependent on the amount of endogenous fatty acyl-CoA synthetase either retained within vesicles during isolation or trapped within vesicles after isolation by freeze-thawing. Moreover, the fatty acid taken up by the vesicles was converted to fatty acyl-CoA. These data are consistent with the proposal that fatty acyl-CoA synthetase facilitates long chain fatty acid permeation of the inner membrane by a vectorial thioesterification mechanism.
Collapse
Affiliation(s)
- Tillmann Schmelter
- Department of Biochemistry, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | | | |
Collapse
|
30
|
Lee PS, Lee KH. Escherichia coli?a model system that benefits from and contributes to the evolution of proteomics. Biotechnol Bioeng 2003; 84:801-14. [PMID: 14708121 DOI: 10.1002/bit.10848] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The large body of knowledge about Escherichia coli makes it a useful model organism for the expression of heterologous proteins. Proteomic studies have helped to elucidate the complex cellular responses of E. coli and facilitated its use in a variety of biotechnology applications. Knowledge of basic cellular processes provides the means for better control of heterologous protein expression. Beyond such important applications, E. coli is an ideal organism for testing new analytical technologies because of the extensive knowledge base available about the organism. For example, improved technology for characterization of unknown proteins using mass spectrometry has made two-dimensional electrophoresis (2DE) studies more useful and more rewarding, and much of the initial testing of novel protocols is based on well-studied samples derived from E. coli. These techniques have facilitated the construction of more accurate 2DE maps. In this review, we present work that led to the 2DE databases, including a new map based on tandem time-of-flight (TOF) mass spectrometry (MS); describe cellular responses relevant to biotechnology applications; and discuss some emerging proteomic techniques.
Collapse
Affiliation(s)
- Pat S Lee
- School of Chemical and Biomolecular Engineering, Cornell University, 102 Olin Hall, Ithaca, New York 14853, USA
| | | |
Collapse
|
31
|
Abstract
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| |
Collapse
|
32
|
Black PN, DiRusso CC. Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol Mol Biol Rev 2003; 67:454-72, table of contents. [PMID: 12966144 PMCID: PMC193871 DOI: 10.1128/mmbr.67.3.454-472.2003] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The processes that govern the regulated transport of long-chain fatty acids across the plasma membrane are quite distinct compared to counterparts involved in the transport of hydrophilic solutes such as sugars and amino acids. These differences stem from the unique physical and chemical properties of long-chain fatty acids. To date, several distinct classes of proteins have been shown to participate in the transport of exogenous long-chain fatty acids across the membrane. More recent work is consistent with the hypothesis that in addition to the role played by proteins in this process, there is a diffusional component which must also be considered. Central to the development of this hypothesis are the appropriate experimental systems, which can be manipulated using the tools of molecular genetics. Escherichia coli and Saccharomyces cerevisiae are ideally suited as model systems to study this process in that both (i) exhibit saturable long-chain fatty acid transport at low ligand concentrations, (ii) have specific membrane-bound and membrane-associated proteins that are components of the transport apparatus, and (iii) can be easily manipulated using the tools of molecular genetics. In both systems, central players in the process of fatty acid transport are fatty acid transport proteins (FadL or Fat1p) and fatty acyl coenzyme A (CoA) synthetase (FACS; fatty acid CoA ligase [AMP forming] [EC 6.2.1.3]). FACS appears to function in concert with FadL (bacteria) or Fat1p (yeast) in the conversion of the free fatty acid to CoA thioesters concomitant with transport, thereby rendering this process unidirectional. This process of trapping transported fatty acids represents one fundamental mechanism operational in the transport of exogenous fatty acids.
Collapse
Affiliation(s)
- Paul N Black
- The Ordway Research Institute and Center for Cardiovascular Sciences, The Albany Medical College, Albany, New York 12208, USA.
| | | |
Collapse
|
33
|
Harper M, Boyce JD, Wilkie IW, Adler B. Signature-tagged mutagenesis of Pasteurella multocida identifies mutants displaying differential virulence characteristics in mice and chickens. Infect Immun 2003; 71:5440-6. [PMID: 12933901 PMCID: PMC187344 DOI: 10.1128/iai.71.9.5440-5446.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pasteurella multocida is the causative agent of fowl cholera in birds. Signature-tagged mutagenesis (STM) was used to identify potential virulence factors in a mouse septicemia disease model and a chicken fowl cholera model. A library of P. multocida mutants was constructed with a modified Tn916 and screened for attenuation in both animal models. Mutants identified by the STM screening were confirmed as attenuated by competitive growth assays in both chickens and mice. Of the 15 mutants identified in the chicken model, only 5 were also attenuated in mice, showing for the first time the presence of host-specific virulence factors and indicating the importance of screening for attenuation in the natural host.
Collapse
Affiliation(s)
- Marina Harper
- Bacterial Pathogenesis Research Group, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | |
Collapse
|
34
|
Dirusso CC, Connell EJ, Faergeman NJ, Knudsen J, Hansen JK, Black PN. Murine FATP alleviates growth and biochemical deficiencies of yeast fat1Delta strains. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4422-33. [PMID: 10880966 DOI: 10.1046/j.1432-1327.2000.01489.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Saccharomyces cerevisiae is an ideal model eukaryote for studying fatty-acid transport. Yeast are auxotrophic for unsaturated fatty acids when grown under hypoxic conditions or when the fatty-acid synthase inhibitor cerulenin is included in the growth media. The FAT1 gene encodes a protein, Fat1p, which is required for maximal levels of fatty-acid import and has an acyl CoA synthetase activity specific for very-long-chain fatty acids suggesting this protein plays a pivotal role in fatty-acid trafficking. In the present work, we present evidence that Fat1p and the murine fatty-acid transport protein (FATP) are functional homologues. FAT1 is essential for growth under hypoxic conditions and when cerulenin was included in the culture media in the presence or absence of unsaturated fatty acids. FAT1 disruptants (fat1Delta) fail to accumulate the fluorescent long-chain fatty acid fatty-acid analogue 4, 4-difluoro-5-methyl-4-bora-3a,4a-diaza-s-indacene-3-do decanoic acid (C1-BODIPY-C12), have a greatly diminished capacity to transport exogenous long-chain fatty acids, and have very long-chain acyl CoA synthetase activities that were 40% wild-type. The depression in very long-chain acyl CoA synthetase activities were not apparent in cells grown in the presence of oleate. Additionally, beta-oxidation of exogenous long-chain fatty acids is depressed to 30% wild-type levels. The reduction of beta-oxidation was correlated with a depression of intracellular oleoyl CoA levels in the fat1Delta strain following incubation of the cells with exogenous oleate. Expression of either Fat1p or murine FATP from a plasmid in a fat1Delta strain restored these phenotypic and biochemical deficiencies. Fat1p and FATP restored growth of fat1Delta cells in the presence of cerulenin and under hypoxic conditions. Furthermore, fatty-acid transport was restored and was found to be chain length specific: octanoate, a medium-chain fatty acid was transported in a Fat1p- and FATP-independent manner while the long-chain fatty acids myristate, palmitate, and oleate required either Fat1p or FATP for maximal levels of transport. Lignoceryl CoA synthetase activities were restored to wild-type levels in fat1Delta strains expressing either Fat1p or FATP. Fat1p or FATP also restored wild-type levels of beta-oxidation of exogenous long-chain fatty acids. These data show that Fat1p and FATP are functionally equivalent when expressed in yeast and play a central role in fatty-acid trafficking.
Collapse
Affiliation(s)
- C C Dirusso
- Center for Cardiovascular Sciences, Albany Medical College, NY 12208-3479, USA
| | | | | | | | | | | |
Collapse
|
35
|
Cristalli G, DiRusso CC, Black PN. The amino-terminal region of the long-chain fatty acid transport protein FadL contains an externally exposed domain required for bacteriophage T2 binding. Arch Biochem Biophys 2000; 377:324-33. [PMID: 10845710 DOI: 10.1006/abbi.2000.1794] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fatty acid transport protein FadL from Escherichia coli is predicted to be rich in beta-structure and span the outer membrane multiple times to form a long-chain fatty acid specific channel. Proteolysis of FadL within whole cells, total membranes, and isolated outer membranes identified two trypsin-sensitive sites, both predicted to be in externally exposed loops of FadL. Amino acid sequence analysis of the proteolytic fragments determined that the first followed R93 and yielded a peptide beginning with 94S-L-K-A-D-N-I-A-P-T-A104 while the second followed R384 and yielded a peptide beginning with 385S-I-S-I-P-D-Q-D-R-F-W395. Proteolysis using trypsin eliminated the bacteriophage T2 binding activity associated with FadL, suggesting the T2 binding domain within FadL requires elements within one of these extracellular loops. A peptide corresponding to the amino-terminal region of FadL (FadL28-160) was purified and shown to inactivate bacteriophage T2 in a concentration-dependent manner, supporting the hypothesis that the amino-proximal extracellular loop of the protein confers T2 binding activity. Using an artificial neural network (NN) topology prediction method in combination with Gibbs motif sampling, a predicted topology of FadL within the outer membrane was developed. According to this model, FadL spans the outer membrane 20 times as antiparallel beta-strands. The 20 antiparallel beta-strands are presumed to form a beta-barrel specific for long-chain fatty acids. On the basis of our previous studies evaluating the function of FadL using site-specific mutagenesis of the fadL gene, proteolysis of FadL within outer membranes, and studies using the FadL28-160 peptide, the predicted extracellular regions between beta-strands 1 and 2 and beta-strands 3 and 4 are expected to contribute to a domain of the protein required for long-chain fatty acid and bacteriophage T2 binding. The first trypsin-sensitive site (R93) lies between predicted beta-strands 3 and 4 while the second (R384) is between beta-strands 17 and 18. The trypsin-resistant region of FadL is predicted to contain 13 antiparallel beta-strands and contribute to the long-chain fatty acid specific channel.
Collapse
Affiliation(s)
- G Cristalli
- Center for Cardiovascular Sciences, The Albany Medical College, New York 12208, USA
| | | | | |
Collapse
|
36
|
Gargiulo CE, Stuhlsatz-Krouper SM, Schaffer JE. Localization of adipocyte long-chain fatty acyl-CoA synthetase at the plasma membrane. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32123-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
37
|
DiRusso CC, Black PN, Weimar JD. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 1999; 38:129-97. [PMID: 10396600 DOI: 10.1016/s0163-7827(98)00022-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- C C DiRusso
- Department of Biochemistry and Molecular Biology, Albany Medical College, New York, USA.
| | | | | |
Collapse
|
38
|
Bonen A, Dyck DJ, Luiken JJ. Skeletal muscle fatty acid transport and transporters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 441:193-205. [PMID: 9781326 DOI: 10.1007/978-1-4899-1928-1_18] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long-chain fatty acids (LCFAs) are an important energy source for many tissues. The dogma that LCFAs are freely diffusible has been challenged. It is now known that LCFAs are transported into many tissues. Our studies have shown that LCFAs are also transported into skeletal muscle and into the heart. In recent years a number of putative fatty acid transport proteins have been identified. These are known as plasma membrane fatty acid binding protein (FABPpm, 43 kDa), fatty acid translocase (FAT, 88 kDa) and fatty acid transporter protein (FATP, 63 kDa). All three proteins are present in skeletal muscle and in the heart. The existence of an LCFA transport system in muscle may be essential 1) to facilitate the rapid and regulatable transport of LCFA to meet the metabolic requirements of working muscles and 2) to cope with an increase in circulating LCFAs in some pathological conditions (e.g. diabetes). There is now some evidence that metabolic changes and chronically increased muscle activity can increase the transport of LCFAs and increase the expression of putative LCFA transporters.
Collapse
Affiliation(s)
- A Bonen
- Department of Kinesiology, University of Waterloo, Ontario, Canada
| | | | | |
Collapse
|
39
|
Black PN, Zhang Q, Weimar JD, DiRusso CC. Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem 1997; 272:4896-903. [PMID: 9030548 DOI: 10.1074/jbc.272.8.4896] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Fatty acyl-CoA synthetase (fatty acid:CoA ligase, AMP-forming; EC 6.2.1.3) catalyzes the formation of fatty acyl-CoA by a two-step process that proceeds through the hydrolysis of pyrophosphate. In Escherichia coli this enzyme plays a pivotal role in the uptake of long chain fatty acids (C12-C18) and in the regulation of the global transcriptional regulator FadR. The E. coli fatty acyl-CoA synthetase has remarkable amino acid similarities and identities to the family of both prokaryotic and eukaryotic fatty acyl-CoA synthetases, indicating a common ancestry. Most notable in this regard is a 25-amino acid consensus sequence, DGWLHTGDIGXWXPXGXLKIIDRKK, common to all fatty acyl-CoA synthetases for which sequence information is available. Within this consensus are 8 invariant and 13 highly conserved amino acid residues in the 12 fatty acyl-CoA synthetases compared. We propose that this sequence represents the fatty acyl-CoA synthetase signature motif (FACS signature motif). This region of fatty acyl-CoA synthetase from E. coli, 431NGWLHTGDIAVMDEEGFLRIVDRKK455, contains 17 amino acid residues that are either identical or highly conserved to the FACS signature motif. Eighteen site-directed mutations within the fatty acyl-CoA synthetase structural gene (fadD) corresponding to this motif were constructed to evaluate the contribution of this region of the enzyme to catalytic activity. Three distinct classes of mutations were identified on the basis of growth characteristics on fatty acids, enzymatic activities using cell extracts, and studies using purified wild-type and mutant forms of the enzyme: 1) those that resulted in either wild-type or nearly wild-type fatty acyl-CoA synthetase activity profiles; 2) those that had little or no enzyme activity; and 3) those that resulted in lowering and altering fatty acid chain length specificity. Among the 18 mutants characterized, 7 fall in the third class. We propose that the FACS signature motif is essential for catalytic activity and functions in part to promote fatty acid chain length specificity and thus may compose part of the fatty acid binding site within the enzyme.
Collapse
Affiliation(s)
- P N Black
- Department of Biochemistry and Molecular Biology, The Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
40
|
Rhie HG, Dennis D. Role of fadR and atoC(Con) mutations in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in recombinant pha+ Escherichia coli. Appl Environ Microbiol 1995; 61:2487-92. [PMID: 7618860 PMCID: PMC167520 DOI: 10.1128/aem.61.7.2487-2492.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recombinant Escherichia coli fadR atoC(Con) mutants containing the polyhydroxyalkanoate (PHA) biosynthesis genes from Alcaligenes eutrophus are able to incorporate significant levels of 3-hydroxyvalerate (3HV) into the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]. We have used E. coli fadR (FadR is a negative regulator of fatty acid oxidation) and E. coli atoC(Con) (AtoC is a positive regulator of fatty acid uptake) mutants to demonstrate that either one of these mutations alone can facilitate copolymer synthesis but that 3HV levels in single mutant strains are much lower than in the fadR atoC(Con) strain. E. coli atoC(Con) mutants were used alone and in conjunction with atoA and atoD mutants to determine that the function of the atoC(Con) mutation is to increase the uptake of propionate and that this uptake is mediated, at least in part, by atoD+. Similarly, E. coli fadR mutants were used alone and in conjunction with fadA, fadB, and fadL mutants to show that the effect of the fadR mutation is dependent on fadB+ and fadA+ gene products. Strains that were mutant in the fadB or fadA locus were unable to complement a PHA biosynthesis pathway that was mutant at the phaA locus (thiolase), but a strain containing a fadR mutation and which was fadA+ fadB+ was able to complement the phaA mutation and incorporated 3HV into P(3HB-co-3HV) to a level of 29 mol%.
Collapse
Affiliation(s)
- H G Rhie
- Department of Biology, Kyung Hee University, Seoul, Korea
| | | |
Collapse
|
41
|
Mangroo D, Trigatti BL, Gerber GE. Membrane permeation and intracellular trafficking of long chain fatty acids: insights from Escherichia coli and 3T3-L1 adipocytes. Biochem Cell Biol 1995; 73:223-34. [PMID: 8829367 DOI: 10.1139/o95-027] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Long chain fatty acids are important substrates for energy production and lipid synthesis in prokaryotes and eukaryotes. Their cellular uptake represents an important first step leading to metabolism. This step is induced in Escherichia coli by growth in medium containing long chain fatty acids and in murine 3T3-L1 cells during differentiation to adipocytes. Consequently, these have been used extensively as model systems to study the cellular uptake of long chain fatty acids. Here, we present an overview of our current understanding of long chain fatty acid uptake in these cells. It consists of several distinct steps, mediated by a combination of biochemical and physico-chemical processes, and is driven by conversion of long chain fatty acids to acyl-CoA by acyl-CoA synthetase. An understanding of long chain fatty acid uptake may provide valuable insights into the roles of fatty acids in the regulation of cell signalling cascades, in the regulation of a variety of metabolic and transport processes, and in a variety of mammalian pathogenic conditions such as obesity and diabetes.
Collapse
Affiliation(s)
- D Mangroo
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
42
|
Azizan A, Black PN. Use of transposon TnphoA to identify genes for cell envelope proteins of Escherichia coli required for long-chain fatty acid transport: the periplasmic protein Tsp potentiates long-chain fatty acid transport. J Bacteriol 1994; 176:6653-62. [PMID: 7961418 PMCID: PMC197022 DOI: 10.1128/jb.176.21.6653-6662.1994] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
TnphoA was used to mutagenize the chromosome in an effort to identify membrane-bound and exported components of the long-chain fatty acid transport system of Escherichia coli. This strategy identified three classes of fusions that were unable to grow or grew at reduced rates on minimal agar plates containing the long-chain fatty acid oleate (C18:1), (i) fadL-phoA, (ii) tolC-phoA, and (iii) tsp-phoA, fadL-phoA and tolC-phoA fusions were unable to grow on oleate as the sole carbon and energy source, while the tsp-phoA fusion had a markedly reduced growth rate. As expected, fadL-phoA fusions were unable to grow on oleate plates because the outer membrane-bound fatty acid transport protein FadL was defective. The identification of multiple fadL-phoa fusions demonstrated that this strategy of mutagenesis specifically targeted membrane-bound and exported components required for growth on long-chain fatty acids. tolC-phoA fusions were sensitive to fatty acids (particularly medium chain) and thus unable to grow, whereas the reduced growth rate of tsp-phoA fusions on oleate was apparently due to changes in the energized state of the outer membrane or inner membrane. tsp-phoA fusions transported the long-chain fatty acid oleate at only 50% of wild-type levels when cells were energized with 1 mM DL-lactate. Under conditions in which transport was measured in the absence of lactate, tsp-phoA fusion strains and wild-type strains had the same levels of oleate transport. The tsp+ clone pAZA500 was able to restore wild-type transport activity to the tsp-phoA strain under lactate-energized conditions. These results indicate that the periplasmic protein Tsp potentiates long-chain fatty acid transport.
Collapse
Affiliation(s)
- A Azizan
- Department of Biochemistry, College of Medicine, University of Tennessee, Memphis 38163
| | | |
Collapse
|
43
|
Black PN, DiRusso CC. Molecular and biochemical analyses of fatty acid transport, metabolism, and gene regulation in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1210:123-45. [PMID: 8280762 DOI: 10.1016/0005-2760(94)90113-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P N Black
- Department of Biochemistry, College of Medicine, University of Tennessee, Memphis 38163
| | | |
Collapse
|
44
|
Shen Z, Byers DM. Exogenous myristic acid can be partially degraded prior to activation to form acyl-acyl carrier protein intermediates and lipid A in Vibrio harveyi. J Bacteriol 1994; 176:77-83. [PMID: 8282714 PMCID: PMC205016 DOI: 10.1128/jb.176.1.77-83.1994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To study the involvement of acyl carrier protein (ACP) in the metabolism of exogenous fatty acids in Vibrio harveyi, cultures were incubated in minimal medium with [9,10-3H]myristic acid, and labeled proteins were analyzed by gel electrophoresis. Labeled acyl-ACP was positively identified by immunoprecipitation with anti-V. harveyi ACP serum and comigration with acyl-ACP standards and [3H]beta-alanine-labeled bands on both sodium dodecyl sulfate- and urea-polyacrylamide gels. Surprisingly, most of the acyl-ACP label corresponded to fatty acid chain lengths of less than 14 carbons: C14, C12, C10, and C8 represented 33, 40, 14, and 8% of total [3H]14:0-derived acyl-ACPs, respectively, in a dark mutant (M17) of V. harveyi which lacks myristoyl-ACP esterase activity; however, labeled 14:0-ACP was absent in the wild-type strain. 14:0- and 12:0-ACP were also the predominant species labeled in complex medium. In contrast, short-chain acyl-ACPs (< or = C6) were the major labeled derivatives when V. harveyi was incubated with [3H]acetate, indicating that acyl-ACP labeling with [3H]14:0 in vivo is not due to the total degradation of [3H]14:0 to [3H]acetyl coenzyme A followed by resynthesis. Cerulenin increased the mass of medium- to long-chain acyl-ACPs (> or = C8) labeled with [3H]beta-alanine fivefold, while total incorporation of [3H]14:0 was not affected, although a shift to shorter chain lengths was noted. Additional bands which comigrated with acyl-ACP on sodium dodecyl sulfate gels were identified as lipopolysaccharide by acid hydrolysis and thin-layer chromatography. The levels of incorporation of [3H] 14:0 into acyl-ACP and lipopolysaccharide were 2 and 15%, respectively, of that into phospholipid by 10 min. Our results indicate that in contrast to the situation in Escherichia coli, exogenous fatty acids can be activated to acyl-ACP intermediates after partial degradation in V. harveyi and can effectively label products (i.e., lipid A) that require ACP as an acyl donor.
Collapse
Affiliation(s)
- Z Shen
- Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
45
|
Higashitani A, Nishimura Y, Hara H, Aiba H, Mizuno T, Horiuchi K. Osmoregulation of the fatty acid receptor gene fadL in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1993; 240:339-47. [PMID: 8413182 DOI: 10.1007/bf00280384] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The fadL gene of Escherichia coli codes for an outer membrane protein that is involved in the uptake of long-chain fatty acids. Uptake is regulated by environmental osmolarity, and decreases when the cells are grown under conditions of high osmolarity. A temperature-sensitive mutant that requires fatty acid for growth at 42 degrees C was unable to grow at the high temperature even in the presence of fatty acid if the medium contained 10% sucrose. Promoter activity of the fadL gene in vivo was repressed by high osmolarity in a FadR repressor null mutant. Furthermore, in vitro transcription of the fadL gene was strongly repressed by the addition of OmpR and EnvZ proteins. The results of gel retardation and DNase I protection experiments indicated that OmpR, after incubation with the protein kinase EnvZ, specifically binds to at least four sites around the fadL promoter, two upstream and two downstream from the transcriptional start site. These results suggest that transcription of the fadL gene is osmotically regulated by the OmpR-EnvZ two-component system.
Collapse
Affiliation(s)
- A Higashitani
- Department of Microbial Genetics, National Institute of Genetics, Shizuoka-ken, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abumrad N, el-Maghrabi M, Amri E, Lopez E, Grimaldi P. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46753-6] [Citation(s) in RCA: 336] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Kumar G, Black P. Bacterial long-chain fatty acid transport. Identification of amino acid residues within the outer membrane protein FadL required for activity. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82280-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Fice D, Shen Z, Byers DM. Purification and characterization of fatty acyl-acyl carrier protein synthetase from Vibrio harveyi. J Bacteriol 1993; 175:1865-70. [PMID: 8384617 PMCID: PMC204243 DOI: 10.1128/jb.175.7.1865-1870.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A Vibrio harveyi enzyme which catalyzes the ATP-dependent ligation of fatty acids to acyl carrier protein (ACP) has been purified 6,000-fold to apparent homogeneity by anion-exchange, gel filtration, and ACP-Sepharose affinity chromatography. Purified acyl-ACP synthetase migrated as a single 62-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and as an 80-kDa protein by gel filtration under reducing conditions. Activity of the purified enzyme was lost within hours in the absence of glycerol and low concentrations of Triton X-100. Acyl-ACP synthetase exhibited Kms for myristic acid, ACP, and ATP of 7 microM, 18 microM, and 0.3 mM, respectively. The enzyme was specific for adenine-containing nucleotides, and AMP was the product of the reaction. No covalent acyl-enzyme intermediate was observed. Enzyme activity was stimulated up to 50% by iodoacetamide but inhibited > 80% by N-ethylmaleimide: inhibition by the latter was prevented by ATP and ACP but not myristic acid. Dithiothreitol and sulfhydryl-directed reagents also influenced enzyme size, activity, and elution pattern on anion-exchange resins. The function of acyl-ACP synthetase has not been established, but it may be related to the capacity of V. harveyi to elongate exogenous fatty acids by an ACP-dependent mechanism.
Collapse
Affiliation(s)
- D Fice
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
49
|
Use of Escherichia coli strains containing fad mutations plus a triple plasmid expression system to study the import of myristate, its activation by Saccharomyces cerevisiae acyl-CoA synthetase, and its utilization by S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53607-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
DiRusso CC, Metzger AK, Heimert TL. Regulation of transcription of genes required for fatty acid transport and unsaturated fatty acid biosynthesis in Escherichia coli by FadR. Mol Microbiol 1993; 7:311-22. [PMID: 8446033 DOI: 10.1111/j.1365-2958.1993.tb01122.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fatty acid biosynthesis and fatty acid degradation in Escherichia coli are co-ordinately regulated at the level of transcription by the product of the fadR gene, FadR. In the present work we investigate FadR interaction with the fabA and fadL promoters. The FadR-responsive operator within fabA, OA, was localized to a region -47 to -31 base pairs relative to the start of transcription using DNase I protection studies. The promoter and untranslated leader within fadL had two binding sites for FadR, OL1 at -25 to -9 and OL2 at -1 to +16 relative to the start of transcription. The binding affinity of FadR for OA and OL1 or OL2 was lower than that for the single site within fadB (OB) as measured using protein-DNA gel retention assays. Overall, these experiments demonstrated that the affinity of FadR binding for DNA containing the fadB, fadL and fabA promoters was OB > OL1, OL2 > OA. We could not distinguish separate binding affinities for OL1 or OL2. We demonstrated repression of fadL transcription and activation of fabA transcription in vitro using run-off transcription assays containing purified FadR and RNA polymerase.
Collapse
Affiliation(s)
- C C DiRusso
- Department of Biochemistry, University of Tennessee, Memphis 38163
| | | | | |
Collapse
|