1
|
Phillips RS, Brown SM. Structure and dynamics of Proteus vulgaris tryptophan indole-lyase complexes with l-ethionine and l-alanine. Arch Biochem Biophys 2025; 768:110402. [PMID: 40147499 PMCID: PMC12074790 DOI: 10.1016/j.abb.2025.110402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Tryptophan indole-lyase (TIL; [E.C. 4.1.99.1]) is a pyridoxal-5'-phosphate (PLP) dependent enzyme that catalyzes the reversible β-elimination of indole from l-tryptophan. l-Alanine and l-ethionine are TIL competitive inhibitors that form stable quinonoid complexes with λmax ∼508 nm. We have now determined the X-ray crystal structure of the tetrameric TIL complexes with l-alanine and l-ethionine, with either K+ or Na+ in the cation binding site. For the K+-form, the structures show a mixture of external aldimine and quinonoid complexes, with both open and closed active site conformations. However, the Na+-form exhibits noncovalent and external aldimine complexes in only open active site conformations. Stopped-flow kinetics of l-ethionine binding show that the Na+-form of TIL reacts much more slowly than the K+-form. The l-alanine and l-ethionine complexes of TIL are affected by hydrostatic pressure, suggesting that solvation contributes to the reaction. As pressure increases, the peak at 508 nm decreases, and a new peak at 344 nm appears. These changes are reversible when pressure is released. The 344 nm species could be either a gem-diamine or an enolimine tautomer of the external aldimine. We measured the fluorescence spectrum of the complex under pressure to differentiate these structures. When excited at either 290 or 325 nm, the complex emits at 400 nm, establishing that it is a gem-diamine complex. This peak does not form when the Na+-form of TIL complexed with l-ethionine is subjected to high pressure. Pressure jumps for the TIL-K+-l-ethionine complex measured at 508 nm result in pressure dependent relaxation rate constants. The relaxations show a large activation volume in the direction of quinonoid intermediate formation, suggesting that it is coupled with a conformational change. These results provide new insights into the dynamics of ligand binding to TIL.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| | - S Meredith Brown
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
2
|
Marin Ž, Lacombe C, Rostami S, Arasteh Kani A, Borgonovo A, Cserjan-Puschmann M, Mairhofer J, Striedner G, Wiltschi B. Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts: Quo Vadis?. Chem Rev 2025. [PMID: 40378355 DOI: 10.1021/acs.chemrev.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The residue-specific incorporation of noncanonical amino acids in auxotrophic hosts allows the global exchange of a canonical amino acid with its noncanonical analog. Noncanonical amino acids are not encoded by the standard genetic code, but they carry unique side chain chemistries, e.g., to perform bioorthogonal conjugation reactions or to manipulate the physicochemical properties of a protein such as folding and stability. The method was introduced nearly 70 years ago and is still in widespread use because of its simplicity and robustness. In our study, we review the trends in the field during the last two decades. We give an overview of the application of the method for artificial post-translational protein modifications and the selective functionalization and directed immobilization of proteins. We highlight the trends in the use of noncanonical amino acids for the analysis of nascent proteomes and the engineering of enzymes and biomaterials, and the progress in the biosynthesis of amino acid analogs. We also discuss the challenges for the scale-up of the technique.
Collapse
Affiliation(s)
- Žana Marin
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Lacombe
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Simindokht Rostami
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Arshia Arasteh Kani
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Andrea Borgonovo
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Gerald Striedner
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Birgit Wiltschi
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
3
|
Phillips RS, Brown SM, Patel RS. Structural Snapshots of Proteus vulgaris Tryptophan Indole-Lyase Reveal Insights into the Catalytic Mechanism. ACS Catal 2024; 14:11498-11511. [PMID: 39114092 PMCID: PMC11301627 DOI: 10.1021/acscatal.4c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Tryptophan indole lyase (TIL; [E.C. 4.1.99.1]) is a bacterial pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes reversible β-elimination of indole from L-tryptophan. The mechanism of elimination of indole from L-tryptophan starts with the formation of an external aldimine of the substrate and PLP, followed by deprotonation of the α-CH of the substrate, forming a resonance-stabilized quinonoid intermediate. Proton transfer to C3 of the indole ring and carbon-carbon bond cleavage of the quinonoid intermediate provide indole and aminoacrylate bound to PLP, which then releases indole, followed by iminopyruvate. We have now determined the X-ray crystal structures of TIL complexes with (3S)-dioxindolyl-l-alanine, an inhibitor, and with substrates L-tryptophan, 7-aza-L-tryptophan, and S-ethyl-l-cysteine (SEC) in the presence of benzimidazole (BZI), an isostere of the product indole. These structures show a mixture of gem-diamine, external aldimine, quinonoid, and aminoacrylate intermediates, in both open and closed active site conformations. In the closed conformations of L-tryptophan, (3S)-dioxindolyl-l-alanine, and 7-aza-L-tryptophan complexes, hydrogen bonds form between Asp-133 with N1 of the ligand heterocyclic ring and NE2 of His-458 in the small domain of TIL. This hydrogen bond also forms in the BZI complex with the aminoacrylate intermediates formed from both L-tryptophan and SEC. The closed quinonoid complex of 7-aza-L-tryptophan shows that the azaindole ring in the closed conformation is bent out of plane of the Cβ-C3 bond by about 40°, putting it in a geometry that leads toward the transition-state geometry. Thus, both conformational dynamics and substrate activation play critical roles in the reaction mechanism of the TIL.
Collapse
Affiliation(s)
- Robert S. Phillips
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - S. Meredith Brown
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Ravi S. Patel
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Kogan A, Raznov L, Gdalevsky GY, Cohen-Luria R, Almog O, Parola AH, Goldgur Y. Structures of Escherichia coli tryptophanase in holo and 'semi-holo' forms. Acta Crystallogr F Struct Biol Commun 2015; 71:286-90. [PMID: 25760702 PMCID: PMC4356303 DOI: 10.1107/s2053230x15000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
Two crystal forms of Escherichia coli tryptophanase (tryptophan indole-lyase, Trpase) were obtained under the same crystallization conditions. Both forms belonged to the same space group P43212 but had slightly different unit-cell parameters. The holo crystal form, with pyridoxal phosphate (PLP) bound to Lys270 of both polypeptide chains in the asymmetric unit, diffracted to 2.9 Å resolution. The second crystal form diffracted to 3.2 Å resolution. Of the two subunits in the asymmetric unit, one was found in the holo form, while the other appeared to be in the apo form in a wide-open conformation with two sulfate ions bound in the vicinity of the active site. The conformation of all holo subunits is the same in both crystal forms. The structures suggest that Trpase is flexible in the apo form. Its conformation partially closes upon binding of PLP. The closed conformation might correspond to the enzyme in its active state with both cofactor and substrate bound in a similar way as in tyrosine phenol-lyase.
Collapse
Affiliation(s)
- Anna Kogan
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Leah Raznov
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Garik Y. Gdalevsky
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Orna Almog
- Department of Clinical Biochemistry and Pharmacology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Abraham H. Parola
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
- New York University Shanghai, Shanghai 200122, People’s Republic of China
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yehuda Goldgur
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
5
|
Characterization of tryptophanase from Vibrio cholerae. Appl Biochem Biotechnol 2014; 175:243-52. [PMID: 25253268 DOI: 10.1007/s12010-014-1263-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Tryptophanase (Trpase) is a pyridoxal phosphate (PLP)-dependent enzyme responsible for the production of indole, an important intra- and interspecies signaling molecule in bacteria. In this study, the tnaA gene of Vibrio cholerae coding for VcTrpase was cloned into the pET-20b(+) vector and expressed in Escherichia coli BL21(DE3) tn5:tnaA. Using Ni(2+)-nitrilotriacetic acid (NTA) chromatography, VcTrpase was purified, and it possessed a molecular mass of ∼49 kDa with specific absorption peaks at 330 and 435 nm and a specific activity of 3 U/mg protein. The VcTrpase had an 80 % homology to the Trpase of Haemophilus influenzae and E. coli, but only around 50 % identity to the Trpase of Proteus vulgaris and Porphyromonas gingivalis. The optimum conditions for the enzyme were at pH 9.0 and 45 °C. Recombinant VcTrpase exhibited analogous kinetic reactivity to the EcTrpase with K m and k cat values of 0.612 × 10(-3) M and 5.252 s(-1), respectively. The enzyme catalyzed S-methyl-L-cysteine and S-benzyl-L-cysteine degradation, but not L-phenylalanine and L-serine. Using a site-directed mutagenesis technique, eight residues (Thr52, Tyr74, Arg103, Asp137, Arg230, Lys269, Lys270, and His463) were conserved for maintaining enzyme catalysis. All amino acid substitutions at these sites either eliminated or remarkably diminished Trpase activity. These sites are thus potential targets for the design of drugs to control the V. cholerae Trpase and to further investigate its functions.
Collapse
|
6
|
Martínez AK, Gordon E, Sengupta A, Shirole N, Klepacki D, Martinez-Garriga B, Brown LM, Benedik MJ, Yanofsky C, Mankin AS, Vazquez-Laslop N, Sachs MS, Cruz-Vera LR. Interactions of the TnaC nascent peptide with rRNA in the exit tunnel enable the ribosome to respond to free tryptophan. Nucleic Acids Res 2013; 42:1245-56. [PMID: 24137004 PMCID: PMC3902921 DOI: 10.1093/nar/gkt923] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A transcriptional attenuation mechanism regulates expression of the bacterial tnaCAB operon. This mechanism requires ribosomal arrest induced by the regulatory nascent TnaC peptide in response to free L-tryptophan (L-Trp). In this study we demonstrate, using genetic and biochemical analyses, that in Escherichia coli, TnaC residue I19 and 23S rRNA nucleotide A2058 are essential for the ribosome's ability to sense free L-Trp. We show that the mutational change A2058U in 23S rRNA reduces the concentration dependence of L-Trp-mediated tna operon induction, whereas the TnaC I19L change suppresses this phenotype, restoring the sensitivity of the translating A2058U mutant ribosome to free L-Trp. These findings suggest that interactions between TnaC residue I19 and 23S rRNA nucleotide A2058 contribute to the creation of a regulatory L-Trp binding site within the translating ribosome.
Collapse
Affiliation(s)
- Allyson K Martínez
- Department of Biology, Texas A&M University, College Station, TX 77843, USA, Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, USA, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60607, USA, Quantitative Proteomics Center, Department of Biological Sciences, Columbia University, New York, NY 10027, USA and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Thorn RMS, Greenman J. Microbial volatile compounds in health and disease conditions. J Breath Res 2012; 6:024001. [PMID: 22556190 PMCID: PMC7106765 DOI: 10.1088/1752-7155/6/2/024001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/12/2012] [Indexed: 12/24/2022]
Abstract
Microbial cultures and/or microbial associated diseases often have a characteristic smell. Volatile organic compounds (VOCs) are produced by all microorganisms as part of their normal metabolism. The types and classes of VOC produced is wide, including fatty acids and their derivatives (e.g. hydrocarbons, aliphatic alcohols and ketones), aromatic compounds, nitrogen containing compounds, and volatile sulfur compounds. A diversity of ecological niches exist in the human body which can support a polymicrobial community, with the exact VOC profile of a given anatomical site being dependent on that produced by both the host component and the microbial species present. The detection of VOCs is of interest to various disciplines, hence numerous analytical approaches have been developed to accurately characterize and measure VOCs in the laboratory, often from patient derived samples. Using these technological advancements it is evident that VOCs are indicative of both health and disease states. Many of these techniques are still largely confined to the research laboratory, but it is envisaged that in future bedside 'VOC profiling' will enable rapid characterization of microbial associated disease, providing vital information to healthcare practitioners.
Collapse
Affiliation(s)
- Robin Michael Statham Thorn
- Centre for Research in Biomedicine, Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, BS16 1QY, UK
| | - John Greenman
- Centre for Research in Biomedicine, Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, BS16 1QY, UK
| |
Collapse
|
8
|
Kaderbhai NN, Broadhurst DI, Ellis DI, Goodacre R, Kell DB. Functional genomics via metabolic footprinting: monitoring metabolite secretion by Escherichia coli tryptophan metabolism mutants using FT-IR and direct injection electrospray mass spectrometry. Comp Funct Genomics 2010; 4:376-91. [PMID: 18629082 PMCID: PMC2447367 DOI: 10.1002/cfg.302] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 04/23/2003] [Accepted: 05/22/2003] [Indexed: 12/14/2022] Open
Abstract
We sought to test the hypothesis that mutant bacterial strains could be discriminated from each other on the basis of the metabolites they secrete into the medium (their
‘metabolic footprint’), using two methods of ‘global’ metabolite analysis (FT–IR and
direct injection electrospray mass spectrometry). The biological system used was
based on a published study of Escherichia coli tryptophan mutants that had been
analysed and discriminated by Yanofsky and colleagues using transcriptome analysis.
Wild-type strains supplemented with tryptophan or analogues could be discriminated
from controls using FT–IR of 24 h broths, as could each of the mutant strains in both
minimal and supplemented media. Direct injection electrospray mass spectrometry
with unit mass resolution could also be used to discriminate the strains from each
other, and had the advantage that the discrimination required the use of just two
or three masses in each case. These were determined via a genetic algorithm. Both
methods are rapid, reagentless, reproducible and cheap, and might beneficially be
extended to the analysis of gene knockout libraries.
Collapse
Affiliation(s)
- Naheed N Kaderbhai
- Institute of Biological Sciences, University of Wales, Aberystwyth, Wales Ceredigion SY23 3DD, UK
| | | | | | | | | |
Collapse
|
9
|
Production of indole from L-tryptophan and effects of these compounds on biofilm formation by Fusobacterium nucleatum ATCC 25586. Appl Environ Microbiol 2010; 76:4260-8. [PMID: 20472741 DOI: 10.1128/aem.00166-10] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The l-tryptophan degradation product indole is a purported extracellular signaling molecule that influences biofilm formation in various bacteria. Here we analyzed the mechanisms of indole production in Fusobacterium nucleatum and the effects of tryptophan and indole on F. nucleatum planktonic and biofilm cells. The amino acid sequence deduced from the fn1943 gene in F. nucleatum ATCC 25586 was 28% identical to that deduced from tnaA in Escherichia coli, which encodes tryptophanase catalyzing the beta-elimination of l-tryptophan to produce indole. The fn1943 gene was cotranscribed with the downstream gene fn1944, which is a homolog of tnaB encoding low-affinity tryptophan permease. The transcript started at position -68 or -153 from the first nucleotide of the fn1943 translation initiation codon. Real-time quantitative PCR showed that much more F. nucleatum fn1943 transcripts were obtained from log-phase cells than from stationary-phase cells. Indole production by the purified recombinant protein encoded by fn1943 was examined using high-performance liquid chromatography. The K(m) and k(cat) of the enzyme were 0.26 +/- 0.03 mM and 0.74 +/- 0.04 s(-1), respectively. F. nucleatum biofilm formation and the biofilm supernatant concentration of indole increased dose dependently with increasing tryptophan concentrations. Exogenous indole also increased F. nucleatum biofilm formation in a dose-dependent manner. Even at very high concentrations, tryptophan did not affect fn1943 expression, whereas similar indole concentrations decreased expression. Thus, exogenous tryptophan and indole were suggested to increase F. nucleatum biofilms.
Collapse
|
10
|
Conformational changes and loose packing promote E. coli Tryptophanase cold lability. BMC STRUCTURAL BIOLOGY 2009; 9:65. [PMID: 19814824 PMCID: PMC2770544 DOI: 10.1186/1472-6807-9-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 10/08/2009] [Indexed: 11/25/2022]
Abstract
Background Oligomeric enzymes can undergo a reversible loss of activity at low temperatures. One such enzyme is tryptophanase (Trpase) from Escherichia coli. Trpase is a pyridoxal phosphate (PLP)-dependent tetrameric enzyme with a Mw of 210 kD. PLP is covalently bound through an enamine bond to Lys270 at the active site. The incubation of holo E. coli Trpases at 2°C for 20 h results in breaking this enamine bond and PLP release, as well as a reversible loss of activity and dissociation into dimers. This sequence of events is termed cold lability and its understanding bears relevance to protein stability and shelf life. Results We studied the reversible cold lability of E. coli Trpase and its Y74F, C298S and W330F mutants. In contrast to the holo E. coli Trpase all apo forms of Trpase dissociated into dimers already at 25°C and even further upon cooling to 2°C. The crystal structures of the two mutants, Y74F and C298S in their apo form were determined at 1.9Å resolution. These apo mutants were found in an open conformation compared to the closed conformation found for P. vulgaris in its holo form. This conformational change is further supported by a high pressure study. Conclusion We suggest that cold lability of E. coli Trpases is primarily affected by PLP release. The enhanced loss of activity of the three mutants is presumably due to the reduced size of the side chain of the amino acids. This prevents the tight assembly of the active tetramer, making it more susceptible to the cold driven changes in hydrophobic interactions which facilitate PLP release. The hydrophobic interactions along the non catalytic interface overshadow the effect of point mutations and may account for the differences in the dissociation of E. coli Trpase to dimers and P. vulgaris Trpase to monomers.
Collapse
|
11
|
Tryptophan inhibits Proteus vulgaris TnaC leader peptide elongation, activating tna operon expression. J Bacteriol 2009; 191:7001-6. [PMID: 19767424 DOI: 10.1128/jb.01002-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the tna operon of Escherichia coli and of Proteus vulgaris is induced by L-tryptophan. In E. coli, tryptophan action is dependent on the presence of several critical residues (underlined) in the newly synthesized TnaC leader peptide, WFNIDXXL/IXXXXP. These residues are conserved in TnaC of P. vulgaris and of other bacterial species. TnaC of P. vulgaris has one additional feature, distinguishing it from TnaC of E. coli; it contains two C-terminal lysine residues following the conserved proline residue. In the present study, we investigated L-tryptophan induction of the P. vulgaris tna operon, transferred on a plasmid into E. coli. Induction was shown to be L-tryptophan dependent; however, the range of induction was less than that observed for the E. coli tna operon. We compared the genetic organization of both operons and predicted similar folding patterns for their respective leader mRNA segments. However, additional analyses revealed that L-tryptophan action in the P. vulgaris tna operon involves inhibition of TnaC elongation, following addition of proline, rather than inhibition of leader peptide termination. Our findings also establish that the conserved residues in TnaC of P. vulgaris are essential for L-tryptophan induction, and for inhibition of peptide elongation. TnaC synthesis is thus an excellent model system for studies of regulation of both peptide termination and peptide elongation, and for studies of ribosome recognition of the features of a nascent peptide.
Collapse
|
12
|
Yoshida Y, Sasaki T, Ito S, Tamura H, Kunimatsu K, Kato H. Identification and molecular characterization of tryptophanase encoded by tnaA in Porphyromonas gingivalis. MICROBIOLOGY-SGM 2009; 155:968-978. [PMID: 19246767 DOI: 10.1099/mic.0.024174-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Indole produced via the beta-elimination reaction of l-tryptophan by pyridoxal 5'-phosphate-dependent tryptophanase (EC 4.1.99.1) has recently been shown to be an extracellular and intercellular signalling molecule in bacteria, and controls bacterial biofilm formation and virulence factors. In the present study, we determined the molecular basis of indole production in the periodontopathogenic bacterium Porphyromonas gingivalis. A database search showed that the amino acid sequence deduced from pg1401 of P. gingivalis W83 is 45 % identical with that from tnaA of Escherichia coli K-12, which encodes tryptophanase. Replacement of the pg1401 gene in the chromosomal DNA with the chloramphenicol-resistance gene abolished indole production. The production of indole was restored by the introduction of pg1401, demonstrating that the gene is functionally equivalent to tnaA. However, RT-PCR and RNA ligase-mediated rapid amplification of cDNA ends analyses showed that, unlike E. coli tnaA, pg1401 is expressed alone in P. gingivalis and that the nucleotide sequence of the transcription start site is different, suggesting that the expression of P. gingivalis tnaA is controlled by a unique mechanism. Purified recombinant P. gingivalis tryptophanase exhibited the Michaelis-Menten kinetics values K(m)=0.20+/-0.01 mM and k(cat)=1.37+/-0.06 s(-1) in potassium phosphate buffer, but in sodium phosphate buffer, the enzyme showed lower activity. However, the cation in the buffer, K(+) or Na(+), did not appear to affect the quaternary structure of the enzyme or the binding of pyridoxal 5'-phosphate to the enzyme. The enzyme also degraded S-ethyl-l-cysteine and S-methyl-l-cysteine, but not l-alanine, l-serine or l-cysteine.
Collapse
Affiliation(s)
- Yasuo Yoshida
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Takako Sasaki
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Shuntaro Ito
- Department of Periodontology, Iwate Medical University School of Dentistry, Morioka, Japan
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Haruki Tamura
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Kazushi Kunimatsu
- Department of Periodontology, Iwate Medical University School of Dentistry, Morioka, Japan
| | - Hirohisa Kato
- Department of Dental Pharmacology, Iwate Medical University School of Dentistry, Morioka, Japan
| |
Collapse
|
13
|
Hatoum A, Roberts J. Prevalence of RNA polymerase stalling at Escherichia coli promoters after open complex formation. Mol Microbiol 2008; 68:17-28. [PMID: 18333883 DOI: 10.1111/j.1365-2958.2008.06138.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
RNA polymerase (RNAP) trapped in intermediate stages of promoter escape, as well as RNAP paused at promoter-proximal sigma(70)-dependent pause sites, gives rise to stable, transcriptionally engaged stalled complexes that can limit promoter function and present potential sites for transcription regulation. To investigate the prevalence of such intermediates, we screened 118 Escherichia coli candidate promoters for RNAP stalling at or near the promoter, using in vivo KMnO(4) mapping of RNAP on chromosomal DNA. Of 34 active promoters, the seven preceding lacZ, tnaA, cspA, cspD, rplK, rpsA and rpsU harboured stalled RNAP in vivo; this finding suggests that RNAP stalling after initiation is widespread in E. coli. Consistent with the characteristics of both abortive and promoter-proximal sigma(70)-dependent paused complexes, RNAP trapping at most of the newly identified stall sites was eliminated by the rpoDL402Fsigma(70) mutational alteration and by site mutations, and was enhanced by GreA deficiency. In addition to promoter-proximal RNAP trapping, we observed transcription-dependent DNA modifications spanning the tnaA and cspA leader regions up to 100 bp downstream of the transcription start site.
Collapse
Affiliation(s)
- Asma Hatoum
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
14
|
|
15
|
Kulikova VV, Zakomirdina LN, Dementieva IS, Phillips RS, Gollnick PD, Demidkina TV, Faleev NG. Tryptophanase from Proteus vulgaris: The conformational rearrangement in the active site, induced by the mutation of Tyrosine 72 to Phenylalanine, and its mechanistic consequences. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:750-7. [PMID: 16455316 DOI: 10.1016/j.bbapap.2005.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 12/02/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Tyr72 is located at the active site of tryptophanase (Trpase) from Proteus vulgaris. For the wild-type Trpase Tyr72 might be considered as the general acid catalyst at the stage of elimination of the leaving groups. The replacement of Tyr72 by Phe leads to a decrease in activity for L-tryptophan by 50,000-fold and to a considerable rearrangement of the active site of Trpase. This rearrangement leads to an increase of room around the alpha-C atom of any bound amino acid, such that covalent binding of alpha-methyl-substituted amino acids becomes possible (which cannot be realized in wild-type Trpase). The changes in reactivities of S-alkyl-L-cysteines provide evidence for an increase of congestion in the proximity of their side groups in the mutant enzyme as compared to wild-type enzyme. The observed alteration of catalytic properties in a large degree originates from a conformational change in the active site. The Y72F Trpase retains significant activity for L-serine, which allowed us to conclude that in the mutant enzyme, some functional group is present which fulfills the role of the general acid catalyst in reactions associated with elimination of small leaving groups.
Collapse
Affiliation(s)
- Vitalia V Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | | | | | |
Collapse
|
16
|
Cruz-Vera LR, Rajagopal S, Squires C, Yanofsky C. Features of ribosome-peptidyl-tRNA interactions essential for tryptophan induction of tna operon expression. Mol Cell 2005; 19:333-43. [PMID: 16061180 DOI: 10.1016/j.molcel.2005.06.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 05/31/2005] [Accepted: 06/20/2005] [Indexed: 11/17/2022]
Abstract
Certain nascent peptide sequences, when within the ribosomal exit tunnel, can inhibit translation termination and/or peptide elongation. The 24 residue leader peptidyl-tRNA of the tna operon of E. coli, TnaC-tRNA(Pro), in the presence of excess tryptophan, resists cleavage at the tnaC stop codon. TnaC residue Trp12 is crucial for this inhibition. The approximate location of Trp12 in the exit tunnel was determined by crosslinking Lys11 of TnaC-tRNA(Pro) to nucleotide A750 of 23S rRNA. Methylation of nucleotide A788 of 23S rRNA was reduced by the presence of Trp12 in TnaC-tRNA(Pro), implying A788 displacement. Inserting an adenylate at position 751, or introducing the change U2609C in 23S rRNA or the change K90H or K90W in ribosomal protein L22, virtually eliminated tryptophan induction. These modified and mutated regions are mostly located near the putative site occupied by Trp12 of TnaC-tRNA(Pro). These findings identify features of the ribosomal exit tunnel essential for tna operon induction.
Collapse
MESH Headings
- Biotinylation
- Cross-Linking Reagents/chemistry
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/analysis
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Gene Expression/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genotype
- Lac Operon/genetics
- Macromolecular Substances/chemistry
- Macromolecular Substances/isolation & purification
- Macromolecular Substances/metabolism
- Models, Molecular
- Mutation/genetics
- Operon/genetics
- Peptide Termination Factors/analysis
- Peptide Termination Factors/metabolism
- Photoaffinity Labels/chemistry
- Plasmids/genetics
- Protein Biosynthesis/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Pro/genetics
- RNA-Binding Proteins/genetics
- Ribosomal Proteins/genetics
- Ribosomes/metabolism
- Tryptophan/genetics
- Tryptophan/metabolism
- Tryptophanase/genetics
- Uridine/metabolism
Collapse
|
17
|
Phillips RS, Holtermann G. Differential Effects of Temperature and Hydrostatic Pressure on the Formation of Quinonoid Intermediates from l-Trp and l-Met by H463F Mutant Escherichia coli Tryptophan Indole-lyase. Biochemistry 2005; 44:14289-97. [PMID: 16245945 DOI: 10.1021/bi051062a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Escherichia coli tryptophan indole-lyase (Trpase) is a bacterial pyridoxal 5'-phosphate (PLP)-dependent enzyme which catalyzes the reversible beta-elimination of l-Trp to give indole and ammonium pyruvate. H463F mutant E. coli Trpase (H463F Trpase) has very low activity with l-Trp, but it has near wild-type activity with other in vitro substrates, such as S-ethyl-l-cysteine and S-(o-nitrophenyl)-l-cysteine [Phillips, R. S., Johnson, N., and Kamath, A. V. (2002) Formation in vitro of Hybrid Dimers of H463F and Y74F Mutant Escherichia coli Tryptophan Indole-lyase Rescues Activity with l-Tryptophan, Biochemistry 41, 4012-4019]. The interaction of H463F Trpase with l-Trp and l-Met, a competitive inhibitor, has been investigated by rapid-scanning stopped-flow, high-pressure, and pressure jump spectrophotometry. Both l-Trp and l-Met bind to H463F Trpase to form equilibrating mixtures of external aldimine and quinonoid intermediates, absorbing at approximately 420 and approximately 505 nm, respectively. The apparent rate constant for quinonoid intermediate formation exhibits a hyperbolic dependence on l-Trp and l-Met concentration. The rate constant for quinonoid intermediate formation from l-Trp is approximately 10-fold lower for H463F Trpase than for wild-type Trpase, but the rate constant for reaction of l-Met is similar for H463F Trpase and wild-type Trpase. The temperature dependence of the rate constants for quinonoid intermediate formation reveals that both l-Trp and l-Met have similar values of DeltaH(++), but l-Met has a more negative value of DeltaS(++). Hydrostatic pressure perturbs the spectra of the H463F l-Trp and l-Met complexes, by shifting the position of the equilibria between different quinonoid and external aldimine complexes. Pressure-jump experiments show relaxations at 500 nm after rapid pressure changes of 100-400 bar with both l-Trp and l-Met. The apparent rate constants for relaxation of l-Trp, but not l-Met, show a significant increase with pressure. From these data, the value of DeltaV(++) for quinonoid intermediate formation from the external aldimine of l-Trp can be estimated to be -26.5 mL/mol, a larger than expected negative value for a proton transfer. These results suggest that there may be a contribution to the deprotonation reaction either from quantum mechanical tunneling or from a mechanical coupling of protein motion and proton transfer associated with the reaction of l-Trp, but not with l-Met.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia 30602-2556, USA.
| | | |
Collapse
|
18
|
Martino PD, Fursy R, Bret L, Sundararaju B, Phillips RS. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can J Microbiol 2004; 49:443-9. [PMID: 14569285 DOI: 10.1139/w03-056] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We demonstrated previously that genetic inactivation of tryptophanase is responsible for a dramatic decrease in biofilm formation in the laboratory strain Escherichia coli S17-1. In the present study, we tested whether the biochemical inhibition of tryptophanase, with the competitive inhibitor oxindolyl-L-alanine, could affect polystyrene colonization by E. coli and other indole-producing bacteria. Oxindolyl-L-alanine inhibits, in a dose-dependent manner, indole production and biofilm formation by strain S17-1 grown in Luria-Bertani (LB) medium. Supplementation with indole at physiologically relevant concentrations restores biofilm formation by strain S17-1 in the presence of oxindolyl-L-alanine and by mutant strain E. coli 3714 (S17-1 tnaA::Tn5) in LB medium. Oxindolyl-L-alanine also inhibits the adherence of S17-1 cells to polystyrene for a 3-h incubation time, but mutant strain 3714 cells are unaffected. At 0.5 mg/mL, oxindolyl-L-alanine exhibits inhibitory activity against biofilm formation in LB medium and in synthetic urine for several clinical isolates of E. coli, Klebsiella oxytoca, Citrobacter koseri, Providencia stuartii, and Morganella morganii but has no affect on indole-negative Klebsiella pneumoniae strains. In conclusion, these data suggest that indole, produced by the action of tryptophanase, is involved in polystyrene colonization by several indole-producing bacterial species. Indole may act as a signalling molecule to regulate the expression of adhesion and biofilm-promoting factors.
Collapse
Affiliation(s)
- P Di Martino
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, Pontoise, France.
| | | | | | | | | |
Collapse
|
19
|
Li Y, Altman S. A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs. Proc Natl Acad Sci U S A 2003; 100:13213-8. [PMID: 14585931 PMCID: PMC263755 DOI: 10.1073/pnas.2235589100] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The rnpA mutation, A49, in Escherichia coli reduces the level of RNase P at 43 degrees C because of a temperature-sensitive mutation in C5 protein, the protein subunit of the enzyme. Microarray analysis reveals the expression of several noncoding intergenic regions that are increased at 43 degrees C compared with 30 degrees C. These regions are substrates for RNase P, and they are cleaved less efficiently than, for example, tRNA precursors. An analysis of the tna, secG, rbs, and his operons, all of which contain RNase P cleavage sites, indicates that RNase P affects gene expression for regions downstream of its cleavage sites.
Collapse
Affiliation(s)
- Yong Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
20
|
Demidkina TV, Zakomirdina LN, Kulikova VV, Dementieva IS, Faleev NG, Ronda L, Mozzarelli A, Gollnick PD, Phillips RS. Role of Aspartate-133 and Histidine-458 in the Mechanism of Tryptophan Indole-Lyase from Proteus vulgaris. Biochemistry 2003; 42:11161-9. [PMID: 14503866 DOI: 10.1021/bi034348t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tryptophan indole-lyase (Trpase) from Proteus vulgaris is a pyridoxal 5'-phosphate dependent enzyme that catalyzes the reversible hydrolytic cleavage of L-Trp to yield indole and ammonium pyruvate. Asp-133 and His-458 are strictly conserved in all sequences of Trpase, and they are located in the proposed substrate-binding region of Trpase. These residues were mutated to alanine to probe their role in substrate binding and catalysis. D133A mutant Trpase has no measurable activity with L-Trp as substrate, but still retains activity with S-(o-nitrophenyl)-L-cysteine, S-alkyl-L-cysteines, and beta-chloro-L-alanine. H458A mutant Trpase has 1.6% of wild-type Trpase activity with L-Trp, and high activity with S-(o-nitrophenyl)-L-cysteine, S-alkyl-L-cysteines, and beta-chloro-L-alanine. H458A mutant Trpase does not exhibit the pK(a) of 5.3 seen in the pH dependence of k(cat)/K(m) of L-Trp for wild-type Trpase. Both mutant enzymes are inhibited by L-Ala, L-Met, and L-Phe, with K(i) values similar to those of wild-type Trpase, but oxindolyl-L-alanine and beta-phenyl-DL-serine show much weaker binding to the mutant enzymes, suggesting that Asp-133 and His-458 are involved in the binding of these ligands. D133A and H458A mutant Trpase exhibit absorption and CD spectra in the presence of substrates and inhibitors that are similar to wild-type Trpase, with peaks at about 420 and 500 nm. The rate constants for formation of the 500 nm bands for the mutant enzymes are equal to or greater than those of wild-type Trpase, indicating that Asp-133 and His-458 do not play a role in the formation of quinonoid intermediates. In constrast to wild-type and H458A mutant Trpase, D133A mutant Trpase forms an intermediate from S-ethyl-L-Cys that absorbs at 345 nm, and is likely to be an alpha-aminoacrylate. Crystals of D133A and H458A mutant Trpase bind amino acids with similar affinity as the proteins in solution, except for L-Ala, which binds to D133A mutant Trpase crystals about 20-fold stronger than in solution. These results suggest that Asp-133 and His-458 play an important role in the elimination reaction of L-Trp. Asp-133 likely forms a hydrogen bond directly to the indole NH of the substrate, while His-458 probably is hydrogen bonded to Asp-133.
Collapse
Affiliation(s)
- Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fehlner-Gardiner C, Roshick C, Carlson JH, Hughes S, Belland RJ, Caldwell HD, McClarty G. Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase. J Biol Chem 2002; 277:26893-903. [PMID: 12011099 DOI: 10.1074/jbc.m203937200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report the cloning and sequencing of a region of the chlamydiae chromosome termed the "plasticity zone" from all the human serovars of C. trachomatis containing the tryptophan biosynthesis genes. Our results show that this region contains orthologues of the tryptophan repressor as well as the alpha and beta subunits of tryptophan synthase. Results from reverse transcription-PCR and Western blot analyses indicate that the trpBA genes are transcribed, and protein products are expressed. The TrpB sequences from all serovars are highly conserved. In comparison with other tryptophan synthase beta subunits, the chlamydial TrpB subunit retains all conserved amino acid residues required for beta reaction activity. In contrast, the chlamydial TrpA sequences display numerous mutations, which distinguish them from TrpA sequences of all other prokaryotes. All ocular serovars contain a deletion mutation resulting in a truncated TrpA protein, which lacks alpha reaction activity. The TrpA protein from the genital serovars retains conserved amino acids required for catalysis but has mutated several active site residues involved in substrate binding. Complementation analysis in Escherichia coli strains, with defined mutations in tryptophan biosynthesis, and in vitro enzyme activity data, with cloned TrpB and TrpA proteins, indicate these mutations result in a TrpA protein that is unable to utilize indole glycerol 3-phosphate as substrate. In contrast, the chlamydial TrpB protein can carry out the beta reaction, which catalyzes the formation of tryptophan from indole and serine. The activity of the chlamydial Trp B protein differs from that of the well characterized E. coli and Salmonella TrpBs in displaying an absolute requirement for full-length TrpA. Taken together our data indicate that genital, but not ocular, serovars are capable of utilizing exogenous indole for the biosynthesis of tryptophan.
Collapse
Affiliation(s)
- Christine Fehlner-Gardiner
- Department of Medical Microbiology, University of Manitoba and National Microbiology Laboratory, Health Canada, Winnipeg, Manitoba R3E 0W3, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Phillips RS, Demidkina TV, Zakomirdina LN, Bruno S, Ronda L, Mozzarelli A. Crystals of tryptophan indole-lyase and tyrosine phenol-lyase form stable quinonoid complexes. J Biol Chem 2002; 277:21592-7. [PMID: 11934889 DOI: 10.1074/jbc.m200216200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of substrates and inhibitors to wild-type Proteus vulgaris tryptophan indole-lyase and to wild type and Y71F Citrobacter freundii tyrosine phenol-lyase was investigated in the crystalline state by polarized absorption microspectrophotometry. Oxindolyl-lalanine binds to tryptophan indole-lyase crystals to accumulate predominantly a stable quinonoid intermediate absorbing at 502 nm with a dissociation constant of 35 microm, approximately 10-fold higher than that in solution. l-Trp or l-Ser react with tryptophan indole-lyase crystals to give, as in solution, a mixture of external aldimine and quinonoid intermediates and gem-diamine and external aldimine intermediates, respectively. Different from previous solution studies (Phillips, R. S., Sundararju, B., & Faleev, N. G. (2000) J. Am. Chem. Soc. 122, 1008-1114), the reaction of benzimidazole and l-Trp or l-Ser with tryptophan indole-lyase crystals does not result in the formation of an alpha-aminoacrylate intermediate, suggesting that the crystal lattice might prevent a ligand-induced conformational change associated with this catalytic step. Wild-type tyrosine phenol-lyase crystals bind l-Met and l-Phe to form mixtures of external aldimine and quinonoid intermediates as in solution. A stable quinonoid intermediate with lambda(max) at 502 nm is accumulated in the reaction of crystals of Y71F tyrosine phenol-lyase, an inactive mutant, with 3-F-l-Tyr with a dissociation constant of 1 mm, approximately 10-fold higher than that in solution. The stability exhibited by the quinonoid intermediates formed both by wild-type tryptophan indole-lyase and by wild type and Y71F tyrosine phenol-lyase crystals demonstrates that they are suitable for structural determination by x-ray crystallography, thus allowing the elucidation of a key species of pyridoxal 5'-phosphate-dependent enzyme catalysis.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Gong F, Yanofsky C. Analysis of tryptophanase operon expression in vitro: accumulation of TnaC-peptidyl-tRNA in a release factor 2-depleted S-30 extract prevents Rho factor action, simulating induction. J Biol Chem 2002; 277:17095-100. [PMID: 11880383 DOI: 10.1074/jbc.m201213200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. The key feature of this antitermination mechanism has been shown to be the retention of uncleaved TnaC-peptidyl-tRNA in the translating ribosome. This ribosome remains stalled at the tna stop codon and blocks the access of Rho factor to the tna transcript, thereby preventing transcription termination. In normal S-30 preparations, synthesis of a TnaC peptide containing arginine instead of tryptophan at position 12 (Arg(12)-TnaC) was shown to be insensitive to added tryptophan, i.e. Arg(12)-TnaC-peptidyl-tRNA was cleaved, and there was normal Rho-dependent transcription termination. When the S-30 extract used was depleted of release factor 2, Arg(12)-TnaC-tRNA(Pro) was accumulated in the absence or presence of added tryptophan. Under these conditions the accumulation of Arg(12)-TnaC-tRNA(Pro) prevented Rho-dependent transcription termination, mimicking normal induction. Using a minimal in vitro transcription system consisting of a tna template, RNA polymerase, and Rho, it was shown that RNA sequences immediately adjacent to the tnaC stop codon, the presumed boxA and rut sites, contributed most significantly to Rho-dependent termination. The tna boxA-like sequence appeared to serve as a segment of the Rho "entry" site, despite its likeness to the boxA element.
Collapse
Affiliation(s)
- Feng Gong
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | |
Collapse
|
24
|
Phillips RS, Johnson N, Kamath AV. Formation in vitro of hybrid dimers of H463F and Y74F mutant Escherichia coli tryptophan indole-lyase rescues activity with L-tryptophan. Biochemistry 2002; 41:4012-9. [PMID: 11900544 DOI: 10.1021/bi015838t] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Y74F and H463F mutant forms of Escherichia coli tryptophan indole-lyase (Trpase) have been prepared. These mutant proteins have very low activity with L-Trp as substrate (kcat and kcat/Km values less than 0.1% of wild-type Trpase). In contrast, these mutant enzymes exhibit much higher activity with S-(o-nitrophenyl)-L-cysteine and S-ethyl-L-cysteine (kcat/Km values about 1-50% of wild-type Trpase). Thus, Tyr-74 and His-463 are important for the substrate specificity of Trpase for L-Trp. H463F Trpase is not inhibited by a potent inhibitor of wild-type Trpase, oxindolyl-L-alanine, and does not exhibit the pK(a) of 6.0 seen in previous pH dependence studies [Kiick, D. M., and Phillips, R. S. (1988) Biochemistry 27, 7333]. These results suggest that His-463 may be the catalytic base with a pK(a) of 6.0 and Tyr-74 may be a general acid catalyst for the elimination step, as we found previously with tyrosine phenol-lyase [Chen, H., Demidkina, T. V., and Phillips, R. S. (1995) Biochemistry 34, 12776]. H463F Trpase reacts with L-Trp and S-ethyl-L-cysteine in rapid-scanning stopped-flow experiments to form equilibrating mixtures of external aldimine and quinonoid intermediates, similar to those observed with wild-type Trpase. In contrast to the results with wild-type Trpase, the addition of benzimidazole to reactions of H463F Trpase with L-Trp does not result in the formation of an aminoacrylate intermediate. However, addition of benzimidazole with S-ethyl-L-cysteine results in the formation of an aminoacrylate intermediate, with lambda(max) at 345 nm, as was seen previously with wild-type Trpase [Phillips, R. S. (1991) Biochemistry 30, 5927]. This suggests that His-463 plays a specific role in the elimination step of the reaction of L-Trp. Refolding of equimolar mixtures of H463F and Y74F Trpase after unfolding in 4 M guanidine hydrochloride results in a dramatic increase in activity with L-Trp, indicating the formation of a hybrid H463F/Y74F dimer with one normal active site.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602-2556, USA.
| | | | | |
Collapse
|
25
|
Gong F, Yanofsky C. Reproducing tna operon regulation in vitro in an S-30 system. Tryptophan induction inhibits cleavage of TnaC peptidyl-tRNA. J Biol Chem 2001; 276:1974-83. [PMID: 11050101 DOI: 10.1074/jbc.m008892200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and tryptophan-induced transcription antitermination. Catabolite repression regulates transcription initiation, whereas excess tryptophan induces antitermination at Rho factor-dependent termination sites in the leader region of the operon. Synthesis of the leader peptide, TnaC, is essential for antitermination. BoxA and rut sites in the immediate vicinity of the tnaC stop codon are required for termination. In this paper we use an in vitro S-30 cell-free system to analyze the features of tna operon regulation. We show that transcription initiation is cyclic AMP (cAMP)-dependent and is not influenced by tryptophan. Continuation of transcription beyond the leader region requires the presence of inducing levels of tryptophan and synthesis of the TnaC leader peptide. Using a tnaA'-'trpE fusion, we demonstrate that induction results in a 15-20-fold increase in synthesis of the tryptophan-free TnaA-TrpE fusion protein. Replacing Trp codon 12 of tnaC by an Arg codon, or changing the tnaC start codon to a stop codon, eliminates induction. Addition of bicyclomycin, a specific inhibitor of Rho factor action, substantially increases basal level expression. Analyses of tna mRNA synthesis in vitro demonstrate that, in the absence of inducer transcription is terminated and the terminated transcripts are degraded. In the presence of inducer, antitermination increases the synthesis of the read-through transcript. TnaC synthesis is observed in the cell-free system. However, in the presence of tryptophan, a peptidyl-tRNA also appears, TnaC-tRNA(Pro). Our findings suggest that inducer acts by preventing cleavage of TnaC peptidyl-tRNA. The ribosome associated with this newly synthesized peptidyl-tRNA presumably stalls at the tnaC stop codon, blocking Rho's access to the BoxA and rut sites, thereby preventing termination. 1-Methyltryptophan also is an effective inducer in vitro. This tryptophan analog is not incorporated into TnaC.
Collapse
Affiliation(s)
- F Gong
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
26
|
Phillips RS, Sundararaju B, Faleev NG. Proton Transfer and Carbon−Carbon Bond Cleavage in the Elimination of Indole Catalyzed by Escherichia coli Tryptophan Indole-Lyase. J Am Chem Soc 2000. [DOI: 10.1021/ja991647q] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert S. Phillips
- Contribution from the Department of Chemistry, Department of Biochemistry and Molecular Biology, and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602-2556, and Nesmeyanov Institute of Elemento-organic Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Bakthavatsalam Sundararaju
- Contribution from the Department of Chemistry, Department of Biochemistry and Molecular Biology, and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602-2556, and Nesmeyanov Institute of Elemento-organic Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Nicolai G. Faleev
- Contribution from the Department of Chemistry, Department of Biochemistry and Molecular Biology, and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602-2556, and Nesmeyanov Institute of Elemento-organic Compounds, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Isupov MN, Antson AA, Dodson EJ, Dodson GG, Dementieva IS, Zakomirdina LN, Wilson KS, Dauter Z, Lebedev AA, Harutyunyan EH. Crystal structure of tryptophanase. J Mol Biol 1998; 276:603-23. [PMID: 9551100 DOI: 10.1006/jmbi.1997.1561] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray structure of tryptophanase (Tnase) reveals the interactions responsible for binding of the pyridoxal 5'-phosphate (PLP) and atomic details of the K+ binding site essential for catalysis. The structure of holo Tnase from Proteus vulgaris (space group P2(1)2(1)2(1) with a = 115.0 A, b = 118.2 A, c = 153.7 A) has been determined at 2.1 A resolution by molecular replacement using tyrosine phenol-lyase (TPL) coordinates. The final model of Tnase, refined to an R-factor of 18.7%, (Rfree = 22.8%) suggests that the PLP-enzyme from observed in the structure is a ketoenamine. PLP is bound in a cleft formed by both the small and large domains of one subunit and the large domain of the adjacent subunit in the so-called "catalytic" dimer. The K+ cations are located on the interface of the subunits in the dimer. The structure of the catalytic dimer and mode of PLP binding in Tnase resemble those found in aspartate amino-transferase, TPL, omega-amino acid pyruvate aminotransferase, dialkylglycine decarboxylase (DGD), cystathionine beta-lyase and ornithine decarboxylase. No structural similarity has been detected between Tnase and the beta 2 dimer of tryptophan synthase which catalyses the same beta-replacement reaction. The single monovalent cation binding site of Tnase is similar to that of TPL, but differs from either of those in DGD.
Collapse
Affiliation(s)
- M N Isupov
- Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Martin K, Morlin G, Smith A, Nordyke A, Eisenstark A, Golomb M. The tryptophanase gene cluster of Haemophilus influenzae type b: evidence for horizontal gene transfer. J Bacteriol 1998; 180:107-18. [PMID: 9422600 PMCID: PMC106856 DOI: 10.1128/jb.180.1.107-118.1998] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Among strains of Haemophilus influenzae, the ability to catabolize tryptophan (as detected by indole production) varies and is correlated with pathogenicity. Tryptophan catabolism is widespread (70 to 75%) among harmless respiratory isolates but is nearly universal (94 to 100%) among strains causing serious disease, including meningitis. As a first step in investigating the relationship between tryptophan catabolism and virulence, we have identified genes in pathogenic H. influenzae which are homologous to the tryptophanase (tna) operon of Escherichia coli. The tna genes are located on a 3.1-kb fragment between nlpD and mutS in the H. influenzae type b (Eagan) genome, are flanked by 43-bp direct repeats of an uptake signal sequence downstream from nlpD, and appear to have been inserted as a mobile unit within this sequence. The organization of this insertion is reminiscent of pathogenicity islands. The tna cluster is found at the same map location in all indole-positive strains of H. influenzae surveyed and is absent from reference type d and e genomes. In contrast to H. influenzae, most other Haemophilus species lack tna genes. Phylogenetic comparisons suggest that the tna cluster was acquired by intergeneric lateral transfer, either by H. influenzae or a recent ancestor, and that E. coli may have acquired its tnaA gene from a related source. Genomes of virulent H. influenzae resemble those of pathogenic enterics in having an island of laterally transferred DNA next to mutS.
Collapse
Affiliation(s)
- K Martin
- Division of Biological Sciences, University of Missouri, Columbia 65211, USA
| | | | | | | | | | | |
Collapse
|
29
|
Konan KV, Yanofsky C. Regulation of the Escherichia coli tna operon: nascent leader peptide control at the tnaC stop codon. J Bacteriol 1997; 179:1774-9. [PMID: 9045840 PMCID: PMC178893 DOI: 10.1128/jb.179.5.1774-1779.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and by tryptophan-induced transcription antitermination at Rho-dependent termination sites in the leader region of the operon. Tryptophan induction is dependent on translation of a short leader peptide coding region, tnaC, that contains a single, crucial tryptophan codon. Recent studies suggest that during induction, the TnaC leader peptide acts in cis on the translating ribosome to inhibit its release at the tnaC stop codon. In the present study we use a tnaC-UGA-'lacZ construct lacking the tnaC-tnaA spacer region to analyze the effect of TnaC synthesis on the behavior of the ribosome that translates tnaC. The tnaC-UGA-'lacZ construct is not expressed significantly in the presence or absence of inducer. However, it is expressed in the presence of UGA suppressors, or when the structural gene for polypeptide release factor 3 is disrupted, or when wild-type tRNATrP is overproduced. In each situation, tnaC-UGA-'lacZ expression is reduced appreciably by the presence of inducing levels of tryptophan. Replacing the tnaC UGA stop codon with a sense codon allows considerable expression, which is also reduced, although to a lesser extent, by the addition of tryptophan. Inhibition by tryptophan is not observed when Trp codon 12 of tnaC is changed to a Leu codon. Overexpression of tnaC in trans from a multicopy plasmid prevents inhibition of expression by tryptophan. These results support the hypothesis that the TnaC leader peptide acts in cis to alter the behavior of the translating ribosome.
Collapse
Affiliation(s)
- K V Konan
- Department of Biological Sciences, Stanford University, California 94305-5020, USA
| | | |
Collapse
|
30
|
Kamath AV, Yanofsky C. Roles of the tnaC-tnaA spacer region and Rho factor in regulating expression of the tryptophanase operon of Proteus vulgaris. J Bacteriol 1997; 179:1780-6. [PMID: 9045841 PMCID: PMC178894 DOI: 10.1128/jb.179.5.1780-1786.1997] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To localize the DNA regions responsible for basal-level and induced expression of the tryptophanase (tna) operon of Proteus vulgaris, short deletions were introduced in the 115-bp spacer region separating tnaC, the leader peptide coding region, from tnaA. Deletions were incorporated into a tnaA'-'lacZ reporter construct containing the intact tna promoter-leader region. Expression was examined in Escherichia coli. Deletions that removed 28 to 30 bp from the region immediately following tnaC increased basal-level expression about threefold and allowed threefold induction by 1-methyltryptophan. A deletion removing 34 bp from the distal segment of the leader permitted basal and induced expression comparable to that of the parental construct. The mutant with the largest spacer deletion, 89 bp, exhibited a 30-fold increase in basal-level expression, and most importantly, inducer presence reduced operon expression by ca. 60%. Replacing the tnaC start codon or replacing or removing Trp codon 20 of tnaC of this deletion derivative eliminated inducer inhibition of expression. These findings suggest that the spacer region separating tnaC and tnaA is essential for Rho action. They also suggest that juxtaposition of the tnaC stop codon and the tnaA ribosome binding site in the 89-bp deletion derivative allows the ribosome that has completed translation of tnaC to inhibit translation initiation at the tnaA start codon when cells are exposed to inducer. These findings are consistent with results in the companion article that suggest that inducer allows the TnaC peptide to inhibit ribosome release at the tnaC stop codon.
Collapse
Affiliation(s)
- A V Kamath
- Department of Molecular Sciences, Central Research Division, Pfizer Inc., Groton, Connecticut 06340, USA
| | | |
Collapse
|
31
|
Sloan MJ, Phillips RS. Effects of alpha-deuteration and of aza and thia analogs of L-tryptophan on formation of intermediates in the reaction of Escherichia coli tryptophan indole-lyase. Biochemistry 1996; 35:16165-73. [PMID: 8973188 DOI: 10.1021/bi961211c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tryptophan indole-lyase catalyzes the hydrolytic cleavage of L-tryptophan to indole and ammonium pyruvate. After the enzyme is mixed with L-tryptophan in the rapid-scanning stopped-flow spectrophotometer, there is an absorbance increase at 505 nm in the pre-steady state attributed to formation of a quinonoid intermediate, which occurs in at least three consecutive first-order phases. Reaction with [alpha-2H]-L-tryptophan results in significant primary kinetic isotope effects on the first two phases, and there is a significant isotope effect on the amplitude of the absorbance increase in the second phase. This result suggests that proton transfer to carbon to form the indolenine intermediate is relatively slow and is probably at least partially rate-determining. Reaction of L-tryptophan in the presence of benzimidazole results in a rapid increase in absorbance in the first phase, followed by a decrease in absorbance in the second phase, with rate constants very similar to those observed without benzimidazole. We have also examined aza and thia analogs of L-tryptophan, with the benzene ring of the indole replaced by pyridine or thiophene. Both 4,5-thiatryptophan and 6,7-thiatryptophan form quinonoid intermediates in the reaction with tryptophan indole-lyase; however, 6,7-thiatryptophan is a better substrate (kcat/K(m) = 32% of L-trp) for tryptophan indole-lyase than is 4,5-thiatryptophan (kcat/K(m) = 4% of L-trp). Benzimidazole affects the pre-steady-state reaction of 6,7-thiatryptophan in a way similar to L-tryptophan, while benzimidazole does not affect the pre-steady-state reaction of 4,5-thiatryptophan. 4-Aza-, 5-aza-, 6-aza-, and 7-aza-L-tryptophan are all very slow substrates (kcat < 1% of L-trp) for Escherichia coli tryptophan indole-lyase. beta-Indazolyl-L-alanine is a relatively good substrate and exhibits a quinonoid intermediate in its reaction with tryptophan indole-lyase. 6-Aza- and 7-azatryptophan accumulate quinonoid intermediates in the reaction with tryptophan indole-lyase, whereas 4-aza- and 5-azatryptophans do not significantly accumulate quinonoid intermediates, and these latter compounds exhibit very high K(m) values. Addition of benzimidazole does not change the rapid-scanning stopped-flow spectra of 6-aza- and 7-azatryptophan. This suggests that the rate-determining step in the reaction changes depending on the position and type of heteroatom substitution. For 6-aza- and 7-azatryptophan, the very slow rates of elimination may be due to slow C-protonation of the azaindole, while for 4,5-thiatryptophan, the elimination of thienopyrrole is probably slow. Of all analogs examined, 6,7-thiatryptophan is most similar to tryptophan in its reaction with E. coli tryptophan indole-lyase.
Collapse
Affiliation(s)
- M J Sloan
- Department of Chemistry, University of Georgia, Athens 30602-2556, USA
| | | |
Collapse
|
32
|
Yanofsky C, Horn V, Nakamura Y. Loss of overproduction of polypeptide release factor 3 influences expression of the tryptophanase operon of Escherichia coli. J Bacteriol 1996; 178:3755-62. [PMID: 8682777 PMCID: PMC232633 DOI: 10.1128/jb.178.13.3755-3762.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Expression of the tryptophanase (tna) operon of Escherichia coli is regulated by catabolite repression and by tryptophan-induced inhibition of Rho-mediated transcription termination. Previous studies indicated that tryptophan induction might involve leader peptide inhibition of ribosome release at the stop codon of tnaC, the coding region for the operon-specified leader peptide. In this study we examined tna operon expression in strains in which the structural gene for protein release factor 3, prfC, is either disrupted or overexpressed. We find that prfC inactivation leads to a two- to threefold increase in basal expression of the tna operon and a slight increase in induced expression. Overexpression of prfC has the opposite effect and reduces both basal and induced expression. These effects occur in the presence of glucose and cyclic AMP, and thus Rho-dependent termination rather than catabolite repression appears to be the event influenced by the prfC alterations. prfC inactivation also leads to an increase in basal tna operon expression in various rho and rpoB mutants but not in a particular rho mutant in which the basal level of expression is very high. The effect of prfC inactivation was examined in a variety of mutants with alterations in the tna leader region. Our results suggest that translation of tnaC is essential for the prfC effect. The tryptophan residue specified by tnaC codon 12, which is essential for induction, when replaced by another amino) acid, allows the prfC effect. Introducing UAG or UAA stop codons rather than the normal tnaC UGA stop codon, in a strain with an inactive prfC gene, also leads to an increase in the basal level of expression. Addition of the drug bicyclomycin increases basal operon expression of all mutant strains except a strain with a tnaC'-'lacZ fusion. Expression in the latter strain is unaffected by prfC alterations. Our findings are consistent with the interpretation that ribosome release at the tnaC stop codon can influence tna operon expression.
Collapse
Affiliation(s)
- C Yanofsky
- Department of Biological Sciences, Stanford University, California 94305, USA
| | | | | |
Collapse
|
33
|
Ben-Kasus T, Markel A, Torchinsky YM, Phillips RS, Parola AH. Interactions of Escherichia coli tryptophanase with quasisubstrates and monovalent cations studied by the circular dichroism and fluorescence methods. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1294:147-52. [PMID: 8645732 DOI: 10.1016/0167-4838(96)00004-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The reaction of tryptophanase and its W330F and W248F mutant forms with quasi-substrates forming an external pyridoxal phosphate aldimine or quinonoid is accompanied by the appearance of a positive circular dichroism (CD) peak at 290 nm. The peak seems to arise from a Tyr residue undergoing reorientation during the reaction. The peak does not appear upon formation of non-covalent Michaelis complexes of the enzyme with quasi-substrates such as indolepropionate, beta-phenyllactate and alpha-methylphenylalanine. The non-covalent complexes and external aldimines exhibit similar absorption spectra but can be distinguished by their CD and by the intensity of their fluorescence. Formation of the non-covalent complexes leads to an increase in positive CD at 420 nm while formation of the external aldimines leads to disappearance of the positive CD at 420 nm and its replacement by negative CD; it also leads to strong quenching of the coenzyme fluorescence at 500 nm. The quantum yield of fluorescence of the external aldimines is 6-times lower than that of the internal aldimine. Activating cations (K+, NH4+) strongly diminish the intensity of a negative protein CD band at 275 nm. From a comparison of the intensity of this band in the spectra of the wild-type holo- and apoenzyme and in the tryptophan mutants, it was deduced that the band belongs to a Tyr residue, which may be a part of the cation-binding site or located in its immediate vicinity.
Collapse
Affiliation(s)
- T Ben-Kasus
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
34
|
Abstract
A variety of transcription attenuation mechanisms are used by bacteria to regulate gene and operon expression. This review summarizes previous and current studies designed to elucidate the features of the specific attenuation mechanisms that regulate expression of the tryptophanase (tna) operon of Escherichia coli and the tryptophan (trp) operon of Bacillus subtilis. Initiation of transcription in the tna operon is regulated by catabolite repression. Once initiated, transcription is regulated by tryptophan-induced inhibition of Rho-mediated transcription termination in the leader region of the operon. An operon-encoded leader peptide, TnaC, containing a crucial tryptophan residue, plays an essential role in induction. This peptide appears to act in cis on the ribosome translating tnaC to inhibit its release at the tnaC stop codon. The stalled ribosome would block Rho's access to the tna transcript, thereby preventing termination. Transcription of the trp operon of B subtilis is regulated by an attenuation mechanism that responds to a tryptophan-activated eleven subunit RNA-binding regulatory protein, called TRAP. Activated TRAP binds to repeated GAG sequences in the leader segment of the trp operon transcript, disrupting an RNA antiterminator and promoting formation of a terminator. Activated TRAP also regulates translation of trpG in the folate operon by binding to repeat GAG sequences surrounding the trpG ribosome binding site. A temperature sensitive tryptophanyl-tRNA synthetase (trpS) mutant was previously observed to overexpress the trp operon and trpG, when grown at elevated temperatures in the presence of tryptophan. We have found that the trpS defect increases trp operon and trpG expression by interfering with TRAP's ability to act. We suggest that either accumulation of uncharged tRNA(Trp) or overproduction of a TRAP-binding transcript reduces the level of functional TRAP in the trpS mutant.
Collapse
Affiliation(s)
- C Yanofsky
- Department of Biological Sciences, Stanford University, CA 94305, USA
| | | | | |
Collapse
|
35
|
Chen HY, Demidkina TV, Phillips RS. Site-directed mutagenesis of tyrosine-71 to phenylalanine in Citrobacter freundii tyrosine phenol-lyase: evidence for dual roles of tyrosine-71 as a general acid catalyst in the reaction mechanism and in cofactor binding. Biochemistry 1995; 34:12276-83. [PMID: 7547970 DOI: 10.1021/bi00038a023] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tyr71 is an invariant residue in all known sequences of tyrosine phenol-lyase (TPL). The substitution of Tyr71 in TPL by phenylalanine results in a mutant Y71F TPL with no detectable activity (greater than 3 x 10(5)-fold reduction) for beta-elimination of L-tyrosine. Y71F TPL can react with S-alkylcysteines, but these substrates exhibit kcat values reduced by 10(3)-10(4)-fold, while the kcat/Km values are reduced by 10(2)-10(3)-fold, compared to wild-type TPL. However, for substrates with good leaving groups (S-(o-nitrophenyl)-L-cysteine,beta-chloro-L-alanine, and O-benzoyl-L-serine), Y71F TPL exhibits kcat values 1.85-7% those of wild-type TPL. Y71F TPL forms very stable quinonoid complexes with strong absorbance at 502 nm from L-phenylalanine, tyrosines (L-tyrosine, 3-fluoro-L-tyrosine, and [alpha-2H]-3-fluoro-L-tyrosine), and S-alkylcysteines (S-methyl-L-cysteine, S-ethyl-L-cysteine, and S-benzyl-L-cysteine). The time courses of the formation of quinonoid intermediates in these reactions are biphasic. The slow phase shows a dependence on concentration of PLP and is due to the cofactor binding steps, while the fast phase is due to the amino acid alpha-deprotonation and reprotonation steps. The rate constants for the fast phase of the reactions of Y71F TPL with L-phenylalanine and S-methylcysteine are similar to those for alpha-deprotonation or reprotonation steps in the reactions of wild-type TPL. The PLP binding constant of Y71F TPL is estimated to be 1 mM by spectrophotometric titration, compared to 0.6 microM for wild-type TPL.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Y Chen
- Department of Chemistry, University of Georgia, Athens 30602-2556, USA
| | | | | |
Collapse
|
36
|
Chen H, Gollnick P, Phillips RS. Site-Directed Mutagenesis of His343Ala in Citrobacter freundii Tyrosine Phenol-Lyase. Effects on the Kinetic Mechanism and Rate-Determining Step. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20496.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Abstract
A cloned DNA fragment containing the tryptophanase (tna) operon of Proteus vulgaris was found to contain a gene analogous to mutT of Escherichia coli immediately distal to the tna operon. The presumptive mutT of P. vulgaris was shown to be a functional gene by complementation of a mutT mutant from E. coli. The deduced amino acid sequence of the MutT polypeptide of P. vulgaris was 47% identical and 70% similar to MutT of E. coli. The mutT and tna operons of P. vulgaris were shown to be adjacent on the genome of this organism. These operons are located about 20 min apart in the E. coli genome. Our findings suggest that either or both tna and mutT have different genomic locations in the two organisms.
Collapse
Affiliation(s)
- A V Kamath
- Department of Biological Sciences, Stanford University, CA 94305-5020
| | | |
Collapse
|
38
|
Gish K, Yanofsky C. Inhibition of expression of the tryptophanase operon in Escherichia coli by extrachromosomal copies of the tna leader region. J Bacteriol 1993; 175:3380-7. [PMID: 8501042 PMCID: PMC204735 DOI: 10.1128/jb.175.11.3380-3387.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Expression of the tryptophanase (tna) operon in Escherichia coli is regulated by catabolite repression and transcription attenuation. Expression is induced by the presence of elevated levels of tryptophan in a growth medium devoid of a catabolite-repressing carbon source. Induction requires the translation of a 24-residue coding region, tnaC, located in the 319-nucleotide transcribed leader region preceding tnaA, the structural gene for tryptophanase. Multicopy plasmids carrying the tnaC leader region were found to inhibit induction of the chromosomal tna operon. Mutational studies established that this inhibition was not due to inhibited transcription initiation, translation initiation, tryptophan transport, or enzyme activity. Rather, multicopy tnaC plasmids inhibited induction by preventing tryptophan-induced transcription antitermination in the leader region of the tna operon. Translation of the single Trp codon in tnaC of the multicopy plasmids was shown to be essential for this inhibition. We hypothesize that translation of the Trp codon of the leader peptide titrates out a trans-acting factor that is essential for tryptophan-induced antitermination in the chromosomal tna operon. We postulate that this factor is an altered form of tRNATrp.
Collapse
Affiliation(s)
- K Gish
- Department of Biological Sciences, Stanford University, California 94305-5020
| | | |
Collapse
|