1
|
Yamanaka K, Ozaki R, Hamano Y, Oikawa T. Molecular and Mechanistic Characterization of PddB, the First PLP-Independent 2,4-Diaminobutyric Acid Racemase Discovered in an Actinobacterial D-Amino Acid Homopolymer Biosynthesis. Front Microbiol 2021; 12:686023. [PMID: 34177872 PMCID: PMC8225329 DOI: 10.3389/fmicb.2021.686023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
We recently disclosed that the biosynthesis of antiviral γ-poly-D-2,4-diaminobutyric acid (poly-D-Dab) in Streptoalloteichus hindustanus involves an unprecedented cofactor independent stereoinversion of Dab catalyzed by PddB, which shows weak homology to diaminopimelate epimerase (DapF). Enzymological properties and mechanistic details of this enzyme, however, had remained to be elucidated. Here, through a series of biochemical characterizations, structural modeling, and site-directed mutageneses, we fully illustrate the first Dab-specific PLP-independent racemase PddB and further provide an insight into its evolution. The activity of the recombinant PddB was shown to be optimal around pH 8.5, and its other fundamental properties resembled those of typical PLP-independent racemases/epimerases. The enzyme catalyzed Dab specific stereoinversion with a calculated equilibrium constant of nearly unity, demonstrating that the reaction catalyzed by PddB is indeed racemization. Its activity was inhibited upon incubation with sulfhydryl reagents, and the site-directed substitution of two putative catalytic Cys residues led to the abolishment of the activity. These observations provided critical evidence that PddB employs the thiolate-thiol pair to catalyze interconversion of Dab isomers. Despite the low levels of sequence similarity, a phylogenetic analysis of PddB indicated its particular relevance to DapF among PLP-independent racemases/epimerases. Secondary structure prediction and 3D structural modeling of PddB revealed its remarkable conformational analogy to DapF, which in turn allowed us to predict amino acid residues potentially responsible for the discrimination of structural difference between diaminopimelate and its specific substrate, Dab. Further, PddB homologs which seemed to be narrowly distributed only in actinobacterial kingdom were constantly encoded adjacent to the putative poly-D-Dab synthetase gene. These observations strongly suggested that PddB could have evolved from the primary metabolic DapF in order to organize the biosynthesis pathway for the particular secondary metabolite, poly-D-Dab. The present study is on the first molecular characterization of PLP-independent Dab racemase and provides insights that could contribute to further discovery of unprecedented PLP-independent racemases.
Collapse
Affiliation(s)
- Kazuya Yamanaka
- Department of Life Science and Technology, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Suita, Japan.,Graduate School of Science and Engineering, Kansai University, Suita, Japan
| | - Ryo Ozaki
- Graduate School of Science and Engineering, Kansai University, Suita, Japan
| | - Yoshimitsu Hamano
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University, Yoshida-gun, Japan
| | - Tadao Oikawa
- Department of Life Science and Technology, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Suita, Japan.,Graduate School of Science and Engineering, Kansai University, Suita, Japan
| |
Collapse
|
2
|
Adachi M, Shimizu R, Kato S, Oikawa T. The first identification and characterization of a histidine-specific amino acid racemase, histidine racemase from a lactic acid bacterium, Leuconostoc mesenteroides subsp. sake NBRC 102480. Amino Acids 2018; 51:331-343. [PMID: 30377839 DOI: 10.1007/s00726-018-2671-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
We expressed a histidine racemase from Leuconostoc mesenteroides subsp. sake NBRC 102480 (Lm-HisR) successively in a soluble fraction of Escherichia coli BL21 (DE3) and then highly purified it from the cell-free extract. Lm-HisR showed amino acid racemase activity on histidine specifically. This is the first example of an amino acid racemase specifically acting on histidine. Phylogenetic analysis of Lm-HisR showed that Lm-HisR was located far from the cluster of alanine racemases reported thus far and only in lactic acid bacteria of the genus Leuconostoc. Alignment of the primary structure of Lm-HisR with those of lysine and alanine racemases and alanine racemase homologs previously reported revealed that the PLP-binding lysine and catalytic tyrosine were completely conserved, and some residues that are unique to the phylogenetic branch of Lm-HisR, Phe44, Ser45, Thr174, Thr206, His286, Ser287, Phe292, Gly312, Val357, and Ala358 were identified. We determined the crystal structure of Lm-HisR complexed with PLP at a 2.1-Å resolution. The crystal structure contained four molecules (two dimers) in the asymmetric unit. When comparing the 3D structure of Lm-HisR with those of racemases from Geobacillus stearothermophilus and Oenococcus oeni, Met315 was completely conserved, but Val357 was not. In addition, two significant differences were observed between Lm-HisR and G. stearothermophilus alanine racemase. Phe44 and His286 in Lm-HisR corresponded to Tyr43 and Tyr284 in G. stearothermophilus alanine racemase, respectively. Based on the structural analysis, comparison with alanine racemase, and docking simulation, three significant residues, Phe44, His286, and Val357, were identified that may control the substrate specificity of Lm-HisR.
Collapse
Affiliation(s)
- Motoyasu Adachi
- Tokai Quantum Beam Science Center, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Rumi Shimizu
- Tokai Quantum Beam Science Center, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 2-4 Shirakata, Tokai, Ibaraki, 319-1106, Japan
| | - Shiro Kato
- Kansai University High Technology Research Center, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Tadao Oikawa
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan.
- Kansai University High Technology Research Center, 3-3-35 Yamate-Cho, Suita, Osaka, 564-8680, Japan.
| |
Collapse
|
3
|
Kato S, Oikawa T. A Novel Bifunctional Amino Acid Racemase With Multiple Substrate Specificity, MalY From Lactobacillus sakei LT-13: Genome-Based Identification and Enzymological Characterization. Front Microbiol 2018; 9:403. [PMID: 29563907 PMCID: PMC5845896 DOI: 10.3389/fmicb.2018.00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/21/2018] [Indexed: 01/19/2023] Open
Abstract
The Lactobacillus sakei strain LK-145 isolated from Moto, a starter of sake, produces potentially large amounts of three D-amino acids, D-Ala, D-Glu, and D-Asp, in a medium containing amylase-digested rice as a carbon source. The comparison of metabolic pathways deduced from the complete genome sequence of strain LK-145 to the type culture strain of Lactobacillus sakei strain LT-13 showed that the L- and D-amino acid metabolic pathways are similar between the two strains. However, a marked difference was observed in the putative cysteine/methionine metabolic pathways of strain LK-145 and LT-13. The cystathionine β-lyase homolog gene malY was annotated only in the genome of strain LT-13. Cystathionine β-lyase is an important enzyme in the cysteine/methionine metabolic pathway that catalyzes the conversion of L-cystathionine into L-homocysteine. In addition to malY, most genome-sequenced strains of L. sakei including LT-13 lacked the homologous genes encoding other putative enzymes in this pathway. Accordingly, the cysteine/methionine metabolic pathway likely does not function well in almost all strains of L. sakei. We succeeded in cloning and expressing the malY gene from strain LT-13 (Ls-malY) in the cells of Escherichia coli BL21 (DE3) and characterized the enzymological properties of Ls-MalY. Spectral analysis of purified Ls-MalY showed that Ls-MalY contained a pyridoxal 5′-phosphate (PLP) as a cofactor, and this observation agreed well with the prediction based on its primary structure. Ls-MalY showed amino acid racemase activity and cystathionine β-lyase activity. Ls-MalY showed amino acid racemase activities in various amino acids, such as Ala, Arg, Asn, Glu, Gln, His, Leu, Lys, Met, Ser, Thr, Trp, and Val. Mutational analysis revealed that the 𝜀-amino group of Lys233 in the primary structure of Ls-MalY likely bound to PLP, and Lys233 was an essential residue for Ls-MalY to catalyze both the amino acid racemase and β-lyase reactions. In addition, Tyr123 was a catalytic residue in the amino acid racemase reaction but strongly affected β-lyase activity. These results showed that Ls-MalY is a novel bifunctional amino acid racemase with multiple substrate specificity; both the amino acid racemase and β-lyase reactions of Ls-MalY were catalyzed at the same active site.
Collapse
Affiliation(s)
- Shiro Kato
- High Technology Research Core, Kansai University, Suita, Japan
| | - Tadao Oikawa
- High Technology Research Core, Kansai University, Suita, Japan.,Department of Life Science and Biotechnology, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Suita, Japan
| |
Collapse
|
4
|
Pal M, Bearne SL. Inhibition of glutamate racemase by substrate-product analogues. Bioorg Med Chem Lett 2014; 24:1432-6. [PMID: 24507924 DOI: 10.1016/j.bmcl.2013.12.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022]
Abstract
D-Glutamate is an essential biosynthetic building block of the peptidoglycans that encapsulate the bacterial cell wall. Glutamate racemase catalyzes the reversible formation of D-glutamate from L-glutamate and, hence, the enzyme is a potential therapeutic target. We show that the novel cyclic substrate-product analogue (R,S)-1-hydroxy-1-oxo-4-amino-4-carboxyphosphorinane is a modest, partial noncompetitive inhibitor of glutamate racemase from Fusobacterium nucleatum (FnGR), a pathogen responsible, in part, for periodontal disease and colorectal cancer (Ki=3.1±0.6 mM, cf. Km=1.41±0.06 mM). The cyclic substrate-product analogue (R,S)-4-amino-4-carboxy-1,1-dioxotetrahydro-thiopyran was a weak inhibitor, giving only ∼30% inhibition at a concentration of 40 mM. The related cyclic substrate-product analogue 1,1-dioxo-tetrahydrothiopyran-4-one was a cooperative mixed-type inhibitor of FnGR (Ki=18.4±1.2 mM), while linear analogues were only weak inhibitors of the enzyme. For glutamate racemase, mimicking the structure of both enantiomeric substrates (substrate-product analogues) serves as a useful design strategy for developing inhibitors. The new cyclic compounds developed in the present study may serve as potential lead compounds for further development.
Collapse
Affiliation(s)
- Mohan Pal
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
5
|
Böhmer N, Dautel A, Eisele T, Fischer L. Recombinant expression, purification and characterisation of the native glutamate racemase from Lactobacillus plantarum NC8. Protein Expr Purif 2013; 88:54-60. [DOI: 10.1016/j.pep.2012.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/21/2012] [Accepted: 11/23/2012] [Indexed: 11/29/2022]
|
6
|
Kinetic characterization and quaternary structure of glutamate racemase from the periodontal anaerobe Fusobacterium nucleatum. Arch Biochem Biophys 2009; 491:16-24. [DOI: 10.1016/j.abb.2009.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 11/17/2022]
|
7
|
Fisher SL. Glutamate racemase as a target for drug discovery. Microb Biotechnol 2008; 1:345-60. [PMID: 21261855 PMCID: PMC3815242 DOI: 10.1111/j.1751-7915.2008.00031.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/11/2008] [Accepted: 02/15/2008] [Indexed: 11/28/2022] Open
Abstract
The bacterial cell wall is a highly cross-linked polymeric structure consisting of repeating peptidoglycan units, each of which contains a novel pentapeptide substitution which is cross-linked through transpeptidation. The incorporation of D-glutamate as the second residue is strictly conserved across the bacterial kingdom. Glutamate racemase, a member of the cofactor-independent, two-thiol-based family of amino acid racemases, has been implicated in the production and maintenance of sufficient d-glutamate pool levels required for growth. The subject of over four decades of research, it is now evident that the enzyme is conserved and essential for growth across the bacterial kingdom and has a conserved overall topology and active site architecture; however, several different mechanisms of regulation have been observed. These traits have recently been targeted in the discovery of both narrow and broad spectrum inhibitors. This review outlines the biological history of this enzyme, the recent biochemical and structural characterization of isozymes from a wide range of species and developments in the identification of inhibitors that target the enzyme as possible therapeutic agents.
Collapse
Affiliation(s)
- Stewart L Fisher
- Infection Discovery, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA.
| |
Collapse
|
8
|
Ashiuchi M, Nishikawa Y, Matsunaga K, Yamamoto M, Shimanouchi K, Misono H. Genetic design of conditional d-glutamate auxotrophy for Bacillus subtilis: Use of a vector-borne poly-γ-glutamate synthetic system. Biochem Biophys Res Commun 2007; 362:646-50. [PMID: 17720142 DOI: 10.1016/j.bbrc.2007.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/03/2007] [Indexed: 11/26/2022]
Abstract
Bacillus subtilis possesses two glutamate racemase isozymes, RacE and YrpC. For the first time, we succeeded in constructing glutamate racemase-gene disruptants of B. subtilis. Phenotypic analysis of their D-glutamate auxotrophy indicated that the RacE-type glutamate racemase is important for ensuring maximum growth rate but dispensable. The YrpC-type glutamate racemase probably operates as an anaplerotic enzyme for RacE, especially under liquid culture conditions. We found novel applicability of RacE-less mutants inheriting only a marginal activity for endogenous D-glutamate supply, viz. the employment for the in vivo identification of D-glutamate-consuming systems. In fact, the genetic induction of a poly-gamma-glutamate synthetic system led a RacE-less mutant to severe growth suppression, which was overcome in the presence of a high concentration of exogenous D-glutamate. The results indicate that a significant amount of D-glutamate is consumed during poly-glutamate biosynthesis. To our knowledge, this is the first report of conditional D-glutamate auxotrophy for B. subtilis.
Collapse
Affiliation(s)
- Makoto Ashiuchi
- Department of Bioresources Science, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | | | | | | | | | | |
Collapse
|
9
|
Kim KH, Bong YJ, Park JK, Shin KJ, Hwang KY, Kim EE. Structural Basis for Glutamate Racemase Inhibition. J Mol Biol 2007; 372:434-43. [PMID: 17658548 DOI: 10.1016/j.jmb.2007.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/19/2007] [Accepted: 05/02/2007] [Indexed: 11/24/2022]
Abstract
D-Glutamic acid is a required biosynthetic building block for peptidoglycan, and the enzyme glutamate racemase (GluR) catalyzes the inter-conversion of D and L-glutamate enantiomers. Therefore, GluR is considered as an attractive target for the design of new antibacterial drugs. Here, we report the crystal structures of GluR from Streptococcus pyogenes in both inhibitor-free and inhibitor-bound forms. The inhibitor free GluR crystallized in two different forms, which diffracted to 2.25 A and 2.5 A resolution, while the inhibitor-bound crystal diffracted to 2.5 A resolution. GluR is composed of two domains of alpha/beta protein that are related by pseudo-2-fold symmetry and the active site is located at the domain interface. The inhibitor, gamma-2-naphthylmethyl-D-glutamate, which was reported earlier as a novel potent competitive inhibitor, makes several hydrogen bonds with protein atoms, and the naphthyl moiety is located in the hydrophobic pocket. The inhibitor binding induces a disorder in one of the loops near the active site. In both crystal forms, GluR exists as a dimer and the interactions seen at the dimer interface are almost identical. This agrees well with the results from gel filtration and dynamic light-scattering studies.
Collapse
Affiliation(s)
- Kook-Han Kim
- Life Sciences Division, Korea Institute of Science and Technology, 39-1 Hawolkok-Dong, Sungbuk-Gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Dodd D, Reese JG, Louer CR, Ballard JD, Spies MA, Blanke SR. Functional comparison of the two Bacillus anthracis glutamate racemases. J Bacteriol 2007; 189:5265-75. [PMID: 17496086 PMCID: PMC1951872 DOI: 10.1128/jb.00352-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 05/01/2007] [Indexed: 11/20/2022] Open
Abstract
Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because L-glutamate stereoisomerization to D-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and racE2. To evaluate whether racE1 and racE2 encode functional glutamate racemases, we cloned and expressed racE1 and racE2 in Escherichia coli. Size exclusion chromatography of the two purified recombinant proteins suggested differences in their quaternary structures, as RacE1 eluted primarily as a monomer, while RacE2 demonstrated characteristics of a higher-order species. Analysis of purified recombinant RacE1 and RacE2 revealed that the two proteins catalyze the reversible stereoisomerization of L-glutamate and D-glutamate with similar, but not identical, steady-state kinetic properties. Analysis of the pH dependence of L-glutamate stereoisomerization suggested that RacE1 and RacE2 both possess two titratable active site residues important for catalysis. Moreover, directed mutagenesis of predicted active site residues resulted in complete attenuation of the enzymatic activities of both RacE1 and RacE2. Homology modeling of RacE1 and RacE2 revealed potential differences within the active site pocket that might affect the design of inhibitory pharmacophores. These results suggest that racE1 and racE2 encode functional glutamate racemases with similar, but not identical, active site features.
Collapse
Affiliation(s)
- Dylan Dodd
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
11
|
Ruzheinikov SN, Taal MA, Sedelnikova SE, Baker PJ, Rice DW. Substrate-Induced Conformational Changes in Bacillus subtilis Glutamate Racemase and Their Implications for Drug Discovery. Structure 2005; 13:1707-13. [PMID: 16271894 DOI: 10.1016/j.str.2005.07.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 07/28/2005] [Accepted: 07/29/2005] [Indexed: 11/18/2022]
Abstract
D-glutamate is an essential building block of the peptidoglycan layer in bacterial cell walls and can be synthesized from L-glutamate by glutamate racemase (RacE). The structure of a complex of B. subtilis RacE with D-glutamate reveals that the glutamate is buried in a deep pocket, whose formation at the interface of the enzyme's two domains involves a large-scale conformational rearrangement. These domains are related by pseudo-2-fold symmetry, which superimposes the two catalytic cysteine residues, which are located at equivalent positions on either side of the alpha carbon of the substrate. The structural similarity of these two domains suggests that the racemase activity of RacE arose as a result of gene duplication. The structure of the complex is dramatically different from that proposed previously and provides new insights into the RacE mechanism and an explanation for the potency of a family of RacE inhibitors, which have been developed as novel antibiotics.
Collapse
Affiliation(s)
- Sergey N Ruzheinikov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Watanabe A, Yamaguchi S, Urabe K, Asada Y. Occurrence of a unique amino acid racemase in a basidiomycetous mushroom, Lentinus edodes. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00102-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Ashiuchi M, Kuwana E, Yamamoto T, Komatsu K, Soda K, Misono H. Glutamate racemase is an endogenous DNA gyrase inhibitor. J Biol Chem 2002; 277:39070-3. [PMID: 12213801 DOI: 10.1074/jbc.c200253200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Almost all bacteria possess glutamate racemase to synthesize d-glutamate as an essential component of peptidoglycans in the cell walls. The enforced production of glutamate racemase, however, resulted in suppression of cell proliferation. In the Escherichia coli JM109/pGR3 clone, the overproducer of glutamate racemase, the copy number (i.e. replication efficiency) of plasmid DNA declined dramatically, whereas the E. coli WM335 mutant that is defective in the gene of glutamate racemase showed little genetic competency. The comparatively low and high activities for DNA supercoiling were contained in the E. coli JM109/pGR3 and WM335 cells, respectively. Furthermore, we found that the DNA gyrase of E. coli was modulated by the glutamate racemase of E. coli in the presence of UDP-N-acetylmuramyl-l-alanine, which is a peptidoglycan precursor and functions as an absolute activator for the racemase. This is the first finding of the enzyme protein participating in both d-amino acid metabolism and DNA processing.
Collapse
Affiliation(s)
- Makoto Ashiuchi
- Department of Bioresources Science, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Application of a thermostable glutamate racemase from Bacillus sp. SK-1 for the production of d-phenylalanine in a multi-enzyme system. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1381-1177(02)00011-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Kohda J, Endo Y, Okumura N, Kurokawa Y, Nishihara K, Yanagi H, Yura T, Fukuda H, Kondo A. Improvement of productivity of active form of glutamate racemase in Escherichia coli by coexpression of folding accessory proteins. Biochem Eng J 2002. [DOI: 10.1016/s1369-703x(01)00154-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Kim WC, Rhee HI, Park BK, Suk KH, Cha SH. Isolation of peptide ligands that inhibit glutamate racemase activity from a random phage display library. JOURNAL OF BIOMOLECULAR SCREENING 2000; 5:435-40. [PMID: 11598461 DOI: 10.1177/108705710000500606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several new antibacterial agents are currently being developed in response to the emergence of bacterial resistance to existing antibiotic substances. The new agents include compounds that interfere with bacterial membrane function. The peptidoglycan component of the bacterial cell wall is synthesized by glutamate racemase, and this enzyme is responsible for the biosynthesis of d-glutamate, which is an essential component of cell wall peptidoglycan. In this study, we screened a phage display library expressing random dodecapeptides on the surface of bacteriophage against an Escherichia coli glutamate racemase, and isolated specific peptide sequences that bind to the enzyme. Twenty-seven positive phage clones were analyzed, and seven different peptide sequences were obtained. Among them, the peptide sequence His-Pro-Trp-His-Lys-Lys-His-Pro-Asp-Arg-Lys-Thr was found most frequently, suggesting that this peptide might have the highest affinity to glutamate racemase. The positive phage clones and HPWHKKHPDRKT synthetic peptide were able to inhibit glutamate racemase activity in vitro, implying that our peptide inhibitors may be utilized for the molecular design of new potential antibacterial agents targeting cell wall synthesis.
Collapse
Affiliation(s)
- W C Kim
- Division of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chunchon 200-701, South Korea
| | | | | | | | | |
Collapse
|
17
|
Doublet P, van Heijenoort J, Mengin-Lecreulx D. Regulation of the glutamate racemase of Escherichia coli investigated by site-directed mutagenesis. Microb Drug Resist 2000; 2:43-9. [PMID: 9158721 DOI: 10.1089/mdr.1996.2.43] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The biosynthesis of D-glutamic acid, one of the essential components of bacterial cell-wall peptidoglycan, is catalyzed by a glutamate racemase in Escherichia coli. While the other reported glutamate racemases from various (essentially gram-positive) bacterial species did not require any specific activator, the E. coli enzyme absolutely requires the presence of the peptidoglycan precursor UDP-N-acetylmuramyl-L-alanine to catalyze the interconversion of glutamic acid isomers. A comparison of the amino acid sequences of these different enzymes was made to identify amino acid residues from the E. coli enzyme that are involved in the catalysis or binding to the activator. Site-directed mutagenesis experiments are described that demonstrate the participation of cysteines 96 and 208 in the two-base reaction mechanism of the enzyme. The construction of N- or C-terminal-truncated enzymes is also described. The attractive hypothesis that the characteristic N-terminal amino acid extension (20 residues) of the E. coli enzyme could be involved in its activation by the nucleotide precursor is disproved by these experiments.
Collapse
Affiliation(s)
- P Doublet
- Laboratoire des Enveloppes Bactériennes et Peptides, URA 1131 CNRS, Université Paris-sud, Orsay, France
| | | | | |
Collapse
|
18
|
Bae HS, Lee SG, Hong SP, Kwak MS, Esaki N, Soda K, Sung MH. Production of aromatic d-amino acids from α-keto acids and ammonia by coupling of four enzyme reactions. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1381-1177(98)00073-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
20
|
Liu L, Yoshimura T, Endo K, Kishimoto K, Fuchikami Y, Manning JM, Esaki N, Soda K. Compensation for D-glutamate auxotrophy of Escherichia coli WM335 by D-amino acid aminotransferase gene and regulation of murI expression. Biosci Biotechnol Biochem 1998; 62:193-5. [PMID: 9501533 DOI: 10.1271/bbb.62.193] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
D-glutamate, an indispensable component of peptidoglycans of bacteria, is provided by glutamate racemase in E. coli cells. Compensation for D-glutamate auxotrophy of E. coli WM335 cells lacking the glutamate racemase gene, murI, with the D-amino acid aminotransferase gene suggests that presence of a threshold concentration for the D-glutamate required by E. coli cells, as well as a regulation system for murI expression.
Collapse
Affiliation(s)
- L Liu
- Institute for Chemical Research, Kyoto University, Kyoto-fu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Yohda M, Endo I, Abe Y, Ohta T, Iida T, Maruyama T, Kagawa Y. Gene for aspartate racemase from the sulfur-dependent hyperthermophilic archaeum, Desulfurococcus strain SY. J Biol Chem 1996; 271:22017-21. [PMID: 8703007 DOI: 10.1074/jbc.271.36.22017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Amino acid racemases are ubiquitous throughout eubacteria. However, no amino acid racemases have yet been found in eukaryotes and archaea. We cloned a gene highly homologous to that for the aspartate racemase from the sulfur-dependent hyperthermophilic archaeum, Desulfurococcus strain SY. The product of the gene showed 35.2% amino acid sequence identity with the aspartate racemase of Streptococcus thermophilus IAM10064, and was also homologous to glutamate racemases around the putative catalytic cysteine residues. The encoded protein was expressed in Escherichia coli. The recombinant protein had amino acid racemizing activity, which was highly specific for aspartate and increased with temperature from 37 degrees C to 90 degrees C. Therefore, this was identified as the first hyperthermophilic archaeal amino acid racemase. A little aspartate racemizing activity was also detected in the crude extract of Desulfurococcus strain SY. The function of this aspartate racemase might be the uptake of -aspartate formed at high temperature or the production of -aspartate as a cell component. The fact that the amino acid racemases are distributed among both eubacteria and archaea suggests that endogenous -amino acids in mammals are also synthesized by amino acid racemases.
Collapse
Affiliation(s)
- M Yohda
- Biochemical Systems Laboratory, The Institute of Physical and Chemical Research, Wako, Saitama 351-01
| | | | | | | | | | | | | |
Collapse
|
23
|
Pucci MJ, Thanassi JA, Ho HT, Falk PJ, Dougherty TJ. Staphylococcus haemolyticus contains two D-glutamic acid biosynthetic activities, a glutamate racemase and a D-amino acid transaminase. J Bacteriol 1995; 177:336-42. [PMID: 7814322 PMCID: PMC176596 DOI: 10.1128/jb.177.2.336-342.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two D-glutamic acid biosynthetic activities, glutamate racemase and D-amino acid transaminase, have been described previously for bacteria. To date, no bacterial species has been reported to possess both activities. Genetic complementation studies using Escherichia coli WM335, a D-glutamic acid auxotroph, and cloned chromosomal DNA fragments from Staphylococcus haemolyticus revealed two distinct DNA fragments containing open reading frames which, when present, allowed growth on medium without exogenous D-glutamic acid. Amino acid sequences of the two open reading frames derived from the DNA nucleotide sequences indicated extensive identity with the amino acid sequence of Pediococcus pentosaceous glutamate racemase in one case and with that of the D-amino acid transaminase of Bacillus spp. in the second case. Enzymatic assays of lysates of E. coli WM335 strains containing either the cloned staphylococcal racemase or transminase verified the identities of these activities. Subsequent DNA hybridization experiments indicated that Staphylococcus aureus, in addition to S. haemolyticus, contained homologous chromosomal DNA for each of these genes. These data suggest that S. haemolyticus, and probably S. aureus, contains genes for two D-glutamic acid biosynthetic activities, a glutamate racemase (dga gene) and a D-amino acid transaminase (dat gene).
Collapse
Affiliation(s)
- M J Pucci
- Department of Microbiology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492-7660
| | | | | | | | | |
Collapse
|