1
|
Origin of the apical transcytic membrane system in jejunal absorptive cells of neonates. Med Mol Morphol 2011; 44:71-8. [PMID: 21717309 DOI: 10.1007/s00795-010-0506-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 03/12/2010] [Indexed: 01/15/2023]
Abstract
We investigated the origin of the apical transcytic membrane system in jejunal absorptive cells of neonatal rats using light, electron, and immunofluorescence microscopy. In rats just after birth, intraluminally injected horseradish peroxidase (HRP), used as a macromolecular tracer, was observed only in the apical endocytic membrane system including the lysosomes, of jejunal absorptive cells in vivo. No tracer, however, was found in the intercellular space between the jejunal absorptive cells and the submucosa. Immunoreactive neonatal Fc receptor (FcRn) was localized in the perinuclear region of these absorptive cells whereas immunoglobulin G (IgG) was not found in these absorptive cells. In contrast, in rats 2 h after breast-feeding, intraluminally injected HRP was observed in the apical endocytic membrane system and in the apical transcytic membrane system of the absorptive cells. Moreover, HRP was found in the intercellular space between the jejunal absorptive cells and the submucosa. Furthermore, FcRn and IgG were widely distributed throughout the absorptive cells, and IgG was detected in both the intercellular space and the submucosa. These data suggest that initiation of breast-feeding induces the transportation of membrane-incorporated FcRn from its perinuclear localization to the apical plasma membrane domain. This transportation is achieved through the membrane system, which mediates apical receptor-mediated transcytosis via the trans-Golgi network. Subsequently, the apical plasma membrane containing the FcRn binds to maternal IgG, is endocytosed into the absorptive cells, and is transported to the basolateral membrane domain.
Collapse
|
2
|
Rondanino C, Rojas R, Ruiz WG, Wang E, Hughey RP, Dunn KW, Apodaca G. RhoB-dependent modulation of postendocytic traffic in polarized Madin-Darby canine kidney cells. Traffic 2007; 8:932-49. [PMID: 17547697 DOI: 10.1111/j.1600-0854.2007.00575.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The Rho family of GTPases is implicated in the control of endocytic and biosynthetic traffic of many cell types; however, the cellular distribution of RhoB remains controversial and its function is not well understood. Using confocal microscopy, we found that endogenous RhoB and green fluorescent protein-tagged wild-type RhoB were localized to early endosomes, and to a much lesser extent to recycling endosomes, late endosomes or Golgi complex of fixed or live polarized Madin-Darby canine kidney cells. Consistent with RhoB localization to early endosomes, we observed that expression of dominant-negative RhoBN19 or dominant-active RhoBV14 altered postendocytic traffic of ligand-receptor complexes that undergo recycling, degradation or transcytosis. In vitro assays established that RhoB modulated the basolateral-to-apical transcytotic pathway by regulating cargo exit from basolateral early endosomes. Our results indicate that RhoB is localized, in part, to early endosomes where it regulates receptor egress through the early endocytic system.
Collapse
Affiliation(s)
- Christine Rondanino
- Laboratory of Epithelial Biology, Renal-Electrolyte Division of the Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Na IK, Keilholz U, Letsch A, Bauer S, Asemissen AM, Nagorsen D, Thiel E, Scheibenbogen C. Addition of GM-CSF to a peptide/KLH vaccine results in increased frequencies of CXCR3-expressing KLH-specific T cells. Cancer Immunol Immunother 2007; 56:391-6. [PMID: 16850346 PMCID: PMC11031059 DOI: 10.1007/s00262-006-0198-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 06/09/2006] [Indexed: 10/24/2022]
Abstract
T-cell trafficking is determined by expression patterns of chemokine receptors. The chemokine receptor CXCR3 is expressed on a subpopulation of type 1 T cells and plays an important role for migration of T cells into inflamed and tumor tissues. Here, we studied the chemokine receptor expression on specific T cells generated against the neoantigen keyhole limpet hemocyanin (KLH) in patients who had been immunized in the context of a tumor peptide vaccination trial with or without the adjuvant granulocyte-macrophage colony-stimulating factor (GM-CSF). In patients immunized in the presence of GM-CSF the fraction of CXCR3(+) KLH-specific T cells was significantly higher than in patients immunized in the absence of GM-CSF (median 45 vs. 20%, P = 0.001). In contrast, the chemokine receptor CCR4, associated with migration to the skin was found in both cohorts on less than 10% of KLH-specific T cells. These results show that CXCR3 expression on vaccine-induced T cells can be modulated by modifying the local vaccine milieu.
Collapse
Affiliation(s)
- Il-Kang Na
- Department of Hematology, Oncology and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Ulrich Keilholz
- Department of Hematology, Oncology and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Anne Letsch
- Department of Hematology, Oncology and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Sandra Bauer
- Department of Hematology, Oncology and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Anne Marie Asemissen
- Department of Hematology, Oncology and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Dirk Nagorsen
- Department of Hematology, Oncology and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Eckhard Thiel
- Department of Hematology, Oncology and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Carmen Scheibenbogen
- Department of Hematology, Oncology and Transfusion Medicine, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| |
Collapse
|
4
|
Morimoto T, Liu W, Woda C, Carattino MD, Wei Y, Hughey RP, Apodaca G, Satlin LM, Kleyman TR. Mechanism underlying flow stimulation of sodium absorption in the mammalian collecting duct. Am J Physiol Renal Physiol 2006; 291:F663-9. [PMID: 16638910 DOI: 10.1152/ajprenal.00514.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vectorial Na(+) absorption across the aldosterone-sensitive distal nephron plays a key role in the regulation of extracellular fluid volume and blood pressure. Within this nephron segment, Na(+) diffuses from the urinary fluid into principal cells through an apical, amiloride-sensitive, epithelial Na(+) channel (ENaC), which is considered to be the rate-limiting step for Na(+) absorption. We have reported that increases in tubular flow rate in microperfused rabbit cortical collecting ducts (CCDs) lead to increases in net Na(+) absorption and that increases in laminar shear stress activate ENaC expressed in oocytes by increasing channel open probability. We therefore examined whether flow stimulates net Na(+) absorption (J(Na)) in CCDs by increasing channel open probability or by increasing the number of channels at the apical membrane. Both baseline and flow-stimulated J(Na) in CCDs were mediated by ENaC, as J(Na) was inhibited by benzamil. Flow-dependent increases in J(Na) were observed following treatment of tubules with reagents that altered membrane trafficking by disrupting microtubules (colchicine) or Golgi (brefeldin A). Furthermore, reducing luminal Ca(2+) concentration ([Ca(2+)]) or chelating intracellular [Ca(2+)] with BAPTA did not prevent the flow-dependent increase in J(Na). Extracellular trypsin has been shown to activate ENaC by increasing channel open probability, and we observed that trypsin significantly enhanced J(Na) when tubules were perfused at a slow flow rate. However, trypsin did not further enhance J(Na) in CCDs perfused at fast flow rates. Similarly, the shear-induced increase in benzamil-sensitive J(Na) in oocytes expressing protease resistance ENaC mutants was similar to that of controls. Our results suggest the rise in J(Na) accompanying increases in luminal flow rates reflects an increase in channel open probability.
Collapse
Affiliation(s)
- Tetsuji Morimoto
- Division of Pediatric Nephrology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Hyman T, Shmuel M, Altschuler Y. Actin is required for endocytosis at the apical surface of Madin-Darby canine kidney cells where ARF6 and clathrin regulate the actin cytoskeleton. Mol Biol Cell 2005; 17:427-37. [PMID: 16251360 PMCID: PMC1345679 DOI: 10.1091/mbc.e05-05-0420] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In epithelial cell lines, apical but not basolateral clathrin-mediated endocytosis has been shown to be affected by actin-disrupting drugs. Using electron and fluorescence microscopy, as well as biochemical assays, we show that the amount of actin dedicated to endocytosis is limiting at the apical surface of epithelia. In part, this contributes to the low basal rate of clathrin-dependent endocytosis observed at this epithelial surface. ARF6 in its GTP-bound state triggers the recruitment of actin from the cell cortex to the clathrin-coated pit to enable dynamin-dependent endocytosis. In addition, we show that perturbation of the apical endocytic system by expression of a clathrin heavy-chain mutant results in the collapse of microvilli. This phenotype was completely reversed by the expression of an ARF6-GTP-locked mutant. These observations indicate that concomitant to actin recruitment, the apical clathrin endocytic system is deeply involved in the morphology of the apical plasma membrane.
Collapse
Affiliation(s)
- Tehila Hyman
- Department of Pharmacology School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem-Ein Kerem Campus, Jerusalem 91120, Israel
| | | | | |
Collapse
|
6
|
Widera A, Norouziyan F, Shen WC. Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv Drug Deliv Rev 2003; 55:1439-66. [PMID: 14597140 DOI: 10.1016/j.addr.2003.07.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transferrin receptor has been an important protein for many of the advances made in understanding the intricacies of the intramolecular sorting pathways of endocytosed molecules. The unique internalization and recycling functions of transferrin receptor have also made it an attractive choice for drug targeting and delivery of large protein-based therapeutics and toxins. Recent advances in elucidating the role of the intracellular controllers of transferrin recycling and sorting, such as Rab proteins and their effectors, have led to enhancement of transferrin receptor as a drug delivery vehicle. This review focuses on the use of transferrin receptor as an agent for facilitating drug delivery and targeting, and the role that mechanisms of transferrin receptor sorting and transcytosis play in these events.
Collapse
Affiliation(s)
- A Widera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, PSC 404B, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
7
|
Abstract
ARF GTPases act at multiple steps of the secretory and vacuolar/lysosomal trafficking pathways, but little is known about the spatial regulation of ARF activation. In this issue of Cell, Geldner et al. demonstrate that the Arabidopsis ARF activator GNOM localizes to endosomes where it controls the polarized trafficking of the auxin efflux carrier PIN1 to the basal plasma membrane.
Collapse
Affiliation(s)
- Juan S Bonifacino
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
8
|
Rojas R, Ruiz WG, Leung SM, Jou TS, Apodaca G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin-Darby canine kidney cells. Mol Biol Cell 2001; 12:2257-74. [PMID: 11514615 PMCID: PMC58593 DOI: 10.1091/mbc.12.8.2257] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.
Collapse
Affiliation(s)
- R Rojas
- Renal-Electrolyte Division of the Department of Medicine, Laboratory of Epithelial Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
9
|
Sun AQ, Swaby I, Xu S, Suchy FJ. Cell-specific basolateral membrane sorting of the human liver Na(+)-dependent bile acid cotransporter. Am J Physiol Gastrointest Liver Physiol 2001; 280:G1305-13. [PMID: 11352825 DOI: 10.1152/ajpgi.2001.280.6.g1305] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human Na(+)-taurocholate cotransporting polypeptide (Ntcp) is located exclusively on the basolateral membrane of hepatocyte, but the mechanisms underlying its membrane sorting domain have not been fully elucidated. In the present study, a green fluorescent protein-fused human NTCP (NTCP-GFP) was constructed using the polymerase chain reaction and was stably transfected into Madin-Darby canine kidney (MDCK) and Caco-2 cells. Taurocholate uptake studies and confocal microscopy demonstrated that the polarity of basolateral surface expression of NTCP-GFP was maintained in MDCK cells but was lost in Caco-2 cells. Nocodazole (33 microM), an agent that causes microtubular depolymerization, partially disrupted the basolateral localization of NTCP-GFP by increasing apical surface expression to 33.5% compared with untreated cells (P < 0.05). Brefeldin A (BFA; 1-2 microM) disrupted the polarized basolateral localization of NTCP, but monensin (1.4 microM) had no affect on NTCP-GFP localization. In addition, low-temperature shift (20 degrees C) did not affect the polarized basolateral surface sorting of NTCP-GFP and repolarization of this protein after BFA interruption. In summary, these data suggest that the polarized basolateral localization of human NTCP is cell specific and is mediated by a novel sorting pathway that is BFA sensitive and monensin and low-temperature shift insensitive. The process may also involve microtubule motors.
Collapse
Affiliation(s)
- A Q Sun
- Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
10
|
Jackson CL. Brefeldin A revealing the fundamental principles governing membrane dynamics and protein transport. Subcell Biochem 2000; 34:233-72. [PMID: 10808335 DOI: 10.1007/0-306-46824-7_6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- C L Jackson
- Department of Cellular and Molecular Biology, SBGM, Gif-sur-Yvette, France
| |
Collapse
|
11
|
Orzech E, Cohen S, Weiss A, Aroeti B. Interactions between the exocytic and endocytic pathways in polarized Madin-Darby canine kidney cells. J Biol Chem 2000; 275:15207-19. [PMID: 10809756 DOI: 10.1074/jbc.275.20.15207] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The compartments involved in polarized exocytosis of membrane proteins are not well defined. In this study we hypothesized that newly synthesized polymeric immunoglobulin receptors are targeted from the trans-Golgi network to endosomes prior to their appearance on the basolateral cell surface of polarized Madin-Darby canine kidney cells. To examine this hypothesis, we have used an assay designed to measure the meeting of newly synthesized receptors with a selective population of apical or basolateral endosomes loaded with horseradish peroxidase. We found that in the course of basolateral exocytosis, the wild-type polymeric immunoglobulin receptor is targeted from the trans-Golgi network to apical and basolateral endosomes. Phosphorylation of a Ser residue in the cytoplasmic tail of the receptor is implicated in this process. The biosynthetic pathway of apically sorted polymeric immunoglobulin receptor mutants similarly traversed apical endosomes, raising the possibility that apical receptors are segregated from basolateral receptors in apical endosomes. The post-endocytic pathway of transcytosing and recycling receptors also passed through apical endosomes. Together, these observations are consistent with the possibility that the biosynthetic and endocytic routes merge into endosomes and justify a model suggesting that endosomal recycling processes govern polarized trafficking of proteins traveling in both pathways.
Collapse
Affiliation(s)
- E Orzech
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
12
|
Jou TS, Leung SM, Fung LM, Ruiz WG, Nelson WJ, Apodaca G. Selective alterations in biosynthetic and endocytic protein traffic in Madin-Darby canine kidney epithelial cells expressing mutants of the small GTPase Rac1. Mol Biol Cell 2000; 11:287-304. [PMID: 10637309 PMCID: PMC14775 DOI: 10.1091/mbc.11.1.287] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Madin-Darby canine kidney (MDCK) cells expressing constitutively active Rac1 (Rac1V12) accumulate a large central aggregate of membranes beneath the apical membrane that contains filamentous actin, Rac1V12, rab11, and the resident apical membrane protein GP-135. To examine the roles of Rac1 in membrane traffic and the formation of this aggregate, we analyzed endocytic and biosynthetic trafficking pathways in MDCK cells expressing Rac1V12 and dominant inactive Rac1 (Rac1N17). Rac1V12 expression decreased the rates of apical and basolateral endocytosis, whereas Rac1N17 expression increased those rates from both membrane domains. Basolateral-to-apical transcytosis of immunoglobulin A (IgA) (a ligand for the polymeric immunoglobulin receptor [pIgR]), apical recycling of pIgR-IgA, and accumulation of newly synthesized GP-135 at the apical plasma membrane were all decreased in cells expressing Rac1V12. These effects of Rac1V12 on trafficking pathways to the apical membrane were the result of the delivery and trapping of these proteins in the central aggregate. In contrast to abnormalities in apical trafficking events, basolateral recycling of transferrin, degradation of EGF internalized from the basolateral membrane, and delivery of newly synthesized pIgR from the Golgi to the basolateral membrane were all relatively unaffected by Rac1V12 expression. Rac1N17 expression had little or no effect on these postendocytic or biosynthetic trafficking pathways. These results show that in polarized MDCK cells activated Rac1 may regulate the rate of endocytosis from both membrane domains and that expression of dominant active Rac1V12 specifically alters postendocytic and biosynthetic membrane traffic directed to the apical, but not the basolateral, membrane.
Collapse
Affiliation(s)
- T S Jou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5345, USA
| | | | | | | | | | | |
Collapse
|
13
|
Altschuler Y, Liu S, Katz L, Tang K, Hardy S, Brodsky F, Apodaca G, Mostov K. ADP-ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J Cell Biol 1999; 147:7-12. [PMID: 10508850 PMCID: PMC2164974 DOI: 10.1083/jcb.147.1.7] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1998] [Accepted: 08/25/1999] [Indexed: 01/12/2023] Open
Abstract
We report that the small GTPase, ADP-ribosylation factor 6 (ARF6), is present only on the apical surface of polarized MDCK epithelial cells. Overexpression of a mutant of ARF6, ARF6-Q67L, which is predicted to be in the GTP-bound form, stimulates endocytosis exclusively at this surface. Surprisingly, overexpression of the mutant ARF6-T27N, which is predicted to be in the GDP-bound form, also stimulated apical endocytosis, though to a lesser extent. ARF6-stimulated endocytosis is inhibited by a dominant-negative form of dynamin, or a dominant-negative hub fragment of clathrin heavy chain, indicating that it is mediated by clathrin. Correspondingly, overexpression of either mutant of ARF6 leads to an increase in the number of clathrin-coated pits at the apical plasma membrane. When ARF6-Q67L is overexpressed in the presence of the dominant-negative dynamin, the ARF6-Q67L colocalizes with clathrin and with IgA bound to its receptor. We conclude that ARF6 is an important modulator of clathrin-mediated endocytosis at the apical surface of epithelial cells.
Collapse
Affiliation(s)
- Y Altschuler
- Department of Anatomy, University of California, San Francisco, California 94143-0452, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Orzech E, Schlessinger K, Weiss A, Okamoto CT, Aroeti B. Interactions of the AP-1 Golgi adaptor with the polymeric immunoglobulin receptor and their possible role in mediating brefeldin A-sensitive basolateral targeting from the trans-Golgi network. J Biol Chem 1999; 274:2201-15. [PMID: 9890983 DOI: 10.1074/jbc.274.4.2201] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We provide morphological, biochemical, and functional evidence suggesting that the AP-1 clathrin adaptor complex of the trans-Golgi network interacts with the polymeric immunoglobulin receptor in transfected Madin-Darby canine kidney cells. Our results indicate that immunofluorescently labeled gamma-adaptin subunit of the adaptor complex and the polymeric immunoglobulin receptor partially co-localize in polarized and semi-polarized cells. gamma-Adaptin is co-immunoisolated with membranes expressing the wild-type receptor. The entire AP-1 adaptor complex could be chemically cross-linked to the receptor in filter-grown cells. gamma-Adaptin could be co-immunoprecipitated with the wild-type receptor, with reduced efficiency with receptor mutant whose basolateral sorting motif has been deleted, and not with receptor lacking its cytoplasmic tail. Co-immunoprecipitation of gamma-adaptin was inhibited by brefeldin A. Mutation of cytoplasmic serine 726 inhibited receptor interactions with AP-1 but did not abrogate the fidelity of its basolateral targeting from the trans-Golgi network. However, the kinetics of receptor delivery to the basolateral cell surface were slowed by the mutation. Although surface delivery of the wild-type receptor was inhibited by brefeldin A, the delivery of the mutant receptor was insensitive to the drug. Our results are consistent with a working model in which phosphorylated cytoplasmic serine modulates the recruitment of the polymeric immunoglobulin receptor into AP-1/clathrin-coated areas in the trans-Golgi network. This process may regulate the efficiency of receptor targeting from the trans-Golgi network.
Collapse
Affiliation(s)
- E Orzech
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
15
|
Aroeti B, Okhrimenko H, Reich V, Orzech E. Polarized trafficking of plasma membrane proteins: emerging roles for coats, SNAREs, GTPases and their link to the cytoskeleton. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:57-90. [PMID: 9666078 DOI: 10.1016/s0304-4157(98)00005-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- B Aroeti
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | |
Collapse
|
16
|
Low SH, Chapin SJ, Wimmer C, Whiteheart SW, Kömüves LG, Mostov KE, Weimbs T. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J Cell Biol 1998; 141:1503-13. [PMID: 9647644 PMCID: PMC2133007 DOI: 10.1083/jcb.141.7.1503] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/1998] [Revised: 05/26/1998] [Indexed: 02/08/2023] Open
Abstract
We have investigated the controversial involvement of components of the SNARE (soluble N-ethyl maleimide-sensitive factor [NSF] attachment protein [SNAP] receptor) machinery in membrane traffic to the apical plasma membrane of polarized epithelial (MDCK) cells. Overexpression of syntaxin 3, but not of syntaxins 2 or 4, caused an inhibition of TGN to apical transport and apical recycling, and leads to an accumulation of small vesicles underneath the apical plasma membrane. All other tested transport steps were unaffected by syntaxin 3 overexpression. Botulinum neurotoxin E, which cleaves SNAP-23, and antibodies against alpha-SNAP inhibit both TGN to apical and basolateral transport in a reconstituted in vitro system. In contrast, we find no evidence for an involvement of N-ethyl maleimide-sensitive factor in TGN to apical transport, whereas basolateral transport is NSF-dependent. We conclude that syntaxin 3, SNAP-23, and alpha-SNAP are involved in apical membrane fusion. These results demonstrate that vesicle fusion with the apical plasma membrane does not use a mechanism that is entirely unrelated to other cellular membrane fusion events, but uses isoforms of components of the SNARE machinery, which suggests that they play a role in providing specificity to polarized membrane traffic.
Collapse
Affiliation(s)
- S H Low
- Department of Anatomy, Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, California 94143-0452, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Bose S, Chapin SJ, Seetharam S, Feix J, Mostov KE, Seetharam B. Brefeldin A (BFA) inhibits basolateral membrane (BLM) delivery and dimerization of transcobalamin II receptor in human intestinal epithelial Caco-2 cells. BFA effects on BLM cholesterol content. J Biol Chem 1998; 273:16163-9. [PMID: 9632671 DOI: 10.1074/jbc.273.26.16163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brefeldin A (BFA) treatment of Caco-2 cells (5 microg/ml for 12 h) reduced by 90% the cholesterol, but not the phospholipid (PL), levels of the basolateral membrane (BLM), thus altering its PL/cholesterol molar ratio from 2.6 to 22.0, and decreasing its steady state fluorescent anisotropy (rs) from 0.27 to 0.15. BFA treatment for 12 h also resulted in complete loss of transcobalamin II receptor (TC II-R) activity/protein levels in the BLM and the disappearance of trans-Golgi network (TGN) morphology as revealed by confocal immunofluorescence microscopy using antibody to TGN 38. However, BFA treatment had no effect on either total cellular cholesterol, TC II-R activity, or PL levels. When cells treated with BFA for 12 h were exposed to BFA-free medium for 0-24 h, all of the effects were reversed, including reappearance of normal TGN morphology. TC II-R delivered to the BLM during this period was progressively sialylated and changed its physical state from a monomer (8 h) to a dimer (12 h), coinciding with increased delivery (11-53 pmol) of cholesterol to the BLM and an increase in the BLM rs from 0.15 to 0.21. These results indicate that cholesterol, but not PL, delivery to the BLM of Caco-2 cells is BFA-sensitive, and cholesterol, by influencing the higher order of the BLM, is essential for TC II-R dimerization.
Collapse
Affiliation(s)
- S Bose
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin and Veterans Affairs Medical Center, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
18
|
Daro E, Sheff D, Gomez M, Kreis T, Mellman I. Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component epsilon-COP. J Cell Biol 1997; 139:1747-59. [PMID: 9412469 PMCID: PMC2132642 DOI: 10.1083/jcb.139.7.1747] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Revised: 10/17/1997] [Indexed: 02/05/2023] Open
Abstract
Recent evidence has suggested that subunits of the coatomer protein (COPI) complexes are functionally associated with endosomes in mammalian cells. We now provide genetic evidence that COPI plays a role in endocytosis in intact cells. The ldlF mutant CHO cell line bears a temperature-sensitive defect in the COPI subunit epsilon-COP. In addition to exhibiting conditional defects in the secretory pathway, we find that the cells are also defective at mediating endosome-associated functions. As found for cells microinjected with anti-COPI antibodies, ldlF cells at the restrictive temperature could not be infected by vesicular stomatitis (VSV) or Semliki Forest virus (SFV) that require delivery to acidic endosomes to penetrate into the cytosol. Although there was no temperature-sensitive defect in the internalization of receptor-bound transferrin (Tfn), Tfn recycling and accumulation of HRP were markedly inhibited at the restrictive temperature. Sorting of receptor-bound markers such as EGF to lysosomes was also reduced, although delivery of fluid-phase markers was only partially inhibited. In addition, lysosomes redistributed from their typical perinuclear location to the tips of the ldlF cells. Mutant phenotypes began to emerge within 2 h of temperature shift, the time required for the loss of detectable epsilon-COP, suggesting that the endocytic defects were not secondary to a block in the secretory pathway. Importantly, the mutant phenotypes were also corrected by transfection of wild-type epsilon-COP cDNA demonstrating that they directly or indirectly reflected the epsilon-COP defect. Taken together, the results suggest that epsilon-COP acts early in the endocytic pathway, most likely inhibiting the normal sorting and recycling functions of early endosomes.
Collapse
Affiliation(s)
- E Daro
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA
| | | | | | | | | |
Collapse
|
19
|
Marzolo MP, Bull P, González A. Apical sorting of hepatitis B surface antigen (HBsAg) is independent of N-glycosylation and glycosylphosphatidylinositol-anchored protein segregation. Proc Natl Acad Sci U S A 1997; 94:1834-9. [PMID: 9050865 PMCID: PMC20003 DOI: 10.1073/pnas.94.5.1834] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used the hepatitis B surface antigen (HBsAg) as a tool to explore mechanisms by which polarized epithelial cells address specific proteins to their apical domain. It recently has been proposed that N-glycans can serve as apical signals recognized by lectin-like sorting receptors in the trans-Golgi network. We found, however, conclusive evidence that the HBsAg follows an apical pathway not mediated by N-glycan signaling. Neither tunicamycin treatment nor replacement of its single glycosylated residue, Asn-146, altered its predominant (>85%) apical secretion from transfected Madin-Darby canine kidney cells (MDCK). Although HBsAg is known to be secreted as a lipoprotein particle, our results suggest that the exocytic machinery involved in its N-glycan-independent pathway overlaps, at least partially, with that of other apically targeted proteins, including the endogenous gp80, as judged by the effects of brefeldin A. We also tested whether its sorting behavior could be ascribed to association with glycosylphosphatidylinositol (GPI)-anchored proteins, which, together with glycosphingolipids, primarily are targeted to the apical domain of MDCK cells. HBsAg was preferentially secreted from the apices of transfected Fisher rat thyroid cells, which, in contrast to MDCK cells, address GPI-proteins and glycosphingolipids to their basal domain. Moreover, complete inhibition of GPI biogenesis by mannosamine treatment did not impair the HBsAg apical secretion, discarding the possibility that HBsAg could be "hitchhiking" with a newly synthesized GPI-protein. Thus, the HBsAg provides a unique model system to search for yet-unknown apical sorting mechanisms that could depend on proteinaceous targeting signals interacting with cognate trans-Golgi network receptors that are at present unidentified.
Collapse
Affiliation(s)
- M P Marzolo
- Departamento de Immunologia Clínica y Reumatología, Facultad de Medicina, Pontifica Universidad Católica de Chile, Santiago
| | | | | |
Collapse
|
20
|
Beau I, Misrahi M, Gross B, Vannier B, Loosfelt H, Hai MT, Pichon C, Milgrom E. Basolateral localization and transcytosis of gonadotropin and thyrotropin receptors expressed in Madin-Darby canine kidney cells. J Biol Chem 1997; 272:5241-8. [PMID: 9030595 DOI: 10.1074/jbc.272.8.5241] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The thyrotropin (TSH) and follicle-stimulating hormone (FSH) receptors are present mainly on the basolateral cell surface in the thyroid gland and in Sertoli cells, whereas in ovarian and in testicular cells, the luteinizing hormone (LH) receptors are distributed throughout the cell surface. When expressed in Madin-Darby canine kidney (MDCK) cells, all three receptors accumulated at the basolateral cell surface showing that they carry the corresponding targeting signals. The receptors were directly delivered to the basolateral surface of the MDCK cells. A minor fraction of the gonadotropin receptors but not of TSH receptors was secondarily targeted to the apical surface through transcytosis. The mechanisms of basolateral targeting and transcytosis were analyzed using the FSH receptor as a model. Both were insensitive to brefeldin A and pertussis toxin. Gs activation by AlF4- and cholera toxin provoked a marked enhancement of FSH receptor transcytosis. The population of Gs proteins involved in this mechanism was different from that involved in signal transduction since neither FSH nor forskolin mimicked the effects of AlF4- and cholera toxin. Gs activation provoked a similar effect on LH receptor distribution in MDCK cells, whereas it did not modify the compartmentalization of the TSH receptor. Hormone-specific transcytosis was observed in MDCK cells expressing the gonadotropin (FSH and LH) receptors and was increased after cholera toxin administration.
Collapse
Affiliation(s)
- I Beau
- Unité de Recherches Hormones et Reproduction, INSERM, Unité 135, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Reich V, Mostov K, Aroeti B. The basolateral sorting signal of the polymeric immunoglobulin receptor contains two functional domains. J Cell Sci 1996; 109 ( Pt 8):2133-9. [PMID: 8856509 DOI: 10.1242/jcs.109.8.2133] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basolateral sorting of the polymeric immunoglobulin receptor (pIgR) expressed in Madin-Darby canine kidney (MDCK) cells is mediated by a 17-residue sorting signal that resides in the cytoplasmic domain. We have recently analyzed the sequence requirements of the signal by alanine scanning mutagenesis. We found that basolateral sorting is mediated primarily by three amino acids: H656, R657 and V660. Individual mutations of each of these residues to Ala caused a substantial decrease in basolateral sorting and a corresponding increase in targeting to the apical surface. Structural analysis of 17-residue peptides corresponding to the signal revealed that V660 is in a beta-turn (probably type I) secondary structure, and its mutation to Ala destabilized the turn. H656 and R657 were not part of the turn and substitution of Arg657 to Ala had no effect on the turn stability. These results suggested that the signal is comprised of two structurally distinct domains: a critical V660 in the context of the beta-turn and an additional two residues (H656 and R657) that are not in the turn and probably are unimportant for its stability. Here we provide evidence suggesting that the two domains are distinguishable not only by their structure but also by their function. Basolateral targeting of pIgR mutants bearing Ala mutations at either 656 or 657 was not affected by treatment with brefeldin A (BFA), while basolateral targeting of pIgR containing an Ala substitution at position 660 was markedly and uniquely stimulated by BFA. Compared to single Ala substitutions, simultaneous mutations of H656 and R657 to Ala caused an additional minor effect on basolateral and apical sorting, whereas double mutations of V660 and either H656 or R657 resulted in a maximal decrease in basolateral targeting and corresponding increase in apical targeting. These results suggest the existence of two domains in the signal. When both domains are destroyed, basolateral targeting is maximally inhibited. The results also imply that V660 mediates basolateral sorting by a different mechanism from H656 and R657. We suggest that V660 and perhaps more generally the beta-turn may interact with BFA-sensitive adaptor complexes.
Collapse
Affiliation(s)
- V Reich
- Department of Cell and Animal Biology, Hebrew University of Jerusalem, Israel
| | | | | |
Collapse
|
22
|
Leppä S, Vleminckx K, Van Roy F, Jalkanen M. Syndecan-1 expression in mammary epithelial tumor cells is E-cadherin-dependent. J Cell Sci 1996; 109 ( Pt 6):1393-403. [PMID: 8799827 DOI: 10.1242/jcs.109.6.1393] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
E-cadherin is a Ca(2+)-dependent cell-cell adhesion molecule, which is mainly expressed in epithelial cells. Recent studies have shown that E-cadherin has an important role as an invasion suppressor molecule in epithelial tumor cells. Syndecan-1 is a cell surface proteoglycan that has been implicated in a number of cellular functions including cell-cell adhesion, cell-matrix anchorage and growth factor presentation for signalling receptors. Its suppression has also been shown to be associated with malignant transformation of epithelial cells. In order to better understand the coordinated regulation of cell-cell and cell-matrix interactions during malignant transformation, we have studied the expression of syndecan-1 in malignant mammary tumor cells genetically manipulated for E-cadherin expression. In invasive NM-e-ras-MAC1 cells, where E-cadherin was partially downregulated by specific antisense RNA, syndecan-1 expression was suppressed. Furthermore, transfection of E-cadherin cDNA into invasive NM-f-ras-TD cells resulted in the upregulation of syndecan-1 expression in association with decreased invasiveness. In both cases, regulation of syndecan-1 occurred post-transcriptionally, since syndecan-1 mRNA levels remained unchanged. Instead, a translational regulation is suggested, since syndecan-1 core protein synthesis was E-cadherin dependent. Another cell adhesion protein, beta 1-integrin was not affected by E-cadherin expression. The data provide an example of coordinated changes in the expression of two cell adhesion molecules, syndecan-1 and E-cadherin during epithelial cell transformation.
Collapse
Affiliation(s)
- S Leppä
- Department of Medical Biochemistry, University of Turku, Finland
| | | | | | | |
Collapse
|
23
|
Chapin SJ, Enrich C, Aroeti B, Havel RJ, Mostov KE. Calmodulin binds to the basolateral targeting signal of the polymeric immunoglobulin receptor. J Biol Chem 1996; 271:1336-42. [PMID: 8576121 DOI: 10.1074/jbc.271.3.1336] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have identified a major calmodulin (CaM)-binding protein in rat liver endosomes using 125I-CaM overlays from two-dimensional protein blots. Immunostaining of blots demonstrates that this protein is the polymeric immunoglobulin receptor (pIgR). We further investigated the interaction between pIgR and CaM using Madin-Darby canine kidney cells stably expressing cloned wild-type and mutant pIgR. We found that detergent-solubilized pIgR binds to CaM-agarose in a Ca(2+)-dependent fashion, and binding is inhibited by the addition of excess free CaM or the CaM antagonist W-13 (N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide), suggesting that pIgR binding to CaM is specific. Furthermore, pIgR is the most prominent 35S-labeled CaM-binding protein in the detergent phase of Triton X-114-solubilized, metabolically labeled pIgR-expressing Madin-Darby canine kidney cells. CaM can be chemically cross-linked to both solubilized and membrane-associated pIgR, suggesting that binding can occur while the pIgR is in intact membranes. The CaM binding site is located in the membrane-proximal 17-amino acid segment of the pIgR cytoplasmic tail. This region of pIgR constitutes an autonomous basolateral targeting signal. However, binding of CaM to various pIgR mutants suggests that CaM binding is not necessary for basolateral targeting. We suggest that CaM may be involved in regulation of pIgR transcytosis and/or signaling by pIgR.
Collapse
Affiliation(s)
- S J Chapin
- Department of Anatomy, University of California, San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
24
|
Arreaza G, Brown DA. Sorting and intracellular trafficking of a glycosylphosphatidylinositol-anchored protein and two hybrid transmembrane proteins with the same ectodomain in Madin-Darby canine kidney epithelial cells. J Biol Chem 1995; 270:23641-7. [PMID: 7559531 DOI: 10.1074/jbc.270.40.23641] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We compared the trafficking of the glycosylphosphatidylinositol (GPI)-anchored placental alkaline phosphatase (PLAP) and two chimeric transmembrane proteins containing the PLAP ectodomain in stably transfected Madin-Darby canine kidney epithelial cells to determine whether different mechanisms might be used in apical sorting of GPI-anchored and transmembrane proteins. PLAP-G, which contained the transmembrane and cytoplasmic domains of the vesicular stomatitis virus glycoprotein, was delivered directly to the basolateral surface. PLAP-HA contained the transmembrane and cytoplasmic domains of influenza hemagglutinin. Both PLAP and PLAP-HA were delivered directly to the apical membrane. PLAP becomes insoluble in Triton X-100 during biosynthetic transport, as it associates with detergent-resistant membranes. Neither hybrid protein was detergent insoluble, though the small amount of PLAP that was missorted to the basolateral surface was insoluble. We examined the effects of three drugs known to interfere with membrane trafficking on sorting and delivery of PLAP and the hybrid proteins. Monensin had no effect on sorting or surface expression of any of the proteins. Nocodazole affected the sorting of both PLAP and PLAP-HA but not of PLAP-G. Brefeldin A appeared to disrupt the sorting of PLAP and PLAP-HA but not of PLAP-G. This conclusion was tempered by the observation that this drug affected the distribution of proteins at the cell surface. Thus, sorting and transport of GPI-anchored and apical transmembrane proteins are similar in a number of respects.
Collapse
Affiliation(s)
- G Arreaza
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794-5215, USA
| | | |
Collapse
|
25
|
Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T. Generation and assembly of secretory antibodies in plants. Science 1995; 268:716-9. [PMID: 7732380 DOI: 10.1126/science.7732380] [Citation(s) in RCA: 320] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Four transgenic Nicotiana tabacum plants were generated that expressed a murine monoclonal antibody kappa chain, a hybrid immunoglobulin A-G heavy chain, a murine joining chain, and a rabbit secretory component, respectively. Successive sexual crosses between these plants and filial recombinants resulted in plants that expressed all four protein chains simultaneously. These chains were assembled into a functional, high molecular weight secretory immunoglobulin that recognized the native streptococcal antigen I/II cell surface adhesion molecule. In plants, single cells are able to assemble secretory antibodies, whereas two different cell types are required in mammals. Transgenic plants may be suitable for large-scale production of recombinant secretory immunoglobulin A for passive mucosal immunotherapy. Plant cells also possess the requisite mechanisms for assembly and expression of other complex recombinant protein molecules.
Collapse
Affiliation(s)
- J K Ma
- Department of Immunology, United Medical School, Guy's Hospital, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Okamoto C, Song W, Bomsel M, Mostov K. Rapid internalization of the polymeric immunoglobulin receptor requires phosphorylated serine 726. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40734-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|