1
|
Lansweers I, van Rijthoven S, van Loon JJWA. The role of the LINC complex in ageing and microgravity. Mech Ageing Dev 2025; 224:112028. [PMID: 39818253 DOI: 10.1016/j.mad.2025.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex plays a crucial role in connecting the nuclear envelope to the cytoskeleton, providing structural support to the nucleus and facilitating mechanical signaling between the extracellular environment and the nucleus. Research in mechanobiology onboard the International Space Station (ISS) and in simulated microgravity (SMG) highlight the importance of gravity in functional mechanotransduction. Although the altered gravity research regarding mechanobiology has been greatly focused on the cytoskeleton and the extracellular matrix (ECM), recent research demonstrates that SMG also induces changes in nuclear mechanics and gene expression patterns, which have been shown to be LINC complex dependent. Additionally, dysregulation of the LINC complex disrupts nuclear integrity which leads to nuclear shape abnormalities in both Hutchinson-Gilford Progeria Syndrome (HGPS) and aged cells, which highlights the significance of the LINC complex and related proteins in ageing and age-related disorders. Interestingly, as the effects of spaceflight closely resemble those found in the elderly, the microgravity environment seems to induce an accelerated ageing phenotype in astronauts. Therefore, this review will explore the role of the LINC complex and related proteins in ageing and in microgravity, to further elucidate the interplay between loss of gravitational loading and ageing.
Collapse
Affiliation(s)
- Ivana Lansweers
- Faculty of Medicine, Utrecht University, Universiteitsweg 98, Utrecht 3584 CG, the Netherlands.
| | - Sharon van Rijthoven
- Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, Delft 2628 CD, the Netherlands; Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, Amsterdam 1081 LA, the Netherlands
| | - Jack J W A van Loon
- Department Oral & Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences & Amsterdam Bone Center (ABC), Amsterdam University Medical Center location Vrije Universiteit Amsterdam & Academic Center for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, Amsterdam 1081 LA, the Netherlands; TEC-MMG-LIS Lab, European Space Agency (ESA), European Space Research and Technology Center (ESTEC), Keplerlaan 1, Noordwijk 2201 AZ, the Netherlands
| |
Collapse
|
2
|
Manna OM, Burgio S, Picone D, Carista A, Pitruzzella A, Fucarino A, Bucchieri F. Microgravity and Human Body: Unraveling the Potential Role of Heat-Shock Proteins in Spaceflight and Future Space Missions. BIOLOGY 2024; 13:921. [PMID: 39596876 PMCID: PMC11591694 DOI: 10.3390/biology13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
In recent years, the increasing number of long-duration space missions has prompted the scientific community to undertake a more comprehensive examination of the impact of microgravity on the human body during spaceflight. This review aims to assess the current knowledge regarding the consequences of exposure to an extreme environment, like microgravity, on the human body, focusing on the role of heat-shock proteins (HSPs). Previous studies have demonstrated that long-term exposure to microgravity during spaceflight can cause various changes in the human body, such as muscle atrophy, changes in muscle fiber composition, cardiovascular function, bone density, and even immune system functions. It has been postulated that heat-shock proteins (HSPs) may play a role in mitigating the harmful effects of microgravity-induced stress. According to past studies, heat-shock proteins (HSPs) are upregulated under simulated microgravity conditions. This upregulation assists in the maintenance of the proper folding and function of other proteins during stressful conditions, thereby safeguarding the physiological systems of organisms from the detrimental effects of microgravity. HSPs could also be used as biomarkers to assess the level of cellular stress in tissues and cells exposed to microgravity. Therefore, modulation of HSPs by drugs and genetic or environmental techniques could prove to be a potential therapeutic strategy to reduce the negative physiological consequences of long-duration spaceflight in astronauts.
Collapse
Affiliation(s)
- Olga Maria Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
| | - Stefano Burgio
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90146 Palermo, Italy
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy
| | - Domiziana Picone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Adelaide Carista
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Pitruzzella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| | - Alberto Fucarino
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
3
|
Lidberg KA, Jones-Isaac K, Yang J, Bain J, Wang L, MacDonald JW, Bammler TK, Calamia J, Thummel KE, Yeung CK, Countryman S, Koenig P, Himmelfarb J, Kelly EJ. Modeling cellular responses to serum and vitamin D in microgravity using a human kidney microphysiological system. NPJ Microgravity 2024; 10:75. [PMID: 38982119 PMCID: PMC11233620 DOI: 10.1038/s41526-024-00415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
The microgravity environment aboard the International Space Station (ISS) provides a unique stressor that can help understand underlying cellular and molecular drivers of pathological changes observed in astronauts with the ultimate goals of developing strategies to enable long- term spaceflight and better treatment of diseases on Earth. We used this unique environment to evaluate the effects of microgravity on kidney proximal tubule epithelial cell (PTEC) response to serum exposure and vitamin D biotransformation capacity. To test if microgravity alters the pathologic response of the proximal tubule to serum exposure, we treated PTECs cultured in a microphysiological system (PT-MPS) with human serum and measured biomarkers of toxicity and inflammation (KIM-1 and IL-6) and conducted global transcriptomics via RNAseq on cells undergoing flight (microgravity) and respective controls (ground). Given the profound bone loss observed in microgravity and PTECs produce the active form of vitamin D, we treated 3D cultured PTECs with 25(OH)D3 (vitamin D) and monitored vitamin D metabolite formation, conducted global transcriptomics via RNAseq, and evaluated transcript expression of CYP27B1, CYP24A1, or CYP3A5 in PTECs undergoing flight (microgravity) and respective ground controls. We demonstrated that microgravity neither altered PTEC metabolism of vitamin D nor did it induce a unique response of PTECs to human serum, suggesting that these fundamental biochemical pathways in the kidney proximal tubule are not significantly altered by short-term exposure to microgravity. Given the prospect of extended spaceflight, more study is needed to determine if these responses are consistent with extended (>6 months) exposure to microgravity.
Collapse
Affiliation(s)
- Kevin A Lidberg
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
- RayzeBio, San Diego, CA, USA
| | | | - Jade Yang
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Jacelyn Bain
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Justina Calamia
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Catherine K Yeung
- Department of Pharmacy, University of Washington, Seattle, WA, USA
- Kidney Research Institute, Seattle, WA, USA
| | | | - Paul Koenig
- BioServe Space Technologies, University of Colorado, Boulder, CO, USA
| | | | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
- Kidney Research Institute, Seattle, WA, USA.
| |
Collapse
|
4
|
Lee Satcher R, Fiedler B, Ghali A, Dirschl DR. Effect of Spaceflight and Microgravity on the Musculoskeletal System: A Review. J Am Acad Orthop Surg 2024; 32:535-541. [PMID: 38652883 DOI: 10.5435/jaaos-d-23-00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024] Open
Abstract
With National Aeronautics and Space Administration's plans for longer distance, longer duration spaceflights such as missions to Mars and the surge in popularity of space tourism, the need to better understand the effects of spaceflight on the musculoskeletal system has never been more present. However, there is a paucity of information on how spaceflight affects orthopaedic health. This review surveys existing literature and discusses the effect of spaceflight on each aspect of the musculoskeletal system. Spaceflight reduces bone mineral density at rapid rates because of multiple mechanisms. While this seems to be recoverable upon re-exposure to gravity, concern for fracture in spaceflight remains as microgravity impairs bone strength and fracture healing. Muscles, tendons, and entheses similarly undergo microgravity adaptation. These changes result in decreased muscle mass, increased tendon laxity, and decreased enthesis stiffness, thus decreasing the strength of the muscle-tendon-enthesis unit with variable recovery upon gravity re-exposure. Spaceflight also affects joint health; unloading of the joints facilitates changes that thin and atrophy cartilage similar to arthritic phenotypes. These changes are likely recoverable upon return to gravity with exercise. Multiple questions remain regarding effects of longer duration flights on health and implications of these findings on terrestrial medicine, which should be the target of future research.
Collapse
Affiliation(s)
- Robert Lee Satcher
- From the Department of Orthopedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX (Lee Satcher), and the Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX (Fiedler, Ghali, and Dirschl)
| | | | | | | |
Collapse
|
5
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Kelly E, Lindberg K, Jones-Isaac K, Yang J, Bain J, Wang L, MacDonald J, Bammler T, Calamia J, Thummel K, Yeung C, Countryman S, Koenig P, Himmelfarb J. Impact of microgravity on a three-dimensional microphysiologic culture of the human kidney proximal tubule epithelium: cell response to serum and vitamin D. RESEARCH SQUARE 2023:rs.3.rs-3778779. [PMID: 38196580 PMCID: PMC10775397 DOI: 10.21203/rs.3.rs-3778779/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The microgravity environment aboard the International Space Station (ISS) provides a unique stressor that can help understand underlying cellular and molecular drivers of pathological changes observed in astronauts with the ultimate goals of developing strategies to enable long-term spaceflight and better treatment of diseases on Earth. We used this unique environment to evaluate the effects of microgravity on kidney proximal tubule epithelial cell (PTEC) response to serum exposure and vitamin D biotransformation capacity. To test if microgravity alters the pathologic response of the proximal tubule to serum exposure, we treated PTECs cultured in a microphysiological system (PT-MPS) with human serum and measured biomarkers of toxicity and inflammation (KIM-1 and IL-6) and conducted global transcriptomics via RNAseq on cells undergoing flight (microgravity) and respective controls (ground). We also treated 3D cultured PTECs with 25(OH)D3 (vitamin D) and monitored vitamin D metabolite formation, conducted global transcriptomics via RNAseq, and evaluated transcript expression of CYP27B1, CYP24A1, or CYP3A5 in PTECs undergoing flight (microgravity) and respective ground controls. We demonstrated that microgravity neither altered PTEC metabolism of vitamin D nor did it induce a unique response of PTECs to human serum, suggesting that these fundamental biochemical pathways in the kidney proximal tubule are not significantly altered by short-term exposure to microgravity. Given the prospect of extended spaceflight, more study is needed to determine if these responses are consistent with extended (> 6 month) exposure to microgravity.
Collapse
|
7
|
Andrade MR, Azeez TA, Montgomery MM, Caldwell JT, Park H, Kwok AT, Borg AM, Narayanan SA, Willey JS, Delp MD, La Favor JD. Neurovascular dysfunction associated with erectile dysfunction persists after long-term recovery from simulations of weightlessness and deep space irradiation. FASEB J 2023; 37:e23246. [PMID: 37990646 DOI: 10.1096/fj.202300506rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 11/23/2023]
Abstract
There has been growing interest within the space industry for long-duration manned expeditions to the Moon and Mars. During deep space missions, astronauts are exposed to high levels of galactic cosmic radiation (GCR) and microgravity which are associated with increased risk of oxidative stress and endothelial dysfunction. Oxidative stress and endothelial dysfunction are causative factors in the pathogenesis of erectile dysfunction, although the effects of spaceflight on erectile function have been unexplored. Therefore, the purpose of this study was to investigate the effects of simulated spaceflight and long-term recovery on tissues critical for erectile function, the distal internal pudendal artery (dIPA), and the corpus cavernosum (CC). Eighty-six adult male Fisher-344 rats were randomized into six groups and exposed to 4-weeks of hindlimb unloading (HLU) or weight-bearing control, and sham (0Gy), 0.75 Gy, or 1.5 Gy of simulated GCR at the ground-based GCR simulator at the NASA Space Radiation Laboratory. Following a 12-13-month recovery, ex vivo physiological analysis of the dIPA and CC tissue segments revealed differential impacts of HLU and GCR on endothelium-dependent and -independent relaxation that was tissue type specific. GCR impaired non-adrenergic non-cholinergic (NANC) nerve-mediated relaxation in the dIPA and CC, while follow-up experiments of the CC showed restoration of NANC-mediated relaxation of GCR tissues following acute incubation with the antioxidants mito-TEMPO and TEMPOL, as well as inhibitors of xanthine oxidase and arginase. These findings indicate that simulated spaceflight exerts a long-term impairment of neurovascular erectile function, which exposes a new health risk to consider with deep space exploration.
Collapse
Affiliation(s)
- Manuella R Andrade
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Tooyib A Azeez
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - McLane M Montgomery
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jacob T Caldwell
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Hyerim Park
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Andy T Kwok
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexander M Borg
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - S Anand Narayanan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael D Delp
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Justin D La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
8
|
Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ. Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 2023; 9:86. [PMID: 38040743 PMCID: PMC10692100 DOI: 10.1038/s41526-023-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth analysis of genetic expression has been performed. Here, we placed eight, male, inbred founder strains of the diversity outbred mice (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, and WSB/EiJ) in simulated microgravity (SM) via hindlimb unloading for three weeks. Body weight, muscle morphology, muscle strength, protein synthesis marker expression, and RNA expression were collected. A/J and CAST/EiJ mice were most susceptible to SM-induced muscle loss, whereas NOD/ShiLtJ mice were the most protected. In response to SM, A/J and CAST/EiJ mice experienced reductions in body weight, muscle mass, muscle volume, and muscle cross-sectional area. A/J mice had the highest number of differentially expressed genes (68) and associated gene ontologies (328). Downregulation of immunological gene ontologies and genes encoding anabolic immune factors suggest that immune dysregulation contributes to the response of A/J mice to SM. Several muscle properties showed significant interactions between SM and mouse strain and a high degree of heritability. These data imply that genetic background plays a role in the degree of muscle loss in SM and that more individualized programs should be developed for astronauts to protect their skeletal muscles against microgravity on long-term missions.
Collapse
Affiliation(s)
- Yasmina Zeineddine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Lovell B Abraham
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
9
|
Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery. Cells 2023; 12:cells12050691. [PMID: 36899828 PMCID: PMC10000945 DOI: 10.3390/cells12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.
Collapse
|
10
|
Soni P, Anupom T, Lesanpezeshki L, Rahman M, Hewitt JE, Vellone M, Stodieck L, Blawzdziewicz J, Szewczyk NJ, Vanapalli SA. Microfluidics-integrated spaceflight hardware for measuring muscle strength of Caenorhabditis elegans on the International Space Station. NPJ Microgravity 2022; 8:50. [PMID: 36344513 PMCID: PMC9640571 DOI: 10.1038/s41526-022-00241-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
Caenorhabditis elegans is a low-cost genetic model that has been flown to the International Space Station to investigate the influence of microgravity on changes in the expression of genes involved in muscle maintenance. These studies showed that genes that encode muscle attachment complexes have decreased expression under microgravity. However, it remains to be answered whether the decreased expression leads to concomitant changes in animal muscle strength, specifically across multiple generations. We recently reported the NemaFlex microfluidic device for the measurement of muscle strength of C. elegans (Rahman et al., Lab Chip, 2018). In this study, we redesign our original NemaFlex device and integrate it with flow control hardware for spaceflight investigations considering mixed animal culture, constraints on astronaut time, crew safety, and on-orbit operations. The technical advances we have made include (i) a microfluidic device design that allows animals of a given size to be sorted from unsynchronized cultures and housed in individual chambers, (ii) a fluid handling protocol for injecting the suspension of animals into the microfluidic device that prevents channel clogging, introduction of bubbles, and crowding of animals in the chambers, and (iii) a custom-built worm-loading apparatus interfaced with the microfluidic device that allows easy manipulation of the worm suspension and prevents fluid leakage into the surrounding environment. Collectively, these technical advances enabled the development of new microfluidics-integrated hardware for spaceflight studies in C. elegans. Finally, we report Earth-based validation studies to test this new hardware, which has led to it being flown to the International Space Station.
Collapse
|
11
|
Swain P, Mortreux M, Laws JM, Kyriacou H, De Martino E, Winnard A, Caplan N. Skeletal muscle deconditioning during partial weight-bearing in rodents - A systematic review and meta-analysis. LIFE SCIENCES IN SPACE RESEARCH 2022; 34:68-86. [PMID: 35940691 DOI: 10.1016/j.lssr.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Space agencies are planning to send humans back to the Lunar surface, in preparation for crewed exploration of Mars. However, the effect of hypogravity on human skeletal muscle is largely unknown. A recently established rodent partial weight-bearing model has been employed to mimic various levels of hypogravity loading and may provide valuable insights to better understanding how human muscle might respond to this environment. The aim of this study was to perform a systematic review regarding the effects of partial weight-bearing on the morphology and function of rodent skeletal muscle. Five online databases were searched with the following inclusion criteria: population (rodents), intervention (partial weight-bearing for ≥1 week), control (full weight-bearing), outcome(s) (skeletal muscle morphology/function), and study design (animal intervention). Of the 2,993 studies identified, eight were included. Partial weight-bearing at 20%, 40%, and 70% of full loading caused rapid deconditioning of skeletal muscle morphology and function within the first one to two weeks of exposure. Calf circumference, hindlimb wet muscle mass, myofiber cross-sectional area, front/rear paw grip force, and nerve-stimulated plantarflexion force were reduced typically by medium to very large effects. Higher levels of partial weight-bearing often attenuated deconditioning but failed to entirely prevent it. Species and sex mediated the deconditioning response. Risk of bias was low/unclear for most studies. These findings suggest that there is insufficient stimulus to mitigate muscular deconditioning in hypogravity settings highlighting the need to develop countermeasures for maintaining astronaut/cosmonaut muscular health on the Moon and Mars.
Collapse
Affiliation(s)
- Patrick Swain
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom.
| | - Marie Mortreux
- Harvard Medical School, Department of Neurology, Beth Israel Deaconess Medical Center Boston, Massachusetts, United States
| | - Jonathan M Laws
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Harry Kyriacou
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
12
|
Padilha CS, Figueiredo C, Deminice R, Krüger K, Seelaender M, Rosa‐Neto JC, Lira FS. Costly immunometabolic remodelling in disused muscle buildup through physical exercise. Acta Physiol (Oxf) 2022; 234:e13782. [PMID: 34990078 DOI: 10.1111/apha.13782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
The mechanisms underlying the immunometabolic disturbances during skeletal muscle atrophy caused by a plethora of circumstances ranging from hospitalization to spaceflight missions remain unknown. Here, we outline the possible pathways that might be dysregulated in such conditions and assess the potential of physical exercise to mitigate and promote the recovery of muscle morphology, metabolism and function after intervals of disuse. Studies applying exercise to attenuate disuse-induced muscle atrophy have shown a pivotal role of circulating myokines in the activation of anabolic signalling pathways. These muscle-derived factors induce accretion of contractile proteins in the myofibers, and at the same time decrease protein breakdown and loss. Regular exercise plays a crucial role in re-establishing adequate immunometabolism and increasing the migration and presence in the muscle of macrophages with an anti-inflammatory phenotype (M2) and T regulatory cells (Tregs) after disease-induced muscle loss. Additionally, the switch in metabolic pathways (glycolysis to oxidative phosphorylation [OXPHOS]) is important for achieving rapid metabolic homeostasis during muscle regeneration. In this review, we discuss the molecular aspects of the immunometabolic response elicited by exercise during skeletal muscle regeneration. There is not, nevertheless, consensus on a single optimal intensity of exercise required to improve muscle strength, mass and functional capacity owing to the wide range of exercise protocols studied so far. Despite the absence of agreement on the specific strategy, physical exercise appears as a powerful complementary strategy to attenuate the harmful effects of muscle disuse in different scenarios.
Collapse
Affiliation(s)
- Camila S. Padilha
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| | - Rafael Deminice
- Laboratory of Biochemistry Exercise Department of Physical Education Faculty of Physical Education and Sport State University of Londrina Londrina Brazil
| | - Karsten Krüger
- Institute of Sports Science Department of Exercise Physiology and Sports Therapy University of Giessen Giessen Germany
| | - Marília Seelaender
- Cancer Metabolism Research Group Department of Surgery LIM26‐HC Medical School University of São Paulo São Paulo Brazil
| | - José Cesar Rosa‐Neto
- Department of Cell and Developmental Biology University of São Paulo São Paulo Brazil
| | - Fabio S. Lira
- Exercise and Immunometabolism Research Group Post‐graduation Program in Movement Sciences Department of Physical Education Universidade Estadual Paulista (UNESP) Presidente Prudente Brazil
| |
Collapse
|
13
|
Cariati I, Scimeca M, Bonanni R, Triolo R, Naldi V, Toro G, Marini M, Tancredi V, Iundusi R, Gasbarra E, Tarantino U. Role of Myostatin in Muscle Degeneration by Random Positioning Machine Exposure: An in vitro Study for the Treatment of Sarcopenia. Front Physiol 2022; 13:782000. [PMID: 35185612 PMCID: PMC8853288 DOI: 10.3389/fphys.2022.782000] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022] Open
Abstract
Several scientific evidence have shown that exposure to microgravity has a significant impact on the health of the musculoskeletal system by altering the expression of proteins and molecules involved in bone–muscle crosstalk, which is also observed in the research of microgravity effect simulation. Among these, the expression pattern of myostatin appears to play a key role in both load-free muscle damage and the progression of age-related musculoskeletal disorders, such as osteoporosis and sarcopenia. Based on this evidence, we here investigated the efficacy of treatment with anti-myostatin (anti-MSTN) antibodies on primary cultures of human satellite cells exposed to 72 h of random positioning machine (RPM). Cell cultures were obtained from muscle biopsies taken from a total of 30 patients (controls, osteoarthritic, and osteoporotic) during hip arthroplasty. The Pax7 expression by immunofluorescence was carried out for the characterization of satellite cells. We then performed morphological evaluation by light microscopy and immunocytochemical analysis to assess myostatin expression. Our results showed that prolonged RPM exposure not only caused satellite cell death, but also induced changes in myostatin expression levels with group-dependent variations. Surprisingly, we observed that the use of anti-MSTN antibodies induced a significant increase in cell survival after RPM exposure under all experimental conditions. Noteworthy, we found that the negative effect of RPM exposure was counteracted by treatment with anti-MSTN antibodies, which allowed the formation of numerous myotubes. Our results highlight the role of myostatin as a major effector of the cellular degeneration observed with RPM exposure, suggesting it as a potential therapeutic target to slow the muscle mass loss that occurs in the absence of loading.
Collapse
Affiliation(s)
- Ida Cariati
- Ph.D. in Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, “Tor Vergata” University of Rome, Rome, Italy
| | - Roberto Bonanni
- Ph.D. in Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Rebecca Triolo
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Rome, Italy
| | - Valerio Naldi
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Rome, Italy
| | - Giuseppe Toro
- Ph.D. in Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mario Marini
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
| | - Riccardo Iundusi
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Rome, Italy
| | - Elena Gasbarra
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Rome, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Rome, Italy
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Rome, Italy
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Rome, Italy
- *Correspondence: Umberto Tarantino,
| |
Collapse
|
14
|
Paravlic AH, Simunic B, Pisot S, Kleva M, Teraz K, Vogrin M, Marusic U, Pisot R. Lower-Limb Muscle Contractile Properties, Explosive Power and the Subjective Response of Elite Soccer Players to the COVID-19 Lockdown. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010474. [PMID: 35010734 PMCID: PMC8744705 DOI: 10.3390/ijerph19010474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023]
Abstract
The present study examined the effects of the lockdown period on basic anthropometric measures, countermovement jumping performance, skeletal muscle contractile properties derived from tensiomyography (TMG), injury incidence, and self-assessed general well-being in elite soccer players. A total of 266 players were assessed before (PRE) and 32 players were reassessed 11 days after (POST) the COVID-19 period. Significant changes in the TMG parameters were observed POST compared to PRE: contraction time (Tc) increased from 6% to 50% in vastus lateralis [VL] (p = 0.009) and biceps femoris [BF] (p < 0.001), respectively; whereas radial displacement (Dm) increased for 19% in BF (p = 0.036) and 17% in VL (p < 0.001), respectively. Jumping performance remained unchanged from PRE to POST In addition, athletes rated the lockdown period as a positive event and felt psychologically better during the lockdown, primarily because they spent more time with family members and friends. Although there were no differences in any of the variables describing lower limb muscle power following the two-month lockdown, the altered contractile properties of the assessed muscles suggest suboptimal conditioning of the football players.
Collapse
Affiliation(s)
- Armin H. Paravlic
- Faculty of Sport, Institute of Kinesiology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Science and Research Centre Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia; (B.S.); (S.P.); (M.K.); (K.T.); (U.M.); (R.P.)
- Faculty of Sports Studies, Masaryk University, 625 00 Brno, Czech Republic
- Correspondence:
| | - Bostjan Simunic
- Science and Research Centre Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia; (B.S.); (S.P.); (M.K.); (K.T.); (U.M.); (R.P.)
| | - Sasa Pisot
- Science and Research Centre Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia; (B.S.); (S.P.); (M.K.); (K.T.); (U.M.); (R.P.)
| | - Matej Kleva
- Science and Research Centre Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia; (B.S.); (S.P.); (M.K.); (K.T.); (U.M.); (R.P.)
| | - Kaja Teraz
- Science and Research Centre Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia; (B.S.); (S.P.); (M.K.); (K.T.); (U.M.); (R.P.)
| | - Matjaz Vogrin
- Faculty of Medicine, Institute of Sports Medicine, University of Maribor, 2000 Maribor, Slovenia;
| | - Uros Marusic
- Science and Research Centre Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia; (B.S.); (S.P.); (M.K.); (K.T.); (U.M.); (R.P.)
- Department of Health Science, Alma Mater Europaea—ECM, 2000 Maribor, Slovenia
| | - Rado Pisot
- Science and Research Centre Koper, Institute for Kinesiology Research, 6000 Koper, Slovenia; (B.S.); (S.P.); (M.K.); (K.T.); (U.M.); (R.P.)
| |
Collapse
|
15
|
Mallard J, Hucteau E, Hureau TJ, Pagano AF. Skeletal Muscle Deconditioning in Breast Cancer Patients Undergoing Chemotherapy: Current Knowledge and Insights From Other Cancers. Front Cell Dev Biol 2021; 9:719643. [PMID: 34595171 PMCID: PMC8476809 DOI: 10.3389/fcell.2021.719643] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.
Collapse
Affiliation(s)
- Joris Mallard
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Elyse Hucteau
- Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg, France.,Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Thomas J Hureau
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| | - Allan F Pagano
- Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle, UR 3072, Université de Strasbourg, Strasbourg, France.,Faculté des Sciences du Sport, Centre Européen d'Enseignement de Recherche et d'Innovation en Physiologie de l'Exercice (CEERIPE), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Effects of Spaceflight on Musculoskeletal Health: A Systematic Review and Meta-analysis, Considerations for Interplanetary Travel. Sports Med 2021; 51:2097-2114. [PMID: 34115344 PMCID: PMC8449769 DOI: 10.1007/s40279-021-01496-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
Background If interplanetary travel is to be successful over the coming decades, it is essential that countermeasures to minimize deterioration of the musculoskeletal system are as effective as possible, given the increased duration of spaceflight associated with such missions. The aim of this review, therefore, is to determine the magnitude of deconditioning of the musculoskeletal system during prolonged spaceflight and recommend possible methods to enhance the existing countermeasures. Methods A literature search was conducted using PubMed, Ovid and Scopus databases. 5541 studies were identified prior to the removal of duplicates and the application of the following inclusion criteria: (1) group means and standard deviations for pre- and post-spaceflight for measures of strength, muscle mass or bone density were reported (or provided by the corresponding author when requested via e-mail), (2) exercise-based countermeasures were included, (3) the population of the studies were human, (4) muscle function was assessed and (5) spaceflight rather than simulated spaceflight was used. The methodological quality of the included studies was evaluated using a modified Physiotherapy Evidence Database (PEDro) scale for quality, with publication bias assessed using a failsafe N (Rosenthal method), and consistency of studies analysed using I2 as a test of heterogeneity. Secondary analysis of studies included Hedges’ g effect sizes, and between-study differences were estimated using a random-effects model. Results A total of 11 studies were included in the meta-analyses. Heterogeneity of the completed meta-analyses was conducted revealing homogeneity for bone mineral density (BMD) and spinal muscle size (Tau2 < 0.001; I2 = 0.00%, p > 0.05), although a high level of heterogeneity was noted for lower body force production (Tau2 = 1.546; I2 = 76.03%, p < 0.001) and lower body muscle mass (Tau2 = 1.386; I2 = 74.38%, p < 0.001). The estimated variance (≤ -0.306) for each of the meta-analyses was significant (p ≤ 0.033), for BMD (− 0.48 to − 0.53, p < 0.001), lower body force production (− 1.75, p < 0.001) and lower body muscle size (− 1.98, p < 0.001). Spaceflight results in small reductions in BMD of the femur (Hedges g = − 0.49 [− 0.69 to – 0.28]), trochanter (Hedges g = − 0.53 [− 0.77 to – 0.29]), and lumbo-pelvic region (Hedges g = − 0.48 [− 0.73 to – 0.23]), but large decreases in lower limb force production (Hedges g = − 1.75 [− 2.50 to – 0.99]) and lower limb muscle size (Hedges g = − 1.98 [− 2.72 to – 1.23]). Conclusions Current exercise countermeasures result in small reductions in BMD during long-duration spaceflight. In contrast, such exercise protocols do not alleviate the reductions in muscle function or muscle size, which may be attributable to the low to moderate loads reported by crewmembers and the interference effect associated with concurrent training. It is recommended that higher-load resistance exercise and the use of high-intensity interval training should be investigated, to determine if such modifications to the reported training practices result in more effective countermeasures to the deleterious effect of long-duration spaceflight on the muscular system.
Collapse
|
17
|
Fagoni N, Ferretti G, Piva S, Barbieri S, Rasulo F, Latronico N, Gobbo M. A reappraisal of the strength-duration test to assess neuromuscular impairment of critically ill patients. J Electromyogr Kinesiol 2021; 59:102555. [PMID: 34000696 DOI: 10.1016/j.jelekin.2021.102555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Neuromuscular impairment (NMI) affects almost half of critically ill patients. The purpose was to investigate the role of neuromuscular electrical stimulation (NMES) to gain more insight into the nature of the NMI associated with ICU admission. To this aim, we analyzed the strength-duration (S-D) curves of the rectus femoris muscles of ICU patients compared to healthy volunteers. METHODS S-D curves were recorded from 44 healthy volunteers and 29 ICU patients. Three electrophysiological parameters were used to classify the neuromuscular function, from grade 0 (normal function), to grade 3 (no evocable muscle contraction). ICU patients underwent electroneurographic peroneal nerve testing (PENT) to analyze NMI by electroneurography (ENG). RESULTS Three patients were classified as Grade 0; nine as mild NMI (Grade 1), 13 as Grade 2, and four showed unexcitable muscles (Grade 3). Mean CMAP amplitudes were 6.1, 3.4, 2.9 and 0.81 mV from Grade 0 to Grade 3, respectively. CMAP was inversely correlated to NMI grade (-1.7 mV, R2 = 0.946, p < 0.05). CONCLUSIONS The normative parameters of the S-D curves obtained by NMES in healthy volunteers allowed identification of NMI in ICU patients. NMES was an affordable tool to evaluate NMI in ICU patients, providing additional information to that obtained by ENG.
Collapse
Affiliation(s)
- Nazzareno Fagoni
- Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Switzerland; AAT Brescia, Azienda Regionale Emergenza Urgenza (AREU), ASST Spedali Civili di Brescia, Italy.
| | - Guido Ferretti
- Department of Anesthesiology, Clinical Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Switzerland; Department of Molecular and Translational Medicine, University of Brescia, Italy; Laboratory of Integrative and Clinical Physiology (FCI lab), University of Brescia, Italy
| | - Simone Piva
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy; Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili of Brescia, Italy
| | - Silvia Barbieri
- Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili of Brescia, Italy
| | - Frank Rasulo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy; Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili of Brescia, Italy
| | - Nicola Latronico
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Italy; Department of Anesthesia, Critical Care and Emergency, ASST Spedali Civili of Brescia, Italy
| | - Massimiliano Gobbo
- Laboratory of Integrative and Clinical Physiology (FCI lab), University of Brescia, Italy; Department of Clinical and Experimental Sciences, University of Brescia, Italy
| |
Collapse
|
18
|
Hibernation as a Tool for Radiation Protection in Space Exploration. Life (Basel) 2021; 11:life11010054. [PMID: 33466717 PMCID: PMC7828799 DOI: 10.3390/life11010054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 02/08/2023] Open
Abstract
With new and advanced technology, human exploration has reached outside of the Earth's boundaries. There are plans for reaching Mars and the satellites of Jupiter and Saturn, and even to build a permanent base on the Moon. However, human beings have evolved on Earth with levels of gravity and radiation that are very different from those that we have to face in space. These issues seem to pose a significant limitation on exploration. Although there are plausible solutions for problems related to the lack of gravity, it is still unclear how to address the radiation problem. Several solutions have been proposed, such as passive or active shielding or the use of specific drugs that could reduce the effects of radiation. Recently, a method that reproduces a mechanism similar to hibernation or torpor, known as synthetic torpor, has started to become possible. Several studies show that hibernators are resistant to acute high-dose-rate radiation exposure. However, the underlying mechanism of how this occurs remains unclear, and further investigation is needed. Whether synthetic hibernation will also protect from the deleterious effects of chronic low-dose-rate radiation exposure is currently unknown. Hibernators can modulate their neuronal firing, adjust their cardiovascular function, regulate their body temperature, preserve their muscles during prolonged inactivity, regulate their immune system, and most importantly, increase their radioresistance during the inactive period. According to recent studies, synthetic hibernation, just like natural hibernation, could mitigate radiation-induced toxicity. In this review, we see what artificial hibernation is and how it could help the next generation of astronauts in future interplanetary missions.
Collapse
|
19
|
Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering. Int J Mol Sci 2020; 21:ijms21238908. [PMID: 33255352 PMCID: PMC7727824 DOI: 10.3390/ijms21238908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
We introduce a new benchtop microgravity simulator (MGS) that is scalable and easy to use. Its working principle is similar to that of random positioning machines (RPM), commonly used in research laboratories and regarded as one of the gold standards for simulating microgravity. The improvement of the MGS concerns mainly the algorithms controlling the movements of the samples and the design that, for the first time, guarantees equal treatment of all the culture flasks undergoing simulated microgravity. Qualification and validation tests of the new device were conducted with human bone marrow stem cells (bMSC) and mouse skeletal muscle myoblasts (C2C12). bMSC were cultured for 4 days on the MGS and the RPM in parallel. In the presence of osteogenic medium, an overexpression of osteogenic markers was detected in the samples from both devices. Similarly, C2C12 cells were maintained for 4 days on the MGS and the rotating wall vessel (RWV) device, another widely used microgravity simulator. Significant downregulation of myogenesis markers was observed in gravitationally unloaded cells. Therefore, similar results can be obtained regardless of the used simulated microgravity devices, namely MGS, RPM, or RWV. The newly developed MGS device thus offers easy and reliable long-term cell culture possibilities under simulated microgravity conditions. Currently, upgrades are in progress to allow real-time monitoring of the culture media and liquids exchange while running. This is of particular interest for long-term cultivation, needed for tissue engineering applications. Tissue grown under real or simulated microgravity has specific features, such as growth in three-dimensions (3D). Growth in weightlessness conditions fosters mechanical, structural, and chemical interactions between cells and the extracellular matrix in any direction.
Collapse
|
20
|
Moreira LB, Silva SLAD, Castro AEFD, Lima SS, Estevam DO, Freitas FASD, Vieira ÉLM, Pereira DS. Factors associated with functional capacity in the elderly enrolled in the Family Health Strategy. CIENCIA & SAUDE COLETIVA 2020; 25:2041-2050. [PMID: 32520252 DOI: 10.1590/1413-81232020256.26092018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023] Open
Abstract
The study investigated the prevalence of functional capacity decline and its associated factors in the older people enrolled in the Family Health Strategy (ESF) in a city in the south of Minas Gerais. This is an observational, cross-sectional, population-based study with 406 elderly (70.49 years ± 6.77). The functional capacity was evaluated by the Short Physical Performance Battery (SPPB), and its associated factors were evaluated by a structured questionnaire including sociodemographic, economic, clinical and physical aspects. The analysis of plasma levels of inflammatory mediators was performed by the ELISA method. Multiple linear regression was used for the analyses (p < 0.05). The prevalence of functional decline in the sample was 57.6% and factors associated with functional capacity were advanced age, female gender, number of medications, depressive symptoms, high plasma concentrations of the soluble receptor of tumor necrosis factor alpha 1 (sTNFR1) and low handgrip strength. The results demonstrated that functional capacity was associated with a network of multidimensional factors. This study contributes to the practice of ESF professionals by indicating the main factors that can guide actions to promote and prevent the decline of functional capacity in the elderly population.
Collapse
Affiliation(s)
- Lorrane Brunelle Moreira
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas. Av. Jovino Fernandes Sales 2600, Santa Clara. 37133-840, Alfenas, MG, Brasil.
| | - Silvia Lanziotti Azevedo da Silva
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas. Av. Jovino Fernandes Sales 2600, Santa Clara. 37133-840, Alfenas, MG, Brasil.
| | - Ana Emília Fonseca de Castro
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas. Av. Jovino Fernandes Sales 2600, Santa Clara. 37133-840, Alfenas, MG, Brasil.
| | - Sara Souza Lima
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas. Av. Jovino Fernandes Sales 2600, Santa Clara. 37133-840, Alfenas, MG, Brasil.
| | - Dayane Oliveira Estevam
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas. Av. Jovino Fernandes Sales 2600, Santa Clara. 37133-840, Alfenas, MG, Brasil.
| | - Flávia Alexandra Silveira de Freitas
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas. Av. Jovino Fernandes Sales 2600, Santa Clara. 37133-840, Alfenas, MG, Brasil.
| | | | - Daniele Sirineu Pereira
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas. Av. Jovino Fernandes Sales 2600, Santa Clara. 37133-840, Alfenas, MG, Brasil.
| |
Collapse
|
21
|
Narici M, Vito GD, Franchi M, Paoli A, Moro T, Marcolin G, Grassi B, Baldassarre G, Zuccarelli L, Biolo G, di Girolamo FG, Fiotti N, Dela F, Greenhaff P, Maganaris C. Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures. Eur J Sport Sci 2020; 21:614-635. [PMID: 32394816 DOI: 10.1080/17461391.2020.1761076] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic is an unprecedented health crisis as entire populations have been asked to self-isolate and live in home-confinement for several weeks to months, which in itself represents a physiological challenge with significant health risks. This paper describes the impact of sedentarism on the human body at the level of the muscular, cardiovascular, metabolic, endocrine and nervous systems and is based on evidence from several models of inactivity, including bed rest, unilateral limb suspension, and step-reduction. Data form these studies show that muscle wasting occurs rapidly, being detectable within two days of inactivity. This loss of muscle mass is associated with fibre denervation, neuromuscular junction damage and upregulation of protein breakdown, but is mostly explained by the suppression of muscle protein synthesis. Inactivity also affects glucose homeostasis as just few days of step reduction or bed rest, reduce insulin sensitivity, principally in muscle. Additionally, aerobic capacity is impaired at all levels of the O2 cascade, from the cardiovascular system, including peripheral circulation, to skeletal muscle oxidative function. Positive energy balance during physical inactivity is associated with fat deposition, associated with systemic inflammation and activation of antioxidant defences, exacerbating muscle loss. Importantly, these deleterious effects of inactivity can be diminished by routine exercise practice, but the exercise dose-response relationship is currently unknown. Nevertheless, low to medium-intensity high volume resistive exercise, easily implementable in home-settings, will have positive effects, particularly if combined with a 15-25% reduction in daily energy intake. This combined regimen seems ideal for preserving neuromuscular, metabolic and cardiovascular health.
Collapse
Affiliation(s)
- Marco Narici
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, CIR-MYO Myology Center, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Martino Franchi
- Department of Biomedical Sciences, Neuromuscular Physiology Laboratory, University of Padova, Padua, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Giuseppe Marcolin
- Department of Biomedical Sciences, Nutrition and Exercise Physiology Laboratory, University of Padova, Padua, Italy
| | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | | | | | - Gianni Biolo
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | | | - Nicola Fiotti
- Department of Internal Medicine, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | - Flemming Dela
- Xlab, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
| | - Paul Greenhaff
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Sport, Exercise and Osteoarthritis Research Versus Arthritis, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, The Medical School, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
22
|
Marchant A, Ball N, Witchalls J, Waddington G, Mulavara AP, Bloomberg JJ. The Effect of Acute Body Unloading on Somatosensory Performance, Motor Activation, and Visuomotor Tasks. Front Physiol 2020; 11:318. [PMID: 32362835 PMCID: PMC7182011 DOI: 10.3389/fphys.2020.00318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/20/2020] [Indexed: 11/13/2022] Open
Abstract
Evaluating countermeasures designed to reduce the impact of microgravity exposure on astronaut performance requires the development of effective methods of assessing changes to sensorimotor function in 1g analog systems. In this study, somatosensation at the ankle and fingers, lower leg muscle activity and visuomotor control were assessed using a full body loading and acute unloading model to simulate microgravity. It was hypothesized that the function of the hands and eyes are not constrained to 'weight bearing' postures for optimal function and would not differ between the loaded and acute unloaded conditions, whereas lower leg muscle activity and ankle somatosensation would be reduced in the acute unloaded condition. Somatosensation was recorded using the Active Movement Extent Discrimination Apparatus (AMEDA) protocol where participants were required to make an absolute judgment of joint position sense. A score closer to 1.0 demonstrates higher accuracy. Lower leg muscle activity was recorded using electromyography of major lower leg musculature to observe peak muscle activity and duration of contraction. The King Devick infrared eye tracking test was used to asses visuomotor control by monitoring saccade velocity and fixation time. In acute unloading, it was found that ankle somatosensation had decreased accuracy (loaded 0.68, unloaded 0.66, p = 0.045) while finger somatosensation improved (loaded 0.77, unloaded 0.79, p = 0.006). When acutely unloaded, peak lower leg muscle activation reduced ( > 27%) and total contraction time increased (2.02 × longer) compared to loading. Visuomotor assessment results did not vary between the loaded and acute unloaded postures, however the underlying techniques used by the participant to complete the task (saccade velocity and fixations time) did increase in acute unloaded conditions. Significance This research provides an insight to how to the human body responds immediately to acute changes of gravitational load direction. It provides insight to the acute affects' astronauts may encounter when in microgravity.
Collapse
Affiliation(s)
- Ashleigh Marchant
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Nick Ball
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Jeremy Witchalls
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | - Gordon Waddington
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| | | | | |
Collapse
|
23
|
Putative Receptors for Gravity Sensing in Mammalian Cells: The Effects of Microgravity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gravity is a constitutive force that influences life on Earth. It is sensed and translated into biochemical stimuli through the so called “mechanosensors”, proteins able to change their molecular conformation in order to amplify external cues causing several intracellular responses. Mechanosensors are widely represented in the human body with important structures such as otholiths in hair cells of vestibular system and statoliths in plants. Moreover, they are also present in the bone, where mechanical cues can cause bone resorption or formation and in muscle in which mechanical stimuli can increase the sensibility for mechanical stretch. In this review, we discuss the role of mechanosensors in two different conditions: normogravity and microgravity, emphasizing their emerging role in microgravity. Microgravity is a singular condition in which many molecular changes occur, strictly connected with the modified gravity force and free fall of bodies. Here, we first summarize the most important mechanosensors involved in normogravity and microgravity. Subsequently, we propose muscle LIM protein (MLP) and sirtuins as new actors in mechanosensing and signaling transduction under microgravity.
Collapse
|
24
|
McDonnell AC, Eiken O, Frings-Meuthen P, Rittweger J, Mekjavic IB. The LunHab project: Muscle and bone alterations in male participants following a 10 day lunar habitat simulation. Exp Physiol 2019; 104:1250-1261. [PMID: 31273869 DOI: 10.1113/ep087482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
NEW FINDINGS What is the central question of this study? It is well established that muscle and bone atrophy in conditions of inactivity or unloading, but there is little information regarding the effect of a hypoxic environment on the time course of these deconditioning physiological systems. What is the main finding and its importance? The main finding is that a horizontal 10 day bed rest in normoxia results in typical muscle atrophy, which is not aggravated by hypoxia. Changes in bone mineral content or in metabolism were not detected after either normoxic or hypoxic bed rest. ABSTRACT Musculoskeletal atrophy constitutes a typical adaptation to inactivity and unloading of weightbearing bones. The reduced-gravity environment in future Moon and Mars habitats is likely to be hypobaric hypoxic, and there is an urgent need to understand the effect of hypoxia on the process of inactivity-induced musculoskeletal atrophy. This was the principal aim of the present study. Eleven males participated in three 10 day interventions: (i) hypoxic ambulatory confinement; (ii) hypoxic bed rest; and (iii) normoxic bed rest. Before and after the interventions, the muscle strength (isometric maximal voluntary contraction), mass (lean mass, by dual-energy X-ray absorptiometry), cross-sectional area and total bone mineral content (determined with peripheral quantitative computed tomography) of the participants were measured. Blood and urine samples were collected before and on the 1st, 4th and 10th day of the intervention and analysed for biomarkers of bone resorption and formation. There was a significant reduction in thigh and lower leg muscle mass and volume after both normoxic and hypoxic bed rests. Muscle strength loss was proportionately greater than the loss in muscle mass for both thigh and lower leg. There was no indication of bone loss. Furthermore, the biomarkers of resorption and formation were not affected by any of the interventions. There was no significant effect of hypoxia on the musculoskeletal variables. Short-term normoxic (10 day) bed rest resulted in muscular deconditioning, but not in the loss of bone mineral content or changes in bone metabolism. Hypoxia did not modify these results.
Collapse
Affiliation(s)
- Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Institute Jozef Stefan, Ljubljana, Slovenia
| | - Ola Eiken
- Department of Environmental Physiology, School of Technology and Health, Royal Institute of Technology, Solna, Sweden
| | - Petra Frings-Meuthen
- Institute for Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Joern Rittweger
- Institute for Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany.,Department of Paediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Institute Jozef Stefan, Ljubljana, Slovenia.,Department of Biomedical Sciences and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
25
|
Pagano AF, Brioche T, Arc-Chagnaud C, Demangel R, Chopard A, Py G. Short-term disuse promotes fatty acid infiltration into skeletal muscle. J Cachexia Sarcopenia Muscle 2018; 9:335-347. [PMID: 29248005 PMCID: PMC5879967 DOI: 10.1002/jcsm.12259] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/10/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Many physiological and/or pathological conditions lead to muscle deconditioning, a well-described phenomenon characterized by a loss of strength and muscle power mainly due to the loss of muscle mass. Fatty infiltrations, or intermuscular adipose tissue (IMAT), are currently well-recognized components of muscle deconditioning. Despite the fact that IMAT is present in healthy human skeletal muscle, its increase and accumulation are linked to muscle dysfunction. Although IMAT development has been largely attributable to inactivity, the precise mechanisms of its establishment are still poorly understood. Because the sedentary lifestyle that accompanies age-related sarcopenia may favour IMAT development, deciphering the early processes of muscle disuse is of great importance before implementing strategies to limit IMAT deposition. METHODS In our study, we took advantage of the dry immersion (DI) model of severe muscle inactivity to induce rapid muscle deconditioning during a short period. During the DI, healthy adult men (n = 12; age: 32 ± 5) remained strictly immersed, in a supine position, in a controlled thermo-neutral water bath. Skeletal muscle biopsies were obtained from the vastus lateralis before and after 3 days of DI. RESULTS We showed that DI for only 3 days was able to decrease myofiber cross-sectional areas (-10.6%). Moreover, protein expression levels of two key markers commonly used to assess IMAT, perilipin, and fatty acid binding protein 4, were upregulated. We also observed an increase in the C/EBPα and PPARγ protein expression levels, indicating an increase in late adipogenic processes leading to IMAT development. While many stem cells in the muscle environment can adopt the capacity to differentiate into adipocytes, fibro-adipogenic progenitors (FAPs) represent the population that appears to play a major role in IMAT development. In our study, we showed an increase in the protein expression of PDGFRα, the specific cell surface marker of FAPs, in response to 3 days of DI. It is well recognized that an unfavourable muscle environment drives FAPs to ectopic adiposity and/or fibrosis. CONCLUSIONS This study is the first to emphasize that during a short period of severe inactivity, muscle deconditioning is associated with IMAT development. Our study also reveals that FAPs could be the main resident muscle stem cell population implicated in ectopic adiposity development in human skeletal muscle.
Collapse
Affiliation(s)
- Allan F Pagano
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Thomas Brioche
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Coralie Arc-Chagnaud
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France.,Freshage Research Group - Dept. Physiology, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Rémi Demangel
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Angèle Chopard
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| | - Guillaume Py
- INRA, UMR866 Dynamique Musculaire et Métabolisme, Université de Montpellier, F-34060, Montpellier, France
| |
Collapse
|
26
|
Mortreux M, Nagy JA, Ko FC, Bouxsein ML, Rutkove SB. A novel partial gravity ground-based analog for rats via quadrupedal unloading. J Appl Physiol (1985) 2018; 125:175-182. [PMID: 29565773 DOI: 10.1152/japplphysiol.01083.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Musculoskeletal deconditioning is a well-known consequence of microgravity. However, the effects of partial gravity, such as that experienced on the moon (0.16 g) or Mars (0.38 g), on musculoskeletal health remain relatively unexplored. Because Mars is being increasingly viewed as the likely next extraterrestrial site for human exploration, there is an increasing need for Earth-based models that can replicate the long-term physiological effects of microgravity. These models would also offer the opportunity to explore the potential impact of partial artificial gravity (as would be achieved by centrifugation). In this study, we describe a novel partial gravity model that can be employed in rats over extended periods of time. We demonstrate that 2 wk of partial weight bearing at 20, 40, or 70% of normal loading affects the musculoskeletal health of the animals, as evidenced by decreased trabecular bone density (ranging from -7.5 ± 2.7% at 70% of normal loading to -27.9 ± 2.9% at 20%), hindlimb muscle mass, and impaired muscle function as characterized by grip force. This new model will facilitate studies of the physiological changes occurring in partial gravity and allow for the design of potential countermeasures to mitigate these changes. NEW & NOTEWORTHY This research article describes the first quadrupedal unloading model in rats that is sustainable for investigating the physiological alterations occurring in partial gravity environments, providing a new and adaptable model for ground-based research for future space exploration.
Collapse
Affiliation(s)
- Marie Mortreux
- Department of Neurology, Harvard Medical School-Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Janice A Nagy
- Department of Neurology, Harvard Medical School-Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Frank C Ko
- Department of Orthopedics, Harvard Medical School-Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Mary L Bouxsein
- Department of Orthopedics, Harvard Medical School-Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Seward B Rutkove
- Department of Neurology, Harvard Medical School-Beth Israel Deaconess Medical Center , Boston, Massachusetts
| |
Collapse
|
27
|
Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, Cantor C, Aliper A, Mamoshina P, Ushakov I, Sapetsky A, Vanhaelen Q, Alchinova I, Karganov M, Kovalchuk O, Wilkins R, Shtemberg A, Moreels M, Baatout S, Izumchenko E, de Magalhães JP, Artemov AV, Costes SV, Beheshti A, Mao XW, Pecaut MJ, Kaminskiy D, Ozerov IV, Scheibye-Knudsen M, Zhavoronkov A. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget 2018; 9:14692-14722. [PMID: 29581875 PMCID: PMC5865701 DOI: 10.18632/oncotarget.24461] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.
Collapse
Affiliation(s)
- Franco Cortese
- Biogerontology Research Foundation, London, UK
- Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andreyan Osipov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Jakub Stefaniak
- Biogerontology Research Foundation, London, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Alexey Moskalev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Jane Schastnaya
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Charles Cantor
- Boston University, Department of Biomedical Engineering, Boston, MA, USA
| | - Alexander Aliper
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Laboratory of Bioinformatics, D. Rogachev Federal Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Polina Mamoshina
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Computer Science Department, University of Oxford, Oxford, UK
| | - Igor Ushakov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Alex Sapetsky
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Quentin Vanhaelen
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Irina Alchinova
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Institute for Space Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail Karganov
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Olga Kovalchuk
- Canada Cancer and Aging Research Laboratories, Ltd., Lethbridge, Alberta, Canada
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ruth Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Andrey Shtemberg
- Laboratory of Extreme Physiology, Institute of Medical and Biological Problems RAS, Moscow, Russia
| | - Marjan Moreels
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Evgeny Izumchenko
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- The Johns Hopkins University, School of Medicine, Department of Otolaryngology, Head and Neck Cancer Research, Baltimore, MD, USA
| | - João Pedro de Magalhães
- Biogerontology Research Foundation, London, UK
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Artem V. Artemov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | | | - Afshin Beheshti
- Wyle Laboratories, Space Biosciences Division, NASA Ames Research Center, Mountain View, CA, USA
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Dmitry Kaminskiy
- Biogerontology Research Foundation, London, UK
- Deep Knowledge Life Sciences, London, UK
| | - Ivan V. Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | | | - Alex Zhavoronkov
- Biogerontology Research Foundation, London, UK
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
28
|
Buettner D, Dalin D, Wiesmeier IK, Maurer C. Virtual Balancing for Studying and Training Postural Control. Front Neurosci 2017; 11:531. [PMID: 29018320 PMCID: PMC5623041 DOI: 10.3389/fnins.2017.00531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/12/2017] [Indexed: 11/13/2022] Open
Abstract
Postural control during free stance has been frequently interpreted in terms of balancing an inverted pendulum. This even holds, if subjects do not balance their own, but an external body weight. We introduce here a virtual balancing apparatus, which produces torque in the ankle joint as a function of ankle angle resembling the gravity and inertial effects of free standing. As a first aim of this study, we systematically modified gravity, damping, and inertia to examine its effect on postural control beyond the physical constraints given in the real world. As a second aim, we compared virtual balancing to free stance to test its suitability for balance training in patients who are not able to balance their full body weight due to certain medical conditions. In a feasibility study, we analyzed postural control during free stance and virtual balancing in 15 healthy subjects. Postural control was characterized by spontaneous sway measures and measures of perturbed stance. During free stance, perturbations were induced by pseudorandom anterior-posterior tilts of the body support surface. In the virtual balancing task, we systematically varied the anterior-posterior position of the foot plate where the balancing forces are zero following a similar pseudorandom stimulus profile. We found that subjects' behavior during virtual balancing resembles free stance on a tilting platform. This specifically holds for the profile of body excursions as a function of stimulus frequencies. Moreover, non-linearity between stimulus and response amplitude is similar in free and virtual balancing. The overall larger stimulus induced body excursions together with an altered phase behavior between stimulus and response could be in part explained by the limited use of vestibular and visual feedback in our experimental setting. Varying gravity or damping significantly affected postural behavior. Inertia as an isolated factor had a mild effect on the response functions. We conclude that virtual balancing may be well suited to simulate conditions which could otherwise only be realized in space experiments or during parabolic flights. Further studies are needed to examine patients' potential benefit of virtual balance training.
Collapse
Affiliation(s)
- Daniela Buettner
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Medical Faculty, Freiburg, Germany
| | - Daniela Dalin
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Medical Faculty, Freiburg, Germany
| | - Isabella K Wiesmeier
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Medical Faculty, Freiburg, Germany
| | - Christoph Maurer
- Department of Neurology and Neurophysiology, University Hospital Freiburg, Medical Faculty, Freiburg, Germany
| |
Collapse
|
29
|
Kohn FPM, Ritzmann R. Gravity and neuronal adaptation, in vitro and in vivo-from neuronal cells up to neuromuscular responses: a first model. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:97-107. [PMID: 28656475 PMCID: PMC5834568 DOI: 10.1007/s00249-017-1233-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/26/2017] [Accepted: 06/08/2017] [Indexed: 02/05/2023]
Abstract
For decades it has been shown that acute changes in gravity have an effect on neuronal systems of human and animals on different levels, from the molecular level to the whole nervous system. The functional properties and gravity-dependent adaptations of these system levels have been investigated with no or barely any interconnection. This review summarizes the gravity-dependent adaptation processes in human and animal organisms from the in vitro cellular level with its biophysical properties to the in vivo motor responses and underlying sensorimotor functions of human subjects. Subsequently, a first model for short-term adaptation of neuronal transmission is presented and discussed for the first time, which integrates the responses of the different levels of organization to changes in gravity.
Collapse
Affiliation(s)
- Florian P M Kohn
- Department of Membrane Physiology (230b), Institute of Physiology (230), University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| | - Ramona Ritzmann
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Brocca L, McPhee JS, Longa E, Canepari M, Seynnes O, De Vito G, Pellegrino MA, Narici M, Bottinelli R. Structure and function of human muscle fibres and muscle proteome in physically active older men. J Physiol 2017; 595:4823-4844. [PMID: 28452077 DOI: 10.1113/jp274148] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Loss of muscle mass and strength in the growing population of elderly people is a major health concern for modern societies. This condition, termed sarcopenia, is a major cause of falls and of the subsequent increase in morbidity and mortality. Despite numerous studies on the impact of ageing on individual muscle fibres, the contribution of single muscle fibre adaptations to ageing-induced atrophy and functional impairment is still unsettled. The level of physical function and disuse is often associated with ageing. We studied relatively healthy older adults in order to understand the effects of ageing per se without the confounding impact of impaired physical function. We found that in healthy ageing, structural and functional alterations of muscle fibres occur. Protein post-translational modifications, oxidation and phosphorylation contribute to such alterations more than loss of myosin and other muscle protein content. ABSTRACT Contradictory results have been reported on the impact of ageing on structure and functions of skeletal muscle fibres, likely to be due to a complex interplay between ageing and other phenomena such as disuse and diseases. Here we recruited healthy, physically and socially active young (YO) and elderly (EL) men in order to study ageing per se without the confounding effects of impaired physical function. In vivo analyses of quadriceps and in vitro analyses of vastus lateralis muscle biopsies were performed. In EL subjects, our results show that (i) quadriceps volume, maximum voluntary contraction isometric torque and patellar tendon force were significantly lower; (ii) muscle fibres went through significant atrophy and impairment of specific force (isometric force/cross-sectional area) and unloaded shortening velocity; (iii) myosin/actin ratio and myosin content in individual muscle fibres were not altered; (iv) the muscle proteome went through quantitative adaptations, namely an up-regulation of the content of several groups of proteins among which were myofibrillar proteins and antioxidant defence systems; (v) the muscle proteome went through qualitative adaptations, namely phosphorylation of several proteins, including myosin light chain-2 slow and troponin T and carbonylation of myosin heavy chains. The present results indicate that impairment of individual muscle fibre structure and function is a major feature of ageing per se and that qualitative adaptations of muscle proteome are likely to be more involved than quantitative adaptations in determining such a phenomenon.
Collapse
Affiliation(s)
- Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interuniversity Institute of Myology, University of Pavia, Pavia, Italy
| | - Jamie S McPhee
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Emanuela Longa
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interuniversity Institute of Myology, University of Pavia, Pavia, Italy
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Giuseppe De Vito
- Institute for Sport and Health, University College Dublin, Ireland
| | - Maria Antonietta Pellegrino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interuniversity Institute of Myology, University of Pavia, Pavia, Italy.,Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia, Italy
| | - Marco Narici
- School of Graduate Entry to Medicine and Health, Division of Clinical Physiology, University of Nottingham, Derby, UK
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia, Italy.,Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| |
Collapse
|
31
|
Keramidas ME, Mekjavic IB, Eiken O. LunHab: interactive effects of a 10 day sustained exposure to hypoxia and bedrest on aerobic exercise capacity in male lowlanders. Exp Physiol 2017; 102:694-710. [DOI: 10.1113/ep086167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/20/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Michail E. Keramidas
- Department of Environmental Physiology; Swedish Aerospace Physiology Center; School of Technology and Health; Royal Institute of Technology; Stockholm Sweden
| | - Igor B. Mekjavic
- Department of Automation; Biocybernetics and Robotics; Jozef Stefan Institute; Ljubljana Slovenia
- Department of Biomedical Physiology and Kinesiology; Simon Fraser University; Burnaby BC Canada
| | - Ola Eiken
- Department of Environmental Physiology; Swedish Aerospace Physiology Center; School of Technology and Health; Royal Institute of Technology; Stockholm Sweden
| |
Collapse
|
32
|
Demangel R, Treffel L, Py G, Brioche T, Pagano AF, Bareille MP, Beck A, Pessemesse L, Candau R, Gharib C, Chopard A, Millet C. Early structural and functional signature of 3-day human skeletal muscle disuse using the dry immersion model. J Physiol 2017; 595:4301-4315. [PMID: 28326563 DOI: 10.1113/jp273895] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/16/2017] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Our study contributes to the characterization of muscle loss and weakness processes induced by a sedentary life style, chronic hypoactivity, clinical bed rest, immobilization and microgravity. This study, by bringing together integrated and cellular evaluation of muscle structure and function, identifies the early functional markers and biomarkers of muscle deconditioning. Three days of muscle disuse in healthy adult subjects is sufficient to significantly decrease muscle mass, tone and force, and to induce changes in function relating to a weakness in aerobic metabolism and muscle fibre denervation. The outcomes of this study should be considered in the development of an early muscle loss prevention programme and/or the development of pre-conditioning programmes required before clinical bed rest, immobilization and spaceflight travel. ABSTRACT Microgravity and hypoactivity are associated with skeletal muscle deconditioning. The decrease of muscle mass follows an exponential decay, with major changes in the first days. The purpose of the study was to dissect out the effects of a short-term 3-day dry immersion (DI) on human quadriceps muscle function and structure. The DI model, by suppressing all support zones, accurately reproduces the effects of microgravity. Twelve healthy volunteers (32 ± 5 years) completed 3 days of DI. Muscle function was investigated through maximal voluntary contraction (MVC) tests and muscle viscoelasticity. Structural experiments were performed using MRI analysis and invasive experiments on muscle fibres. Our results indicated a significant 9.1% decrease of the normalized MVC constant (P = 0.048). Contraction and relaxation modelization kinetics reported modifications related to torque generation (kACT = -29%; P = 0.014) and to the relaxation phase (kREL = +34%; P = 0.040) after 3 days of DI. Muscle viscoelasticity was also altered. From day one, rectus femoris stiffness and tone decreased by, respectively, 7.3% (P = 0.002) and 10.2% (P = 0.002), and rectus femoris elasticity decreased by 31.5% (P = 0.004) after 3 days of DI. At the cellular level, 3 days of DI translated into a significant atrophy of type I muscle fibres (-10.6 ± 12.1%, P = 0.027) and an increased proportion of hybrid, type I/IIX fibre co-expression. Finally, we report an increase (6-fold; P = 0.002) in NCAM+ muscle fibres, showing an early denervation process. This study is the first to report experiments performed in Europe investigating human short-term DI-induced muscle adaptations, and contributes to deciphering the early changes and biomarkers of skeletal muscle deconditioning.
Collapse
Affiliation(s)
- Rémi Demangel
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Loïc Treffel
- Université Claude Bernard Lyon 1, Lyon, France.,Université de Strasbourg, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7178, Strasbourg, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Thomas Brioche
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | | | - Arnaud Beck
- Institute for Space Medicine and Physiology (MEDES), Toulouse, France
| | - Laurence Pessemesse
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Robin Candau
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | | | - Angèle Chopard
- Université de Montpellier, INRA, UMR866 Dynamique Musculaire et Métabolisme, Montpellier, France
| | - Catherine Millet
- Université Claude Bernard Lyon 1, Lyon, France.,Service d'Odontologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
33
|
Winnard A, Nasser M, Debuse D, Stokes M, Evetts S, Wilkinson M, Hides J, Caplan N. Systematic review of countermeasures to minimise physiological changes and risk of injury to the lumbopelvic area following long-term microgravity. Musculoskelet Sci Pract 2017; 27 Suppl 1:S5-S14. [PMID: 28173932 DOI: 10.1016/j.msksp.2016.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND No studies have been published on an astronaut population to assess the effectiveness of countermeasures for limiting physiological changes in the lumbopelvic region caused by microgravity exposure during spaceflight. However, several studies in this area have been done using spaceflight simulation via bed-rest. The purpose of this systematic review was to evaluate the effectiveness of countermeasures designed to limit physiological changes to the lumbopelvic region caused by spaceflight simulation by means of bed-rest. METHODS Electronic databases were searched from the start of their records to November 2014. Studies were assessed with PEDro, Cochrane Risk of Bias and a bed-rest study quality tool. Magnitude based inferences were used to assess countermeasure effectiveness. RESULTS Seven studies were included. There was a lack of consistency across studies in reporting of outcome measures. Some countermeasures were found to be successful in preventing some lumbopelvic musculoskeletal changes, but not others. For example, resistive vibration exercise prevented muscle changes, but showed the potential to worsen loss of lumbar lordosis and intervertebral disc height. CONCLUSION Future studies investigating countermeasures should report consistent outcomes, and also use an actual microgravity environment. Additional research with patient reported quality of life and functional outcome measures is advocated.
Collapse
Affiliation(s)
- Andrew Winnard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Mona Nasser
- Peninsula Dental School, Plymouth University, Plymouth, UK
| | - Dorothee Debuse
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Maria Stokes
- Faculty of Health Sciences, University of Southampton, Southampton, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, UK
| | - Simon Evetts
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK; Wyle GmbH, Cologne, Germany
| | - Mick Wilkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Julie Hides
- Centre for Musculoskeletal Research, Mary MacKillop Institute for Health Research, Australian Catholic University, Brisbane, Australia
| | - Nick Caplan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.
| |
Collapse
|
34
|
Hides J, Lambrecht G, Ramdharry G, Cusack R, Bloomberg J, Stokes M. Parallels between astronauts and terrestrial patients - Taking physiotherapy rehabilitation "To infinity and beyond". Musculoskelet Sci Pract 2017; 27 Suppl 1:S32-S37. [PMID: 28279266 DOI: 10.1016/j.msksp.2016.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/29/2016] [Accepted: 11/06/2016] [Indexed: 12/31/2022]
Abstract
Exposure to the microgravity environment induces physiological changes in the cardiovascular, musculoskeletal and sensorimotor systems in healthy astronauts. As space agencies prepare for extended duration missions, it is difficult to predict the extent of the effects that prolonged exposure to microgravity will have on astronauts. Prolonged bed rest is a model used by space agencies to simulate the effects of spaceflight on the human body, and bed rest studies have provided some insights into the effects of immobilisation and inactivity. Whilst microgravity exposure is confined to a relatively small population, on return to Earth, the physiological changes seen in astronauts parallel many changes routinely seen by physiotherapists on Earth in people with low back pain (LBP), muscle wasting diseases, exposure to prolonged bed rest, elite athletes and critically ill patients in intensive care. The medical operations team at the European Space Agency are currently involved in preparing astronauts for spaceflight, advising on exercises whilst astronauts are on the International Space Station, and reconditioning astronauts following their return. There are a number of parallels between this role and contemporary roles performed by physiotherapists working with elite athletes and muscle wasting conditions. This clinical commentary will draw parallels between changes which occur to the neuromuscular system in the absence of gravity and conditions which occur on Earth. Implications for physiotherapy management of astronauts and terrestrial patients will be discussed.
Collapse
Affiliation(s)
- Julie Hides
- Centre for Musculoskeletal Research, Mary MacKillop Institute for Health Research, Australian Catholic University, Brisbane 4102, Australia; Mater/ACU Back Stability Research Clinic, Mater Health Services, South Brisbane, QLD 4101, Australia.
| | - Gunda Lambrecht
- European Space Agency Space-Medicine Office, European Astronaut Centre, Linder Hoehe, 51147 Cologne, Germany; Germany Praxis fur Physiotherapie und Osteopathische Techniken, Kaiserstrasse 34, 53721 Siegburg, Germany
| | - Gita Ramdharry
- Faculty of Health, Social Science and Education, Kingston University/St George's University of London, London SW17 0RE, UK
| | - Rebecca Cusack
- Critical Care Research Area, Southampton NIHR Respiratory Biomedical Research Unit, University Hospital NHS Foundation Trust, Southampton SO16 6YD, UK; Integrative Physiology and Critical Illness Group, Faculty of Medicine, University of Southampton, UK
| | - Jacob Bloomberg
- Neuroscience Laboratories, NASA/Johnson Space Center, Houston, TX, USA
| | - Maria Stokes
- Faculty of Health Sciences, University of Southampton Highfield Campus, Southampton, SO17 1BJ, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, UK
| |
Collapse
|
35
|
Kononikhin AS, Starodubtseva NL, Pastushkova LK, Kashirina DN, Fedorchenko KY, Brhozovsky AG, Popov IA, Larina IM, Nikolaev EN. Spaceflight induced changes in the human proteome. Expert Rev Proteomics 2016; 14:15-29. [PMID: 27817217 DOI: 10.1080/14789450.2017.1258307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Spaceflight is one of the most extreme conditions encountered by humans: Individuals are exposed to radiation, microgravity, hypodynamia, and will experience isolation. A better understanding of the molecular processes induced by these factors may allow us to develop personalized countermeasures to minimize risks to astronauts. Areas covered: This review is a summary of literature searches from PubMed, NASA, Roskosmos and the authors' research experiences and opinions. The review covers the available proteomic data on the effects of spaceflight factors on the human body, including both real space missions and ground-based model experiments. Expert commentary: Overall, the authors believe that the present background, methodology and equipment improvements will enhance spaceflight safety and support accumulation of new knowledge on how organisms adapt to extreme conditions.
Collapse
Affiliation(s)
- Alexey S Kononikhin
- a Institute of Biomedical Problems - Russian Federation State Scientific Research Center, Laboratory of proteomics , Russian Academy of Sciences , Moscow , Russia.,b Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia.,d V.L. Talrose Institute for Energy Problems of Chemical Physics , Laboratory of ion and molecular physics, Russian Academy of Sciences , Moscow , Russia
| | - Natalia L Starodubtseva
- b Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia.,c V. I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology , Laboratory of proteomics and metabolomics, Ministry of Healthcare of the Russian Federation , Moscow , Russia.,d V.L. Talrose Institute for Energy Problems of Chemical Physics , Laboratory of ion and molecular physics, Russian Academy of Sciences , Moscow , Russia
| | - Lyudmila Kh Pastushkova
- a Institute of Biomedical Problems - Russian Federation State Scientific Research Center, Laboratory of proteomics , Russian Academy of Sciences , Moscow , Russia
| | - Daria N Kashirina
- a Institute of Biomedical Problems - Russian Federation State Scientific Research Center, Laboratory of proteomics , Russian Academy of Sciences , Moscow , Russia
| | | | - Alexander G Brhozovsky
- a Institute of Biomedical Problems - Russian Federation State Scientific Research Center, Laboratory of proteomics , Russian Academy of Sciences , Moscow , Russia
| | - Igor A Popov
- b Moscow Institute of Physics and Technology , Laboratory of ion and molecular physics , Moscow , Russia.,c V. I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology , Laboratory of proteomics and metabolomics, Ministry of Healthcare of the Russian Federation , Moscow , Russia.,d V.L. Talrose Institute for Energy Problems of Chemical Physics , Laboratory of ion and molecular physics, Russian Academy of Sciences , Moscow , Russia
| | - Irina M Larina
- a Institute of Biomedical Problems - Russian Federation State Scientific Research Center, Laboratory of proteomics , Russian Academy of Sciences , Moscow , Russia
| | - Evgeny N Nikolaev
- d V.L. Talrose Institute for Energy Problems of Chemical Physics , Laboratory of ion and molecular physics, Russian Academy of Sciences , Moscow , Russia.,e Emanuel Institute for Biochemical Physics , Russian Academy of Sciences , Moscow , Russia.,f Skolkovo Institute of Science and Technology, Space Cluster , Skolkovo , Russia
| |
Collapse
|
36
|
Ritzmann R, Freyler K, Krause A, Gollhofer A. Bouncing on Mars and the Moon—the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development. J Appl Physiol (1985) 2016; 121:1187-1195. [DOI: 10.1152/japplphysiol.00692.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 11/22/2022] Open
Abstract
On our astronomical neighbors Mars and the Moon, bouncing movements are the preferred locomotor techniques. During bouncing, the stretch-shortening cycle describes the muscular activation pattern. This study aimed to identify gravity-dependent changes in kinematic and neuromuscular characteristics in the stretch-shortening cycle. Hence, neuromuscular control of limb muscles as well as correlations between the muscles’ pre-activation, reflex components, and force output were assessed in lunar, Martian, and Earth gravity. During parabolic flights, peak force (Fmax), ground-contact-time, rate of force development (RFD), height, and impulse were measured. Electromyographic (EMG) activities in the m. soleus (SOL) and gastrocnemius medialis (GM) were assessed before (PRE) and during bounces for the reflex phases short-, medium-, and long-latency response (SLR, MLR, LLR). With gradually decreasing gravitation, Fmax, RFD, and impulse were reduced, whereas ground-contact time and height increased. Concomitantly, EMG_GM decreased for PRE, SLR, MLR, and LLR, and in EMG_SOL in SLR, MLR, and LLR. For SLR and MLR, Fmax and RFD were positively correlated to EMG_SOL. For PRE and LLR, RFD and Fmax were positively correlated to EMG_GM. Findings emphasize that biomechanically relevant kinematic adaptations in response to gravity variation were accompanied by muscle- and phase-specific modulations in neural control. Gravitational variation is anticipated and compensated for by gravity-adjusted muscle activities. Importantly, the pre-activation and reflex phases were differently affected: in SLR and MLR, SOL is assumed to contribute to the decline in force output with a decreasing load, and, complementary in PRE and LLR, GM seems to be of major importance for force generation.
Collapse
Affiliation(s)
- Ramona Ritzmann
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Kathrin Freyler
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Anne Krause
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| | - Albert Gollhofer
- Department of Sport Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
37
|
Brocca L, Longa E, Cannavino J, Seynnes O, de Vito G, McPhee J, Narici M, Pellegrino MA, Bottinelli R. Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3 weeks of unilateral lower limb suspension and active recovery. J Physiol 2016; 593:5361-85. [PMID: 26369674 DOI: 10.1113/jp271188] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/04/2015] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS It is generally assumed that muscle fibres go through atrophy following disuse with a loss of specific force and an increase in unloaded shortening velocity. However, the underlying mechanisms remain to be clarified. Most studies have focused on events taking place during the development of disuse, whereas the subsequent recovery phase, which is equally important, has received little attention. Our findings support the hypotheses that the specific force of muscle fibres decreased following unilateral lower limb suspension (ULLS) and returned to normal after 3 weeks of active recovery as a result of a loss and recovery of myosin and actin content. Furthermore, muscle fibres went through extensive qualitative changes in muscle protein pattern following ULLS, and these were reversed by active recovery. Resistance training was very effective in restoring both muscle mass and qualitative muscle changes, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle. ABSTRACT Following disuse, muscle fibre function goes through adaptations such as a loss of specific force (PO /CSA) and an increase in unloaded shortening velocity, which could be a result of both quantitative changes (i.e. atrophy) and qualitative changes in protein pattern. The underlying mechanisms remain to be clarified. In addition, little is known about the recovery of muscle mass and strength following disuse. In the present study, we report an extensive dataset describing, in detail,the functional and protein content adaptations of skeletal muscle in response to both disuse and re-training. Eight young healthy subjects were subjected to 3 weeks of unilateral lower limb suspension (ULLS), a widely used human model of disuse skeletal muscle atrophy. Needle biopsies samples were taken from the vastus lateralis muscle Pre-ULLS, Post-ULLS and after 3 weeks of recovery during which heavy resistance training was performed. After disuse, cross-sectional area (CSA), PO /CSA and myosin concentration (MC) decreased in both type 1 and 2A skinned muscle fibres. After recovery, CSA and MC returned to levels comparable to those observed before disuse, whereas Po/CSA and unloaded shortening velocity reached a higher level. Myosin heavy chain isoform composition of muscle samples did not differ among the experimental groups. To study the mechanisms underlying such adaptations, a two-dimensional proteomic analysis was performed. ULLS induced a reduction of myofibrillar, metabolic (glycolytic and oxidative) and anti-oxidant defence system protein content. Resistance training was very effective in counteracting ULLS-induced alterations, indicating that long-term ULLS did not prevent the positive effect of exercise on human muscle.
Collapse
Affiliation(s)
- Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interuniversity Institute of Myology, University of Pavia, Pavia, Italy
| | - Emanuela Longa
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia, Italy
| | | | - Olivier Seynnes
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK.,Norwegian School of Sport Sciences, Oslo, Norway
| | - Giuseppe de Vito
- UCD Institute for Sport and Health, University College Dublin, Dublin, Ireland
| | - Jamie McPhee
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK
| | - Marco Narici
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK.,School of Graduate Entry to Medicine and Health, Division of Clinical Physiology, University of Nottingham, Derby, UK
| | - Maria Antonietta Pellegrino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia, Italy.,Interuniversity Institute of Myology, University of Pavia, Pavia, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Fondazione Salvatore Maugeri (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| |
Collapse
|
38
|
Aksahin E, Yilmaz S, Karasoy I, Duran S, Yuksel HY, Dogan O, Yildirim AO, Bicimoglu A. Sagittal patellar tilt and concomitant quadriceps hypotrophy after tibial nailing. Knee Surg Sports Traumatol Arthrosc 2016; 24:2878-2883. [PMID: 25700676 DOI: 10.1007/s00167-015-3533-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 02/04/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of the study was to analyse the patellofemoral alignment in the sagittal plane following tibial fracture surgery with intramedullary nailing and its relationship to parapatellar muscle status. METHODS The patellofemoral MRI results of 27 patients (15 males and 12 females) treated with locked intramedullary nailing following tibia shaft fracture were reviewed. The mean age of the patients was 41.8 (±15) years. The patella-patellar tendon angle (P-PT) and the distance between the inferior patellar pole and the tibial tubercle (DP-TT) were evaluated for both the operated extremity and the contralateral normal side. MRI assessment of the infrapatellar fat pad, quadriceps, sartorius, gracilis, semi-membranosus muscles and biceps muscles was also carried out. The correlation between the changes in skeletal muscle mass, the volume of the infrapatellar fat pad and the alterations in the DP-TT distances and P-PT angles were analysed. RESULTS The quadriceps muscle cross-sectional diameter had a mean of 157.2 mm(2) (115.6/319.5) in the operated extremity, and it was 193 mm(2) (77.6/282.2) in the non-operated normal side (p = 0.001). For the Gracilis muscle, the mean was 84.4 mm(2) (19.7/171) at the operated extremity and 75.7 mm(2) (26.9/238.2) on the normal side (p = 0.05). The cross-sectional areas of the semi-membranosus, sartorius and biceps muscles in the operated and non-operated extremity were not noticeably different (n.s). The P-PT angle was 153° (129.7/156.4) in the operated extremity and 145.7° (137.6/163.4) in the non-operated normal extremity (p < 0.05). While DP-TT distance was 11.4 mm (9.4/20.4) in the operated extremity, it was 14.1 mm (7.3/17.1) in the non-operated extremity (p = 0.001). The correlation analyses revealed that the quadriceps hypotrophy negatively correlated (r = -0.4, p = 0.02) with the P-PT angle but positively correlated with the increase in gracilis muscle volume (r = 0.4, p = 0.03). CONCLUSION This study revealed that patellofemoral joint kinematics in the operated extremity was diminished in the sagittal plane correlating with the quadriceps muscle volume loss and gracilis muscle hypertrophy. The modalities focused on both preventing and treating the hypotrophy of the quadriceps muscle following the surgical treatment of tibial fracture, which may help to overcome this quite common pathology.
Collapse
Affiliation(s)
- Ertugrul Aksahin
- Orthopedics and Traumatology Department, Ankara Education and Research Hospital, Street 89/3 Bahçelievler/Cankaya, Ankara, 06500, Turkey.
| | - Serdar Yilmaz
- Orthopedics and Traumatology Department, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Ismail Karasoy
- Orthopedics and Traumatology Department, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Semra Duran
- Radiology Department, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - H Yalcin Yuksel
- Orthopedics and Traumatology Department, Antalya Training and Research Hospital, Antalya, Turkey
| | - Ozgur Dogan
- Orthopedics and Traumatology Department, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - A Ozgur Yildirim
- Orthopedics and Traumatology Department, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Ali Bicimoglu
- Orthopedics and Traumatology Department, Ankara Numune Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
39
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
40
|
Dang K, Li YZ, Gong LC, Xue W, Wang HP, Goswami N, Gao YF. Stable atrogin-1 (Fbxo32) and MuRF1 (Trim63) gene expression is involved in the protective mechanism in soleus muscle of hibernating Daurian ground squirrels (Spermophilus dauricus). Biol Open 2016; 5:62-71. [PMID: 26740574 PMCID: PMC4728309 DOI: 10.1242/bio.015776] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the mechanisms that protect against or limit muscle atrophy in hibernators during prolonged inactivity has important implications for its treatment. We examined whether external factors influence the pathways regulating protein synthesis and degradation, leading to muscle atrophy prevention in Daurian ground squirrels (Spermophilus dauricus). We investigated the effects of 14-day hindlimb-unloading (HU) in different seasons and two-month hibernation on the soleus (SOL) muscle wet mass, muscle-to-body mass ratio, fiber cross sectional area (CSA), fiber distribution and muscle ultrastructure. We also measured changes in the protein expression and activation states of Akt, mTOR and FoxO1 and the mRNA expression of atrogin-1 and MuRF1. Compared with the control groups, autumn and winter HU significantly lowered SOL muscle wet mass and muscle-to-body mass ratio, decreased type I and II fiber CSA and induced ultrastructural anomalies. However, these measured indices were unchanged between Pre-hibernation and Hibernation groups. Furthermore, phosphorylation levels of Akt and mTOR significantly decreased, while the phosphorylation level of FoxO1 and mRNA expression of atrogin-1 and MuRF1 increased after HU. During hibernation, the phosphorylation levels of Akt and mTOR significantly decreased, but the phosphorylation level of FoxO1 and mRNA expression of atrogin-1 and MuRF1 remained unchanged. Overall, our findings suggest that disuse and seasonality may not be sufficient to initiate the innate protective mechanism that prevents SOL atrophy during prolonged periods of hibernation inactivity. The stable expression of atrogin-1 and MuRF1 may facilitate to prevent SOL atrophy via controlling ubiquitination of muscle proteins during hibernation. Summary: mRNA expression of atrogin-1 and MuRF1 remains unchanged during hibernation of Daurian ground squirrels, suggesting that stable expression of these genes may facilitate the prevention of SOL atrophy via controlling ubiquitylation of muscle proteins during hibernation.
Collapse
Affiliation(s)
- Kai Dang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Ya-Zhao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Ling-Chen Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Wei Xue
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Hui-Ping Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Center of Physiological Medicine, Medical University Graz, Graz 8010, Austria
| | - Yun-Fang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, China
| |
Collapse
|
41
|
Watanabe K, Sato T, Mukaimoto T, Takashima W, Yamagishi M, Nishiyama T. Electromyographic analysis of thigh muscles during track cycling on a velodrome. J Sports Sci 2015; 34:1413-22. [PMID: 26571039 DOI: 10.1080/02640414.2015.1114135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We aimed to investigate neuromuscular activation of thigh muscles during track cycling at various speeds. Eight male competitive cyclists volunteered to participate in this study. Surface electromyography of the vastus lateralis, biceps femoris and adductor magnus muscles of the bilateral legs was recorded during track cycling on velodromes with a 250-m track. The participants were instructed to maintain three different lap times: 20, 18 and 16 s. The average rectified value (ARV) was calculated from the sampled surface electromyography. Significantly higher ARVs were observed in the right compared to left leg for the biceps femoris muscle during both straight and curved sections at 18- and 16-s lap times (P < 0.05). In the biceps femoris muscle, significant changes in ARVs during the recovery phase with an increase in speed were seen in the right leg only (P < 0.05). There were no significant differences in ARVs between the straight and curved sections for all three muscles (P > 0.05). From our findings, it was suggested that during track cycling on a velodrome the laterality of the biceps femoris muscle activity is a key strategy to regulate the speed, and fixed neuromuscular strategies are adopted between straight and curved sections for thigh muscles.
Collapse
Affiliation(s)
- Kohei Watanabe
- a Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies , Chukyo University , Nagoya , Japan
| | - Takayuki Sato
- b Gunma National College of Technology , Maebashi , Japan
| | | | | | - Michio Yamagishi
- e Laboratory of Sports Biomechanics , Nippon Sport Science University , Tokyo , Japan
| | - Tetsunari Nishiyama
- e Laboratory of Sports Biomechanics , Nippon Sport Science University , Tokyo , Japan
| |
Collapse
|
42
|
Ren L, Yang P, Wang Z, Zhang J, Ding C, Shang P. Biomechanical and biophysical environment of bone from the macroscopic to the pericellular and molecular level. J Mech Behav Biomed Mater 2015; 50:104-22. [DOI: 10.1016/j.jmbbm.2015.04.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/12/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
|
43
|
Ritzmann R, Freyler K, Weltin E, Krause A, Gollhofer A. Load Dependency of Postural Control--Kinematic and Neuromuscular Changes in Response to over and under Load Conditions. PLoS One 2015; 10:e0128400. [PMID: 26053055 PMCID: PMC4459704 DOI: 10.1371/journal.pone.0128400] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 04/28/2015] [Indexed: 11/24/2022] Open
Abstract
Introduction Load variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms. Methods Balance performance was recorded under normal loading (NL, 1g), UL (0.16g; 0.38g) and OL (1.8g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5Hz (LF), medium 0.5-2Hz (MF), high 2-6Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios). Results Compared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL. Conclusion Subjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support.
Collapse
Affiliation(s)
- Ramona Ritzmann
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- * E-mail:
| | - Kathrin Freyler
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Elmar Weltin
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Anne Krause
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| | - Albert Gollhofer
- Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany
| |
Collapse
|
44
|
Influence of short-term unweighing and reloading on running kinetics and muscle activity. Eur J Appl Physiol 2015; 115:1135-45. [DOI: 10.1007/s00421-014-3095-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
|
45
|
Hosono O, Yoshikawa N, Shimizu N, Kiryu S, Uehara M, Kobayashi H, Matsumiya R, Kuribara A, Maruyama T, Tanaka H. Quantitative analysis of skeletal muscle mass in patients with rheumatic diseases under glucocorticoid therapy--comparison among bioelectrical impedance analysis, computed tomography, and magnetic resonance imaging. Mod Rheumatol 2014; 25:257-63. [PMID: 25496410 DOI: 10.3109/14397595.2014.935078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To determine the availability of bioelectrical impedance analysis (BIA), computed tomography (CT), and magnetic resonance imaging (MRI) for measurement of skeletal muscle mass in patients with rheumatic diseases and quantitatively assess skeletal muscle loss after glucocorticoid (GC) treatment. METHODS The data from 22 patients with rheumatic diseases were retrospectively obtained. The muscle mass of body segments was measured with a BIA device in terms of skeletal muscle mass index (SMI). Cross-sectional area (CSA) was obtained from CT and MRI scans at the mid-thigh level using the image analysis program. We further assessed the data of three different measurements before and after GC treatment in 7 patients with rheumatic diseases. RESULTS SMI of whole body was significantly correlated with estimated muscle volume and mid-thigh muscle CSA with CT and MRI (p < 0.01). Significant correlations between SMI and mid-thigh muscle CSA of each leg were also found (p < 0.01). All the three measurements were negatively correlated with GC dosage (p < 0.01). Significant decline in mid-thigh muscle CSA with CT and MRI was found after GC treatment in 7 patients (p < 0.02). Those patients showed significant decline in SMI of whole body after GC treatment, but not in SMI of each leg. On the other hand, significant correlations between mid-thigh muscle CSA with CT and MRI were found before and after GC treatment (p < 0.01). CONCLUSIONS GC-related skeletal muscle loss could be quantitatively assessed with BIA, CT, or MRI in patients with rheumatic diseases, and CT and MRI appeared to be more accurate than BIA.
Collapse
Affiliation(s)
- Osamu Hosono
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo , Minato-ku, Tokyo , Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pfitzer G. Biomechanical adaptation to hindlimb suspension: it involves not only transcriptional mechanisms but also post-translational modification of the molecular motor, myosin. Acta Physiol (Oxf) 2014; 212:263-6. [PMID: 25204547 DOI: 10.1111/apha.12390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G. Pfitzer
- Institute of Vegetative Physiology; University of Cologne; Köln Germany
| |
Collapse
|
47
|
Maffei M, Longa E, Qaisar R, Agoni V, Desaphy JF, Camerino DC, Bottinelli R, Canepari M. Actin sliding velocity on pure myosin isoforms from hindlimb unloaded mice. Acta Physiol (Oxf) 2014; 212:316-29. [PMID: 24888432 DOI: 10.1111/apha.12320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/07/2014] [Accepted: 05/25/2014] [Indexed: 11/29/2022]
Abstract
AIM Notwithstanding the widely accepted idea that following disuse skeletal muscles become faster, an increase in shortening velocity was previously observed mostly in fibres containing type 1 myosin, whereas a decrease was generally found in fibres containing type 2B myosin. In this study, unloaded shortening velocity of pure type 1 and 2B fibres from hindlimb unloaded mice was determined and a decrease in type 2B fibres was found. METHODS To clarify whether the decrease in shortening velocity could depend on alterations of myosin motor function, an in vitro motility assay approach was applied to study pure type 1 and pure type 2B myosin from hindlimb unloaded mice. The latter approach, assessing actin sliding velocity on isolated myosin in the absence of other myofibrillar proteins, enabled to directly investigate myosin motor function. RESULTS Actin sliding velocity was significantly lower on type 2B myosin following unloading (2.70 ± 0.32 μm s(-1)) than in control conditions (4.11 ± 0.35 μm s(-1)), whereas actin sliding velocity of type 1 myosin was not different following unloading (0.89 ± 0.04 μm s(-1)) compared with control conditions (0.84 ± 0.17 μm s(-1)). Myosin light chain (MLC) isoform composition of type 2B myosin from hindlimb unloaded and control mice was not different. No oxidation of either type 1 or 2B myosin was observed. Higher phosphorylation of regulatory MLC in type 2B myosin after unloading was found. CONCLUSION Results suggest that the observed lower shortening velocity of type 2B fibres following unloading could be related to slowing of acto-myosin kinetics in the presence of MLC phosphorylation.
Collapse
Affiliation(s)
- M. Maffei
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| | - E. Longa
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| | - R. Qaisar
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| | - V. Agoni
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| | - J.-F. Desaphy
- Section of Pharmacology; Department of Pharmacy and Drug Sciences and Interuniversity Institute of Myology; University of Bari - Aldo Moro; Bari Italy
| | - D. Conte Camerino
- Section of Pharmacology; Department of Pharmacy and Drug Sciences and Interuniversity Institute of Myology; University of Bari - Aldo Moro; Bari Italy
| | - R. Bottinelli
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
- Fondazione Salvatore Maugeri (IRCCS); Scientific Institute of Pavia; Pavia Italy
- Interdipartimental Centre of Biology and Sport Medicine; University of Pavia; Pavia Italy
| | - M. Canepari
- Department of Molecular Medicine and Interuniversity; Institute of Myology; University of Pavia; Pavia Italy
| |
Collapse
|
48
|
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol 2014; 3:1645-87. [PMID: 24265241 DOI: 10.1002/cphy.c130009] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian skeletal muscles are composed of a variety of highly specialized fibers whose selective recruitment allows muscles to fulfill their diverse functional tasks. In addition, skeletal muscle fibers can change their structural and functional properties to perform new tasks or respond to new conditions. The adaptive changes of muscle fibers can occur in response to variations in the pattern of neural stimulation, loading conditions, availability of substrates, and hormonal signals. The new conditions can be detected by multiple sensors, from membrane receptors for hormones and cytokines, to metabolic sensors, which detect high-energy phosphate concentration, oxygen and oxygen free radicals, to calcium binding proteins, which sense variations in intracellular calcium induced by nerve activity, to load sensors located in the sarcomeric and sarcolemmal cytoskeleton. These sensors trigger cascades of signaling pathways which may ultimately lead to changes in fiber size and fiber type. Changes in fiber size reflect an imbalance in protein turnover with either protein accumulation, leading to muscle hypertrophy, or protein loss, with consequent muscle atrophy. Changes in fiber type reflect a reprogramming of gene transcription leading to a remodeling of fiber contractile properties (slow-fast transitions) or metabolic profile (glycolytic-oxidative transitions). While myonuclei are in postmitotic state, satellite cells represent a reserve of new nuclei and can be involved in the adaptive response.
Collapse
Affiliation(s)
- Bert Blaauw
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | |
Collapse
|
49
|
Koryak YA. Influence of simulated microgravity on mechanical properties in the human triceps surae muscle in vivo. I: effect of 120 days of bed-rest without physical training on human muscle musculo-tendinous stiffness and contractile properties in young women. Eur J Appl Physiol 2014; 114:1025-36. [PMID: 24509917 PMCID: PMC3983899 DOI: 10.1007/s00421-014-2818-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/03/2014] [Indexed: 11/28/2022]
Abstract
Purpose The aim of this study was to investigate the effect of a 120-day 5° head-down tilt (HDT) bed-rest on the mechanical properties of the human triceps surae muscle in healthy young women subjects. Methods Measurements included examination of the properties of maximal voluntary contractions (MVC), twitch contractions (Pt) and tetanic contractions (Po). The difference between Po and MVC expressed as a percentage of Po and referred to as force deficiency (Pd), was calculated. Electromyographic (EMG) activity in the soleus muscle, electromechanical delay (EMD) and total reaction time (TRT) were also calculated. EMD was the time interval between the change in EMG and the onset of muscle tension. Premotor time (PMT) was taken to be the time interval from the delivery of the signal to change in EMG. Results After HDT Pt, MVC and Po had decreased by 11.5, 36.1, 24.4 %, respectively, Pd had increased by 38.8 %. Time-to-peak tension had increased by 13.6 %, but half-relaxation time had decreased by 19.2 %. The rate of rise in isometric voluntary tension development had reduced, but no changes were observed in the electrically evoked contraction. EMD had increased by 27.4 %; PMT and TRT decreased by 21.4, and 13.7 %, respectively. Conclusion The experimental findings indicated that neural as well as muscle adaptation occurred in response to HDT. EMD is a simple and quick method for evaluation of muscle stiffness changes and can serve as an indicator of the functional condition of the neuromuscular system.
Collapse
Affiliation(s)
- Yuri A Koryak
- SSC, Institute of Biomedical Problems RAS, 76-A Khoroshevskoye Shosse, 123007, Moscow, Russia,
| |
Collapse
|
50
|
Rodríguez-Ruiz D, García-Manso JM, Rodríguez-Matoso D, Sarmiento S, Da Silva-Grigoletto M, Pisot R. Effects of age and physical activity on response speed in knee flexor and extensor muscles. Eur Rev Aging Phys Act 2013. [DOI: 10.1007/s11556-013-0127-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
This study aims to determine the normalized response speed (V
rn) in vastus lateralis (VL) and biceps femoris (BF) muscles in different age groups using tensiomyography. Eighty-four male subjects were divided into four age groups: teenage subjects (T); undergraduate students (U), adult subjects (A), and the elderly group (E). Differences in V
rn were observed between E and T (p = 0.000), E and U (p = 0.000), and E and A (p = 0.018) for right VL and between E and T (p < 0.000) and U (p = 0.003) for left VL; between T and U (p = 0.010) and A (p = 0.000) for right VL, and A (p = 0.004) for left VL. V
rn in the BF displayed different behavior from that of the VL, increasing moderately or stabilizing and declining slightly in E, in right leg (p = 0.020). The data obtained highlighted a decline in V
rn for the VL in both legs with increasing age and, declines in BF response speed were observed only in E.
Collapse
|