1
|
Lee LW, Lee GH, Su IH, Lu CH, Lin KH, Wen FL, Tang MJ. Mechanobiological mechanism of cyclic stretch-induced cell columnarization. Cell Rep 2025; 44:115662. [PMID: 40338742 DOI: 10.1016/j.celrep.2025.115662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/24/2025] [Accepted: 04/15/2025] [Indexed: 05/10/2025] Open
Abstract
In vivo, epithelial cells maintain structural integrity under dynamic mechanical perturbations. To study this, we treated various epithelial cell lines with long-term cyclic stretch (CS). Surprisingly, cells transitioned from cuboidal to columnar shape (columnarization) in MDCK cells, while others only elongated. This change correlated with actin accumulation at the top and stress fiber realignment at the bottom. Blocking mechanical stimulation via FAK inhibition or reducing vinculin partially prevented columnarization; however, disrupting tight junctions or cellular contractility substantially blocked it. The MK4 cells, derived from MDCK cells with weaker cell-cell junctions, showed less columnarization under CS, whereas overexpressing Caveolin-1 (Cav1) in MK4 cells enhanced junctions and promoted columnar formation. Atomic force microscopy studies revealed increased apical junctional stiffness in both CS-treated MDCK and Cav1-overexpressing MK4 cells. This, combined with a mathematical model, elucidated the physical characteristics and changes in cell tension post-stretch, revealing the mechanobiological foundation of epithelial cell columnarization.
Collapse
Affiliation(s)
- Lun-Wei Lee
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Gang-Hui Lee
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - I-Hsiu Su
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chia-Hsuan Lu
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OXI 3QD, UK
| | - Keng-Hui Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Fu-Lai Wen
- Department of Physics and Center for Complex Systems, National Central University, Taoyuan 32001, Taiwan; Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan.
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
2
|
Zhao X, Zhang X, Lei F, Guo W, Yu H, Wang Y. Effects of fluid shear stress duration on the mechanical properties of HeLa cells using atomic force microscopy. PLoS One 2025; 20:e0321296. [PMID: 40323916 PMCID: PMC12052195 DOI: 10.1371/journal.pone.0321296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 05/07/2025] Open
Abstract
Cellular mechanical properties play a critical role in physiological and pathological processes, with fluid shear stress being a key determinant. Despite its importance, the impact of fluid shear stress on the mechanical characteristics of HeLa cells and its role in the mechanism of tumor metastasis remain poorly understood. This study aims to investigate the effects of varying durations of fluid shear stress on the mechanical properties of HeLa cells, thereby elucidating the mechanical interactions between the fluid flow environment and cancer cells during tumor metastasis. We established an in vitro fluid shear stress cell experimental system and analyzed the flow field characteristics within a parallel plate flow chamber using computational fluid dynamics software. Atomic force microscopy was used to measure the mechanical properties of HeLa cells at different time points under a fluid shear stress of 10 dyn/cm², a value representative of physiological conditions. computational fluid dynamics analysis confirmed the stability of laminar flow and the uniformity of shear stress within the parallel plate flow chamber. The experimental results revealed that with increasing fluid shear stress exposure duration, HeLa cells exhibited a fusiform shape, with a reduction in cell height and a significant decrease in cell Young's modulus. By integrating atomic force microscopy with the in vitro fluid shear stress cell experimental system, this study demonstrates the substantial influence of fluid shear stress on the mechanical properties of HeLa cells. This provides novel insights into the behavior of cancer cells within the in vivo flow environment. Our findings enhance the understanding of cellular mechanical property regulation and offer valuable insights for biomedicine engineering research.
Collapse
Affiliation(s)
- Xinyao Zhao
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaolong Zhang
- College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
| | - Fei Lei
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weikang Guo
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Yu
- Department of Cardiopulmonary Function, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yaoxian Wang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
3
|
Babaliari E, Kavatzikidou P, Xydias D, Psilodimitrakopoulos S, Ranella A, Stratakis E. Flow-Induced Shear Stress Combined with Microtopography Inhibits the Differentiation of Neuro-2a Cells. MICROMACHINES 2025; 16:341. [PMID: 40141952 PMCID: PMC11945430 DOI: 10.3390/mi16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025]
Abstract
Considering that neurological injuries cannot typically self-recover, there is a need to develop new methods to study neuronal outgrowth in a controllable manner in vitro. In this study, a precise flow-controlled microfluidic system featuring custom-designed chambers that integrate laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves (MGs) was developed to investigate the combined effect of shear stress and topography on Neuro-2a (N2a) cells' behavior. The MGs were positioned parallel to the flow direction and the response of N2a cells was evaluated in terms of growth and differentiation. Our results demonstrate that flow-induced shear stress could inhibit the differentiation of N2a cells. This microfluidic system could potentially be used as a new model system to study the impact of shear stress on cell differentiation.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Paraskevi Kavatzikidou
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Dionysios Xydias
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
- Department of Materials Science and Technology, University of Crete, 70013 Crete, Greece
| | - Sotiris Psilodimitrakopoulos
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Anthi Ranella
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
| | - Emmanuel Stratakis
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece; (E.B.); (P.K.); (D.X.); (S.P.)
- Department of Physics, University of Crete, 70013 Crete, Greece
| |
Collapse
|
4
|
Komarov N, Fritsch C, Maier GL, Bues J, Biočanin M, Avalos CB, Dodero A, Kwon JY, Deplancke B, Sprecher SG. Food hardness preference reveals multisensory contributions of fly larval gustatory organs in behaviour and physiology. PLoS Biol 2025; 23:e3002730. [PMID: 39883595 PMCID: PMC11781724 DOI: 10.1371/journal.pbio.3002730] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/05/2024] [Indexed: 02/01/2025] Open
Abstract
Food presents a multisensory experience, with visual, taste, and olfactory cues being important in allowing an animal to determine the safety and nutritional value of a given substance. Texture, however, remains a surprisingly unexplored aspect, despite providing key information about the state of the food through properties such as hardness, liquidity, and granularity. Food perception is achieved by specialised sensory neurons, which themselves are defined by the receptor genes they express. While it was assumed that sensory neurons respond to one or few closely related stimuli, more recent findings challenge this notion and support evidence that certain sensory neurons are more broadly tuned. In the Drosophila taste system, gustatory neurons respond to cues of opposing hedonic valence or to olfactory cues. Here, we identified that larvae ingest and navigate towards specific food substrate hardnesses and probed the role of gustatory organs in this behaviour. By developing a genetic tool targeting specifically gustatory organs, we show that these organs are major contributors for evaluation of food hardness and ingestion decision-making. We find that ablation of gustatory organs not only results in loss of chemosensation, but also navigation and ingestion preference to varied substrate hardnesses. Furthermore, we show that certain neurons in the primary taste organ exhibit varied and concurrent physiological responses to mechanical and multimodal stimulation. We show that individual neurons house independent mechanisms for multiple sensory modalities, challenging assumptions about capabilities of sensory neurons. We propose that further investigations, across the animal kingdom, may reveal higher sensory complexity than currently anticipated.
Collapse
Affiliation(s)
- Nikita Komarov
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Cornelia Fritsch
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - G. Larisa Maier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Johannes Bues
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Marjan Biočanin
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | | | - Andrea Dodero
- Soft Matter Physics Group, Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Jae Young Kwon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, EPFL and Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Simon G. Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024; 8:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
6
|
Huang SY, Yu TS, Lin JH, Liu WH, Chung CA, Cheng YC. Stable laminar shear stress induces G1 cell cycle arrest and autophagy in urothelial carcinoma by a torque sensor-coupled cone-and-plate device. Eur J Cell Biol 2024; 103:151451. [PMID: 39217678 DOI: 10.1016/j.ejcb.2024.151451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
The microenvironments of urinary systems play crucial roles in the development and metastasis of cancers due to their generation of complex temporal and spatial fluidic profiles. Because of their versatility in creating desired biomimetic flow, cone-and-plate bioreactors offer great potential for bladder cancer research. In this study, we construct a biocompatible cone-and-plate device coupled with a torque sensor, enabling the application and real-time monitoring of stable shear stress up to 50 dyne/cm². Under a stable shear stress stimulation at 12 dyne/cm2, bladder cancer cell BFTC-905 is arrested at the G1 phase with decreased cell proliferation after 24-hour treatment. This effect is associated with increased cyclin-dependent kinase inhibitors p21 and p27, inhibiting cyclin D1/CDK4 complex with dephosphorylation of serine 608 on the retinoblastoma protein. Consequently, an increase in cyclin D3 and decreases in cyclin A2 and cyclin E2 are observed. Moreover, we demonstrate that the shear stress stimulation upregulates the expression of autophagy-related proteins Beclin-1, LC3B-I and LC3B-II, while caspase cleavages are not activated under the same condition. The design of this system and its application shed new light on flow-induced phenomena in the study of urothelial carcinomas.
Collapse
Affiliation(s)
- Sheng-Yuan Huang
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, New Taipei City, Taiwan
| | - Tien-Ssu Yu
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Jiun-Han Lin
- Department of Industrial Technology, Ministry of Economic Affairs, Taipei, Taiwan; Food Industry Research and Development Institute, Hsinchu City, Taiwan
| | - Wei-Hung Liu
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan
| | - Chih-Ang Chung
- Department of Mechanical Engineering, National Central University, Jhongli, Taiwan.
| | - Yu-Che Cheng
- Proteomics Laboratory, Department of Medical Research, Cathay General Hospital, New Taipei City, Taiwan; Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
7
|
Basehore SE, Garcia J, Clyne AM. Steady Laminar Flow Decreases Endothelial Glycolytic Flux While Enhancing Proteoglycan Synthesis and Antioxidant Pathways. Int J Mol Sci 2024; 25:2485. [PMID: 38473731 PMCID: PMC10931250 DOI: 10.3390/ijms25052485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Endothelial cells in steady laminar flow assume a healthy, quiescent phenotype, while endothelial cells in oscillating disturbed flow become dysfunctional. Since endothelial dysfunction leads to atherosclerosis and cardiovascular disease, it is important to understand the mechanisms by which endothelial cells change their function in varied flow environments. Endothelial metabolism has recently been proven a powerful tool to regulate vascular function. Endothelial cells generate most of their energy from glycolysis, and steady laminar flow may reduce endothelial glycolytic flux. We hypothesized that steady laminar but not oscillating disturbed flow would reduce glycolytic flux and alter glycolytic side branch pathways. In this study, we exposed human umbilical vein endothelial cells to static culture, steady laminar flow (20 dynes/cm2 shear stress), or oscillating disturbed flow (4 ± 6 dynes/cm2 shear stress) for 24 h using a cone-and-plate device. We then measured glucose and lactate uptake and secretion, respectively, and glycolytic metabolites. Finally, we explored changes in the expression and protein levels of endothelial glycolytic enzymes. Our data show that endothelial cells in steady laminar flow had decreased glucose uptake and 13C labeling of glycolytic metabolites while cells in oscillating disturbed flow did not. Steady laminar flow did not significantly change glycolytic enzyme gene or protein expression, suggesting that glycolysis may be altered through enzyme activity. Flow also modulated glycolytic side branch pathways involved in proteoglycan and glycosaminoglycan synthesis, as well as oxidative stress. These flow-induced changes in endothelial glucose metabolism may impact the atheroprone endothelial phenotype in oscillating disturbed flow.
Collapse
Affiliation(s)
- Sarah E. Basehore
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA (J.G.)
| | - Jonathan Garcia
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA (J.G.)
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
8
|
Tominami K, Kudo TA, Noguchi T, Hayashi Y, Luo YR, Tanaka T, Matsushita A, Izumi S, Sato H, Gengyo-Ando K, Matsuzawa A, Hong G, Nakai J. Physical Stimulation Methods Developed for In Vitro Neuronal Differentiation Studies of PC12 Cells: A Comprehensive Review. Int J Mol Sci 2024; 25:772. [PMID: 38255846 PMCID: PMC10815383 DOI: 10.3390/ijms25020772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
PC12 cells, which are derived from rat adrenal pheochromocytoma cells, are widely used for the study of neuronal differentiation. NGF induces neuronal differentiation in PC12 cells by activating intracellular pathways via the TrkA receptor, which results in elongated neurites and neuron-like characteristics. Moreover, the differentiation requires both the ERK1/2 and p38 MAPK pathways. In addition to NGF, BMPs can also induce neuronal differentiation in PC12 cells. BMPs are part of the TGF-β cytokine superfamily and activate signaling pathways such as p38 MAPK and Smad. However, the brief lifespan of NGF and BMPs may limit their effectiveness in living organisms. Although PC12 cells are used to study the effects of various physical stimuli on neuronal differentiation, the development of new methods and an understanding of the molecular mechanisms are ongoing. In this comprehensive review, we discuss the induction of neuronal differentiation in PC12 cells without relying on NGF, which is already established for electrical, electromagnetic, and thermal stimulation but poses a challenge for mechanical, ultrasound, and light stimulation. Furthermore, the mechanisms underlying neuronal differentiation induced by physical stimuli remain largely unknown. Elucidating these mechanisms holds promise for developing new methods for neural regeneration and advancing neuroregenerative medical technologies using neural stem cells.
Collapse
Affiliation(s)
- Kanako Tominami
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Tada-aki Kudo
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - You-Ran Luo
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Takakuni Tanaka
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Ayumu Matsushita
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Satoshi Izumi
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Hajime Sato
- Division of Pharmacology, Meikai University School of Dentistry, Sakado 350-0283, Japan
| | - Keiko Gengyo-Ando
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Guang Hong
- Division for Globalization Initiative, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Junichi Nakai
- Division of Oral Physiology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| |
Collapse
|
9
|
Guo X, Wang Z, Gao L, Zhang C. Parametric optimization of culture chamber for cell mechanobiology research. Exp Biol Med (Maywood) 2023; 248:1708-1717. [PMID: 37837381 PMCID: PMC10792420 DOI: 10.1177/15353702231198079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/07/2023] [Indexed: 10/16/2023] Open
Abstract
Mechanical signals influence the morphology, function, differentiation, proliferation, and growth of cells. Due to the small size of cells, it is essential to analyze their mechanobiological responses with an in vitro mechanical loading device. Cells are cultured on an elastic silicone membrane substrate, and mechanical signals are transmitted to the cells by the substrate applying mechanical loads. However, large areas of non-uniform strain fields are generated on the elastic membrane, affecting the experiment's accuracy. In the study, finite-element analysis served as the basis of optimization, with uniform strain as the objective. The thickness of the basement membrane and loading constraints were parametrically adjusted. Through finite-element cycle iteration, the "M" profile basement membrane structure of the culture chamber was obtained to enhance the uniform strain field of the membrane. The optimized strain field of culture chamber was confirmed by three-dimensional digital image correlation (3D-DIC) technology. The results showed that the optimized chamber improved the strain uniformity factor. The uniform strain area proportion of the new chamber reached 90%, compared to approximately 70% of the current chambers. The new chamber further improved the uniformity and accuracy of the strain, demonstrating promising application prospects.
Collapse
Affiliation(s)
- Xutong Guo
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
| | - Ziqi Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
- National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
10
|
Takaya H, Comtois-Bona M, Spasojevic A, Cortes D, Variola F, Liang W, Ruel M, Suuronen EJ, Alarcon EI. BEaTS-β: an open-source electromechanical bioreactor for simulating human cardiac disease conditions. Front Bioeng Biotechnol 2023; 11:1253602. [PMID: 37781536 PMCID: PMC10540188 DOI: 10.3389/fbioe.2023.1253602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Heart disease remains the leading cause of worldwide mortality. Although the last decades have broadened our understanding of the biology behind the pathologies of heart disease, ex vivo systems capable of mimicking disease progression and abnormal heart function using human cells remain elusive. In this contribution, an open-access electromechanical system (BEaTS-β) capable of mimicking the environment of cardiac disease is reported. BEaTS-β was designed using computer-aided modeling to combine tunable electrical stimulation and mechanical deformation of cells cultured on a flexible elastomer. To recapitulate the clinical scenario of a heart attack more closely, in designing BEaTS-β we considered a device capable to operate under hypoxic conditions. We tested human induced pluripotent stem cell-derived cardiomyocytes, fibroblasts, and coronary artery endothelial cells in our simulated myocardial infarction environment. Our results indicate that, under simulated myocardium infarction, there was a decrease in maturation of cardiomyocytes, and reduced survival of fibroblasts and coronary artery endothelial cells. The open access nature of BEaTS-β will allow for other investigators to use this platform to investigate cardiac cell biology or drug therapeutic efficacy in vitro under conditions that simulate arrhythmia and/or myocardial infarction.
Collapse
Affiliation(s)
- Hiroki Takaya
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Maxime Comtois-Bona
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Biomedical Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Ana Spasojevic
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - David Cortes
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Biomedical Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada
| | - Wenbin Liang
- Cardiac Electrophysiology Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marc Ruel
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
11
|
Babaliari E, Ranella A, Stratakis E. Microfluidic Systems for Neural Cell Studies. Bioengineering (Basel) 2023; 10:902. [PMID: 37627787 PMCID: PMC10451731 DOI: 10.3390/bioengineering10080902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Whereas the axons of the peripheral nervous system (PNS) spontaneously regenerate after an injury, the occurring regeneration is rarely successful because axons are usually directed by inappropriate cues. Therefore, finding successful ways to guide neurite outgrowth, in vitro, is essential for neurogenesis. Microfluidic systems reflect more appropriately the in vivo environment of cells in tissues such as the normal fluid flow within the body, consistent nutrient delivery, effective waste removal, and mechanical stimulation due to fluid shear forces. At the same time, it has been well reported that topography affects neuronal outgrowth, orientation, and differentiation. In this review, we demonstrate how topography and microfluidic flow affect neuronal behavior, either separately or in synergy, and highlight the efficacy of microfluidic systems in promoting neuronal outgrowth.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece;
| | - Anthi Ranella
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece;
| | - Emmanuel Stratakis
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece;
- Department of Physics, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
12
|
Hu Y, Zhang H, Wang S, Cao L, Zhou F, Jing Y, Su J. Bone/cartilage organoid on-chip: Construction strategy and application. Bioact Mater 2023; 25:29-41. [PMID: 37056252 PMCID: PMC10087111 DOI: 10.1016/j.bioactmat.2023.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The necessity of disease models for bone/cartilage related disorders is well-recognized, but the barrier between ex-vivo cell culture, animal models and the real human body has been pending for decades. The organoid-on-a-chip technique showed opportunity to revolutionize basic research and drug screening for diseases like osteoporosis and arthritis. The bone/cartilage organoid on-chip (BCoC) system is a novel platform of multi-tissue which faithfully emulate the essential elements, biologic functions and pathophysiological response under real circumstances. In this review, we propose the concept of BCoC platform, summarize the basic modules and current efforts to orchestrate them on a single microfluidic system. Current disease models, unsolved problems and future challenging are also discussed, the aim should be a deeper understanding of diseases, and ultimate realization of generic ex-vivo tools for further therapeutic strategies of pathological conditions.
Collapse
|
13
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
14
|
Melo-Fonseca F, Carvalho O, Gasik M, Miranda G, Silva FS. Mechanical stimulation devices for mechanobiology studies: a market, literature, and patents review. Biodes Manuf 2023. [DOI: 10.1007/s42242-023-00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractSignificant advancements in various research and technological fields have contributed to remarkable findings on the physiological dynamics of the human body. To more closely mimic the complex physiological environment, research has moved from two-dimensional (2D) culture systems to more sophisticated three-dimensional (3D) dynamic cultures. Unlike bioreactors or microfluidic-based culture models, cells are typically seeded on polymeric substrates or incorporated into 3D constructs which are mechanically stimulated to investigate cell response to mechanical stresses, such as tensile or compressive. This review focuses on the working principles of mechanical stimulation devices currently available on the market or custom-built by research groups or protected by patents and highlights the main features still open to improvement. These are the features which could be focused on to perform, in the future, more reliable and accurate mechanobiology studies.
Graphic abstract
Collapse
|
15
|
Aguayo-Morales H, Sierra-Rivera CA, Claudio-Rizo JA, Cobos-Puc LE. Horsetail (Equisetum hyemale) Extract Accelerates Wound Healing in Diabetic Rats by Modulating IL-10 and MCP-1 Release and Collagen Synthesis. Pharmaceuticals (Basel) 2023; 16:ph16040514. [PMID: 37111271 PMCID: PMC10141616 DOI: 10.3390/ph16040514] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Traditionally, Equisetum hyemale has been used for wound healing. However, its mechanism of action remains to be elucidated. For this purpose, a 40% ethanolic extract of E. hyemale was prepared. Phytochemical screening revealed the presence of minerals, sterols, phenolic acids, flavonols, a lignan, and a phenylpropenoid. The extract reduced the viability of RAW 264.7 cells and skin fibroblasts at all times evaluated. On the third day of treatment, this reduction was 30–40% and 15–40%, respectively. In contrast, the extract increased the proliferation of skin fibroblasts only after 48 h. In addition, the extract increased IL-10 release and inhibited MCP-1 release. However, the extract did not affect both TGF-β1 and TNF-α released by RAW 264.7 cells. The higher release of IL-10 could be related to the up-/downregulation of inflammatory pathways mediated by the extract components associated with their bioactivity. The extract inhibited the growth of Staphylococcus aureus and Escherichia coli. Topical application of the extract accelerated wound healing in diabetic rats by increasing fibroblast collagen synthesis. These results suggest that E. hyemale extract has great potential for use in the treatment of wounds thanks to its phytochemical composition that modulates cytokine secretion, collagen synthesis, and bacterial growth.
Collapse
Affiliation(s)
- Hilda Aguayo-Morales
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Crystel A. Sierra-Rivera
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Jesús A. Claudio-Rizo
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| | - Luis E. Cobos-Puc
- Facultad de Ciencias Químicas, Unidad Saltillo, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza S/N Esquina con Ing. José Cárdenas Valdés, República Oriente, Saltillo 25290, Mexico
| |
Collapse
|
16
|
Privalov E, Zenkel M, Schloetzer-Schrehardt U, Kuerten S, Bergua A, Hohberger B. Pressure-Dependent Elevation of Vasoactive Intestinal Peptide Level in Chicken Choroid. BIOLOGY 2023; 12:biology12040495. [PMID: 37106696 PMCID: PMC10136289 DOI: 10.3390/biology12040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE Autonomic control is important in maintaining ocular integrity. As recent data suggested that intrinsic choroidal neurons (ICN), an intrinsic choroidal autonomic control, may regulate choroidal thickening via release of the vasodilative vasoactive intestinal peptide (VIP), it was the aim of the study to investigate the level of choroidal VIP (VIPchor) in the presence of an increased atmospheric pressure in a chicken model. METHODS Chicken choroidal whole mounts were exposed to ambient pressure (n = 20) and 40 mm Hg (n = 20) in a PC-controlled, open chamber system for 24 and 72 h, respectively. The VIP concentration was analyzed by ELISA, and the total protein concentration was measured by the BCA assay. Statistical analysis was done using an unpaired two-tailed t-test. RESULTS The pressurization systems enabled choroidal whole mount pressurization (40 mm Hg) with humidifying, pressure, temperature, and gas exchange. Overall, the VIPchor level concentration was significantly increased at 40 mmHg compared to the ambient pressure (30.09 ± 7.18 pg vs. 20.69 ± 3.24 pg; p < 0.0001). Subgroup analysis yielded a significantly increased VIPchor level at 40 mmHg compared to the ambient pressure after 24 h (28.42 ± 6.03 pg vs. 20.76 ± 4.06 pg; p = 0.005) and 72 h (31.77 ± 7.82 pg vs. 20.61 ± 2.12 pg; p = 0.002), respectively. The VIPchor elevation at 40 mm Hg ranged between 1.37- (24 h) and 1.54-fold (72 h) compared to the ambient pressure. No difference was observed between the VIPchor level at 24 h and 72 h (p > 0.05). CONCLUSIONS The increase of the total choroidal VIP level, representing the intracellular VIP content, in the presence of an increased ambient pressure argues for a retention of VIP within the neurons, decreasing both vasodilatation and, consequently, choroid thickness. This finding might be a passive or even active function of ICN in the regulation of choroidal thickness, ocular integrity and IOP.
Collapse
Affiliation(s)
- Evgeny Privalov
- Department of Ophthalmology, Universität of Erlangen-Nürnberg, Friedrich-Alexander-University-Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Matthias Zenkel
- Department of Ophthalmology, Universität of Erlangen-Nürnberg, Friedrich-Alexander-University-Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Ursula Schloetzer-Schrehardt
- Department of Ophthalmology, Universität of Erlangen-Nürnberg, Friedrich-Alexander-University-Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Antonio Bergua
- Department of Ophthalmology, Universität of Erlangen-Nürnberg, Friedrich-Alexander-University-Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Bettina Hohberger
- Department of Ophthalmology, Universität of Erlangen-Nürnberg, Friedrich-Alexander-University-Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
17
|
Nagai S, Kitamura K, Kimura M, Yamamoto H, Katakura A, Shibukawa Y. Functional Expression of Mechanosensitive Piezo1/TRPV4 Channels in Mouse Osteoblasts. THE BULLETIN OF TOKYO DENTAL COLLEGE 2023; 64:1-11. [PMID: 36792153 DOI: 10.2209/tdcpublication.2022-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Mechanical stress is an important regulatory factor in bone homeostasis. Mechanical stimulation of osteoblasts has been shown to elicit an increase in the concentration of intracellular free Ca2+ ([Ca2+]i). The pattern of functional expression of mechanosensitive ion channels remains unclear, however. Therefore, the purpose of this study was to investigate the pharmacological characteristics of [Ca2+]i in response to direct mechanical stimulation in osteoblasts. The morphological expression of mechanosensitive ion channels was also examined. Mouse osteoblast-like cells (MC3T3-E1 cells) were loaded with fura-2-acetoxymethyl ester, after which [Ca2+]i was measured. Increased levels of [Ca2+]i were observed in MC3T3-E1 cells in response to direct mechanical stimulation by means of a glass micropipette, but no desensitization. Application of a hypotonic solution also induced an increase in [Ca2+]i but was accompanied by a desensitizing effect. Extracellular Gd3+, GsMTx4, or RN-1734 reversibly inhibited this mechanical stimulation-induced increase in [Ca2+]i, whereas no inhibitory effect was observed with HC030031 or clemizole. When osteoblasts were stimulated with Yoda1, an increase was observed in [Ca2+]i together with a significant desensitizing effect. Immunoreactivity against Piezo1 and TRPV4 channel antibodies was detected in MC3T3-E1 cells. These results suggest that osteoblasts express Piezo1 and TRPV4 channels, which are involved in mechanosensitive processes during mechanical stress.
Collapse
Affiliation(s)
- Sayoko Nagai
- Department of Physiology, Tokyo Dental College.,Department of Oral Pathobiological Science and Surgery, Tokyo Dental College
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College
| | | |
Collapse
|
18
|
Marchal-Chaud H, Rieger R, Mai VT, Courtial EJ, Ottenio M, Bonnefont-Rebeix C, Bruyère K, Boulocher C. Contactless mechanical stimulation of tissue engineered constructs: Development and validation of an air-pulse device. BIOMATERIALS ADVANCES 2023; 149:213401. [PMID: 37018914 DOI: 10.1016/j.bioadv.2023.213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
OBJECTIVE Tissue engineering (TE) is the study and development of biological substitutes to restore, maintain or improve tissue function. Tissue engineered constructs (TECs) still present differences in mechanical and biological properties compared to native tissue. Mechanotransduction is the process through which mechanical stimulation triggers proliferation, apoptosis, and extracellular matrix synthesis, among other cell activities. Regarding that aspect, the effect of in vitro stimulations such as compression, stretching, bending or fluid shear stress loading modalities have been extensively studied. A fluid flow used to produce contactless mechanical stimulation induced by an air pulse could be easily achieved in vivo without altering the tissue integrity. METHODS A new air-pulse device for contactless and controlled mechanical simulation of a TECs was developed and validated in this study conducted in the following three phases: 1) conception of the controlled air-pulse device combined with a 3D printed bioreactor; 2) experimental and numerical mechanical characterization of the air-pulse impact by digital image correlation; and 3) achieving sterility and noncytotoxicity of the air-pulse and of the 3D printed bioreactor using a novel dedicated sterilization process. RESULTS We demonstrated that the treated PLA (polylactic acid) was noncytotoxic and did not influence cell proliferation. An ethanol/autoclaved sterilization protocol for 3D printed objects in PLA has been developed in this study, enabling the use of 3D printing in cell culture. A numerical twin of the device was developed and experimentally characterized by digital image correlation. It showed a coefficient of determination R2 = 0.98 between the numerical and averaged experimental surface displacement profiles of the TEC substitute. CONCLUSION The results of the study assessed the noncytotoxicity of PLA for prototyping by 3D printing the homemade bioreactor. A novel sterilization process for PLA was developed in this study based on a thermochemical process. A numerical twin using fluid-structure interaction method has been developed to investigate the micromechanical effects of air pulses inside the TEC, which cannot all be measured experimentally, for instance, wave propagation generated during the air-pulse impact. The device could be used to study the cell response to contactless cyclic mechanical stimulation, particularly in TEC with fibroblasts, stromal cells and mesenchymal stem cells, which have been shown to be sensitive to the frequency and strain level at the air-liquid interface.
Collapse
|
19
|
Adjustable Thermo-Responsive, Cell-Adhesive Tissue Engineering Scaffolds for Cell Stimulation through Periodic Changes in Culture Temperature. Int J Mol Sci 2022; 24:ijms24010572. [PMID: 36614014 PMCID: PMC9820143 DOI: 10.3390/ijms24010572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
A three-dimensional (3D) scaffold ideally provides hierarchical complexity and imitates the chemistry and mechanical properties of the natural cell environment. Here, we report on a stimuli-responsive photo-cross-linkable resin formulation for the fabrication of scaffolds by continuous digital light processing (cDLP), which allows for the mechano-stimulation of adherent cells. The resin comprises a network-forming trifunctional acrylate ester monomer (trimethylolpropane triacrylate, or TMPTA), N-isopropyl acrylamide (NiPAAm), cationic dimethylaminoethyl acrylate (DMAEA) for enhanced cell interaction, and 4-acryloyl morpholine (AMO) to adjust the phase transition temperature (Ttrans) of the equilibrium swollen cross-polymerized scaffold. With glycofurol as a biocompatible solvent, controlled three-dimensional structures were fabricated and the transition temperatures were adjusted by resin composition. The effects of the thermally induced mechano-stimulation were investigated with mouse fibroblasts (L929) and myoblasts (C2C12) on printed constructs. Periodic changes in the culture temperature stimulated the myoblast proliferation.
Collapse
|
20
|
Ponomareva S, Joisten H, François T, Naud C, Morel R, Hou Y, Myers T, Joumard I, Dieny B, Carriere M. Magnetic particles for triggering insulin release in INS-1E cells subjected to a rotating magnetic field. NANOSCALE 2022; 14:13274-13283. [PMID: 36056640 DOI: 10.1039/d2nr02009b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes is a major global health threat. Both academics and industry are striving to develop effective treatments for this disease. In this work, we present a new approach to induce insulin release from β-islet pancreatic cells (INS-1E) by mechanical stimulation. Two types of experiments were carried out. First, a local stimulation was performed by dispersing anisotropic magnetic particles within the cell medium, which settled down almost immediately on cell plasma membranes. Application of a low frequency magnetic field (up to 40 Hz) generated by a custom-made magnetic device resulted in oscillations of these particles, which then exerted a mechanical constraint on the cell plasma membranes. The second type of experiment consisted of a global stimulation, where cells were grown on magneto-elastic membranes composed of a biocompatible polymer with embedded magnetic particles. Upon application of a rotating magnetic field, magnetic particles within the membrane were attracted towards the field source, resulting in the membrane's vibrations being transmitted to the cells grown on it. In both experiments, the cell response to these mechanical stimulations caused by application of the variable magnetic field was quantified via the measurement of insulin release in the growth medium. We demonstrated that the mechanical action induced by the motion of magnetic particles or by membrane vibrations was an efficient stimulus for insulin granule secretion from β-cells. This opens a wide range of possible applications including the design of a system which triggers insulin secretion by β-islet pancreatic cells on demand.
Collapse
Affiliation(s)
- Svetlana Ponomareva
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SPINTEC, 38000 Grenoble, France.
| | - Helene Joisten
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SPINTEC, 38000 Grenoble, France.
- Univ. Grenoble Alpes, CEA, Leti, 38000 Grenoble, France
| | - Taina François
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SYMMES, 38000 Grenoble, France.
| | - Cecile Naud
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SPINTEC, 38000 Grenoble, France.
| | - Robert Morel
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SPINTEC, 38000 Grenoble, France.
| | - Yanxia Hou
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SYMMES, 38000 Grenoble, France.
| | - Thomas Myers
- Platform Kinetics, Pegholme, Wharfebank Mills, Otley, LS21 3JP, UK
| | - Isabelle Joumard
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SPINTEC, 38000 Grenoble, France.
| | - Bernard Dieny
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SPINTEC, 38000 Grenoble, France.
| | - Marie Carriere
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SYMMES, 38000 Grenoble, France.
| |
Collapse
|
21
|
Banh L, Cheung KK, Chan MWY, Young EWK, Viswanathan S. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis Cartilage 2022; 30:1050-1061. [PMID: 35460872 DOI: 10.1016/j.joca.2022.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Joint-on-a-chip (JOC) models are powerful tools that aid in osteoarthritis (OA) research. These microfluidic devices apply emerging organ-on-a-chip technology to recapitulate a multifaceted joint tissue microenvironment. JOCs address the need for advanced, dynamic in vitro models that can mimic the in vivo tissue environment through joint-relevant biomechanical or fluidic integration, an aspect that existing in vitro OA models lack. There are existing review articles on OA models that focus on animal, tissue explant, and two-dimensional and three-dimensional (3D) culture systems, including microbioreactors and 3D printing technology, but there has been limited discussion of JOC models. The aim of this article is to review recent developments in human JOC technology and identify gaps for future advancements. Specifically, mechanical stimulation systems that mimic articular movement, multi-joint tissue cultures that enable crosstalk, and systems that aim to capture aspects of OA inflammation by incorporating immune cells are covered. The development of an advanced JOC model that captures the dynamic joint microenvironment will improve testing and translation of potential OA therapeutics.
Collapse
Affiliation(s)
- L Banh
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| | - K K Cheung
- Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
| | - M W Y Chan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| | - E W K Young
- Institute of Biomedical Engineering, University of Toronto, Canada; Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
| | - S Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Canada.
| |
Collapse
|
22
|
Meng F, Cheng H, Qian J, Dai X, Huang Y, Fan Y. In vitro fluidic systems: Applying shear stress on endothelial cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Kunz P, King R. Secretory Vesicle and Glucoamylase Distribution in Aspergillus niger and Macromorphology in Regions of Varying Shear Stress. Front Microbiol 2022; 13:842249. [PMID: 35668754 PMCID: PMC9164161 DOI: 10.3389/fmicb.2022.842249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
In technical fermentations, filamentous microorganisms are exposed to different forms of mechanical stress, among which shear stress is prevalent in turbulent broths. Whereas small-scale bioreactors allow for realistic turbulent flow field conditions, they are not well-suited to investigate the fungal response to shear stress in more detail, as they only reveal the integral effect of a highly dynamic stress stimulus. Therefore, the widely used model system for producing constant, but rather low shear forces, the parallel plate flow chamber, is extended in this work by adding a backward-facing step (BFS). The BFS induces vortex shedding in the wake of the step and brings out distinct areas of different shear stress levels at the bottom of the chamber where mycelia grow. This allows for a stress-dependent analysis of growing cells using a confocal laser-scanning microscope. As the real stress cannot be measured in the experiment, the wall shear stress is estimated numerically using computational fluid dynamics (CFD). As a first application of the experimental setup, the relative biomass concentration, the relative amount of secretory vesicles and the relative amount of the chosen product glucoamylase produced by the filamentous fungus Aspergillus niger were measured. The obtained area scans show homogeneous mycelia growth in areas of low stress and cloud-like patterns downstream of the predicted flow reattachment length where high shear stress dominates. Quantitative analysis of the time course suggests that the amount of available secretory vesicles inside of A. niger decreases when the shear stress is increased, despite that no significant differences in biomass production could be found. In contrast, the highest level of glucoamylase was reached for intermediate volumetric flow rates, i.e., levels of shear stress.
Collapse
|
24
|
Abstract
In vitro meat (IVM) is a recent development in the production of sustainable food. The consumer perception of IVM has a strong impact on the commercial success of IVM. Hence this review examines existing studies related to consumer concerns, acceptance and uncertainty of IVM. This will help create better marketing strategies for IVM-producing companies in the future. In addition, IVM production is described in terms of the types of cells and culture conditions employed. The applications of self-organising, scaffolding, and 3D printing techniques to produce IVM are also discussed. As the conditions for IVM production are controlled and can be manipulated, it will be feasible to produce a chemically safe and disease-free meat with improved consumer acceptance on a sustainable basis.
Collapse
|
25
|
Vermeulen S, Birgani ZT, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials 2022; 283:121431. [DOI: 10.1016/j.biomaterials.2022.121431] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
|
26
|
Abusharkh HA, Reynolds OM, Mendenhall J, Gozen BA, Tingstad E, Idone V, Abu-Lail NI, Van Wie BJ. Combining stretching and gallic acid to decrease inflammation indices and promote extracellular matrix production in osteoarthritic human articular chondrocytes. Exp Cell Res 2021; 408:112841. [PMID: 34563516 DOI: 10.1016/j.yexcr.2021.112841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/21/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Osteoarthritis (OA) patients undergo cartilage degradation and experience painful joint swelling. OA symptoms are caused by inflammatory molecules and the upregulation of catabolic genes leading to the breakdown of cartilage extracellular matrix (ECM). Here, we investigate the effects of gallic acid (GA) and mechanical stretching on the expression of anabolic and catabolic genes and restoring ECM production by osteoarthritic human articular chondrocytes (hAChs) cultured in monolayers. hAChs were seeded onto conventional plates or silicone chambers with or without 100 μM GA. A 5% cyclic tensile strain (CTS) was applied to the silicone chambers and the deposition of collagen and glycosaminoglycan, and gene expressions of collagen types II (COL2A1), XI (COL11A2), I (COL1A1), and X (COL10A1), and matrix metalloproteinases (MMP-1 and MMP-13) as inflammation markers, were quantified. CTS and GA acted synergistically to promote the deposition of collagen and glycosaminoglycan in the ECM by 14- and 7-fold, respectively. Furthermore, the synergistic stimuli selectively upregulated the expression of cartilage-specific proteins, COL11A2 by 7-fold, and COL2A1 by 47-fold, and, in contrast, downregulated the expression of MMP-1 by 2.5-fold and MMP-13 by 125-fold. GA supplementation with CTS is a promising approach for restoring osteoarthritic hAChs ECM production ability making them suitable for complex tissue engineering applications.
Collapse
Affiliation(s)
- Haneen A Abusharkh
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| | - Olivia M Reynolds
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| | - Juana Mendenhall
- Department of Chemistry, Morehouse College, Atlanta, GA, 30314, USA.
| | - Bulent A Gozen
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164-2920, USA.
| | - Edwin Tingstad
- Inland Orthopedic Surgery and Sports Medicine Clinic, Pullman, WA, 99163, USA.
| | - Vincent Idone
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, 10591, USA.
| | - Nehal I Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, 78249-3209, USA.
| | - Bernard J Van Wie
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164-6515, USA.
| |
Collapse
|
27
|
Basehore SE, Bohlman S, Weber C, Swaminathan S, Zhang Y, Jang C, Arany Z, Clyne AM. Laminar Flow on Endothelial Cells Suppresses eNOS O-GlcNAcylation to Promote eNOS Activity. Circ Res 2021; 129:1054-1066. [PMID: 34605247 DOI: 10.1161/circresaha.121.318982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sarah E Basehore
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA (S.E.B., S.S.).,Fischell Department of Biomedical Engineering, College of Engineering, University of Maryland, College Park (S.B., C.W., A.M.C.)
| | - Samantha Bohlman
- Fischell Department of Biomedical Engineering, College of Engineering, University of Maryland, College Park (S.B., C.W., A.M.C.)
| | - Callie Weber
- Fischell Department of Biomedical Engineering, College of Engineering, University of Maryland, College Park (S.B., C.W., A.M.C.)
| | - Swathi Swaminathan
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA (S.E.B., S.S.)
| | - Yuji Zhang
- Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore (Y.Z.)
| | - Cholsoon Jang
- Biological Chemistry, Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine (C.J.)
| | - Zoltan Arany
- Perelman School of Medicine, University of Pennsylvania, Philadelphia (Z.A.)
| | - Alisa Morss Clyne
- Fischell Department of Biomedical Engineering, College of Engineering, University of Maryland, College Park (S.B., C.W., A.M.C.)
| |
Collapse
|
28
|
Zhong Y, Saleh A, Inal S. Decoding Electrophysiological Signals with Organic Electrochemical Transistors. Macromol Biosci 2021; 21:e2100187. [PMID: 34463019 DOI: 10.1002/mabi.202100187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/19/2021] [Indexed: 11/08/2022]
Abstract
The organic electrochemical transistor (OECT) has unique characteristics that distinguish it from other transistors and make it a promising electronic transducer of biological events. High transconductance, flexibility, and biocompatibility render OECTs ideal for detecting electrophysiological signals. Device properties such as transconductance, response time, and noise level should, however, be optimized to adapt to the needs of various application environments including in vitro cell culture, human skin, and inside of a living system. This review includes an overview of the origin of electrophysiological signals, the working principles of OECTs, and methods for performance optimization. While covering recent research examples of the use of OECTs in electrophysiology, a perspective is provided for next-generation bioelectric sensors and amplifiers for electrophysiology applications.
Collapse
Affiliation(s)
- Yizhou Zhong
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sahika Inal
- Organic Bioelectronics Laboratory, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
29
|
In silico stress fibre content affects peak strain in cytoplasm and nucleus but not in the membrane for uniaxial substrate stretch. Med Biol Eng Comput 2021; 59:1933-1944. [PMID: 34392447 DOI: 10.1007/s11517-021-02393-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/13/2021] [Indexed: 10/20/2022]
Abstract
Existing in silico models for single cell mechanics feature limited representations of cytoskeletal structures that contribute substantially to the mechanics of a cell. We propose a micromechanical hierarchical approach to capture the mechanical contribution of actin stress fibres. For a cell-specific fibroblast geometry with membrane, cytoplasm and nucleus, the Mori-Tanaka homogenization method was employed to describe cytoplasmic inhomogeneities and constitutive contribution of actin stress fibres. The homogenization was implemented in a finite element model of the fibroblast attached to a substrate through focal adhesions. Strain in cell membrane, cytoplasm and nucleus due to uniaxial substrate stretch was assessed for different stress fibre volume fractions and different elastic modulus of the substrate. A considerable decrease of the peak strain with increasing stress fibre content was observed in cytoplasm and nucleus but not the membrane, whereas the peak strain in cytoplasm, nucleus and membrane increased for increasing elastic modulus of the substrate. Finite element mesh of reconstructed human fibroblast and intracellular strain distribution in cell subjected to substrate stretch.
Collapse
|
30
|
Becerra N, Salis B, Tedesco M, Moreno Flores S, Vena P, Raiteri R. AFM and Fluorescence Microscopy of Single Cells with Simultaneous Mechanical Stimulation via Electrically Stretchable Substrates. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4131. [PMID: 34361325 PMCID: PMC8347060 DOI: 10.3390/ma14154131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
We have developed a novel experimental set-up that simultaneously, (i) applies static and dynamic deformations to adherent cells in culture, (ii) allows the visualization of cells under fluorescence microscopy, and (iii) allows atomic force microscopy nanoindentation measurements of the mechanical properties of the cells. The cell stretcher device relies on a dielectric elastomer film that can be electro-actuated and acts as the cell culture substrate. The shape and position of the electrodes actuating the film can be controlled by design in order to obtain specific deformations across the cell culture chamber. By using optical markers we characterized the strain fields under different electrode configurations and applied potentials. The combined setup, which includes the cell stretcher device, an atomic force microscope, and an inverted optical microscope, can assess in situ and with sub-micron spatial resolution single cell topography and elasticity, as well as ion fluxes, during the application of static deformations. Proof of performance on fibroblasts shows a reproducible increase in the average cell elastic modulus as a response to applied uniaxial stretch of just 4%. Additionally, high resolution topography and elasticity maps on a single fibroblast can be acquired while the cell is deformed, providing evidence of long-term instrumental stability. This study provides a proof-of-concept of a novel platform that allows in situ and real time investigation of single cell mechano-transduction phenomena with sub-cellular spatial resolution.
Collapse
Affiliation(s)
- Natalia Becerra
- Department of Informatics, Bioengineering, Robotics, and System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy; (N.B.); (B.S.); (M.T.)
- Tissue Engineering and Cell Therapy Group (GITTC), School of Medicine University of Antioquia, Medellin 050010, Colombia
| | - Barbara Salis
- Department of Informatics, Bioengineering, Robotics, and System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy; (N.B.); (B.S.); (M.T.)
| | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics, and System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy; (N.B.); (B.S.); (M.T.)
| | | | - Pasquale Vena
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, 20133 Milan, Italy;
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy; (N.B.); (B.S.); (M.T.)
- The National Research Council-Institute of Biophysics, 16149 Genova, Italy
| |
Collapse
|
31
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
32
|
Babaliari E, Kavatzikidou P, Mitraki A, Papaharilaou Y, Ranella A, Stratakis E. Combined effect of shear stress and laser-patterned topography on Schwann cell outgrowth: synergistic or antagonistic? Biomater Sci 2021; 9:1334-1344. [PMID: 33367414 DOI: 10.1039/d0bm01218a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the peripheral nervous system exhibits a higher rate of regeneration than that of the central nervous system through a spontaneous regeneration after injury, the functional recovery is fairly infrequent and misdirected. Thus, the development of successful methods to guide neuronal outgrowth, in vitro, is of great importance. In this study, a precise flow controlled microfluidic system with specific custom-designed chambers, incorporating laser-microstructured polyethylene terephthalate (PET) substrates comprising microgrooves, was fabricated to assess the combined effect of shear stress and topography on Schwann cells' behavior. The microgrooves were positioned either parallel or perpendicular to the direction of the flow inside the chambers. Additionally, the cell culture results were combined with computational flow simulations to calculate accurately the shear stress values. Our results demonstrated that wall shear stress gradients may be acting either synergistically or antagonistically depending on the substrate groove orientation relative to the flow direction. The ability to control cell alignment in vitro could potentially be used in the fields of neural tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology - Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.) Vassilika Vouton, 70013 Heraklion, Greece.
| | | | | | | | | | | |
Collapse
|
33
|
Tissue Chips and Microphysiological Systems for Disease Modeling and Drug Testing. MICROMACHINES 2021; 12:mi12020139. [PMID: 33525451 PMCID: PMC7911320 DOI: 10.3390/mi12020139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
Tissue chips (TCs) and microphysiological systems (MPSs) that incorporate human cells are novel platforms to model disease and screen drugs and provide an alternative to traditional animal studies. This review highlights the basic definitions of TCs and MPSs, examines four major organs/tissues, identifies critical parameters for organization and function (tissue organization, blood flow, and physical stresses), reviews current microfluidic approaches to recreate tissues, and discusses current shortcomings and future directions for the development and application of these technologies. The organs emphasized are those involved in the metabolism or excretion of drugs (hepatic and renal systems) and organs sensitive to drug toxicity (cardiovascular system). This article examines the microfluidic/microfabrication approaches for each organ individually and identifies specific examples of TCs. This review will provide an excellent starting point for understanding, designing, and constructing novel TCs for possible integration within MPS.
Collapse
|
34
|
Hamraoui A, Sénépart O, Schneider M, Malaquin S, Péronne E, Becerra L, Semprez F, Legay C, Belliard L. Correlative Imaging of Motoneuronal Cell Elasticity by Pump and Probe Spectroscopy. Biophys J 2021; 120:402-408. [PMID: 33421413 DOI: 10.1016/j.bpj.2020.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 11/15/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
Because of their role of information transmitter between the spinal cord and the muscle fibers, motor neurons are subject to physical stimulation and mechanical property modifications. We report on motoneuron elasticity investigated by time-resolved pump and probe spectroscopy. A dual picosecond geometry simultaneously probing the acoustic impedance mismatch at the cell-titanium transducer interface and acoustic wave propagation inside the motoneuron is presented. Such noncontact and nondestructive microscopy, correlated to standard atomic force microscopy or a fluorescent labels approach, has been carried out on a single cell to address some physical properties such as bulk modulus of elasticity, dynamical longitudinal viscosity, and adhesion.
Collapse
Affiliation(s)
- Ahmed Hamraoui
- Sorbonne Université, CNRS, Collège de France, UMR7574, Laboratoire de Chimie de la Matière Condensée de Paris, Paris, France; Université de Paris, Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Paris, France.
| | - Océane Sénépart
- Sorbonne Université, CNRS, Collège de France, UMR7574, Laboratoire de Chimie de la Matière Condensée de Paris, Paris, France; Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université de Paris, Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Paris, France; Centre de recherche de l'ECE Paris-Lyon, Paris, France
| | - Maxime Schneider
- Sorbonne Université, CNRS, Collège de France, UMR7574, Laboratoire de Chimie de la Matière Condensée de Paris, Paris, France; Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université de Paris, Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Paris, France; Centre de recherche de l'ECE Paris-Lyon, Paris, France
| | - Sophie Malaquin
- Sorbonne Université, CNRS UMR7588, Institut des Nanosciences de Paris, Paris, France
| | - Emmanuel Péronne
- Sorbonne Université, CNRS UMR7588, Institut des Nanosciences de Paris, Paris, France
| | - Loïc Becerra
- Sorbonne Université, CNRS UMR7588, Institut des Nanosciences de Paris, Paris, France
| | - Fannie Semprez
- Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université de Paris, Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Paris, France
| | - Claire Legay
- Saints-Pères Paris Institute for the Neurosciences, CNRS UMR 8003, Université de Paris, Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Paris, France
| | - Laurent Belliard
- Sorbonne Université, CNRS UMR7588, Institut des Nanosciences de Paris, Paris, France
| |
Collapse
|
35
|
Joseph J, Ziegelmann MJ, Alom M, Savage J, Köhler TS, Trost L. Outcomes of RestoreX Penile Traction Therapy in Men With Peyronie's Disease: Results From Open Label and Follow-up Phases. J Sex Med 2020; 17:2462-2471. [PMID: 33223425 DOI: 10.1016/j.jsxm.2020.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/07/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND A randomized, controlled clinical trial evaluating the efficacy of RestoreX traction therapy in men with Peyronie's disease (PD) has been completed, with the 3-month results previously reported. The present study presents outcomes from the open-label and follow-up phases of the original trial. AIM To report 6-month (open-label phase) and 9-month (follow-up phase) outcomes from a randomized, controlled trial (NCT03389854). METHODS A randomized controlled trial was performed from 2017 to 2019 in 110 all-comer men with PD. Men were randomized 3:1 to RestoreX (PTT) or no therapy (control) for 3 months, followed by 3-month open-label and follow-up phases. Key outcomes included adverse events (AEs), changes in penile curvature and length, erectile function, and standardized and nonstandardized assessments of PD. OUTCOMES The primary outcomes are safety, penile length, penile curvature, Peyronie's Disease Questionnaire, International Index of Erectile Function, and satisfaction. RESULTS 6-month (n = 64) and 9-month (n = 63) outcomes were reported, with a mean duration of PTT use of 31.1 minutes. No significant AEs were reported, with temporary erythema and discomfort being most common and resolving within minutes. On intent-to-treat analysis, control-to-PTT men experienced significant length (1.7-2.0 cm) and curvature improvements (18-20%). PTT-to-PTT men also achieved additional length (0.6-0.8 cm) without further curvature improvements. An as-treated analysis of PTT use ≥15 minute/day demonstrated 2.0- to 2.3-cm length gains (largest of any PTT to date) and 18-21% curve improvement. All sexual function domains of the International Index of Erectile Function and Peyronie's Disease Questionnaire were significantly improved (except orgasmic domain). 95% of men treated for 6 months experienced length gains (mean 2.0-2.2 cm), and 61% had curve improvements (16.8-21.4° [32.8-35.8%]). RestoreX was preferred 3-4:1 over all other PD treatments, and 100% preferred it over other PTT devices. CLINICAL IMPLICATIONS Use of RestoreX 30 minutes daily results in significant length and curve improvements in PD men without significant AEs. STRENGTHS & LIMITATIONS Strengths include largest randomized study of PTT, blinded assessments, and inclusion of all-comers with few restrictions; limitations include sample size that precludes comparisons between treatment cohorts and lack of long-duration (>3-9 hours) treatment arm. CONCLUSION PTT with RestoreX results in significant improvements in length, curve, and subjective and objective measures of sexual function without significant AEs. RestoreX PTT represents a safe, conservative, low-cost option for managing men with PD. Joseph J, Ziegelmann M, Alom M, et al. Outcomes of RestoreX Penile Traction Therapy in Men With Peyronie's Disease: Results From Open Label and Follow-up Phases. J Sex Med 2020;17:2462-2471.
Collapse
Affiliation(s)
| | | | | | - Joshua Savage
- Mayo Clinic, Rochester, MN, USA; Male Fertility and Peyronie's Clinic, Orem, UT, USA
| | | | - Landon Trost
- Mayo Clinic, Rochester, MN, USA; Male Fertility and Peyronie's Clinic, Orem, UT, USA.
| |
Collapse
|
36
|
Lee J, Armenta Ochoa M, Maceda P, Yoon E, Samarneh L, Wong M, Baker AB. A high throughput screening system for studying the effects of applied mechanical forces on reprogramming factor expression. Sci Rep 2020; 10:15469. [PMID: 32963285 PMCID: PMC7508814 DOI: 10.1038/s41598-020-72158-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Mechanical forces are important in the regulation of physiological homeostasis and the development of disease. The application of mechanical forces to cultured cells is often performed using specialized systems that lack the flexibility and throughput of other biological techniques. In this study, we developed a high throughput platform for applying complex dynamic mechanical forces to cultured cells. We validated the system for its ability to accurately apply parallel mechanical stretch in a 96 well plate format in 576 well simultaneously. Using this system, we screened for optimized conditions to stimulate increases in Oct-4 and other transcription factor expression in mouse fibroblasts. Using high throughput mechanobiological screening assays, we identified small molecules that can synergistically enhance the increase in reprograming-related gene expression in mouse fibroblasts when combined with mechanical loading. Taken together, our findings demonstrate a new powerful tool for investigating the mechanobiological mechanisms of disease and performing drug screening in the presence of applied mechanical load.
Collapse
Affiliation(s)
- Jason Lee
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Miguel Armenta Ochoa
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Pablo Maceda
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Eun Yoon
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Lara Samarneh
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Mitchell Wong
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA. .,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA. .,The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA. .,Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
37
|
Thomas T, Rubfiaro AS, Nautiyal P, Brooks R, Dickerson D, He J, Agarwal A. Extrusion 3D Printing of Porous Silicone Architectures for Engineering Human Cardiomyocyte-Infused Patches Mimicking Adult Heart Stiffness. ACS APPLIED BIO MATERIALS 2020; 3:5865-5871. [PMID: 35021814 DOI: 10.1021/acsabm.0c00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiac patches, three-dimensional (3D) constructs of polymer scaffold and heart muscle cells, have received widespread attention for regenerative therapy to repair damaged heart tissue. The implanted patches should mimic the micromechanical environment of native myocardium for effective integration and optimum mechanical function. In this study, we engineered compliant silicone scaffolds infused with cardiomyocytes (CMs) differentiated from human-induced pluripotent stem cells. Porous scaffolds are fabricated by extrusion 3D printing of room-temperature-vulcanized (RTV) silicone rubber. The stiffness and strength of scaffolds are tailored by designing a polymer strand arrangement during 3D printing. Single-strand scaffold design is found to display a tensile Young's modulus of ∼280 kPa, which is optimum for supporting CMs without impairing their contractility. Uniform distribution of cells in the scaffold is observed, ascribed to 3D migration facilitated by interconnected porous architecture. The patches demonstrated synchronized contraction 10 days after seeding scaffolds with CMs. Indentation measurements reveal that the contracting cell-scaffold patches display local moduli varying from ∼270 to 530 kPa, which covers the upper spectrum of the stiffness range displayed by the human heart. This study demonstrates the effectiveness of a porous 3D scaffold composed of flexible silicone rubber for CMs percolation, supporting a contractile activity, and mimicking native heart stiffness.
Collapse
Affiliation(s)
- Tony Thomas
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Alberto S Rubfiaro
- Department of Physics, Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| | - Pranjal Nautiyal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Roy Brooks
- Department of Mechanical Engineering, Universidad Ana G. Mendez, Recinto de Gurabo 00777, Puerto Rico
| | - Darryl Dickerson
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Jin He
- Department of Physics, Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| |
Collapse
|
38
|
Hippler M, Weißenbruch K, Richler K, Lemma ED, Nakahata M, Richter B, Barner-Kowollik C, Takashima Y, Harada A, Blasco E, Wegener M, Tanaka M, Bastmeyer M. Mechanical stimulation of single cells by reversible host-guest interactions in 3D microscaffolds. SCIENCE ADVANCES 2020; 6:6/39/eabc2648. [PMID: 32967835 PMCID: PMC7531888 DOI: 10.1126/sciadv.abc2648] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/07/2020] [Indexed: 05/19/2023]
Abstract
Many essential cellular processes are regulated by mechanical properties of their microenvironment. Here, we introduce stimuli-responsive composite scaffolds fabricated by three-dimensional (3D) laser lithography to simultaneously stretch large numbers of single cells in tailored 3D microenvironments. The key material is a stimuli-responsive photoresist containing cross-links formed by noncovalent, directional interactions between β-cyclodextrin (host) and adamantane (guest). This allows reversible actuation under physiological conditions by application of soluble competitive guests. Cells adhering in these scaffolds build up initial traction forces of ~80 nN. After application of an equibiaxial stretch of up to 25%, cells remodel their actin cytoskeleton, double their traction forces, and equilibrate at a new dynamic set point within 30 min. When the stretch is released, traction forces gradually decrease until the initial set point is retrieved. Pharmacological inhibition or knockout of nonmuscle myosin 2A prevents these adjustments, suggesting that cellular tensional homeostasis strongly depends on functional myosin motors.
Collapse
Affiliation(s)
- Marc Hippler
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Kai Weißenbruch
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Kai Richler
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Enrico D Lemma
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Masaki Nakahata
- Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Benjamin Richter
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Eva Blasco
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Motomu Tanaka
- Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Martin Bastmeyer
- Zoological Institute, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| |
Collapse
|
39
|
Huang H, Dai C, Shen H, Gu M, Wang Y, Liu J, Chen L, Sun L. Recent Advances on the Model, Measurement Technique, and Application of Single Cell Mechanics. Int J Mol Sci 2020; 21:E6248. [PMID: 32872378 PMCID: PMC7504142 DOI: 10.3390/ijms21176248] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since the cell was discovered by humans, it has been an important research subject for researchers. The mechanical response of cells to external stimuli and the biomechanical response inside cells are of great significance for maintaining the life activities of cells. These biomechanical behaviors have wide applications in the fields of disease research and micromanipulation. In order to study the mechanical behavior of single cells, various cell mechanics models have been proposed. In addition, the measurement technologies of single cells have been greatly developed. These models, combined with experimental techniques, can effectively explain the biomechanical behavior and reaction mechanism of cells. In this review, we first introduce the basic concept and biomechanical background of cells, then summarize the research progress of internal force models and experimental techniques in the field of cell mechanics and discuss the latest mechanical models and experimental methods. We summarize the application directions of cell mechanics and put forward the future perspectives of a cell mechanics model.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhu Liu
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | - Liguo Chen
- School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215123, China; (H.H.); (C.D.); (H.S.); (M.G.); (Y.W.); (L.S.)
| | | |
Collapse
|
40
|
BEaTS-α an open access 3D printed device for in vitro electromechanical stimulation of human induced pluripotent stem cells. Sci Rep 2020; 10:11274. [PMID: 32647145 PMCID: PMC7347879 DOI: 10.1038/s41598-020-67169-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
3D printing was used to develop an open access device capable of simultaneous electrical and mechanical stimulation of human induced pluripotent stem cells in 6-well plates. The device was designed using Computer-Aided Design (CAD) and 3D printed with autoclavable, FDA-approved materials. The compact design of the device and materials selection allows for its use inside cell incubators working at high humidity without the risk of overheating or corrosion. Mechanical stimulation of cells was carried out through the cyclic deflection of flexible, translucent silicone membranes by means of a vacuum-controlled, open-access device. A rhythmic stimulation cycle was programmed to create a more physiologically relevant in vitro model. This mechanical stimulation was coupled and synchronized with in situ electrical stimuli. We assessed the capabilities of our device to support cardiac myocytes derived from human induced pluripotent stem cells, confirming that cells cultured under electromechanical stimulation presented a defined/mature cardiomyocyte phenotype. This 3D printed device provides a unique high-throughput in vitro system that combines both mechanical and electrical stimulation, and as such, we foresee it finding applications in the study of any electrically responsive tissue such as muscles and nerves.
Collapse
|
41
|
Mojena-Medina D, Martínez-Hernández M, de la Fuente M, García-Isla G, Posada J, Jorcano JL, Acedo P. Design, Implementation, and Validation of a Piezoelectric Device to Study the Effects of Dynamic Mechanical Stimulation on Cell Proliferation, Migration and Morphology. SENSORS 2020; 20:s20072155. [PMID: 32290334 PMCID: PMC7180771 DOI: 10.3390/s20072155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Cell functions and behavior are regulated not only by soluble (biochemical) signals but also by biophysical and mechanical cues within the cells' microenvironment. Thanks to the dynamical and complex cell machinery, cells are genuine and effective mechanotransducers translating mechanical stimuli into biochemical signals, which eventually alter multiple aspects of their own homeostasis. Given the dominant and classic biochemical-based views to explain biological processes, it could be challenging to elucidate the key role that mechanical parameters such as vibration, frequency, and force play in biology. Gaining a better understanding of how mechanical stimuli (and their mechanical parameters associated) affect biological outcomes relies partially on the availability of experimental tools that may allow researchers to alter mechanically the cell's microenvironment and observe cell responses. Here, we introduce a new device to study in vitro responses of cells to dynamic mechanical stimulation using a piezoelectric membrane. Using this device, we can flexibly change the parameters of the dynamic mechanical stimulation (frequency, amplitude, and duration of the stimuli), which increases the possibility to study the cell behavior under different mechanical excitations. We report on the design and implementation of such device and the characterization of its dynamic mechanical properties. By using this device, we have performed a preliminary study on the effect of dynamic mechanical stimulation in a cell monolayer of an epidermal cell line (HaCaT) studying the effects of 1 Hz and 80 Hz excitation frequencies (in the dynamic stimuli) on HaCaT cell migration, proliferation, and morphology. Our preliminary results indicate that the response of HaCaT is dependent on the frequency of stimulation. The device is economic, easily replicated in other laboratories and can support research for a better understanding of mechanisms mediating cellular mechanotransduction.
Collapse
Affiliation(s)
- Dahiana Mojena-Medina
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (J.P.); (P.A.)
- Correspondence:
| | - Marina Martínez-Hernández
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (M.M.-H.); (M.d.l.F.); (G.G.-I.); (J.L.J.)
| | - Miguel de la Fuente
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (M.M.-H.); (M.d.l.F.); (G.G.-I.); (J.L.J.)
| | - Guadalupe García-Isla
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (M.M.-H.); (M.d.l.F.); (G.G.-I.); (J.L.J.)
| | - Julio Posada
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (J.P.); (P.A.)
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (M.M.-H.); (M.d.l.F.); (G.G.-I.); (J.L.J.)
| | - Pablo Acedo
- Department of Electronics Technology, Universidad Carlos III de Madrid, 28911 Madrid, Spain; (J.P.); (P.A.)
| |
Collapse
|
42
|
Sedlak JM, Clyne AM. A Modified Parallel Plate Flow Chamber to Study Local Endothelial Response to Recirculating Disturbed Flow. J Biomech Eng 2020; 142:041003. [PMID: 31536122 PMCID: PMC7104763 DOI: 10.1115/1.4044899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 08/28/2019] [Indexed: 11/08/2022]
Abstract
Atherosclerosis develops at arterial sites where endothelial cells (ECs) are exposed to low time-averaged shear stress, in particular in regions of recirculating disturbed flow. To understand how hemodynamics contributes to EC dysfunction in atheroma development, an in vitro parallel plate flow chamber gasket was modified with protruding baffles to produce large recirculating flow regions. Computational fluid dynamics (CFD) predicted that more than 60% of the flow surface area was below the 12 dynes/cm2 atheroprotective threshold. Bovine aortic endothelial cells (BAECs) were then seeded in the parallel plate flow chamber with either the standard laminar or the new disturbed flow gasket (DFG) and exposed to flow for 36 h. Cell morphology, nitric oxide (NO), proliferation, permeability, and monocyte adhesion were assessed by phase contrast and confocal microscopy. BAEC exposed to 20 dynes/cm2 shear stress in the laminar flow device aligned and elongated in the flow direction while increasing nitric oxide, decreasing permeability, and maintaining low proliferation and monocyte adhesion. BAEC in the recirculating flow and low shear stress disturbed flow device regions did not elongate or align, produced less nitric oxide, and showed higher proliferation, permeability, and monocyte adhesion than cells in the laminar flow device. However, cells in disturbed flow device regions exposed to atheroprotective shear stress did not consistently align or decrease permeability, and these cells demonstrated low nitric oxide levels. The new parallel plate DFG provides a means to study recirculating flow, highlighting the complex relationship between hemodynamics and endothelial function.
Collapse
Affiliation(s)
- Jason Matthew Sedlak
- School of Biomedical Engineering, Science, and Health Systems,
Drexel University, 3141 Chestnut Street,
Philadelphia, PA 19104
e-mail:
| | - Alisa Morss Clyne
- Fellow ASME Department of Mechanical Engineering, Drexel
University, 3141 Chestnut Street, Philadelphia,
PA 19104 e-mail:
| |
Collapse
|
43
|
Costa J, Ghilardi M, Mamone V, Ferrari V, Busfield JJC, Ahluwalia A, Carpi F. Bioreactor With Electrically Deformable Curved Membranes for Mechanical Stimulation of Cell Cultures. Front Bioeng Biotechnol 2020; 8:22. [PMID: 32047746 PMCID: PMC6997204 DOI: 10.3389/fbioe.2020.00022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Physiologically relevant in vitro models of stretchable biological tissues, such as muscle, lung, cardiac and gastro-intestinal tissues, should mimic the mechanical cues which cells are exposed to in their dynamic microenvironment in vivo. In particular, in order to mimic the mechanical stimulation of tissues in a physiologically relevant manner, cell stretching is often desirable on surfaces with dynamically controllable curvature. Here, we present a device that can deform cell culture membranes without the current need for external pneumatic/fluidic or electrical motors, which typically make the systems bulky and difficult to operate. We describe a modular device that uses elastomeric membranes, which can intrinsically be deformed by electrical means, producing a dynamically tuneable curvature. This approach leads to compact, self-contained, lightweight and versatile bioreactors, not requiring any additional mechanical equipment. This was obtained via a special type of dielectric elastomer actuator. The structure, operation and performance of early prototypes are described, showing preliminary evidence on their ability to induce changes on the spatial arrangement of the cytoskeleton of fibroblasts dynamically stretched for 8 h.
Collapse
Affiliation(s)
- Joana Costa
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Michele Ghilardi
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.,Materials Research Institute, Queen Mary University of London, London, United Kingdom
| | - Virginia Mamone
- Department of Information Engineering, University of Pisa, Pisa, Italy.,Department of Information Engineering, EndoCAS Center for Computer Assisted Surgery, University of Pisa, Pisa, Italy
| | - Vincenzo Ferrari
- Department of Information Engineering, University of Pisa, Pisa, Italy.,Department of Information Engineering, EndoCAS Center for Computer Assisted Surgery, University of Pisa, Pisa, Italy
| | - James J C Busfield
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom.,Materials Research Institute, Queen Mary University of London, London, United Kingdom
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Federico Carpi
- Department of Industrial Engineering, University of Florence, Florence, Italy
| |
Collapse
|
44
|
Veith A, Conway D, Mei L, Eskin SG, McIntire LV, Baker AB. Effects of Mechanical Forces on Cells and Tissues. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
General Study and Gene Expression Profiling of Endotheliocytes Cultivated on Electrospun Materials. MATERIALS 2019; 12:ma12244082. [PMID: 31817735 PMCID: PMC6947544 DOI: 10.3390/ma12244082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Endothelization of the luminal surface of vascular grafts is required for their long-term functioning. Here, we have cultivated human endothelial cells (HUVEC) on different 3D matrices to assess cell proliferation, gene expression and select the best substrate for endothelization. 3D matrices were produced by electrospinning from solutions of poly(D,L-lactide-co-glycolide) (PLGA), polycaprolactone (PCL), and blends of PCL with gelatin (Gl) in hexafluoroisopropanol. Structure and surface properties of 3D matrices were characterized by SEM, AFM, and sessile drop analysis. Cell adhesion, viability, and proliferation were studied by SEM, Alamar Blue staining, and 5-ethynyl-2’-deoxyuridine (EdU) assay. Gene expression profiling was done on an Illumina HiSeq 2500 platform. Obtained data indicated that 3D matrices produced from PCL with Gl and treated with glutaraldehyde provide the most suitable support for HUVEC adhesion and proliferation. Transcriptome sequencing has demonstrated a minimal difference of gene expression profile in HUVEC cultivated on the surface of these matrices as compared to tissue culture plastic, thus confirming these matrices as the best support for endothelization.
Collapse
|
46
|
Li Z, Gao C, Fan S, Zou J, Gu G, Dong M, Song J. Cell Nanomechanics Based on Dielectric Elastomer Actuator Device. NANO-MICRO LETTERS 2019; 11:98. [PMID: 34138039 PMCID: PMC7770812 DOI: 10.1007/s40820-019-0331-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 05/23/2023]
Abstract
As a frontier of biology, mechanobiology plays an important role in tissue and biomedical engineering. It is a common sense that mechanical cues under extracellular microenvironment affect a lot in regulating the behaviors of cells such as proliferation and gene expression, etc. In such an interdisciplinary field, engineering methods like the pneumatic and motor-driven devices have been employed for years. Nevertheless, such techniques usually rely on complex structures, which cost much but not so easy to control. Dielectric elastomer actuators (DEAs) are well known as a kind of soft actuation technology, and their research prospect in biomechanical field is gradually concerned due to their properties just like large deformation (> 100%) and fast response (< 1 ms). In addition, DEAs are usually optically transparent and can be fabricated into small volume, which make them easy to cooperate with regular microscope to realize real-time dynamic imaging of cells. This paper first reviews the basic components, principle, and evaluation of DEAs and then overview some corresponding applications of DEAs for cellular mechanobiology research. We also provide a comparison between DEA-based bioreactors and current custom-built devices and share some opinions about their potential applications in the future according to widely reported results via other methods.
Collapse
Affiliation(s)
- Zhichao Li
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chao Gao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Sisi Fan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiang Zou
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Guoying Gu
- Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
47
|
Asmani M, Kotei C, Hsia I, Marecki L, Wang T, Zhou C, Zhao R. Cyclic Stretching of Fibrotic Microtissue Array for Evaluation of Anti-Fibrosis Drugs. Cell Mol Bioeng 2019; 12:529-540. [PMID: 31719931 DOI: 10.1007/s12195-019-00590-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/17/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Progression of pulmonary fibrosis, characterized by the deterioration of lung tissue's mechanical properties, is affected by respiratory motion-induced dynamic loading. Since the development of anti-fibrosis drugs faces major hurdles in animal tests and human clinical trials, preclinical models that can recapitulate fibrosis progression under physiologically-relevant cyclic loading hold great promise. However, the integration of these two functions has not been achieved in existing models. Methods Recently we developed static human lung microtissue arrays that recapitulate the progressive changes in tissue mechanics during lung fibrogenesis. In the current study, we integrate the lung microtissue array with a membrane stretching system to enable dynamic loading to the microtissues. The effects of a pro-fibrotic agent and anti-fibrosis drugs were tested under cyclic stretching. Results Cyclic stretching that mimics respiratory motion was shown to affect the cytoskeletal organization and cellular orientation in the microtissue and cause the increase in microtissue contractility and stiffness. Fibrosis induction using TGF-β1 further promoted fibrosis-related mechanical activity of the lung microtissues. Using this system, we examined the therapeutic effects of two FDA approved anti-fibrotic drugs. Our results showed that Nintedanib was able to fully inhibit TGF-β1 induced force increase but only partially inhibited stretching induced force increase. In contrast, Pirfenidone was able to fully inhibit both TGF-β1 induced force increase and stretching-induced force increase. Conclusions Together, these results highlight the pathophysiologically-relevant modeling capability of the current fibrotic microtissue system and demonstrated the potential of this system to be used for anti-fibrosis drug screening.
Collapse
Affiliation(s)
- Mohammadnabi Asmani
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Christopher Kotei
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Isaac Hsia
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Leo Marecki
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Tianjiao Wang
- Department of Industrial and Systems Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Chi Zhou
- Department of Industrial and Systems Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260 USA
| |
Collapse
|
48
|
Costa J, Ahluwalia A. Advances and Current Challenges in Intestinal in vitro Model Engineering: A Digest. Front Bioeng Biotechnol 2019; 7:144. [PMID: 31275931 PMCID: PMC6591368 DOI: 10.3389/fbioe.2019.00144] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/28/2019] [Indexed: 12/30/2022] Open
Abstract
The physiological environment of the intestine is characterized by its variegated composition, numerous functions and unique dynamic conditions, making it challenging to recreate the organ in vitro. This review outlines the requirements for engineering physiologically relevant intestinal in vitro models, mainly focusing on the importance of the mechano-structural cues that are often neglected in classic cell culture systems. More precisely: the topography, motility and flow present in the intestinal epithelium. After defining quantitative descriptors for these features, we describe the current state of the art, citing relevant approaches used to address one (or more) of the elements in question, pursuing a progressive conceptual construction of an "ideal" biomimetic intestinal model. The review concludes with a critical assessment of the currently available methods to summarize the important features of the intestinal tissue in the light of their different applications.
Collapse
Affiliation(s)
| | - Arti Ahluwalia
- Research Center “E. Piaggio” and Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
49
|
Avant RA, Ziegelmann M, Nehra A, Alom M, Kohler T, Trost L. Penile Traction Therapy and Vacuum Erection Devices in Peyronie's Disease. Sex Med Rev 2019; 7:338-348. [DOI: 10.1016/j.sxmr.2018.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/26/2018] [Accepted: 02/05/2018] [Indexed: 11/17/2022]
|
50
|
Uniaxial Cyclic Tensile Stretching at 8% Strain Exclusively Promotes Tenogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:9723025. [PMID: 30918524 PMCID: PMC6409073 DOI: 10.1155/2019/9723025] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/13/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
The present study was conducted to establish the amount of mechanical strain (uniaxial cyclic stretching) required to provide optimal tenogenic differentiation expression in human mesenchymal stromal cells (hMSCs) in vitro, in view of its potential application for tendon maintenance and regeneration. Methods. In the present study, hMSCs were subjected to 1 Hz uniaxial cyclic stretching for 6, 24, 48, and 72 hours; and were compared to unstretched cells. Changes in cell morphology were observed under light and atomic force microscopy. The tenogenic, osteogenic, adipogenic, and chondrogenic differentiation potential of hMSCs were evaluated using biochemical assays, extracellular matrix expressions, and selected mesenchyme gene expression markers; and were compared to primary tenocytes. Results. Cells subjected to loading displayed cytoskeletal coarsening, longer actin stress fiber, and higher cell stiffness as early as 6 hours. At 8% and 12% strains, an increase in collagen I, collagen III, fibronectin, and N-cadherin production was observed. Tenogenic gene expressions were highly expressed (p < 0.05) at 8% (highest) and 12%, both comparable to tenocytes. In contrast, the osteoblastic, chondrogenic, and adipogenic marker genes appeared to be downregulated. Conclusion. Our study suggests that mechanical loading at 8% strain and 1 Hz provides exclusive tenogenic differentiation; and produced comparable protein and gene expression to primary tenocytes.
Collapse
|