1
|
Huang Z, Tan J, Li Y, Miao S, Scotland KB, Chew BH, Lange D, Chen DDY. Migration time correction for dual pressure capillary electrophoresis in semi‐targeted metabolomics study. Electrophoresis 2022; 43:1626-1637. [DOI: 10.1002/elps.202100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Zi‐Ao Huang
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - Jiahua Tan
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - Yueyang Li
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - Siyu Miao
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| | - Kymora B. Scotland
- Department of Urology University of California, Los Angeles Los Angeles California USA
| | - Ben H. Chew
- Department of Urologic Sciences The Stone Centre at Vancouver General Hospital University of British Columbia Vancouver British Columbia Canada
| | - Dirk Lange
- Department of Urologic Sciences The Stone Centre at Vancouver General Hospital University of British Columbia Vancouver British Columbia Canada
| | - David D. Y. Chen
- Department of Chemistry University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
2
|
Drouin N, van Mever M, Zhang W, Tobolkina E, Ferre S, Servais AC, Gou MJ, Nyssen L, Fillet M, Lageveen-Kammeijer GS, Nouta J, Chetwynd AJ, Lynch I, Thorn JA, Meixner J, Lößner C, Taverna M, Liu S, Tran NT, Francois Y, Lechner A, Nehmé R, Al Hamoui Dit Banni G, Nasreddine R, Colas C, Lindner HH, Faserl K, Neusüß C, Nelke M, Lämmerer S, Perrin C, Bich-Muracciole C, Barbas C, Gonzálvez Á, Guttman A, Szigeti M, Britz-McKibbin P, Kroezen Z, Shanmuganathan M, Nemes P, Portero EP, Hankemeier T, Codesido S, González-Ruiz V, Rudaz S, Ramautar R. Capillary Electrophoresis-Mass Spectrometry at Trial by Metabo-Ring: Effective Electrophoretic Mobility for Reproducible and Robust Compound Annotation. Anal Chem 2020; 92:14103-14112. [PMID: 32961048 PMCID: PMC7581015 DOI: 10.1021/acs.analchem.0c03129] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Capillary zone electrophoresis-mass spectrometry (CE-MS) is a mature analytical tool for the efficient profiling of (highly) polar and ionizable compounds. However, the use of CE-MS in comparison to other separation techniques remains underrepresented in metabolomics, as this analytical approach is still perceived as technically challenging and less reproducible, notably for migration time. The latter is key for a reliable comparison of metabolic profiles and for unknown biomarker identification that is complementary to high resolution MS/MS. In this work, we present the results of a Metabo-ring trial involving 16 CE-MS platforms among 13 different laboratories spanning two continents. The goal was to assess the reproducibility and identification capability of CE-MS by employing effective electrophoretic mobility (μeff) as the key parameter in comparison to the relative migration time (RMT) approach. For this purpose, a representative cationic metabolite mixture in water, pretreated human plasma, and urine samples spiked with the same metabolite mixture were used and distributed for analysis by all laboratories. The μeff was determined for all metabolites spiked into each sample. The background electrolyte (BGE) was prepared and employed by each participating lab following the same protocol. All other parameters (capillary, interface, injection volume, voltage ramp, temperature, capillary conditioning, and rinsing procedure, etc.) were left to the discretion of the contributing laboratories. The results revealed that the reproducibility of the μeff for 20 out of the 21 model compounds was below 3.1% vs 10.9% for RMT, regardless of the huge heterogeneity in experimental conditions and platforms across the 13 laboratories. Overall, this Metabo-ring trial demonstrated that CE-MS is a viable and reproducible approach for metabolomics.
Collapse
Affiliation(s)
- Nicolas Drouin
- Division
of Systems Biomedicine and Pharmacology, Leiden Academic Centre for
Drug Research, Leiden University, 2311 G Leiden, The Netherlands
| | - Marlien van Mever
- Division
of Systems Biomedicine and Pharmacology, Leiden Academic Centre for
Drug Research, Leiden University, 2311 G Leiden, The Netherlands
| | - Wei Zhang
- Division
of Systems Biomedicine and Pharmacology, Leiden Academic Centre for
Drug Research, Leiden University, 2311 G Leiden, The Netherlands
| | - Elena Tobolkina
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
| | - Sabrina Ferre
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
| | - Anne-Catherine Servais
- Laboratory
for the Analysis of Medicines, Center for Interdisciplinary Research
on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, B-4000 Liège, Belgium
| | - Marie-Jia Gou
- Laboratory
for the Analysis of Medicines, Center for Interdisciplinary Research
on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, B-4000 Liège, Belgium
| | - Laurent Nyssen
- Laboratory
for the Analysis of Medicines, Center for Interdisciplinary Research
on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, B-4000 Liège, Belgium
- Department
of Clinical Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liège, Avenue Hippocrate 15, B-4000 Liège, Belgium
| | - Marianne Fillet
- Laboratory
for the Analysis of Medicines, Center for Interdisciplinary Research
on Medicines (CIRM), University of Liège, Avenue Hippocrate 15, B-4000 Liège, Belgium
| | | | - Jan Nouta
- Leiden University
Medical Center, Center for Proteomics
and Metabolomics, 2300 RC Leiden, The Netherlands
| | - Andrew J. Chetwynd
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Iseult Lynch
- School
of Geography Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - James A. Thorn
- AB
Sciex UK Ltd, Phoenix House, Lakeside Drive, Warrington, Cheshire WA1 1RX, U.K.
| | - Jens Meixner
- Agilent
Technologies R&D and Marketing GmbH & Co. KG, Hewlett-Packard-Straße 8, 76337 Waldbronn, Germany
| | | | - Myriam Taverna
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 CEDEX 05 Paris, France
| | - Sylvie Liu
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - N. Thuy Tran
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Yannis Francois
- Laboratoire
de Spectromètrie de Masse des Interactions et des Systémes
(LSMIS) UMR 7140 (Unistra-CNRS), Université
de Strasbourg, 4 Rue Blaise Pascal, 67081 CEDEX Strasbourg, France
| | - Antony Lechner
- Laboratoire
de Spectromètrie de Masse des Interactions et des Systémes
(LSMIS) UMR 7140 (Unistra-CNRS), Université
de Strasbourg, 4 Rue Blaise Pascal, 67081 CEDEX Strasbourg, France
| | - Reine Nehmé
- Institut
de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d’Orléans, 45067 Orléans, France
| | - Ghassan Al Hamoui Dit Banni
- Institut
de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d’Orléans, 45067 Orléans, France
| | - Rouba Nasreddine
- Institut
de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d’Orléans, 45067 Orléans, France
| | - Cyril Colas
- Institut
de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d’Orléans, 45067 Orléans, France
- Centre de Biophysique Moléculaire,
CNRS-Université
d’Orléans, UPR 4311, 45071 CEDEX 2 Orléans, France
| | - Herbert H. Lindner
- Institute
of Clinical Biochemistry, Innsbruck Medical
University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Klaus Faserl
- Institute
of Clinical Biochemistry, Innsbruck Medical
University, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Christian Neusüß
- Faculty
of Chemistry, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany
| | - Manuel Nelke
- Faculty
of Chemistry, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany
| | - Stefan Lämmerer
- Faculty
of Chemistry, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany
| | - Catherine Perrin
- Institut
des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, 34093 CEDEX 5 Montpellier, France
| | - Claudia Bich-Muracciole
- Institut
des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, 34093 CEDEX 5 Montpellier, France
| | - Coral Barbas
- Centre
for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry
and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización
Montepríncipe, Boadilladel
Monte 28660, Madrid, Spain
| | - Ángeles
López Gonzálvez
- Centre
for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry
and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización
Montepríncipe, Boadilladel
Monte 28660, Madrid, Spain
| | - Andras Guttman
- Horváth
Csaba Memorial Laboratory of Bioseparation Sciences, Research Center
for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular
Medicine, University of Debrecen, 98 Nagyerdei Road, H-4032 Debrecen, Hungary
- Translation
Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprem H-8200, Hungary
- Sciex, 250 South Kraemer Boulevard, Brea, California 92821, United States
| | - Marton Szigeti
- Horváth
Csaba Memorial Laboratory of Bioseparation Sciences, Research Center
for Molecular Medicine, Faculty of Medicine, Doctoral School of Molecular
Medicine, University of Debrecen, 98 Nagyerdei Road, H-4032 Debrecen, Hungary
- Translation
Glycomics Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, 10 Egyetem Street, Veszprem H-8200, Hungary
| | - Philip Britz-McKibbin
- Department
of Chemistry and Chemical Biology, McMaster
University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada
| | - Zachary Kroezen
- Department
of Chemistry and Chemical Biology, McMaster
University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada
| | - Meera Shanmuganathan
- Department
of Chemistry and Chemical Biology, McMaster
University, 1280 Main St. W., Hamilton, Ontario L8S 4M1, Canada
| | - Peter Nemes
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Erika P. Portero
- Department
of Chemistry & Biochemistry, University
of Maryland, College
Park, Maryland 20742, United States
| | - Thomas Hankemeier
- Division
of Systems Biomedicine and Pharmacology, Leiden Academic Centre for
Drug Research, Leiden University, 2311 G Leiden, The Netherlands
| | - Santiago Codesido
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
| | - Víctor González-Ruiz
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology
(SCAHT), Missionsstrasse
64, 4055 Bâle, Switzerland
| | - Serge Rudaz
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel Servet 1, 1211 4 Geneva, Switzerland
- Swiss Centre for Applied Human Toxicology
(SCAHT), Missionsstrasse
64, 4055 Bâle, Switzerland
| | - Rawi Ramautar
- Division
of Systems Biomedicine and Pharmacology, Leiden Academic Centre for
Drug Research, Leiden University, 2311 G Leiden, The Netherlands
| |
Collapse
|
3
|
Petrov AP, Sherman LM, Camden JP, Dovichi NJ. Database of free solution mobilities for 276 metabolites. Talanta 2020; 209:120545. [PMID: 31892063 PMCID: PMC6956853 DOI: 10.1016/j.talanta.2019.120545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/01/2019] [Accepted: 11/07/2019] [Indexed: 11/23/2022]
Abstract
Although databases are available that provide mass spectra and chromatographic retention information for small-molecule metabolites, no publicly available database provides electrophoretic mobility for common metabolites. As a result, most compounds found in electrophoretic-based metabolic studies are unidentified and simply annotated as "features". To begin to address this issue, we analyzed 460 metabolites from a commercial library using capillary zone electrophoresis coupled with electrospray mass spectrometry. To speed analysis, a sequential injection method was used wherein six compounds were analyzed per run. An uncoated fused silica capillary was used for the analysis at 20 °C with a 0.5% (v/v) formic acid and 5% (v/v) methanol background electrolyte. A Prince autosampler was used for sample injection and the capillary was coupled to an ion trap mass spectrometer using an electrokinetically-pumped nanospray interface. We generated mobility values for 276 metabolites from the library (60% success rate) with an average standard deviation of 0.01 × 10-8 m2V-1s-1. As expected, cationic and anionic compounds were well resolved from neutral compounds. Neutral compounds co-migrated with electro-osmotic flow. Most of the compounds that were not detected were neutral and presumably suffered from adsorption to the capillary wall or poor ionization efficiency.
Collapse
Affiliation(s)
- Alexander P Petrov
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, USA
| | - Lindy M Sherman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556-5670, USA.
| |
Collapse
|
4
|
Zhang W, He M, Yuan T, Xu W. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis. Electrophoresis 2017; 38:3130-3135. [DOI: 10.1002/elps.201700215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Wenjing Zhang
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Muyi He
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Tao Yuan
- College of Information Science; Shenzhen University; Shenzhen P. R. China
| | - Wei Xu
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| |
Collapse
|
5
|
Weaver EM, Hummon AB, Keithley RB. Chemometric analysis of MALDI mass spectrometric images of three-dimensional cell culture systems. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:7208-7219. [PMID: 26604989 PMCID: PMC4654961 DOI: 10.1039/c5ay00293a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As imaging mass spectrometry (IMS) has grown in popularity in recent years, the applications of this technique have become increasingly diverse. Currently there is a need for sophisticated data processing strategies that maximize the information gained from large IMS data sets. Traditional two-dimensional heat maps of single ions generated in IMS experiments lack analytical detail, yet manual analysis of multiple peaks across hundreds of pixels within an entire image is time-consuming, tedious and subjective. Here, various chemometric methods were used to analyze data sets obtained by matrix-assisted laser desorption/ionization (MALDI) IMS of multicellular spheroids. HT-29 colon carcinoma multicellular spheroids are an excellent in vitro model system that mimic the three dimensional morphology of tumors in vivo. These data are especially challenging to process because, while different microenvironments exist, the cells are clonal which can result in strong similarities in the mass spectral profiles within the image. In this proof-of-concept study, a combination of principal component analysis (PCA), clustering methods, and linear discriminant analysis was used to identify unique spectral features present in spatially heterogeneous locations within the image. Overall, the application of these exploratory data analysis tools allowed for the isolation and detection of proteomic changes within IMS data sets in an easy, rapid, and unsupervised manner. Furthermore, a simplified, non-mathematical theoretical introduction to the techniques is provided in addition to full command routines within the MATLAB programming environment, allowing others to easily utilize and adapt this approach.
Collapse
Affiliation(s)
- Eric M. Weaver
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN
- Corresponding Author:
| | | |
Collapse
|
6
|
Huge BJ, Flaherty RJ, Dada OO, Dovichi NJ. Capillary electrophoresis coupled with automated fraction collection. Talanta 2014; 130:288-93. [PMID: 25159411 DOI: 10.1016/j.talanta.2014.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 10/25/2022]
Abstract
A fraction collector based on a drop-on-demand ink-jet printer was developed to interface capillary zone electrophoresis with a 96 well microtiter plate. We first evaluated the performance of the collector by using capillary zone electrophoresis to analyze a 1mM solution of tetramethylrhodamine; a fluorescent microtiter plate reader was then used to detect the analyte and characterize fraction carryover between wells. Relative standard deviation in peak height was 20% and the relative standard deviation in migration time was 1%. The mean and standard deviation of the tetramethylrhodamine peak width was 5 ± 1 s and likely limited by the 4-s period between droplet deposition. We next injected a complex mixture of DNA fragments and used real-time PCR to quantify the product in a CE-SELEX experiment. The reconstructed electrophoretic peak was 27 s in duration. Finally, we repeated the experiment in the presence of a 30-µM thrombin solution under CE-SELEX conditions; fractions were collected and next-generation sequencing was used to characterize the DNA binders. Over 25,000 sequences were identified with close matches to known thrombin binding aptamers.
Collapse
Affiliation(s)
- Bonnie Jaskowski Huge
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan J Flaherty
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Oluwatosin O Dada
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
7
|
Monitoring subcellular biotransformation of N-L-leucyldoxorubicin by micellar electrokinetic capillary chromatography coupled to laser-induced fluorescence detection. Anal Bioanal Chem 2014; 406:2389-97. [PMID: 24573576 DOI: 10.1007/s00216-014-7615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Development of prodrugs is a promising alternative to address cytotoxicity and nonspecificity of common anticancer agents. N-L-leucyldoxorubicin (LeuDox) is a prodrug that is biotransformed to the anticancer drug doxorubicin (Dox) in the extracellular space; however, its biotransformation may also occur intracellularly in endocytic organelles. Such organelle-specific biotransformation is yet to be determined. In this study, magnetically enriched endocytic organelle fractions from human uterine sarcoma cells were treated with LeuDox. Micellar electrokinetic chromatography with laser-induced fluorescence detection (MEKC-LIF) was used to determine that 10% of LeuDox was biotransformed to Dox, accounting for ~43% of the biotransformation occurring in the post-nuclear fraction. This finding suggests that endocytic organelles also participate in the intracellular biotransformation of LeuDox to Dox.
Collapse
|
8
|
Chen Z, Wang J, Chen D, Fan G, Wu Y. Sodium desoxycholate-assisted capillary electrochromatography with methacrylate ester-based monolithic column on fast separation and determination of coumarin analogs in Angelica dahurica extract. Electrophoresis 2012; 33:2884-91. [PMID: 22930555 DOI: 10.1002/elps.201200120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 11/11/2022]
Abstract
A rapid and sensitive CEC method with methacrylate ester-based monolithic column has been developed for separation and determination of five coumarins (byakangelicin, oxypeucedanin hydrate, xanthotoxol, 5-hydroxy-8-methoxypsoralen and bergapten) in Angelica dahurica extract. Surfactant sodium desoxycholate (SDC) was introduced into the mobile phase as the pseudostationary to dynamically increase the selectivity of analytes instead of increasing the hydrophobicity of stationary phase. In addition, other factors, pH of phosphate buffer, ACN content and applied voltage, for instance, have also an obvious effect on the resolution but little on the retention time. Satisfactory separation of these five coumarins was achieved within 6 min under a 30:70 v/v ACN-buffer containing 20 mM sodium dihydrogen phosphate (NaH(2) PO(4) ) and 0.25 mM SDC at pH 2.51. The RSDs of intraday and interday for relative peak areas were less than 3.0% and 4.7%, respectively; and the recoveries were between 87.5% and 95.0%. The LODs were lower than 0.15 μg/mL and the LOQs were lower than 0.30 μg/mL, respectively, while calibration curves showed a good linearity (r(2) > 0.9979). Finally, five target coumarins from the crude extracts of A. dahurica were separated, purified, and concentrated by D-101 macroporous resin, and were successfully separated and quantitatively determined within 6 min.
Collapse
Affiliation(s)
- Zhao Chen
- Department of Pharmaceutical Analysis, Second Military Medical University, Shanghai, People's Republic of China. cz04101103@ hotmail.com
| | | | | | | | | |
Collapse
|
9
|
Wang Y, Taylor TH, Arriaga EA. Analysis of the bioactivity of magnetically immunoisolated peroxisomes. Anal Bioanal Chem 2011; 402:41-9. [PMID: 22065344 DOI: 10.1007/s00216-011-5476-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 10/15/2022]
Abstract
Peroxisomes produce reactive oxygen species which may participate in biotransformations of innate biomolecules and xenobiotics. Isolating functional peroxisomes with low levels of contaminants would be a useful tool to investigate biotransformations occurring in these organelles that are usually confounded with biotransformations occurring in other co-isolated organelles. Here, we immunoisolate peroxisomes and demonstrate that the impurity level after isolation is low and that peroxisomes retain their biological activity. In this method, an antibody targeting a 70-kDa peroxisomal membrane protein was immobilized to silanized magnetic iron oxide beads (1-4 μm in diameter) coated with Protein A. Peroxisomes from L6 rat myoblast homogenates were magnetically captured, washed, and then analyzed for subcellular composition using enzymatic assays. Based on the ratio of peroxisomal to lysosomal activity, the retained fraction is 70-fold enriched relative to the unretained fraction. Similarly, the ratio of peroxisomal activity to mitochondrial content suggests that the retained fraction is >30-fold enriched relative to the unretained fraction. H(2)O(2) production from the β-oxidation of palmitoyl-CoA demonstrated that the isolated peroxisomal fraction was biologically active. Capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) analysis confirmed that the immunopurified fractions were capable of transforming the anticancer drug doxorubicin and the fatty acid analog, BODIPY 500/510 C1C12. Besides its use to investigate peroxisome biotransformations in health and disease, the combination of magnetic immunoisolation with CE-LIF could be widely applicable to investigate subcellular-specific biotransformations of xenobiotics occurring at immunoisolated subcellular compartments.
Collapse
Affiliation(s)
- Yaohua Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
10
|
Zhang H, Chen H. Correction of migration time of Paeoniae Radix in capillary electrophoresis by powerful one-marker technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2011; 3:745-750. [PMID: 32938101 DOI: 10.1039/c0ay00273a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The reproducibility in migration time is essential in the use of capillary electrophoresis to identify components in a complex sample or compare constituent differences for different botanical drug samples. A powerful one-marker technology for correcting migration time was proposed in this paper. This technology is practically simple compared with the multi-marker technologies developed in literature, due to only one marker required. Paeoniae Radix which is a crude drug used in many traditional prescriptions in China and Japan was selected as an example to verify the effectiveness of the powerful one-marker technology in analyzing complex botanical samples. Relative standard deviations in migration times treated with the powerful one-marker technology were below 0.5% for Paeoniae Radix analyzed during three different days. The technology was successfully applied to classify Paeoniae Radix from nine different growing regions. Based on their corrected electropherograms, Paeoniae Radix was classified into three groups which were in agreement with their real origins.
Collapse
Affiliation(s)
- Hongyi Zhang
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, China.
| | - Hui Chen
- College of Chemistry and Environmental Science, Hebei University, Key Laboratory of Analytical Science and Technology of Hebei Province, Baoding, 071002, China.
| |
Collapse
|
11
|
Narezhnaya EV, Askalepova OI, Nikashina AA, Krukier II, Pogorelova TN. Determination of L-arginine in amniotic fluid by capillary zone electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1134/s1061934810120130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wang Y, Hong J, Cressman ENK, Arriaga EA. Direct sampling from human liver tissue cross sections for electrophoretic analysis of doxorubicin. Anal Chem 2009; 81:3321-8. [PMID: 19323500 PMCID: PMC2675659 DOI: 10.1021/ac802542e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
After chemoembolization of the liver with doxorubicin (Dox), this drug and its metabolites are not homogeneously distributed in this organ. The distribution cannot be easily measured making it difficult to assess how the drug performs in different tissue regions. Here we report a technique for sampling tissue cross sections that can analyze the contents of micrometer size regions. The tissue cross sections were from the explanted liver of a hepatocellular carcinoma patient. Samples were directly aspirated from a 5 microm thick tissue cross section into a 50 microm i.d. capillary where the tissue was solubilized with a separation buffer containing sodium dodecyl sulfate. Upon sample dissolution, Dox and natively fluorescent compounds were separated and detected by micellar electrokinetic chromatography with laser-induced fluorescence detection. Sampling reproducibility and recovery were assessed using 10% (w/v) gelatin as tissue mimic. Sampling from gelatin slices containing Dox revealed a relative standard deviation of 13%, which was comparable to that of sampling from solution. Dox recovery was 82% +/- 16% (n = 5). When sampling tumor and nontumor tissue regions, samples could be taken from the same region 100 microm apart. Atomic force microscopy was used to determine that each sample was 8.4 +/- 1.0 pL in volume which made it possible to determine Dox concentrations in the ranges of 0.4-1.3 and 0.3-0.5 microM for the samples taken from tumor and nontumor regions, respectively. The results demonstrated the feasibility of sampling, detection, and quantification of Dox in micrometer size regions, which could be a useful resource for analyzing the Dox concentration and distribution in highly heterogeneous tissues.
Collapse
Affiliation(s)
- Yaohua Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
13
|
Pugsley HR, Swearingen KE, Dovichi NJ. Fluorescein thiocarbamyl amino acids as internal standards for migration time correction in capillary sieving electrophoresis. J Chromatogr A 2009; 1216:3418-20. [PMID: 19249052 PMCID: PMC2659727 DOI: 10.1016/j.chroma.2009.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
Abstract
A number of algorithms have been developed to correct for migration time drift in capillary electrophoresis. Those algorithms require identification of common components in each run. However, not all components may be present or resolved in separations of complex samples, which can confound attempts for alignment. This paper reports the use of fluorescein thiocarbamyl derivatives of amino acids as internal standards for alignment of 3-(2-furoyl)quinoline-2-carboxaldehyde (FQ)-labeled proteins in capillary sieving electrophoresis. The fluorescein thiocarbamyl derivative of aspartic acid migrates before FQ-labeled proteins and the fluorescein thiocarbamyl derivative of arginine migrates after the FQ-labeled proteins. These compounds were used as internal standards to correct for variations in migration time over a two-week period in the separation of a cellular homogenate. The experimental conditions were deliberately manipulated by varying electric field and sample preparation conditions. Three components of the homogenate were used to evaluate the alignment efficiency. Before alignment, the average relative standard deviation in migration time for these components was 13.3%. After alignment, the average relative standard deviation in migration time for these components was reduced to 0.5%.
Collapse
Affiliation(s)
- Haley R. Pugsley
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | | - Norman J. Dovichi
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| |
Collapse
|
14
|
Ramsay LM, Dickerson JA, Dovichi NJ. Attomole protein analysis by CIEF with LIF detection. Electrophoresis 2009; 30:297-302. [DOI: 10.1002/elps.200800498] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Boardman AK, McQuaide SC, Zhu C, Whitmore CD, Lidstrom ME, Dovichi NJ. Interface of an array of five capillaries with an array of one-nanoliter wells for high-resolution electrophoretic analysis as an approach to high-throughput chemical cytometry. Anal Chem 2008; 80:7631-4. [PMID: 18717573 PMCID: PMC2636696 DOI: 10.1021/ac800890b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a system that allows the simultaneous aspiration of one or more cells into each of five capillaries for electrophoresis analysis. A glass wafer was etched to create an array of 1-nL wells. The glass was treated with poly(2-hydroxyethyl methacrylate) to control cell adherence. A suspension of formalin-fixed cells was placed on the surface, and cells were allowed to settle. The concentration of cells and the settling time were chosen so that there was, on average, one cell per well. Next, an array of five capillaries was placed so that the tip of each capillary was in contact with a single well. A pulse of vacuum was applied to the distal end of the capillaries to aspirate the content of each well into a capillary. Next, the tips of the capillaries were placed in running buffer and potential was applied. The cells lysed upon contact with the running buffer, and fluorescent components were detected at the distal end of the capillaries by laser-induced fluorescence. The electrophoretic separation efficiency was outstanding, generating over 750,000 theoretical plates (1,800,000 plates/m). In this example, AtT-20 cells were used that had been treated with TMR-G(M1). The cells were allowed to metabolize this substrate into a series of products before the cells were fixed. The number of cells found in each well was estimated visually under the microscope and was described by a Poisson distribution with mean of 0.98 cell/well. This system provides an approach to high-throughput chemical cytometry.
Collapse
Affiliation(s)
- Anna K Boardman
- Department of Chemistry, University of Washington, Seattle Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Arriaga EA. Monitoring incorporation, transformation and subcellular distribution of N-l-leucyl-doxorubicin in uterine sarcoma cells using capillary electrophoretic techniques. Cancer Lett 2008; 262:123-32. [PMID: 18194838 DOI: 10.1016/j.canlet.2007.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/27/2007] [Accepted: 11/27/2007] [Indexed: 11/16/2022]
Abstract
Previous reports have demonstrated that N-l-leucyl-doxorubicin (LeuDox) is less toxic than its parent drug, Dox, but the underlying causes of this reduced toxicity have yet to be fully elucidated. In this study, the incorporation of LeuDox into (i) the MES-SA human uterine sarcoma cell line and (ii) its Dox resistant counterpart, MES-SA/Dx5 cell line and the subsequent transformation of LeuDox into Dox and its subcellular distribution, were investigated by micellar electrokinetic chromatography with laser-induced fluorescence detection (MEKC-LIF). In both cell lines the cellular uptakes of Dox and LeuDox were similar at equimolar doses, while the percent transformation of LeuDox into Dox in MES-SA/Dx5 cells was about twice as great as its transformation in MES-SA cells, which is beneficial for reaching Dox cytotoxic levels in this resistant cell line. When both cells lines were treated with IC(35) concentrations of either Dox and LeuDox, the intracellular Dox amounts were 6-fold higher in the resistant cell line than in the sensitive cell line, suggesting that other cellular processes play a role in the cytotoxicity of Dox in the resistant cell line. The amounts and ratios of Dox and LeuDox in four subcellular fractions of LeuDox-treated MES-SA/Dx5 cells were also investigated. The highest Dox/LeuDox ratio (i.e. 2.92) was found in the nuclear fraction, followed by the ratio in the low density organelle fraction (i.e. 1.92) that contains lysosomes, organelles in which lysosomal hydrolytic enzymes, capthesins, transform LeuDox into Dox.
Collapse
Affiliation(s)
- Yaohua Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
17
|
Cohen D, Dickerson JA, Whitmore CD, Turner EH, Palcic MM, Hindsgaul O, Dovichi NJ. Chemical cytometry: fluorescence-based single-cell analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:165-190. [PMID: 20636078 DOI: 10.1146/annurev.anchem.1.031207.113104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cytometry deals with the analysis of the composition of single cells. Flow and image cytometry employ antibody-based stains to characterize a handful of components in single cells. Chemical cytometry, in contrast, employs a suite of powerful analytical tools to characterize a large number of components. Tools have been developed to characterize nucleic acids, proteins, and metabolites in single cells. Whereas nucleic acid analysis employs powerful polymerase chain reaction-based amplification techniques, protein and metabolite analysis tends to employ capillary electrophoresis separation and ultrasensitive laser-induced fluorescence detection. It is now possible to detect yoctomole amounts of many analytes in single cells.
Collapse
Affiliation(s)
- Daniella Cohen
- Department of Chemistry, University of Washington, Seattle, 98195, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Whitmore CD, Olsson U, Larsson EA, Hindsgaul O, Palcic MM, Dovichi NJ. Yoctomole analysis of ganglioside metabolism in PC12 cellular homogenates. Electrophoresis 2007; 28:3100-4. [PMID: 17668449 DOI: 10.1002/elps.200700202] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We report an ultrasensitive method for the analysis of glycosphingolipid catabolism. The substrate G(M1) and the set of seven metabolites into which it can be degraded (G(A1), G(M2), G(A2), G(M3), LacCer, GlcCer, and Cer) were labeled with the highly fluorescent dye tetramethylrhodamine. CE with LIF detection was used to assay these compounds with 150 +/- 80 yoctomole mass (1 ymol = 10(-24) mol = 0.6 copies) detection limits and 5 +/- 3 pM concentration detection limits. An alignment algorithm based on migration of two components was employed to correct for drift in the separation. The within-day and between-day precision in peak height was 20%, in peak width 15%, and in adjusted migration time 0.03%. After normalization to total sample injected, the RSD in peak height reduced to 2-6%, which approaches the limit set by molecular shot noise in the number of molecules taken for analysis. PC12 cells were incubated with the labeled G(M1). Fluorescent microscopy demonstrated uptake by the cells. CE was used to separate a cellular homogenate prepared from these cells. A set of peaks was observed, which were tentatively identified based on comigration with the standards. Roughly 120 pL of homogenate was injected, which contained a total of 150 zmol of labeled substrate and products. Metabolite that preserves the fluorescent label can be detected at the yoctomole level, which should allow characterization of this metabolic pathway in single cells.
Collapse
Affiliation(s)
- Colin D Whitmore
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
19
|
Zhao Q, Simmons J, Conte ED. Investigation of a variety of cationic surfactants attached to cation-exchange silica for hydrophobicity optimization in admicellar solid-phase extraction for high-performance liquid and gas chromatography. J Chromatogr A 2006; 1132:1-7. [PMID: 16893545 DOI: 10.1016/j.chroma.2006.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/27/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
A series of cationic surfactants were attached to cation-exchange silica that included silica modified with sulfopropyl groups and unmodified silica to create hydrophobic solid-phase extraction sorbents. Various chain lengths and chain numbers of amine, ammonium and pyridinium-based cationic surfactants were investigated to reach sufficient sorbent hydrophobicity to capture US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs). Of the tested surfactant/silica combinations, dihexadecyldimethylammonium cations attached to unmodified silica resulted in the sorbent having the greatest hydrophobicity. This sorbent provided strong hydrophobic attraction of PAHs and also efficient elution because the PAHs were removed together with the surfactant using a very mild 5% acetic acid in methanol rinse solution. This admicellar solid-phase extraction procedure was applied for the determination of these PAHs for both high-performance liquid and gas chromatography. The detection limits of these PAHs were below the EPA's maximum contaminant level of 0.2 microg/L.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA
| | | | | |
Collapse
|
20
|
Stepanov KV, Pirogov AV, Shpigun OA. Identification of the electrophoretic peaks of the phenylthiohydantoin derivatives of amino acids. JOURNAL OF ANALYTICAL CHEMISTRY 2006. [DOI: 10.1134/s1061934806010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Eder AR, Arriaga EA. Micellar electrokinetic capillary chromatography reveals differences in intracellular metabolism between liposomal and free doxorubicin treatment of human leukemia cells. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 829:115-22. [PMID: 16246643 DOI: 10.1016/j.jchromb.2005.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 09/16/2005] [Accepted: 09/30/2005] [Indexed: 11/20/2022]
Abstract
Doxil is a pegylated liposome formulation of the anthracycline doxorubicin. To better explain observed differences in the toxicity of Doxil and free doxorubicin in solution, the intracellular metabolism of the formulations after treatment in CCRF-CEM and CEM/C2 human leukemia cell lines was investigated. Using micellar electrokinetic capillary chromatography with laser-induced fluorescence detection, with a 63 zepto (10(-21)) mole doxorubicin limit of detection, five common metabolites and doxorubicin were detected upon treatment with both of these drug delivery systems. Two unique metabolites appeared with the Doxil and two unique metabolites appeared with the free doxorubicin delivery systems. For common metabolites, the relative amount of metabolite generated from Doxil was approximately 10 times higher than for free doxorubicin.
Collapse
Affiliation(s)
- Angela R Eder
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
22
|
Suntornsuk L, Anurukvorakun O. Precision improvement for the analysis of flavonoids in selected Thai plants by capillary zone electrophoresis. Electrophoresis 2005; 26:648-60. [PMID: 15690438 DOI: 10.1002/elps.200410203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A capillary zone electrophoresis (CZE) method for the analyses of kaempferol in Centella asiatica and Rosa hybrids and rutin in Chromolaena odorata was developed. The optimization was performed on analyses of flavonoids (e.g., rutin, kaempferol, quercetin, myricetin, and apigenin) and organic carboxylic acids (e.g., ethacrynic acid and xanthene-9-carboxylic acid) by investigation of the effects of types and amounts of organic modifiers, background electrolyte concentrations, temperature, and voltage. Baseline separation (R(s) = 2.83) of the compounds was achieved within 10 min in 20 mM NaH2PO4 - Na2HPO4 (pH 8.0) containing 10% v/v ACN and 6% v/v MeOH using a voltage of 25 kV, a temperature of 30 degrees C, and a detection wavelength set at 220 nm. The application of the corrected migration time (t(c)), using ethacrynic acid as the single marker, was efficient to improve the precision of flavonoid identification (% relative standard deviation (RSD) = 0.65%). The method linearity was excellent (r2 > 0.999) over 50-150 microg/mL. Precision (%RSD < 1.66%) and recoveries were good (> 96% and %RSDs < 1.70%) with detection and quantitation limits of 2.23 and 7.14 microg/mL, respectively. Kaempferol in C. asiatica and R. hybrids was 0.014 g/100 g (%RSD = 0.59%) and 0.044 g/100 g (%RSD = 1.04%), respectively, and rutin in C. odorata was 0.088 g/100 g (%RSD = 0.06%).
Collapse
Affiliation(s)
- Leena Suntornsuk
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | | |
Collapse
|
23
|
Zhu X, Shaw PN, Pritchard J, Newbury J, Hunt EJ, Barrett DA. Amino acid analysis by micellar electrokinetic chromatography with laser-induced fluorescence detection: application to nanolitre-volume biological samples from Arabidopsis thaliana and Myzus persicae. Electrophoresis 2005; 26:911-919. [PMID: 15714547 DOI: 10.1002/elps.200410259] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amino acids were derivatised with 4-fluoro-7-nitrobenzo-2,1,3-oxadiazol (NBD-F), separated by micellar electrokinetic chromatography (MEKC), and detected by argon-ion (488 nm) laser-induced fluorescence. The optimised MEKC background electrolyte conditions were: 40 mM sodium cholate, 5 mM beta-cyclodextrin in 20 mM aqueous borate buffer, pH 9.1, with 7% v/v acetonitrile. Using these conditions, 19 amino acids were separated within 17 min. The limits of detection were in the range of 7.6-42.2 pmol/mL and limits of quantitation from 0.05-0.14 nmol/mL. The method was systematically validated for injection volume error, migration time variation, calibration linearity, accuracy, precision, and recovery. Nanolitre volume samples of phloem sap of individual sieve element cells from the plant Arabidopsis thaliana and honeydew from the aphid Myzus persicae were directly analysed with this method. Quantitative amino acid concentrations in these two biological matrices were profiled for the first time. This method is particularly important because it allows the complete profile of the amino acids obtained from individual phloem elements, allowing cell to cell and plant to plant variation to be quantified, which to date has not been possible with Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xunlin Zhu
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
24
|
Köller G, Rolle-Kampczyk U, Lehmann I, Popp P, Herbarth O. Determination of Ochratoxin A in small volumes of human blood serum. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 804:313-7. [PMID: 15081925 DOI: 10.1016/j.jchromb.2004.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 01/14/2004] [Accepted: 01/15/2004] [Indexed: 11/25/2022]
Abstract
A new simple and rapid method for analysing Ochratoxin A (OTA) in small volumes of human blood serum using capillary zone electrophoresis coupled to laser-induced fluorescence is described. The clean-up procedure solely consists of a double extraction step. To improve the reproducibility of migration times and quantification, two internal standards were used. The limit of detection was 0.55 ng/ml, with a linear range of 1-100 ng/ml of OTA in spiked human blood serum. The method is used to rapidly screen suspected patients.
Collapse
Affiliation(s)
- G Köller
- Department of Human Exposure Research and Epidemiology, Centre for Environmental Research Leipzig-Halle, Permoserstr. 15, 04318 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
25
|
Svec F. Capillary electrochromatography: a rapidly emerging separation method. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 76:1-47. [PMID: 12126266 DOI: 10.1007/3-540-45345-8_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
This overview concerns the new chromatographic method--capillary electrochromatography (CEC)--that is recently receiving remarkable attention. The principles of this method based on a combination of electroosmotic flow and analyte-stationary phase interactions, CEC instrumentation, capillary column technology, separation conditions, and examples of a variety of applications are discussed in detail.
Collapse
Affiliation(s)
- Frantisek Svec
- Department of Chemistry, University of California, Berkeley 94720-1460, USA.
| |
Collapse
|
26
|
Prata C, Bonnafous P, Fraysse N, Treilhou M, Poinsot V, Couderc F. Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 2001; 22:4129-38. [PMID: 11824633 DOI: 10.1002/1522-2683(200111)22:19<4129::aid-elps4129>3.0.co;2-i] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amino acids are studied extensively using capillary electrophoresis. In this review we will report the different researchs which have been done in the literature since 1998. We will describe the developments of, detection methods, separations of enantiomers, the new medical applications, and amino acids in food and plants.
Collapse
Affiliation(s)
- C Prata
- Université Paul Sabatier, IMRCP, UMR 5623, Toulouse, France
| | | | | | | | | | | |
Collapse
|
27
|
Chen Z, Wu J, Baker GB, Parent M, Dovichi NJ. Application of capillary electrophoresis with laser-induced fluorescence detection to the determination of biogenic amines and amino acids in brain microdialysate and homogenate samples. J Chromatogr A 2001; 914:293-8. [PMID: 11358224 DOI: 10.1016/s0021-9673(01)00539-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A procedure is described to derivatize 16 primary-amine-containing biogenic amines and amino acids in brain mixtures with the fluorogenic reagent 5-furoylquinoline-3-carboxaldehyde (FQ). These FQ-tagged compounds in the brain sample were resolved in less than 16 min based on micellar electrokinetic chromatography and laser-induced fluorescence. There was a linear relationship between the concentration of analyte and the fluorescence intensity, with correlation coefficients in the range of 0.96-1.00. The utility of this method for the quantification of the important inhibitory neurotransmitter gamma-aminobutyric acid in microdialysates and brain homogenates from rats is illustrated.
Collapse
Affiliation(s)
- Z Chen
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
28
|
Colón LA, Maloney TD, Fermier AM. Packed Bed Columns. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0301-4770(01)80076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
29
|
Li XF, Carter SJ, Dovichi NJ. Non-aqueous capillary electrophoresis of tamoxifen and its acid hydrolysis products. J Chromatogr A 2000; 895:81-5. [PMID: 11105850 DOI: 10.1016/s0021-9673(00)00661-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tamoxifen and its acid hydrolysis products were separated and tentatively identified by non-aqueous capillary electrophoresis with thermooptical absorbance and electrospray ionization mass spectrometry. Acid hydrolysis is a convenient method of generating tamoxifen degradation products. The parent compound and seven hydrolysis products were separated in 9 min.
Collapse
Affiliation(s)
- X F Li
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|