1
|
Soulas C, Autissier PJ, Burdo TH, Piatak M, Lifson JD, Williams KC. Distinct phenotype, longitudinal changes of numbers and cell-associated virus in blood dendritic cells in SIV-infected CD8-lymphocyte depleted macaques. PLoS One 2015; 10:e0119764. [PMID: 25915601 PMCID: PMC4410956 DOI: 10.1371/journal.pone.0119764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
Loss of circulating CD123+ plasmacytoid dendritic cells (pDCs) during HIV infection is well established. However, changes of myeloid DCs (mDCs) are ambiguous since they are studied as a homogeneous CD11c+ population despite phenotypic and functional heterogeneity. Heterogeneity of CD11c+ mDCs in primates is poorly described in HIV and SIV infection. Using multiparametric flow cytometry, we monitored longitudinally cell number and cell-associated virus of CD123+ pDCs and non-overlapping subsets of CD1c+ and CD16+ mDCs in SIV-infected CD8-depleted rhesus macaques. The numbers of all three DC subsets were significantly decreased by 8 days post-infection. Whereas CD123+ pDCs were persistently depleted, numbers of CD1c+ and CD16+ mDCs rebounded. Numbers of CD1c+ mDCs significantly increased by 3 weeks post-infection while numbers of CD16+ mDCs remained closer to pre-infection levels. We found similar changes in the numbers of all three DC subsets in CD8 depleted animals as we found in animals that were SIV infected animals that were not CD8 lymphocyte depleted. CD16+ mDCs and CD123+ pDCs but not CD1c+ mDCs were significantly decreased terminally with AIDS. All DC subsets harbored SIV RNA as early as 8 days and then throughout infection. However, SIV DNA was only detected in CD123+ pDCs and only at 40 days post-infection consistent with SIV RNA, at least in mDCs, being surface-bound. Altogether our data demonstrate that SIV infection differently affects CD1c+ and CD16+ mDCs where CD16+ but not CD1c+ mDCs are depleted and might be differentially regulated in terminal AIDS. Finally, our data underline the importance of studying CD1c+ and CD16+ mDCs as discrete populations, and not as total CD11c+ mDCs.
Collapse
Affiliation(s)
- Caroline Soulas
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick J. Autissier
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Tricia H. Burdo
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, MD 21702, United States of America
| | - Kenneth C. Williams
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| |
Collapse
|
2
|
Hollenbach R, Sagar D, Khan ZK, Callen S, Yao H, Shirazi J, Buch S, Jain P. Effect of morphine and SIV on dendritic cell trafficking into the central nervous system of rhesus macaques. J Neurovirol 2013; 20:175-83. [PMID: 23943466 DOI: 10.1007/s13365-013-0182-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/06/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022]
Abstract
Recruitment of immune cells such as monocytes/macrophages and dendritic cells (DCs) across the blood-brain barrier (BBB) has been documented in diseases involving neuroinflammation. Neuroinvasion by HIV leads to neurocognitive diseases and alters the permeability of the BBB. Likewise, many HIV patients use drugs of abuse such as morphine, which can further compromise the BBB. While the role of monocytes and macrophages in neuroAIDS is well established, research demonstrating the presence and role of DCs in the CNS during HIV infection has not been developed yet. In this respect, this study explored the presence of DCs in the brain parenchyma of rhesus macaques infected with a neurovirulent form of SIV (SIV mac239 R71/17E) and administered with morphine. Cells positive for DC markers including CD11c (integrin), macDC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin), CD83 (a maturation factor), and HLA-DR (MHC class II) were consistently found in the brain parenchyma of SIV-infected macaques as well as infected macaques on morphine. Control animals did not exhibit any DC presence in their brains. These results provide first evidence of DCs' relevance in NeuroAIDS vis-à-vis drugs of abuse and open new avenues of understanding and investigative HIV-CNS inflictions.
Collapse
Affiliation(s)
- Rebecca Hollenbach
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Jesudason S, Collins MG, Rogers NM, Kireta S, Coates PTH. Non-human primate dendritic cells. J Leukoc Biol 2011; 91:217-28. [PMID: 22124138 DOI: 10.1189/jlb.0711355] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Non-human primates (NHP) are essential translational models for biomedical research. Dendritic cells (DC) are a group of antigen presenting cells (APC) that play pivotal roles in the immunobiology of health and disease and are attractive cells for adoptive immunotherapy to stimulate and suppress immunity. DC have been studied extensively in humans and mice but until recently, have not been well characterized in NHP. This review considers the available data about DC across a range of NHP species and summarizes the understanding of in vitro-propagated DC and in vivo-isolated DC, which is now established. It is clear that although NHP DC exist within the paradigm of human DC, there are important functional and phenotypic differences when compared with human DC subsets. These differences need to be taken into account when designing preclinical, translational studies of DC therapy using NHP models.
Collapse
Affiliation(s)
- Shilpanjali Jesudason
- Transplantation Immunology Laboratory and Department of Medicine, University of Adelaide, The Queen Elizabeth Hospital Campus, Adelaide, South Australia, Australia
| | | | | | | | | |
Collapse
|
4
|
Yang GB, Lei N, Zong CM, Duan JZ, Xing H, Shao Y. Elevated frequency of CD1c+ myeloid dendritic cells in the peripheral blood mononuclear cells of simian/human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) repeatedly infected Chinese rhesus macaques. Cell Immunol 2011; 271:36-43. [DOI: 10.1016/j.cellimm.2011.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/11/2011] [Accepted: 05/31/2011] [Indexed: 11/27/2022]
|
5
|
Autissier P, Soulas C, Burdo TH, Williams KC. Immunophenotyping of lymphocyte, monocyte and dendritic cell subsets in normal rhesus macaques by 12-color flow cytometry: clarification on DC heterogeneity. J Immunol Methods 2010; 360:119-28. [PMID: 20600075 DOI: 10.1016/j.jim.2010.06.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/15/2010] [Accepted: 06/21/2010] [Indexed: 12/22/2022]
Abstract
Monitoring changes in rhesus macaque immune cell populations during infectious disease is crucial. The aim of this work was to simultaneously analyze the phenotype of rhesus macaque lymphocyte, monocyte and dendritic cell (DC) subsets using a single 12-color flow cytometry panel. Blood from healthy non-infected rhesus macaques was labeled with a cocktail of 12 antibodies. Data were compared to three smaller lineage specific panels and absolute and relative percentages of cells were compared. Our 12-color panel allows for the identification of the following major subsets: CD4+ and CD8+ T lymphocytes, B lymphocytes, natural killer (NK) cells, natural killer T (NKT) cells, monocyte subsets and four non-overlapping Lin-HLA-DR+ cell subsets: CD34+ hematopoietic stem cells, CD11c- CD123+ plasmacytoid DC, CD11c+ CD16+ and CD11c(-)(/dim) CD1c+ myeloid DC. The development of a multiparameter flow cytometry panel will allow for simultaneous enumeration of mature lymphocyte, NK cells, monocyte and DC subsets. Studying these major players of the immune system in one panel may give us a broader view of the immune response during SIV infection and the ability to better define the role of each of these individual cell types in the pathogenesis of AIDS.
Collapse
Affiliation(s)
- Patrick Autissier
- Department of Biology, Boston College, Higgins Hall 468, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | | | | | | |
Collapse
|
6
|
Siggins RW, Bagby GJ, Molina P, Dufour J, Nelson S, Zhang P. Alcohol exposure impairs myeloid dendritic cell function in rhesus macaques. Alcohol Clin Exp Res 2009; 33:1524-31. [PMID: 19485975 DOI: 10.1111/j.1530-0277.2009.00980.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Alcohol intoxication suppresses both the innate and adaptive immunities. Dendritic cells (DCs) are the major cell type bridging the innate and acquired immune responses. At the present time, the effects of alcohol on DC development in hematopoietic tissues and the functional activities of DCs are incompletely elucidated. This study investigated the impact of chronic alcohol exposure on the alteration of hematopoietic precursor cell and DC populations in the bone marrow and peripheral blood of rhesus macaques. METHODS Rhesus macaques were administered alcohol or isocaloric sucrose daily for a period of 3 months through surgically implanted gastric catheters. Peripheral blood mononuclear cells (PBMCs) and bone marrow cells (BMCs) were isolated for flow cytometric analysis after 3 months. Monocytes were cultured with human IL-4 (10 ng/ml) and GM-CSF (50 ng/ml) in the absence and presence of alcohol (50 mM). On day 6 of the culture, a cocktail of stimulants including IL-1beta (18 ng), IL-6 (1800 U), TNF-alpha (18 ng), and PGE(2) (1.8 microg) were added to the designated wells for transformation of immature dendritic cells (iDCs) to mature myeloid DCs. The cells were analyzed on day 8 by flow cytometry for expression of DC costimulatory molecule expression. RESULTS EtOH-treated animals had significantly lower numbers of myeloid DCs (lineage-HLA-DR+CD11c+CD123-) in both the PBMCs and BMCs compared to controls (5,654 +/- 1,273/10(6) vs. 2,353 +/- 660/10(6) PBMCs and 503 +/- 34 vs. 195 +/- 44/10(6) BMCs). Under culture conditions, the number of lineage-HLA-DR+CD83+ cells was low in control wells (0.38 +/- 0.08%). Alcohol inhibited the increase in the number of lineage-HLA-DR+CD83+ cells in iDC wells (2.30 +/- 0.79% vs. 5.73 +/- 1.40%). Alcohol also inhibited the increase in the number of lineage-HLA-DR+CD83+ cells in mature DC wells (1.23 +/- 0.15% vs. 4.13 +/- 0.62%). CONCLUSIONS Chronic EtOH decreases the bone marrow and circulating pools of myeloid DCs. Additionally, EtOH suppresses costimulatory molecule CD83 expression during DC transformation, which may attenuate the ability of DCs to initiate T-cell expansion.
Collapse
Affiliation(s)
- Robert W Siggins
- Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112-1393, USA
| | | | | | | | | | | |
Collapse
|
7
|
Brown KN, Barratt-Boyes SM. Surface phenotype and rapid quantification of blood dendritic cell subsets in the rhesus macaque. J Med Primatol 2009; 38:272-8. [PMID: 19344375 DOI: 10.1111/j.1600-0684.2009.00353.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The study of dendritic cell (DC) biology in the rhesus macaque is becoming increasingly important but is limited by incomplete characterization and the lack of a rapid assay to quantify cells. METHODS We characterized the surface phenotype of myeloid (mDC) and plasmacytoid DC (pDC) subsets in healthy rhesus macaque blood and developed a flow cytometry-based assay for absolute DC determinations. RESULTS Rhesus CD11c(+) mDC were CD16(+) CD11b(+) CD56(lo) CD8(-) CD1c(-) whereas CD123(+) pDC lacked expression of these markers. Precise DC determinations were performed using a rapid two-step assay combining the analysis of whole blood and peripheral blood leukocytes (PBL). CONCLUSIONS Antibodies to CD11b, CD56 and CD16 must be omitted from the lineage antibody cocktail to prevent inadvertent gating-out of DC when analyzing rhesus blood. The combined whole-blood/PBL quantification assay will be invaluable for the rapid and repeated monitoring of blood DC counts in this species.
Collapse
Affiliation(s)
- Kevin N Brown
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, and Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
8
|
Malleret B, Karlsson I, Manéglier B, Brochard P, Delache B, Andrieu T, Muller-Trutwin M, Beaumont T, McCune JM, Banchereau J, Le Grand R, Vaslin B. Effect of SIVmac infection on plasmacytoid and CD1c+ myeloid dendritic cells in cynomolgus macaques. Immunology 2008; 124:223-33. [PMID: 18217951 DOI: 10.1111/j.1365-2567.2007.02758.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dendritic cells (DCs) are known to be essential for the induction and regulation of immune responses. Non-human primates are essential in biomedical research and contribute to our understanding of the involvement of DCs in human infectious diseases. However, no direct single-platform method for quantifying DC precursors has yet been optimized in macaques to give accurate absolute blood counts of these rare-event cell populations in the blood. We adapted a rapid whole-blood assay for the absolute quantification of DCs in cynomolgus macaques by four-colour flow cytometry, using a single-platform assay compatible with human blood. Cynomolgus macaque plasmacytoid DCs (pDCs) and CD1c(+) myeloid DCs (CD1c(+) mDCs) were quantified in the blood of 34 healthy macaques and the results obtained were compared with those for blood samples from 11 healthy humans. In addition, circulating absolute numbers of pDCs were quantified in cynomolgus macaques chronically infected with SIVmac. During infection, pDC counts decreased whereas circulating CD1c(+) mDC counts increased. Information regarding absolute pDC and mDC counts in non-human primates may improve our understanding of the role of these cells in SIV/HIV infection and in other infectious diseases.
Collapse
Affiliation(s)
- Benoît Malleret
- CEA, Service d'Immuno-Virologie, DSV/iMETI, IPSC, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Toda M. Analysis of dendritic cells from common marmosets for the treatment of CNS injury. Inflamm Regen 2008. [DOI: 10.2492/inflammregen.28.174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
10
|
Ohta S, Ueda Y, Yaguchi M, Matsuzaki Y, Nakamura M, Toyama Y, Tanioka Y, Tamaoki N, Nomura T, Okano H, Kawakami Y, Toda M. Isolation and characterization of dendritic cells from common marmosets for preclinical cell therapy studies. Immunology 2007; 123:566-74. [PMID: 18005037 DOI: 10.1111/j.1365-2567.2007.02727.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells (DCs) have important functions as modulators of immune responses, and their ability to activate T cells is of great value in cancer immunotherapy. The isolation of DCs from the peripheral blood of rhesus and African green monkeys has been reported, but the immune system in the common marmoset remains poorly characterized, although it offers many potential advantages for preclinical studies. In the present study, we devised methods, based on techniques developed for mouse and human DC preparation, for isolating DCs from three major tissue sources in the common marmoset: bone marrow (BM), spleen and peripheral blood. Each set of separated cells was analysed using the cell surface DC-associated markers CD11c, CD80, CD83, CD86 and human leucocyte antigen (HLA)-DR, all of which are antibodies against human antigens, and the cells were further characterized both functionally and morphologically as antigen-presenting cells. BM proved to be an excellent cell source for the isolation of DCs intended for preclinical studies on cell therapy, for which large quantities of cells are required. In the BM-derived CD11c(+) cell population, cells exhibiting the characteristic features of DCs were enriched, with the typical DC morphology and the abilities to undergo endocytosis, to secrete interleukin (IL)-12, and to stimulate Xenogenic T cells. Moreover, BM-derived DCs produced the neurotrophic factor NT-3, which is also found in murine splenic DCs. These results suggest that BM-derived DCs from the common marmoset may be useful for biological analysis and for preclinical studies on cell therapy for central nervous system diseases and cancer.
Collapse
Affiliation(s)
- Shigeki Ohta
- Neuroimmunology Research Group, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Teleshova N, Kenney J, Robbiani M. Dendritic cells and HIV infection: activating dendritic cells to boost immunity. Adv Dent Res 2006; 19:36-41. [PMID: 16672547 DOI: 10.1177/154407370601900108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dendritic cells (DCs) are white blood cells that coordinate innate and adaptive immunity. They are distributed within epithelia and mucosal-associated lymphoid tissues, positioned to entrap incoming pathogens or vaccines. Human immunodeficiency virus (HIV) and the non-human primate equivalent (SIV) exploit DCs to amplify infection, underscoring the need to harness strategies that promote presentation of virus by DCs to stimulate potent anti-viral immunity instead of virus transmission. Two main subsets of DCs need to be considered: myeloid (MDC) and plasmacytoid (PDC) subsets. Using the SIV-macaque system to advance oral vaccine research, we examined macaque PDC and MDC biology, identifying ways to activate DCs and boost antiviral immunity. Immunostimulatory oligodeoxyribonucleotides (ISS-ODNs) stimulated PDC/MDC mixtures to up-regulate co-stimulatory molecule expression and to secrete both IFN-alpha and IL-12. Additionally, ISS-ODNs augmented SIV-specific IFN-gamma responses induced by virus-bearing DCs. ISS-ODN-driven DC activation is being pursued to improve oral/nasopharyngeal mucosal vaccines and therapies against HIV.
Collapse
Affiliation(s)
- N Teleshova
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
12
|
Miranda de Carvalho C, Bonnefont-Rebeix C, Rigal D, Chabanne L. "Dendritic cells in different animal species: an overview". ACTA ACUST UNITED AC 2005; 54:85-93. [PMID: 16019158 DOI: 10.1016/j.patbio.2005.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Accepted: 04/13/2005] [Indexed: 12/30/2022]
Abstract
The comprehension of the immune system and the role of DC in the pathological diseases may contribute to their use in veterinary medicine in the prevention and treatment of many diseases. Currently, most dendritic cell (DC) research occurs in the human and murine model systems on the generation of cells from the bone marrow or peripheral blood mononuclear cells (PBMC) cultured in vitro. Despite the lack of available immunological reagents such as antibodies and cytokines, analogous cells have been generated and identified in many different species and reviewed in this study.
Collapse
Affiliation(s)
- C Miranda de Carvalho
- Etablissement français du sang, 1-3, rue du Vercors, 69007 Lyon, France; Ecole nationale vétérinaire de Lyon, 1, avenue Bourgelat, 69380 Marcy l'Etoile, France.
| | | | | | | |
Collapse
|
13
|
Gabriela D, Carlos PL, Clara S, Elkin PM. Phenotypical and functional characterization of non-human primate Aotus spp. dendritic cells and their use as a tool for characterizing immune response to protein antigens. Vaccine 2005; 23:3386-95. [PMID: 15837362 DOI: 10.1016/j.vaccine.2005.01.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 01/14/2005] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
A population of cells exhibiting bona fide dendritic cell (DC) morphological and functional characteristics was obtained by treating Aotus spp. monocytes with human IL-4 and GM-CSF. Although the purity of mature DCs was relatively low IL-4/GM-CSF-treated monocytes (hereafter called Aotus spp. DCs) down-regulated CD14 and up-regulated discrete levels of CD80, MHC-Class II and CD1b molecules in response to different maturation stimuli. Aotus spp. DCs generated a potent allogeneic in vitro response evidenced in mixed lymphocyte reaction (MLR) where DCs were 2- to 10-fold more efficient than peripheral blood mononuclear cells (PBMCs). Aotus spp. DC ability to boost T-cells or priming naive T-cells in vivo was proved by vaccinating Aotus spp. with autologous DCs pulsed with tetanus toxoid (TT). A single dose of TT-pulsed DCs was sufficient to increase cellular response to TT in these experiments as assessed by lymphoproliferation and cytokine production. Since Aotus spp. represents a suitable animal model for evaluating anti-Plasmodium falciparum malaria vaccine, the results shown here suggest that using antigen-pulsed Aotus spp. DCs as vaccines might lead to identifying new prospects for malarial vaccines unidentified to date because they are being formulated in less efficient adjuvants.
Collapse
Affiliation(s)
- Delgado Gabriela
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
| | | | | | | |
Collapse
|
14
|
Villamide-Herrera L, Ignatius R, Eller MA, Wilkinson K, Griffin C, Mehlhop E, Jones J, Han SY, Lewis MG, Parrish S, Vancott TC, Lifson JD, Schlesinger S, Mascola JR, Pope M. Macaque dendritic cells infected with SIV-recombinant canarypox ex vivo induce SIV-specific immune responses in vivo. AIDS Res Hum Retroviruses 2004; 20:871-84. [PMID: 15320991 DOI: 10.1089/0889222041725136] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) infected with recombinant avipox vectors express the introduced genes and activate antigen-specific T cells. DCs exhibit distinct differentiation-dependent immune functions. Moreover, immature DCs are readily infected by canarypox vectors, but undergo tumor necrosis factor (TNF)-alpha-dependent death, while fewer mature DCs get infected and resist dying. A pilot study was performed using the rhesus macaque system to explore whether immature and mature DCs infected with SIV-recombinant canarypox (vCP180) ex vivo could induce primary virus-specific immune responses in vivo. After subcutaneous (sc) reinjection, functional monocyte-derived DCs migrated to lymph nodes (LNs) within 1-2 days and primed T cells in vivo. This was observed by monitoring dye-labeled DCs in the draining LNs and tetanus toxoid (TT)-specific T cell responses after injection of TT-loaded DCs. DCs from simian immunodeficiency virus (SIV)-naïve rhesus macaques were infected with vCP180 (SIVmac142 gag, pol, and env genes), and sc reinjected into donor animals. Low-level SIV-specific T cell proliferation, but little if any interferon (IFN)-gamma production was detected. DCs pulsed with vCP180 in combination with TT and keyhole limpet hemocyanin (KLH) (to activate additional T cells and provide "helper" cytokines) induced SIV-, TT-, and KLH-specific T cell responses, including IFN-gamma responses not seen when vCP180-carrying DCs were used alone. Interleukin (IL)-10 and low-level antibody responses were also observed. This pilot study provides the proof of principle that sc injected ex vivo SIV-recombinant canarypox-infected DCs safely induce low-level SIV-specific immune responses in vivo.
Collapse
Affiliation(s)
- L Villamide-Herrera
- Center for Biomedical Research, Population Council, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Coates PTH, Barratt-Boyes SM, Zhang L, Donnenberg VS, O'Connell PJ, Logar AJ, Duncan FJ, Murphey-Corb M, Donnenberg AD, Morelli AE, Maliszewski CR, Thomson AW. Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood 2003; 102:2513-21. [PMID: 12829599 DOI: 10.1182/blood-2002-09-2929] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We provide phenotypic and functional evidence of premonocytoid dendritic cells (DCs) and preplasmacytoid DCs in blood and of corresponding DC subsets in secondary lymphoid tissue of rhesus monkeys. Subsets were identified and sorted by 4-color flow cytometry using antihuman monoclonal antibodies cross-reactive with rhesus monkey. To mobilize pre-DC subsets, fms-like tyrosine 3 kinase ligand (Flt3L; 100 microg/kg subcutaneously) was administered for 10 days. Presumptive pre-DC subsets were identified within the lineage- (Lin-) major histocompatibility complex (MHC) class II+ fraction of blood mononuclear cells. Premonocytoid DCs were CD11c+CD123- (interleukin-3Ralpha- [IL-3Ralpha-]). Preplasmacytoid DCs were characterized as CD11c-CD123++ Flt3L increased the CD11c+ pre-DC (7-fold) and CD123++ pre-DC subsets (3-fold) in blood. The freshly isolated CD11c+ pre-DC subset induced modest proliferation of naive allogeneic T cells. After overnight culture with granulocyte macro-phage-colony-stimulating factor (GMCSF) and CD40L, both subsets up-regulated surface costimulatory molecules, and CD11c+ pre-DCs became potent allostimulators. Freshly isolated CD123++ pre-DCs showed typical plasmacytoid morphology and, when cultured with IL-3 and CD40L for 72 hours, developed mature DC morphology. Following stimulation with CD40L, CD11c+ pre-DCs secreted increased levels of IL-12p40. Importantly, herpes simplex virus-stimulated CD123++ pre-DCs, but not CD11c+ pre-DCs, secreted interferon-alpha (IFN-alpha). Corresponding DC subsets were identified by flow analysis and immunohistochemistry in lymph nodes wherein both populations were increased 2- to 3-fold by Flt3L administration. CD123+ pre-DCs produced IFN-alpha in response to in vivo viral infection. Thus, rhesus monkeys exhibit 2 distinct DC precursor populations that closely resemble those of humans. Both are mobilized into blood and lymphoid tissue by Flt3L, offering potential for their further characterization and possible therapeutic application.
Collapse
Affiliation(s)
- P Toby H Coates
- Thomas E. Starzl Transplantation Institute, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Coates PTH, Barratt-Boyes SM, Donnenberg AD, Morelli AE, Murphey-Corb M, Thomson AW. Strategies for preclinical evaluation of dendritic cell subsets for promotion of transplant tolerance in the nonhuman primate. Hum Immunol 2002; 63:955-65. [PMID: 12368048 DOI: 10.1016/s0198-8859(02)00457-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A role for dendritic cells (DC) as critical regulators of immune reactivity has become increasingly recognized. There is evidence in rodent models that donor-derived DC, particularly in the immature state, can prolong organ allograft survival and even induce donor-specific tolerance. To allow the potential tolerogenic properties of these cells to be evaluated more fully with a view to clinical testing, it is necessary to identify DC subsets in nonhuman primates. We have identified the putative rhesus monkey equivalents of circulating human DC subset precursors as lineage(-), HLA-DR(+), CD123(lo),CD11c(hi)(pDC1) and lineage(-), HLA-DR(+), CD123(hi),CD11c(lo)(pDC2). Testing of these DC populations both in vitro and in vivo, as well as in transplant models in combination with conventional or experimental immunosuppressive reagents, will aid the development of novel strategies for the promotion of allo-antigen specific tolerance in transplantation.
Collapse
Affiliation(s)
- P Toby H Coates
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, 200 Lathrop Street, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
17
|
Kenney RT, Regina Rabinovich N, Pichyangkul S, Price VL, Engers HD. 2nd meeting on novel adjuvants currently in/close to human clinical testing. World Health Organization-Organization Mondiale de la Santé Fondation Mérieux, Annecy, France, 5-7 June 2000. Vaccine 2002; 20:2155-63. [PMID: 12009267 DOI: 10.1016/s0264-410x(02)00091-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Mehlhop E, Villamide LA, Frank I, Gettie A, Santisteban C, Messmer D, Ignatius R, Lifson JD, Pope M. Enhanced in vitro stimulation of rhesus macaque dendritic cells for activation of SIV-specific T cell responses. J Immunol Methods 2002; 260:219-34. [PMID: 11792391 DOI: 10.1016/s0022-1759(01)00544-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The macaque-simian immunodeficiency virus (SIV) system is one of the best animal models available to study the role of dendritic cells (DCs) in transmission and pathogenesis of HIV, as well as to test DC-based vaccine and therapeutic strategies. To better define and optimize this system, the responsiveness of macaque monocyte-derived DCs to a variety of maturation stimuli was examined. Characteristic immunophenotypic and functional DC maturation induced by standard monocyte conditioned medium (MCM) was compared to the activation induced by a panel of stimuli including soluble CD40L, LPS, Poly I:C, PGE(2)/TNFalpha, and a cocktail mixture of PGE(2)/TNFalpha/IL-1beta/IL-6. Immunophenotypic analysis confirmed that all stimuli induced stable up-regulation of CD25, CD40, CD80, CD83, CD86, HLA-DR, DC-LAMP (CD208), and DEC-205 (CD205). In general, macaque DCs exhibited weaker responses to LPS and Poly I:C than human DCs, and soluble CD40L stimulation induced variable expression of CD25. Interestingly, while the endocytic capacity of CD40L-matured cells was down-modulated comparably to DCs matured with MCM or the cocktail, the T cell stimulatory activity was not enhanced to the same extent. The particularly reproducible and potent T cell stimulatory capacity of cocktail-treated DCs correlated with a more homogenous mature DC phenotype, consistently high levels of IL-12 production, and better viability upon reculture compared to DCs activated by other stimuli. Furthermore, cocktail-matured DCs efficiently captured and presented inactivated SIV to SIV-primed T cells in vitro. Thus, the cocktail represents a particularly potent and useful stimulus for the generation of efficacious immunostimulatory macaque DCs.
Collapse
Affiliation(s)
- Erin Mehlhop
- Laboratory of Cellular Physiology and Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|