1
|
Wang H, Wang Y, Yuan Z, Wang Y, Li X, Song P, Lu F, Liu Y. Insight into the cross-linking preferences and characteristics of the transglutaminase from Bacillus subtilis by in vitro RNA display. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Wang H, Song P, Li X, Wang Y, Gui S, Liu Y, Lu F. Screening of the candidate inhibitory peptides of subtilisin by in vitro RNA display technique. Int J Biol Macromol 2020; 163:1162-1167. [PMID: 32673721 DOI: 10.1016/j.ijbiomac.2020.07.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022]
Abstract
The application of inhibitors facilitates the stable preservation of enzyme in liquid detergent by mitigating the proteolytic activity of subtilisin. The conventionally used subtilisin inhibitors such as boric acid pose a threat to the environment and human health. Thus, the formulation of novel subtilisin inhibitors demands immediate attention. In the current study, we have screened the peptide inhibitors for subtilisin by employing the in vitro mRNA display technique. It is a sensitive screening technique with a high library capacity. The affinity screening was performed between the biotin-modified subtilisin immobilized on the streptavidin magnetic beads and the cDNA-mRNA-peptide fusion molecular library acquired from the in vitro translation and reverse transcription. The candidate peptides with high affinity were obtained after multiple rounds of screening. Furthermore, the inhibitory effect was evaluated, showing that some candidate peptides had inhibitory effects, but the isothermal titration calorimetry and time dependent experiments ultimately proved that these candidate peptides were not stable inhibitors. However, the in vitro mRNA display method explored in this study can be used as a preliminary screening method to provide candidate peptides for the screening of subtilisin inhibitors.
Collapse
Affiliation(s)
- Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ping Song
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Xue Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yufa Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuqi Gui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, National Engineering Laboratory for Industrial Enzymes, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
3
|
Nakayama M, Komiya S, Fujiwara K, Horisawa K, Doi N. In vitro selection of bispecific diabody fragments using covalent bicistronic DNA display. Biochem Biophys Res Commun 2016; 478:606-11. [PMID: 27473655 DOI: 10.1016/j.bbrc.2016.07.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022]
Abstract
Bispecific antibodies with two different antigen-binding sites have been widely used for a variety of medical applications. The activity and stability of antibody fragments can be improved by in vitro evolution. Although the affinity and stability of small bispecific antibody fragments such as diabodies can be further optimized by in vitro display technologies, cell-free display of bispecific antibody fragments has not been reported. In this study, we applied a covalent bicistronic DNA display for the in vitro selection of heterodimeric diabodies. First, we confirmed the antigen-binding activities of a diabody synthesized by an in vitro transcription and translation system. However, when we performed DNA-display selection of a model diabody library in a proof-of-principle experiment, no enrichment of the diabody gene was observed, likely due to a low yield of the diabody heterodimer. To overcome this issue, we introduced cysteine residues at the VH-VL interface of the diabody heterodimer. Using the disulfide-stabilized diabodies, we successfully enriched the diabody gene from a model library. Our results indicate that the covalent bicistronic DNA display technique could be useful for improving the stability and affinity of bispecific diabody fragments.
Collapse
Affiliation(s)
- Masanao Nakayama
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Shoko Komiya
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Kenichi Horisawa
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan.
| |
Collapse
|
4
|
Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ. Antibody production, design and use for biosensor-based applications. Semin Cell Dev Biol 2009; 20:10-26. [DOI: 10.1016/j.semcdb.2009.01.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 01/23/2009] [Indexed: 01/29/2023]
|
5
|
Chen SS, Yang YM, Barankiewicz TJ. Selection of IgE-binding aptameric green fluorescent protein (Ap-GFP) by the ribosome display (RD) platform. Biochem Biophys Res Commun 2008; 374:409-14. [PMID: 18619414 DOI: 10.1016/j.bbrc.2008.06.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Accepted: 06/25/2008] [Indexed: 11/26/2022]
Abstract
GFP-Ckappa fusion protein was previously shown selectable on ribosome display platform with solid phase antibodies against GFP determinant [Y.-M. Yang, T.J. Barankiewicz, M. He, M. Taussig, S.-S. Chen, Selection of antigenic markers on a GFP-Ckappa fusion scaffold with high sensitivity by eukaryotic ribosome display, Biochem. Biophys. Res. Commun. 359 (2007) 251-257]. Herein, we show that members of aptameric peptide library constructed within the site 6 and site 8/9 loops of GFP of the ribosome display construct are selectable upon binding to the solid phase IgE antigen. An input of 1.0 microg of the dual site aptameric GFP library exhibiting a diversity of 7.5x10(11) was transcribed, translated and incubated with solid phase IgE. RT-PCR products were amplified from mRNA of the aptamer-ribosome-mRNA (ARM) complex captured on the solid phase IgE. Clones of aptameric GFP were prepared from RT-PCR product of ARM complex following repetitive selection. Recombinant aptameric GFP proteins from the selected clones bind IgE coated on the 96-well plate, and the binding was abrogated by incubation with soluble human IgE but not human IgG. Selected aptameric GFP proteins also exhibit binding to three different sources of human IgE (IgE PS, BED, and JW8) but not irrelevant proteins. These observations indicate that appropriately selected aptameric GFP on a solid phase ligand by ribosome display may serve as an affinity reagent for blocking reactivity of a biological ligand.
Collapse
Affiliation(s)
- Swey-Shen Chen
- The Institute of Genetics, Allergy and Immunology, 6370 Lusk Boulevard, F109-F110, San Diego, CA 92121, USA.
| | | | | |
Collapse
|
6
|
Rothe A, Nathanielsz A, Oberhäuser F, von Strandmann EP, Engert A, Hudson PJ, Power BE. Ribosome display and selection of human anti-CD22 scFvs derived from an acute lymphocytic leukemia patient. Biol Chem 2008; 389:433-9. [DOI: 10.1515/bc.2008.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractNovelin vitromethods for the display of antibody libraries against disease-related antigens have led to the development of powerful protein-based biotherapeutics. Eukaryotic ternary ribosome complexes can be used to display human single chain antibodies (scFvs) to isolate specific binding reagents to these antigens. Here, we present the isolation of human scFv against the immunotherapeutic target antigen CD22 from a patient-derived human scFv library using ribosome display technology. The ribosome complexes were enriched against the extra-cellular domain of human CD22 conjugated to magnetic beads. Isolated constructs were further affinity-matured and specific binding activity was demonstrated by surface plasmon resonance and validated usingin vitrocell assays. The isolated human anti-CD22 scFvs can provide a basis for the development of new immunotherapeutic strategies in CD22-expressing malignant diseases.
Collapse
|
7
|
Reiersen H, Berntsen G, Stassar M, Cochlovius B. Screening human antibody libraries against carcinoma cells by affinity purification and polymerase chain reaction. J Immunol Methods 2008; 330:44-56. [DOI: 10.1016/j.jim.2007.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 09/26/2007] [Accepted: 10/25/2007] [Indexed: 11/16/2022]
|
8
|
Sheedy C, MacKenzie CR, Hall JC. Isolation and affinity maturation of hapten-specific antibodies. Biotechnol Adv 2007; 25:333-52. [PMID: 17383141 DOI: 10.1016/j.biotechadv.2007.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 11/16/2022]
Abstract
More and more recombinant antibodies specific for haptens such as drugs of abuse, dyes and pesticides are being isolated from antibody libraries. Thereby isolated antibodies tend to possess lower affinity than their parental, full-size counterparts, and therefore the isolation techniques must be optimized or the antibody genes must be affinity-matured in order to reach high affinities and specificities required for practical applications. Several strategies have been explored to obtain high-affinity recombinant antibodies from antibody libraries: At the selection level, biopanning optimization can be performed through elution with free hapten, analogue pre-incubation and subtractive panning. At the mutagenesis level, techniques such as random mutagenesis, bacterial mutator strains passaging, site-directed mutagenesis, mutational hotspots targeting, parsimonious mutagenesis, antibody shuffling (chain, DNA and staggered extension process) have been used with various degrees of success to affinity mature or modify hapten-specific antibodies. These techniques are reviewed, illustrated and compared.
Collapse
Affiliation(s)
- Claudia Sheedy
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
9
|
Rothe A, Nathanielsz A, Hosse RJ, Oberhäuser F, Strandmann EP, Engert A, Hudson PJ, Power BE. Selection of human anti-CD28 scFvs from a T-NHL related scFv library using ribosome display. J Biotechnol 2007; 130:448-54. [PMID: 17604868 DOI: 10.1016/j.jbiotec.2007.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 11/30/2022]
Abstract
Engineered antibodies have become an invaluable source of biopharmaceuticals against a wide range of diseases. About 200 antibody-based biologicals have been tested in clinical trials. Single chain variable fragments of antibodies (scFvs) provide binding specificity and offer an increased ease of in vitro display selection. Here, we present the generation of a human scFv library from peripheral blood lymphocyte RNA of a patient with relapsed T-cell non-Hodgkin lymphoma (T-NHL) who experienced a rare case of "spontaneous" remission. Antibodies against human T-cell antigen CD28, a co-stimulatory protein that influences the immune response by amplification of the transcriptional effects of T-cell receptors, might have contributed to the patient's remission. The scFv library was panned against CD28 using ribosome display and further subjected to affinity maturation. Isolated scFv were assessed for binding specificity and affinity and may provide the basis for the development of novel immunotherapeutic strategies. This work demonstrates the selection of a fully human antibody fragment from a patient-derived gene pool by in vitro ribosome display technology.
Collapse
Affiliation(s)
- Achim Rothe
- Department of Internal Medicine I, Laboratory of Immunotherapy, University Hospital Cologne, Joseph Stelzmann street 9, 50931 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kopsidas G, Carman RK, Stutt EL, Raicevic A, Roberts AS, Siomos MAV, Dobric N, Pontes-Braz L, Coia G. RNA mutagenesis yields highly diverse mRNA libraries for in vitro protein evolution. BMC Biotechnol 2007; 7:18. [PMID: 17425805 PMCID: PMC1855321 DOI: 10.1186/1472-6750-7-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 04/11/2007] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND In protein drug development, in vitro molecular optimization or protein maturation can be used to modify protein properties. One basic approach to protein maturation is the introduction of random DNA mutations into the target gene sequence to produce a library of variants that can be screened for the preferred protein properties. Unfortunately, the capability of this approach has been restricted by deficiencies in the methods currently available for random DNA mutagenesis and library generation. Current DNA based methodologies generally suffer from nucleotide substitution bias that preferentially mutate particular base pairs or show significant bias with respect to transitions or transversions. In this report, we describe a novel RNA-based random mutagenesis strategy that utilizes Qbeta replicase to manufacture complex mRNA libraries with a mutational spectrum that is close to the ideal. RESULTS We show that Qbeta replicase generates all possible base substitutions with an equivalent preference for mutating A/T or G/C bases and with no significant bias for transitions over transversions. To demonstrate the high diversity that can be sampled from a Qbeta replicase-generated mRNA library, the approach was used to evolve the binding affinity of a single domain VNAR shark antibody fragment (12Y-2) against malarial apical membrane antigen-1 (AMA-1) via ribosome display. The binding constant (KD) of 12Y-2 was increased by 22-fold following two consecutive but discrete rounds of mutagenesis and selection. The mutagenesis method was also used to alter the substrate specificity of beta-lactamase which does not significantly hydrolyse the antibiotic cefotaxime. Two cycles of RNA mutagenesis and selection on increasing concentrations of cefotaxime resulted in mutants with a minimum 10,000-fold increase in resistance, an outcome achieved faster and with fewer overall mutations than in comparable studies using other mutagenesis strategies. CONCLUSION The RNA based approach outlined here is rapid and simple to perform and generates large, highly diverse populations of proteins, each differing by only one or two amino acids from the parent protein. The practical implications of our results are that suitable improved protein candidates can be recovered from in vitro protein evolution approaches using significantly fewer rounds of mutagenesis and selection, and with little or no collateral damage to the protein or its mRNA.
Collapse
Affiliation(s)
- George Kopsidas
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Rachael K Carman
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Emma L Stutt
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Anna Raicevic
- CSIRO, Molecular and Health Technologies, 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Anthony S Roberts
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | | | - Nada Dobric
- EvoGenix Ltd., 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Luisa Pontes-Braz
- CSIRO, Molecular and Health Technologies, 343 Royal Parade, Parkville, Melbourne 3052, Australia
| | - Greg Coia
- CSIRO, Molecular and Health Technologies, 343 Royal Parade, Parkville, Melbourne 3052, Australia
| |
Collapse
|
11
|
Kopsidas G, Roberts AS, Coia G, Streltsov VA, Nuttall SD. In vitro improvement of a shark IgNAR antibody by Qbeta replicase mutation and ribosome display mimics in vivo affinity maturation. Immunol Lett 2006; 107:163-8. [PMID: 17069896 DOI: 10.1016/j.imlet.2006.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/23/2006] [Accepted: 09/23/2006] [Indexed: 01/28/2023]
Abstract
We have employed a novel mutagenesis system, which utilizes an error-prone RNA dependent RNA polymerase from Qbeta bacteriophage, to create a diverse library of single domain antibody fragments based on the shark IgNAR antibody isotype. Coupling of these randomly mutated mRNA templates directly to the translating ribosome allowed in vitro selection of affinity matured variants showing enhanced binding to target, the apical membrane antigen 1 (AMA1) from Plasmodium falciparum. One mutation mapping to the IgNAR CDR1 loop was not readily additive to other changes, a result explained by structural analysis of aromatic interactions linking the CDR1, CDR3, and Ig framework regions. This combination appeared also to be counter-selected in experiments, suggesting that in vitro affinity maturation is additionally capable of discriminating against incorrectly produced protein variants. Interestingly, a further mutation was directed to a position in the IgNAR heavy loop 4 which is also specifically targeted during the in vivo shark response to antigen, providing a correlation between natural processes and laboratory-based affinity maturation systems.
Collapse
Affiliation(s)
- George Kopsidas
- EvoGenix Limited, 343 Royal Parade, Parkville, Vic. 3052, Australia
| | | | | | | | | |
Collapse
|
12
|
Yan X, Xu Z. Ribosome-display technology: applications for directed evolution of functional proteins. Drug Discov Today 2006; 11:911-6. [PMID: 16997141 DOI: 10.1016/j.drudis.2006.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 07/26/2006] [Accepted: 08/15/2006] [Indexed: 11/18/2022]
Abstract
In vitro display technologies, especially ribosome display, are valuable tools for many applications. In this paper, ribosome display technology and its applications for directed evolution of functional proteins will be reviewed. Ribosome display has great potential for directed evolution of protein stability and affinity, the generation of high-quality libraries by in vitro preselection, the selection of enzymatic activities, and the display of cDNA and random-peptide libraries. Ribosome display is carried out fully in vitro, which overcomes some of the limitations of cell-based display systems. We anticipate that ribosome display will have a great impact on applications in biotechnology, medicine and proteomics.
Collapse
Affiliation(s)
- Xianghua Yan
- Antibody Engineering Center, Key Laboratory of Animal Molecular Nutrition, Ministry of Education, Feed Science Institute, Zhejiang University, Hangzhou, 310029, P.R. China
| | | |
Collapse
|
13
|
Abstract
Ribosome display presents an innovative in vitro technology for the rapid isolation and evolution of high-affinity peptides or proteins. Displayed proteins are bound to and recovered from target molecules in multiple rounds of selection in order to enrich for specific binding proteins. No transformation step is necessary, which could lead to a loss of library diversity. A cycle of display and selection can be performed in one day, enabling the existing gene repertoire to be rapidly scanned. Proteins isolated from the panning rounds can be further modified through random or directed molecular evolution for affinity maturation, as well as selected for characteristics such as protein stability, folding and functional activity. Recently, the field of display technologies has become more prominent due to the generation of new scaffolds for ribosome display, isolation of high-affinity human antibodies by phage display, and their implementation in the discovery of novel protein-protein interactions. Applications for this technology extend into the broad field of antibody engineering, proteomics, and synthetic enzymes for diagnostics and therapeutics in cancer, autoimmune and infectious diseases, neurodegenerative diseases and inflammatory disorders. This review highlights the role of ribosome display in drug discovery, discusses advantages and disadvantages of the system, and attempts to predict the future impact of ribosome display technology on the development of novel engineered biopharmaceutical products for biological therapies.
Collapse
Affiliation(s)
- Achim Rothe
- CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
14
|
Abstract
Ribosome display is a polymerase chain reaction-based in vitro display technology that is well suited to the selection and evolution of high affinity antibodies. Both eukaryotic and prokaryotic translation systems have been applied to ribosome display, and the technology's utility has been demonstrated in the antibody isolation process. In particular, ribosome display lends itself to the evolution of functional characteristics, such as potency, of lead candidate antibodies to provide therapeutic antibodies. Large libraries (10(12)) can be rapidly constructed, antibodies selected, and sequence space extensively explored by targeted mutagenesis techniques or by random mutagenesis throughout the antibody sequence. Using such approaches in ribosome display systems lead antibodies derived from phage display or from immunised animals have been improved > 1000-fold in potency within 6 months. This review will discuss the technology and give an insight into how ribosome display is being applied to the antibody lead discovery and optimisation processes.
Collapse
Affiliation(s)
- Maria A T Groves
- Cambridge Antibody Technology, Milstein Building, Granta Park, Cambridge, CB16GH, UK
| | | |
Collapse
|
15
|
Reiersen H, Løbersli I, Løset GÅ, Hvattum E, Simonsen B, Stacy JE, McGregor D, Fitzgerald K, Welschof M, Brekke OH, Marvik OJ. Covalent antibody display--an in vitro antibody-DNA library selection system. Nucleic Acids Res 2005; 33:e10. [PMID: 15653626 PMCID: PMC546181 DOI: 10.1093/nar/gni010] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The endonuclease P2A initiates the DNA replication of the bacteriophage P2 by making a covalent bond with its own phosphate backbone. This enzyme has now been exploited as a new in vitro display tool for antibody fragments. We have constructed genetic fusions of P2A with single-chain antibodies (scFvs). Linear DNA of these fusion proteins were processed in an in vitro coupled transcription–translation mixture of Escherichia coli S30 lysate. Complexes of scFv–P2A fusion proteins covalently bound to their own DNA were isolated after panning on immobilized antigen, and the enriched DNAs were recovered by PCR and prepared for the subsequent cycles of panning. We have demonstrated the enrichment of scFvs from spiked libraries and the specific selection of different anti-tetanus toxoid scFvs from a V-gene library with 50 million different members prepared from human lymphocytes. This covalent antibody display technology offers a complete in vitro selection system based exclusively on DNA–protein complexes.
Collapse
Affiliation(s)
- Herald Reiersen
- Affitech AS, Oslo Research Park Gaustadalleen 21, N-0349 OSLO, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lipovsek D, Plückthun A. In-vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004; 290:51-67. [PMID: 15261571 DOI: 10.1016/j.jim.2004.04.008] [Citation(s) in RCA: 244] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2004] [Indexed: 11/30/2022]
Abstract
In-vitro display technologies combine two important advantages for identifying and optimizing ligands by evolutionary strategies. First, by obviating the need to transform cells in order to generate and select libraries, they allow a much higher library diversity. Second, by including PCR as an integral step in the procedure, they make PCR-based mutagenesis strategies convenient. The resulting iteration between diversification and selection allows true Darwinian protein evolution to occur in vitro. We describe two such selection methods, ribosome display and mRNA display. In ribosome display, the translated protein remains connected to the ribosome and to its encoding mRNA; the resulting ternary complex is used for selection. In mRNA display, mRNA is first translated and then covalently bonded to the protein it encodes, using puromycin as an adaptor molecule. The covalent mRNA-protein adduct is purified from the ribosome and used for selection. Successful examples of high-affinity, specific target-binding molecules selected by in-vitro display methods include peptides, antibodies, enzymes, and engineered scaffolds, such as fibronectin type III domains and synthetic ankyrins, which can mimic antibody function.
Collapse
Affiliation(s)
- Dasa Lipovsek
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | |
Collapse
|
17
|
Construction of the combinatorial library of Rhizopus oryzae lipase mutated in the lid domain by displaying on yeast cell surface. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1381-1177(02)00024-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|