1
|
Burger H, Marquardt M, Babucke K, Heuel KC, Ayasse M, Dötterl S, Galizia CG. Neural and behavioural responses of the pollen-specialist bee Andrena vaga to Salix odours. J Exp Biol 2021; 224:269108. [PMID: 34113983 DOI: 10.1242/jeb.242166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/02/2021] [Indexed: 01/05/2023]
Abstract
An effective means of finding food is crucial for organisms. Whereas specialized animals select a small number of potentially available food sources, generalists use a broader range. Specialist (oligolectic) bees forage on a small range of flowering plants for pollen and use primarily olfactory and visual cues to locate their host flowers. So far, however, little is known about the specific cues oligoleges use to discriminate between hosts and non-hosts and how floral scent compounds of hosts and non-hosts are processed in the bees' olfactory system. In this study, we recorded physiological responses of the antennae (electroantennographic detection coupled to gas chromatography; GC-EAD) and in the brain (optical imaging; GC imaging), and studied host-finding behaviour of oligolectic Andrena vaga bees, a specialist on Salix plants. In total, we detected 37 physiologically active compounds in host and non-host scents. 4-Oxoisophorone, a common constituent in the scent of many Salix species, evoked strong responses in the antennal lobe glomeruli of A. vaga, but not the generalist honeybee Apis mellifera. The specific glomerular responses to 4-oxoisophorone in natural Salix scents reveals a high degree of specialization in A. vaga for this typical Salix odorant component. In behavioural experiments, we found olfactory cues to be the key attractants for A. vaga to Salix hosts, which are also used to discriminate between hosts and non-hosts, and A. vaga demonstrated a behavioural activity for 4-oxoisophorone. A high sensitivity to floral scents enables the specialized bees to effectively find flowers and it appears that A. vaga bees are highly tuned to 4-oxoisophorone at a very low concentration.
Collapse
Affiliation(s)
- Hannah Burger
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany.,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Melanie Marquardt
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Katharina Babucke
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Kim C Heuel
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany.,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, 89081 Ulm, Germany
| | - Stefan Dötterl
- Department of Biosciences, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria
| | - C Giovanni Galizia
- Department of Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
2
|
Use of odor by host-finding insects: the role of real-time odor environment and odor mixing degree. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Mariette J, Carcaud J, Sandoz JC. The neuroethology of olfactory sex communication in the honeybee Apis mellifera L. Cell Tissue Res 2021; 383:177-194. [PMID: 33447877 DOI: 10.1007/s00441-020-03401-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
The honeybee Apis mellifera L. is a crucial pollinator as well as a prominent scientific model organism, in particular for the neurobiological study of olfactory perception, learning, and memory. A wealth of information is indeed available about how the worker bee brain detects, processes, and learns about odorants. Comparatively, olfaction in males (the drones) and queens has received less attention, although they engage in a fascinating mating behavior that strongly relies on olfaction. Here, we present our current understanding of the molecules, cells, and circuits underlying bees' sexual communication. Mating in honeybees takes place at so-called drone congregation areas and places high in the air where thousands of drones gather and mate in dozens with virgin queens. One major queen-produced olfactory signal-9-ODA, the major component of the queen pheromone-has been known for decades to attract the drones. Since then, some of the neural pathways responsible for the processing of this pheromone have been unraveled. However, olfactory receptor expression as well as brain neuroanatomical data point to the existence of three additional major pathways in the drone brain, hinting at the existence of 4 major odorant cues involved in honeybee mating. We discuss current evidence about additional not only queen- but also drone-produced pheromonal signals possibly involved in bees' sexual behavior. We also examine data revealing recent evolutionary changes in drone's olfactory system in the Apis genus. Lastly, we present promising research avenues for progressing in our understanding of the neural basis of bees mating behavior.
Collapse
Affiliation(s)
- Julia Mariette
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Julie Carcaud
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behaviour and Ecology, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Drozd D, Wolf H, Stemme T. Structure of the pecten neuropil pathway and its innervation by bimodal peg afferents in two scorpion species. PLoS One 2020; 15:e0243753. [PMID: 33301509 PMCID: PMC7728269 DOI: 10.1371/journal.pone.0243753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/25/2020] [Indexed: 11/19/2022] Open
Abstract
The pectines of scorpions are comb-like structures, located ventrally behind the fourth walking legs and consisting of variable numbers of teeth, or pegs, which contain thousands of bimodal peg sensillae. The associated neuropils are situated ventrally in the synganglion, extending between the second and fourth walking leg neuromeres. While the general morphology is consistent among scorpions, taxon-specific differences in pecten and neuropil structure remain elusive but are crucial for a better understanding of chemosensory processing. We analysed two scorpion species (Mesobuthus eupeus and Heterometrus petersii) regarding their pecten neuropil anatomy and the respective peg afferent innervation with anterograde and lipophilic tracing experiments, combined with immunohistochemistry and confocal laser-scanning microscopy. The pecten neuropils consisted of three subcompartments: a posterior pecten neuropil, an anterior pecten neuropil and a hitherto unknown accessory pecten neuropil. These subregions exhibited taxon-specific variations with regard to compartmentalisation and structure. Most notable were structural differences in the anterior pecten neuropils that ranged from ovoid shape and strong fragmentation in Heterometrus petersii to elongated shape with little compartmentalisation in Mesobuthus eupeus. Labelling the afferents of distinct pegs revealed a topographic organisation of the bimodal projections along a medio-lateral axis. At the same time, all subregions along the posterior-anterior axis were innervated by a single peg's afferents. The somatotopic projection pattern of bimodal sensillae appears to be common among arachnids, including scorpions. This includes the structure and organisation of the respective neuropils and the somatotopic projection patterns of chemosensory afferents. Nonetheless, the scorpion pecten pathway exhibits unique features, e.g. glomerular compartmentalisation superimposed on somatotopy, that are assumed to allow high resolution of substrate-borne chemical gradients.
Collapse
Affiliation(s)
- Denise Drozd
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| |
Collapse
|
5
|
Wycke MA, Coureaud G, Thomas-Danguin T, Sandoz JC. Configural perception of a binary olfactory mixture in honey bees, as in humans, rodents and newborn rabbits. J Exp Biol 2020; 223:jeb227611. [PMID: 33046568 DOI: 10.1242/jeb.227611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/06/2020] [Indexed: 11/20/2022]
Abstract
How animals perceive and learn complex stimuli, such as mixtures of odorants, is a difficult problem, for which the definition of general rules across the animal kingdom remains elusive. Recent experiments conducted in human and rodent adults as well as newborn rabbits suggested that these species process particular odor mixtures in a similar, configural manner. Thus, the binary mixture of ethyl isobutyrate (EI) and ethyl maltol (EM) induces configural processing in humans, who perceive a mixture odor quality (pineapple) that is distinct from the quality of each component (strawberry and caramel). Similarly, rabbit neonates treat the mixture differently, at least in part, from its components. In the present study, we asked whether the properties of the EI.EM mixture extend to an influential invertebrate model, the honey bee Apis mellifera. We used appetitive conditioning of the proboscis extension response to evaluate how bees perceive the EI.EM mixture. In a first experiment, we measured perceptual similarity between this mixture and its components in a generalization protocol. In a second experiment, we measured the ability of bees to differentiate between the mixture and both of its components in a negative patterning protocol. In each experimental series, the performance of bees with this mixture was compared with that obtained with four other mixtures, chosen from previous work in humans, newborn rabbits and bees. Our results suggest that when having to differentiate mixture and components, bees treat the EI.EM in a robust configural manner, similarly to mammals, suggesting the existence of common perceptual rules across the animal kindgdom.
Collapse
Affiliation(s)
- Marie-Anne Wycke
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon, Equipe Codage et Mémoire Olfactive, CNRS/INSERM/UCBL1, 69500 Bron, France
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS, Université Paris-Saclay, IRD, 91190 Gif-sur-Yvette, France
| |
Collapse
|
6
|
Rossi N, Derégnaucourt S. Mechanisms of recognition in birds and social Hymenoptera: from detection to information processing. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190483. [PMID: 32420859 PMCID: PMC7331013 DOI: 10.1098/rstb.2019.0483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2020] [Indexed: 11/12/2022] Open
Abstract
In this opinion piece, we briefly review our knowledge of the mechanisms underlying auditory individual recognition in birds and chemical nest-mate recognition in social Hymenoptera. We argue that even though detection and perception of recognition cues are well studied in social Hymenoptera, the neural mechanisms remain a black box. We compare our knowledge of these insect systems with that of the well-studied avian 'song control system'. We suggest that future studies on recognition should focus on the hypothesis of a distributed template instead of trying to locate the seat of the template as recent results do not seem to point in that direction. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
- Natacha Rossi
- Laboratory of Experimental and Comparative Ethology, University of Paris 13, Sorbonne Paris Cité, 99 avenue J.-B., Clément, 93430 Villetaneuse, France
| | - Sébastien Derégnaucourt
- Laboratory Ethology Cognition Development, University Paris Nanterre, University Paris Lumières, 200 avenue de la République, 92001 Nanterre, France
| |
Collapse
|
7
|
Bastin F, Couto A, Larcher V, Phiancharoen M, Koeniger G, Koeniger N, Sandoz JC. Marked interspecific differences in the neuroanatomy of the male olfactory system of honey bees (genus Apis). J Comp Neurol 2018; 526:3020-3034. [PMID: 30417379 DOI: 10.1002/cne.24513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 12/27/2022]
Abstract
All honey bee species (genus Apis) display a striking mating behavior with the formation of male (drone) congregations, in which virgin queens mate with many drones. Bees' mating behavior relies on olfactory communication involving queen-but also drone pheromones. To explore the evolution of olfactory communication in Apis, we analyzed the neuroanatomical organization of the antennal lobe (primary olfactory center) in the drones of five species from the three main lineages (open-air nesting species: dwarf honey bees Apis florea and giant honey bees Apis dorsata; cavity-nesting species: Apis mellifera, Apis kochevnikovi, and Apis cerana) and from three populations of A. cerana (Borneo, Thailand, and Japan). In addition to differences in the overall number of morphological units, the glomeruli, our data reveal marked differences in the number and position of macroglomeruli, enlarged units putatively dedicated to sex pheromone processing. Dwarf and giant honey bee species possess two macroglomeruli while cavity-nesting bees present three or four macroglomeruli, suggesting an increase in the complexity of sex communication during evolution in the genus Apis. The three A. cerana populations showed differing absolute numbers of glomeruli but the same three macroglomeruli. Overall, we identified six different macroglomeruli in the genus Apis. One of these (called MGb), which is dedicated to the detection of the major queen compound 9-ODA in A. mellifera, was conserved in all species. We discuss the implications of these results for our understanding of sex communication in honey bees and propose a putative scenario of antennal lobe evolution in the Apis genus.
Collapse
Affiliation(s)
- Florian Bastin
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), Univ Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Antoine Couto
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), Univ Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Larcher
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), Univ Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mananya Phiancharoen
- Ratchaburi Campus, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Gudrun Koeniger
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Nikolaus Koeniger
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), Univ Paris-Sud, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Brand P, Larcher V, Couto A, Sandoz JC, Ramírez SR. Sexual dimorphism in visual and olfactory brain centers in the perfume-collecting orchid bee Euglossa dilemma (Hymenoptera, Apidae). J Comp Neurol 2018; 526:2068-2077. [PMID: 30088672 PMCID: PMC6174972 DOI: 10.1002/cne.24483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 11/07/2022]
Abstract
Insect mating behavior is controlled by a diverse array of sex‐specific traits and strategies that evolved to maximize mating success. Orchid bees exhibit a unique suite of perfume‐mediated mating behaviors. Male bees collect volatile compounds from their environment to concoct species‐specific perfume mixtures that are presumably used to attract conspecific females. Despite a growing understanding of the ecology and evolution of chemical signaling in orchid bees, many aspects of the functional adaptations involved, in particular regarding sensory systems, remain unknown. Here we investigated male and female brain morphology in the common orchid bee Euglossa dilemma Bembé & Eltz. Males exhibited increased relative volumes of the Medulla, a visual brain region, which correlated with larger compound eye size (area). While the overall volume of olfactory brain regions was similar between sexes, the antennal lobes exhibited several sex‐specific structures including one male‐specific macroglomerulus. These findings reveal sexual dimorphism in both the visual and the olfactory system of orchid bees. It highlights the tendency of an increased investment in the male visual system similar to that observed in other bee lineages, and suggests that visual input may play a more important role in orchid bee male mating behavior than previously thought. Furthermore, our results suggest that the evolution of perfume communication in orchid bees did not involve drastic changes in olfactory brain morphology compared to other bee lineages.
Collapse
Affiliation(s)
- Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California
| | - Virginie Larcher
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Université Paris-Sud, IRD, Université Paris Saclay, Gif-sur-Yvette, France
| | - Antoine Couto
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Université Paris-Sud, IRD, Université Paris Saclay, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Université Paris-Sud, IRD, Université Paris Saclay, Gif-sur-Yvette, France
| | - Santiago R Ramírez
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California
| |
Collapse
|
9
|
Sinakevitch I, Bjorklund GR, Newbern JM, Gerkin RC, Smith BH. Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee, and human. BIOLOGICAL CYBERNETICS 2018; 112:127-140. [PMID: 28852854 PMCID: PMC5832527 DOI: 10.1007/s00422-017-0728-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Despite divergent evolutionary origins, the organization of olfactory systems is remarkably similar across phyla. In both insects and mammals, sensory input from receptor cells is initially processed in synaptically dense regions of neuropil called glomeruli, where neural activity is shaped by local inhibition and centrifugal neuromodulation prior to being sent to higher-order brain areas by projection neurons. Here we review both similarities and several key differences in the neuroanatomy of the olfactory system in honey bees, mice, and humans, using a combination of literature review and new primary data. We have focused on the chemical identity and the innervation patterns of neuromodulatory inputs in the primary olfactory system. Our findings show that serotonergic fibers are similarly distributed across glomeruli in all three species. Octopaminergic/tyraminergic fibers in the honey bee also have a similar distribution, and possibly a similar function, to noradrenergic fibers in the mammalian OBs. However, preliminary evidence suggests that human OB may be relatively less organized than its counterparts in honey bee and mouse.
Collapse
Affiliation(s)
- Irina Sinakevitch
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA.
| | - George R Bjorklund
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | - Richard C Gerkin
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA
| | - Brian H Smith
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ, 85287-4501, USA.
| |
Collapse
|
10
|
Kropf J, Rössler W. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee. PLoS One 2018; 13:e0191425. [PMID: 29351552 PMCID: PMC5774781 DOI: 10.1371/journal.pone.0191425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN) convey olfactory information on ~900 projection neurons (PN) in the antennal lobe (AL). To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB). This pathway comprises the medial (m-ALT) and the lateral antennal lobe tract (l-ALT). PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC) that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.
Collapse
Affiliation(s)
- Jan Kropf
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Brasero N, Lecocq T, Martinet B, Valterová I, Urbanová K, de Jonghe R, Rasmont P. Variability in Sexual Pheromones Questions their Role in Bumblebee Pre-Mating Recognition System. J Chem Ecol 2017; 44:9-17. [PMID: 29209934 DOI: 10.1007/s10886-017-0910-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/19/2017] [Accepted: 11/20/2017] [Indexed: 11/25/2022]
Abstract
Sex-specific chemical secretions have been widely used as diagnostic characters in chemotaxonomy. The taxonomically confused group of bumblebees has reaped the benefit of this approach through the analyses of cephalic labial gland secretions (CLGS). Most of currently available CLGS descriptions concern species from the West-Palearctic region but few from the New World. Here, the CLGS of four East-Palearctic species Bombus deuteronymus, B. filchnerae, B. humilis, and B. exil (subgenus Thoracobombus) are analysed. Our results show high levels of variability in the major compounds in B. exil. In contrast, we describe a low differentiation in CLGS compounds between B. filchnerae and its phylogenetically closely related taxon B. muscorum. Moreover, the chemical profiles of B. filchnerae and B. muscorum are characterized by low concentrations of the C16 component, which is found in higher concentrations in the other Thoracobombus species. This raises the possibility that courtship behavior as well as environmental constraints could affect the role of the bumblebee males' CLGS.
Collapse
Affiliation(s)
- Nicolas Brasero
- Research Institute of Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000, Mons, Belgium.
| | - Thomas Lecocq
- Research Institute of Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000, Mons, Belgium
- Research Unit Animal and Functionalities of Animal Products (URAFPA), University of Lorraine - INRA, 2 Avenue de la Forêt de Haye, BP 172, 54505, Vandœuvre-lès-Nancy, France
| | - Baptiste Martinet
- Research Institute of Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Irena Valterová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám 2, CZ-166 10, Prague, Czech Republic
| | - Klára Urbanová
- Faculty of Tropical AgriSciences, Department of Sustainable Technologies, Czech University of Life Sciences, Kamýcká 129, CZ-165 21, Prague, Czech Republic
| | - Roland de Jonghe
- Research Institute of Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| | - Pierre Rasmont
- Research Institute of Biosciences, Laboratory of Zoology, University of Mons, Place du Parc 20, 7000, Mons, Belgium
| |
Collapse
|
12
|
|
13
|
Grabe V, Sachse S. Fundamental principles of the olfactory code. Biosystems 2017; 164:94-101. [PMID: 29054468 DOI: 10.1016/j.biosystems.2017.10.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023]
Abstract
Sensory coding represents a basic principle of all phyla in nature: species attempt to perceive their natural surroundings and to make sense of them. Ultimately, sensory coding is the only way to allow a species to make the kinds of crucial decisions that lead to a behavioral response. In this manner, animals are able to detect numerous parameters, ranging from temperature and humidity to light and sound to volatile or non-volatile chemicals. Most of these environmental cues represent a clearly defined stimulus array that can be described along a single physical parameter, such as wavelength or frequency; odorants, in contrast, cannot. The odor space encompasses an enormous and nearly infinite number of diverse stimuli that cannot be classified according to their positions along a single dimension. Hence, the olfactory system has to encode and translate the vast odor array into an accurate neural map in the brain. In this review, we will outline the relevant steps of the olfactory code and describe its progress along the olfactory pathway, i.e., from the peripheral olfactory organs to the first olfactory center in the brain and then to the higher processing areas where the odor perception takes place, enabling an organism to make odor-guided decisions. We will focus mainly on studies from the vinegar fly Drosophila melanogaster, but we will also indicate similarities to and differences from the olfactory system of other invertebrate species as well as of the vertebrate world.
Collapse
Affiliation(s)
- Veit Grabe
- Max Planck Institute for Chemical Ecology, Department of EvolutionaryNeuroethology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Department of EvolutionaryNeuroethology, Hans-Knoell-Str. 8, 07745 Jena, Germany.
| |
Collapse
|
14
|
Resisting majesty: Apis cerana, has lower antennal sensitivity and decreased attraction to queen mandibular pheromone than Apis mellifera. Sci Rep 2017; 7:44640. [PMID: 28294146 PMCID: PMC5353700 DOI: 10.1038/srep44640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/13/2017] [Indexed: 11/08/2022] Open
Abstract
In highly social bees, queen mandibular pheromone (QMP) is vital for colony life. Both Apis cerana (Ac) and Apis mellifera (Am) share an evolutionarily conserved set of QMP compounds: (E)-9-oxodec-2-enoic acid (9-ODA), (E)-9-hydroxydec-2-enoic acid (9-HDA), (E)-10-hydroxy-dec-2-enoic acid (10-HDA), 10-hydroxy-decanoic acid (10-HDAA), and methyl p-hydroxybenzoate (HOB) found at similar levels. However, evidence suggests there may be species-specific sensitivity differences to QMP compounds because Ac workers have higher levels of ovarian activation than Am workers. Using electroantennograms, we found species-specific sensitivity differences for a blend of the major QMP compounds and three individual compounds (9-HDA, 10-HDAA, and 10-HDA). As predicted, Am was more sensitive than Ac in all cases (1.3- to 2.7- fold higher responses). There were also species differences in worker retinue attraction to three compounds (9-HDA, HOB, and 10-HDA). In all significantly different cases, Am workers were 4.5- to 6.2-fold more strongly attracted than Ac workers were. Thus, Ac workers responded less strongly to QMP than Am workers, and 9-HDA and 10-HDA consistently elicited stronger antennal and retinue formation responses [corrected].
Collapse
|
15
|
Desmedt L, Hotier L, Giurfa M, Velarde R, de Brito Sanchez MG. Absence of food alternatives promotes risk-prone feeding of unpalatable substances in honey bees. Sci Rep 2016; 6:31809. [PMID: 27534586 PMCID: PMC4989156 DOI: 10.1038/srep31809] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/26/2016] [Indexed: 11/28/2022] Open
Abstract
The question of why animals sometimes ingest noxious substances is crucial to understand unknown determinants of feeding behaviour. Research on risk-prone feeding behaviour has largely focused on energy budgets as animals with low energy budgets tend to ingest more aversive substances. A less explored possibility is that risk-prone feeding arises from the absence of alternative feeding options, irrespectively of energy budgets. Here we contrasted these two hypotheses in late-fall and winter honey bees. We determined the toxicity of various feeding treatments and showed that when bees can choose between sucrose solution and a mixture of this sucrose solution and a noxious/unpalatable substance, they prefer the pure sucrose solution and reject the mixtures, irrespective of their energy budget. Yet, when bees were presented with a single feeding option and their escape possibilities were reduced, they consumed unexpectedly some of the previously rejected mixtures, independently of their energy budget. These findings are interpreted as a case of feeding helplessness, in which bees behave as if it were utterly helpless to avoid the potentially noxious food and consume it. They suggest that depriving bees of variable natural food sources may have the undesired consequence of increasing their acceptance of food that would be otherwise rejected.
Collapse
Affiliation(s)
- Lucie Desmedt
- Research Centre on Animal Cognition, Center for Integrative Biology, University of Toulouse; CNRS, UPS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | - Lucie Hotier
- Research Centre on Animal Cognition, Center for Integrative Biology, University of Toulouse; CNRS, UPS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | - Martin Giurfa
- Research Centre on Animal Cognition, Center for Integrative Biology, University of Toulouse; CNRS, UPS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| | - Rodrigo Velarde
- Departamento de Biodiversidad y Biología Experimental, Grupo de Estudio de Insectos Sociales, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria (C1428EHA), Buenos Aires, Argentina
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Center for Integrative Biology, University of Toulouse; CNRS, UPS, 118 route de Narbonne, 31062 Toulouse cedex 09, France
| |
Collapse
|
16
|
Grüter C, Keller L. Inter-caste communication in social insects. Curr Opin Neurobiol 2016; 38:6-11. [PMID: 26803006 DOI: 10.1016/j.conb.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 01/02/2023]
Abstract
Social insect colonies function as highly integrated units despite consisting of many individuals. This requires the different functional parts of the colony (e.g. different castes) to exchange information that aid in colony functioning and ontogeny. Here we discuss inter-caste communication in three contexts, firstly, the communication between males and females during courtship, secondly, the communication between queens and workers that regulate reproduction and thirdly, the communication between worker castes that allows colonies to balance the number of different worker types. Some signals show surprising complexity in both their chemistry and function, whereas others are simple compounds that were probably already used as pheromones in the solitary ancestors of several social insect lineages.
Collapse
Affiliation(s)
- Christoph Grüter
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Laurent Keller
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Rigosi E, Haase A, Rath L, Anfora G, Vallortigara G, Szyszka P. Asymmetric neural coding revealed by in vivo calcium imaging in the honey bee brain. Proc Biol Sci 2015; 282:20142571. [PMID: 25673679 DOI: 10.1098/rspb.2014.2571] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Left-right asymmetries are common properties of nervous systems. Although lateralized sensory processing has been well studied, information is lacking about how asymmetries are represented at the level of neural coding. Using in vivo functional imaging, we identified a population-level left-right asymmetry in the honey bee's primary olfactory centre, the antennal lobe (AL). When both antennae were stimulated via a frontal odour source, the inter-odour distances between neural response patterns were higher in the right than in the left AL. Behavioural data correlated with the brain imaging results: bees with only their right antenna were better in discriminating a target odour in a cross-adaptation paradigm. We hypothesize that the differences in neural odour representations in the two brain sides serve to increase coding capacity by parallel processing.
Collapse
Affiliation(s)
- Elisa Rigosi
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Albrecht Haase
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Lisa Rath
- Department of Biology, Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Gianfranco Anfora
- Research and Innovation Center, Fondazione Edmund Mach, via E. Mach 1, 38010 San Michele a/A, Trento, Italy
| | - Giorgio Vallortigara
- CIMeC, Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto, Italy
| | - Paul Szyszka
- Department of Biology, Neurobiology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
18
|
Barron AB, Gurney KN, Meah LFS, Vasilaki E, Marshall JAR. Decision-making and action selection in insects: inspiration from vertebrate-based theories. Front Behav Neurosci 2015; 9:216. [PMID: 26347627 PMCID: PMC4539514 DOI: 10.3389/fnbeh.2015.00216] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Effective decision-making, one of the most crucial functions of the brain, entails the analysis of sensory information and the selection of appropriate behavior in response to stimuli. Here, we consider the current state of knowledge on the mechanisms of decision-making and action selection in the insect brain, with emphasis on the olfactory processing system. Theoretical and computational models of decision-making emphasize the importance of using inhibitory connections to couple evidence-accumulating pathways; this coupling allows for effective discrimination between competing alternatives and thus enables a decision maker to reach a stable unitary decision. Theory also shows that the coupling of pathways can be implemented using a variety of different mechanisms and vastly improves the performance of decision-making systems. The vertebrate basal ganglia appear to resolve stable action selection by being a point of convergence for multiple excitatory and inhibitory inputs such that only one possible response is selected and all other alternatives are suppressed. Similar principles appear to operate within the insect brain. The insect lateral protocerebrum (LP) serves as a point of convergence for multiple excitatory and inhibitory channels of olfactory information to effect stable decision and action selection, at least for olfactory information. The LP is a rather understudied region of the insect brain, yet this premotor region may be key to effective resolution of action section. We argue that it may be beneficial to use models developed to explore the operation of the vertebrate brain as inspiration when considering action selection in the invertebrate domain. Such an approach may facilitate the proposal of new hypotheses and furthermore frame experimental studies for how decision-making and action selection might be achieved in insects.
Collapse
Affiliation(s)
- Andrew B Barron
- Department of Biological Sciences, Macquarie University North Ryde, NSW, Australia
| | - Kevin N Gurney
- Department of Psychology, The University of Sheffield Sheffield, UK
| | - Lianne F S Meah
- Department of Computer Science, The University of Sheffield Sheffield, UK
| | - Eleni Vasilaki
- Department of Computer Science, The University of Sheffield Sheffield, UK
| | - James A R Marshall
- Department of Computer Science, The University of Sheffield Sheffield, UK
| |
Collapse
|
19
|
Differential combinatorial coding of pheromones in two olfactory subsystems of the honey bee brain. J Neurosci 2015; 35:4157-67. [PMID: 25762663 DOI: 10.1523/jneurosci.0734-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural coding of pheromones has been intensively studied in insects with a particular focus on sex pheromones. These studies favored the view that pheromone compounds are processed within specific antennal lobe glomeruli following a specialized labeled-line system. However, pheromones play crucial roles in an insect's life beyond sexual attraction, and some species use many different pheromones making such a labeled-line organization unrealistic. A combinatorial coding scheme, in which each component activates a set of broadly tuned units, appears more adapted in this case. However, this idea has not been tested thoroughly. We focused here on the honey bee Apis mellifera, a social insect that relies on a wide range of pheromones to ensure colony cohesion. Interestingly, the honey bee olfactory system harbors two central parallel pathways, whose functions remain largely unknown. Using optophysiological recordings of projection neurons, we compared the responses of these two pathways to 27 known honey bee pheromonal compounds emitted by the brood, the workers, and the queen. We show that while queen mandibular pheromone is processed by l-ALT (lateral antennal lobe tract) neurons and brood pheromone is mainly processed by m-ALT (median antennal lobe tract) neurons, worker pheromones induce redundant activity in both pathways. Moreover, all tested pheromonal compounds induce combinatorial activity from several AL glomeruli. These findings support the combinatorial coding scheme and suggest that higher-order brain centers reading out these combinatorial activity patterns may eventually classify olfactory signals according to their biological meaning.
Collapse
|
20
|
Roselino AC, Hrncir M, da Cruz Landim C, Giurfa M, Sandoz JC. Sexual dimorphism and phenotypic plasticity in the antennal lobe of a stingless bee,Melipona scutellaris. J Comp Neurol 2015; 523:1461-73. [DOI: 10.1002/cne.23744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/03/2014] [Accepted: 01/09/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Ana Carolina Roselino
- Departamento de Biologia, Instituto de Biociências de Rio Claro; Universidade Estadual Paulista Júlio de Mesquita Filho; Rio Claro São Paulo 13506-900 Brazil
- Faculté des Sciences d'Orsay; Université Paris-Sud; Orsay cedex 91405 France
- Evolution, Genomes, Behavior and Ecology Lab; CNRS, Université Paris-Sud, IRD (UMR 9191); Gif-sur-Yvette 91198 France
| | - Michael Hrncir
- Departamento de Ciências Animais; Universidade Federal Rural do Semi-Árido; Mossoró 59625-900 Brazil
| | - Carminda da Cruz Landim
- Departamento de Biologia, Instituto de Biociências de Rio Claro; Universidade Estadual Paulista Júlio de Mesquita Filho; Rio Claro São Paulo 13506-900 Brazil
| | - Martin Giurfa
- Centre National de la Recherche Scientifique (CNRS); Centre de Recherches sur la Cognition Animale; 31062 Toulouse cedex 9 France
- Université de Toulouse (UPS); Centre de Recherches sur la Cognition Animale; 31062 Toulouse cedex 9 France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology Lab; CNRS, Université Paris-Sud, IRD (UMR 9191); Gif-sur-Yvette 91198 France
| |
Collapse
|
21
|
|
22
|
Giurfa M. Learning and cognition in insects. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2015; 6:383-395. [PMID: 26263427 DOI: 10.1002/wcs.1348] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/28/2015] [Accepted: 02/08/2015] [Indexed: 11/11/2022]
Abstract
Insects possess small brains but exhibit sophisticated behavioral performances. Recent works have reported the existence of unsuspected cognitive capabilities in various insect species, which go beyond the traditional studied framework of simple associative learning. In this study, I focus on capabilities such as attention, social learning, individual recognition, concept learning, and metacognition, and discuss their presence and mechanistic bases in insects. I analyze whether these behaviors can be explained on the basis of elemental associative learning or, on the contrary, require higher-order explanations. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering l architectures underlying cognitive processing.
Collapse
Affiliation(s)
- Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Université de Toulouse (UPS), Toulouse, France.,Centre de Recherches sur la Cognition Animale, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| |
Collapse
|
23
|
Reim T, Scheiner R. Division of labour in honey bees: age- and task-related changes in the expression of octopamine receptor genes. INSECT MOLECULAR BIOLOGY 2014; 23:833-841. [PMID: 25187440 DOI: 10.1111/imb.12130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The honey bee (Apis mellifera L.) has developed into an important ethological model organism for social behaviour and behavioural plasticity. Bees perform a complex age-dependent division of labour with the most pronounced behavioural differences occurring between in-hive bees and foragers. Whereas nurse bees, for example, stay inside the hive and provide the larvae with food, foragers leave the hive to collect pollen and nectar for the entire colony. The biogenic amine octopamine appears to play a major role in division of labour but the molecular mechanisms involved are unknown. We here investigated the role of two characterized octopamine receptors in honey bee division of labour. AmOctαR1 codes for a Ca(2+) -linked octopamine receptor. AmOctβR3/4 codes for a cyclic adenosine monophosphate-coupled octopamine receptor. Messenger RNA expression of AmOctαR1 in different brain neuropils correlates with social task, whereas expression of AmOctβR3/4 changes with age rather than with social role per se. Our results for the first time link the regulatory role of octopamine in division of labour to specific receptors and brain regions. They are an important step forward in our understanding of complex behavioural organization in social groups.
Collapse
Affiliation(s)
- T Reim
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | |
Collapse
|
24
|
Bos N. Asymmetry in olfactory generalization and the inclusion criterion in ants. Commun Integr Biol 2014; 7:e29163. [PMID: 25346797 PMCID: PMC4203582 DOI: 10.4161/cib.29163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/08/2014] [Accepted: 05/08/2014] [Indexed: 11/19/2022] Open
Abstract
Animals constantly face the challenge of extracting important information out of their environment, and for many animals much of this information is chemical in nature. The ability to discriminate and generalize between chemical stimuli is extremely important and is commonly thought to depend mostly on the structural similarity between the different stimuli. However, we previously provided evidence that in the carpenter ant Camponotus aethiops, generalization not only depends on structural similarity, but also on the animal’s previous training experience. When individual ants were conditioned to substance A, they generalized toward a mixture of A and B. However, when trained to substance B, they did not generalize toward this mixture, resulting in asymmetrical generalization. This asymmetry followed an inclusion criterion, where the ants consistently generalized from a molecule with a long carbon chain to molecules with a shorter chain, but not the other way around. Here I will review the evidence for the inclusion criterion, describe possible proximate mechanisms underlying this phenomenon as well as discuss its potential adaptive significance.
Collapse
Affiliation(s)
- Nick Bos
- Centre of Excellence in Biological interactions; Department of Biosciences; University of Helsinki; Helsinki, Finland
| |
Collapse
|
25
|
Neural Mechanisms and Information Processing in Recognition Systems. INSECTS 2014; 5:722-41. [PMID: 26462936 PMCID: PMC4592617 DOI: 10.3390/insects5040722] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 11/17/2022]
Abstract
Nestmate recognition is a hallmark of social insects. It is based on the match/mismatch of an identity signal carried by members of the society with that of the perceiving individual. While the behavioral response, amicable or aggressive, is very clear, the neural systems underlying recognition are not fully understood. Here we contrast two alternative hypotheses for the neural mechanisms that are responsible for the perception and information processing in recognition. We focus on recognition via chemical signals, as the common modality in social insects. The first, classical, hypothesis states that upon perception of recognition cues by the sensory system the information is passed as is to the antennal lobes and to higher brain centers where the information is deciphered and compared to a neural template. Match or mismatch information is then transferred to some behavior-generating centers where the appropriate response is elicited. An alternative hypothesis, that of “pre-filter mechanism”, posits that the decision as to whether to pass on the information to the central nervous system takes place in the peripheral sensory system. We suggest that, through sensory adaptation, only alien signals are passed on to the brain, specifically to an “aggressive-behavior-switching center”, where the response is generated if the signal is above a certain threshold.
Collapse
|
26
|
López-Riquelme GO. Representación odotópica de la organización glomerular del lóbulo antenal en los cuerpos fungiformes de las hormigas (Hymenoptera: Formicidae): Comparaciones entre dos especies. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70317-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Guidobaldi F, May-Concha IJ, Guerenstein PG. Morphology and physiology of the olfactory system of blood-feeding insects. ACTA ACUST UNITED AC 2014; 108:96-111. [PMID: 24836537 DOI: 10.1016/j.jphysparis.2014.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/21/2014] [Accepted: 04/29/2014] [Indexed: 01/12/2023]
Abstract
Several blood-feeding (hematophagous) insects are vectors of a number of diseases including dengue, Chagas disease and leishmaniasis which persistently affect public health throughout Latin America. The vectors of those diseases include mosquitoes, triatomine bugs and sandflies. As vector control is an efficient way to prevent these illnesses it is important to understand the sensory biology of those harmful insects. We study the physiology of the olfactory system of those insects and apply that knowledge on the development of methods to manipulate their behavior. Here we review some of the latest information on insect olfaction with emphasis on hematophagous insects. The insect olfactory sensory neurons are housed inside hair-like organs called sensilla which are mainly distributed on the antenna and mouthparts. The identity of many of the odor compounds that those neurons detect are already known in hematophagous insects. They include several constituents of host (vertebrate) odor, sex, aggregation and alarm pheromones, and compounds related to egg-deposition behavior. Recent work has contributed significant knowledge on how odor information is processed in the insect first odor-processing center in the brain, the antennal lobe. The quality, quantity, and temporal features of the odor stimuli are encoded by the neural networks of the antennal lobe. Information regarding odor mixtures is also encoded. While natural mixtures evoke strong responses, synthetic mixtures that deviate from their natural counterparts in terms of key constituents or proportions of those constituents evoke weaker responses. The processing of olfactory information is largely unexplored in hematophagous insects. However, many aspects of their olfactory behavior are known. As in other insects, responses to relevant single odor compounds are weak while natural mixtures evoke strong responses. Future challenges include studying how information about odor mixtures is processed in their brain. This could help develop highly attractive synthetic odor blends to lure them into traps.
Collapse
Affiliation(s)
- F Guidobaldi
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Facultad de Ingeniería, UNER, Oro Verde, Entre Ríos, Argentina
| | - I J May-Concha
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), Tapachula, Chiapas, Mexico.
| | - P G Guerenstein
- Laboratorio de Neuroetología Ecológica, CICyTTP-CONICET, Diamante, Entre Ríos, Argentina; Facultad de Ingeniería, UNER, Oro Verde, Entre Ríos, Argentina
| |
Collapse
|
28
|
Szyszka P, Stierle JS. Mixture processing and odor-object segregation in insects. PROGRESS IN BRAIN RESEARCH 2014; 208:63-85. [PMID: 24767479 DOI: 10.1016/b978-0-444-63350-7.00003-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When enjoying the scent of grinded coffee or cut grass, most of us are unaware that these scents consist of up to hundreds of volatile substances. We perceive these odorant mixtures as a unitary scent rather than a combination of multiple odorants. The olfactory system processes odor mixtures into meaningful odor objects to provide animals with information that is relevant in everyday tasks, such as habitat localization, foraging, social communication, reproduction, and orientation. For example, odor objects can be a particular flower species on which a bee feeds or the receptive female moth which attracts males by its specific pheromone blend. Using odor mixtures as cues for odor-driven behavior rather than single odorants allows unambiguous identification of a potentially infinite number of odor objects. When multiple odor objects are present at the same time, they form a temporally complex mixture. In order to segregate this mixture into its meaningful constituents, animals must have evolved odor-object segregation mechanisms which are robust against the interference by background odors. In this review, we describe how insects use information of the olfactory environment to either bind odorants into unitary percepts or to segregate them from each other.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany.
| | - Jacob S Stierle
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
29
|
Strauch M, Müthing C, Broeg MP, Szyszka P, Münch D, Laudes T, Deussen O, Galizia CG, Merhof D. The looks of an odour--visualising neural odour response patterns in real time. BMC Bioinformatics 2013; 14 Suppl 19:S6. [PMID: 24564474 PMCID: PMC3980292 DOI: 10.1186/1471-2105-14-s19-s6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Calcium imaging in insects reveals the neural response to odours, both at the receptor level on the antenna and in the antennal lobe, the first stage of olfactory information processing in the brain. Changes of intracellular calcium concentration in response to odour presentations can be observed by employing calcium-sensitive, fluorescent dyes. The response pattern across all recorded units is characteristic for the odour. METHOD Previously, extraction of odour response patterns from calcium imaging movies was performed offline, after the experiment. We developed software to extract and to visualise odour response patterns in real time. An adaptive algorithm in combination with an implementation for the graphics processing unit enables fast processing of movie streams. Relying on correlations between pixels in the temporal domain, the calcium imaging movie can be segmented into regions that correspond to the neural units. RESULTS We applied our software to calcium imaging data recorded from the antennal lobe of the honeybee Apis mellifera and from the antenna of the fruit fly Drosophila melanogaster. Evaluation on reference data showed results comparable to those obtained by previous offline methods while computation time was significantly lower. Demonstrating practical applicability, we employed the software in a real-time experiment, performing segmentation of glomeruli--the functional units of the honeybee antennal lobe--and visualisation of glomerular activity patterns. CONCLUSIONS Real-time visualisation of odour response patterns expands the experimental repertoire targeted at understanding information processing in the honeybee antennal lobe. In interactive experiments, glomeruli can be selected for manipulation based on their present or past activity, or based on their anatomical position. Apart from supporting neurobiology, the software allows for utilising the insect antenna as a chemosensor, e.g. to detect or to classify odours.
Collapse
Affiliation(s)
- Martin Strauch
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
- Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| | - Clemens Müthing
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
| | - Marc P Broeg
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
| | - Paul Szyszka
- Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| | - Daniel Münch
- Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| | - Thomas Laudes
- Neurobiology, University of Konstanz, 78457 Konstanz, Germany
| | - Oliver Deussen
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
| | | | - Dorit Merhof
- Interdisciplinary Center for Interactive Data Analysis, Modelling and Visual Exploration (INCIDE), University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
30
|
Strauch M, Rein J, Lutz C, Galizia CG. Signal extraction from movies of honeybee brain activity: the ImageBee plugin for KNIME. BMC Bioinformatics 2013; 14 Suppl 18:S4. [PMID: 24564238 PMCID: PMC3817809 DOI: 10.1186/1471-2105-14-s18-s4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background In the antennal lobe, a dedicated olfactory center of the honeybee brain, odours are encoded as activity patterns of coding units, the so-called glomeruli. Optical imaging with calcium-sensitive dyes allows us to record these activity patterns and to gain insight into olfactory information processing in the brain. Method We introduce ImageBee, a plugin for the data analysis platform KNIME. ImageBee provides a variety of tools for processing optical imaging data. The main algorithm behind ImageBee is a matrix factorisation approach. Motivated by a data-specific, non-negative mixture model, the algorithm aims to select the generating extreme vectors of a convex cone that contains the data. It approximates the movie matrix by non-negative combinations of the extreme vectors. These correspond to pure glomerular signals that are not mixed with neighbour signals. Results Evaluation shows that the proposed algorithm can identify the relevant biological signals on imaging data from the honeybee AL, as well as it can recover implanted source signals from artificial data. Conclusions ImageBee enables automated data processing and visualisation for optical imaging data from the insect AL. The modular implementation for KNIME offers a flexible platform for data analysis projects, where modules can be rearranged or added depending on the particular application. Availability ImageBee can be installed via the KNIME update service. Installation instructions are available at http://tech.knime.org/imagebee-analysing-imaging-data-from-the-honeybee-brain.
Collapse
|
31
|
Abstract
Human decision-making strategies are strongly influenced by an awareness of certainty or uncertainty (a form of metacognition) to increase the chances of making a right choice. Humans seek more information and defer choosing when they realize they have insufficient information to make an accurate decision, but whether animals are aware of uncertainty is currently highly contentious. To explore this issue, we examined how honey bees (Apis mellifera) responded to a visual discrimination task that varied in difficulty between trials. Free-flying bees were rewarded for a correct choice, punished for an incorrect choice, or could avoid choosing by exiting the trial (opting out). Bees opted out more often on difficult trials, and opting out improved their proportion of successful trials. Bees could also transfer the concept of opting out to a novel task. Our data show that bees selectively avoid difficult tasks they lack the information to solve. This finding has been considered as evidence that nonhuman animals can assess the certainty of a predicted outcome, and bees' performance was comparable to that of primates in a similar paradigm. We discuss whether these behavioral results prove bees react to uncertainty or whether associative mechanisms can explain such findings. To better frame metacognition as an issue for neurobiological investigation, we propose a neurobiological hypothesis of uncertainty monitoring based on the known circuitry of the honey bee brain.
Collapse
|
32
|
Tedjakumala SR, Giurfa M. Rules and mechanisms of punishment learning in honey bees: the aversive conditioning of the sting extension response. J Exp Biol 2013; 216:2985-97. [DOI: 10.1242/jeb.086629] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Honeybees constitute established model organisms for the study of appetitive learning and memory. In recent years, the establishment of the technique of olfactory conditioning of the sting extension response (SER) has yielded new insights into the rules and mechanisms of aversive learning in insects. In olfactory SER conditioning, a harnessed bee learns to associate an olfactory stimulus as the conditioned stimulus with the noxious stimulation of an electric shock as the unconditioned stimulus. Here, we review the multiple aspects of honeybee aversive learning that have been uncovered using Pavlovian conditioning of the SER. From its behavioral principles and sensory variants to its cellular bases and implications for understanding social organization, we present the latest advancements in the study of punishment learning in bees and discuss its perspectives in order to define future research avenues and necessary improvements. The studies presented here underline the importance of studying honeybee learning not only from an appetitive but also from an aversive perspective, in order to uncover behavioral and cellular mechanisms of individual and social plasticity.
Collapse
Affiliation(s)
- Stevanus Rio Tedjakumala
- Université de Toulouse, UPS, Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
- Centre national de la recherche scientifique (CNRS), Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Martin Giurfa
- Université de Toulouse, UPS, Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
- Centre national de la recherche scientifique (CNRS), Research Centre for Animal Cognition, 118 route de Narbonne, 31062 Toulouse Cedex 9, France
| |
Collapse
|
33
|
Perry CJ, Barron AB, Cheng K. Invertebrate learning and cognition: relating phenomena to neural substrate. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:561-582. [PMID: 26304245 DOI: 10.1002/wcs.1248] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/28/2013] [Accepted: 07/06/2013] [Indexed: 02/04/2023]
Abstract
Diverse invertebrate species have been used for studies of learning and comparative cognition. Although we have gained invaluable information from this, in this study we argue that our approach to comparative learning research is rather deficient. Generally invertebrate learning research has focused mainly on arthropods, and most of that within the Hymenoptera and Diptera. Any true comparative analysis of the distribution of comparative cognitive abilities across phyla is hampered by this bias, and more fundamentally by a reporting bias toward positive results. To understand the limits of learning and cognition for a species, knowing what animals cannot do is at least as important as reporting what they can. Finally, much more effort needs to be focused on the neurobiological analysis of different types of learning to truly understand the differences and similarities of learning types. In this review, we first give a brief overview of the various forms of learning in invertebrates. We also suggest areas where further study is needed for a more comparative understanding of learning. Finally, using what is known of learning in honeybees and the well-studied honeybee brain, we present a model of how various complex forms of learning may be accounted for with the same neural circuitry required for so-called simple learning types. At the neurobiological level, different learning phenomena are unlikely to be independent, and without considering this it is very difficult to correctly interpret the phylogenetic distribution of learning and cognitive abilities. WIREs Cogn Sci 2013, 4:561-582. doi: 10.1002/wcs.1248 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clint J Perry
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
34
|
Burger H, Ayasse M, Dötterl S, Kreissl S, Galizia CG. Perception of floral volatiles involved in host-plant finding behaviour: comparison of a bee specialist and generalist. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:751-61. [DOI: 10.1007/s00359-013-0835-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 11/25/2022]
|
35
|
Abstract
In their natural environment, animals face complex and highly dynamic olfactory input. Thus vertebrates as well as invertebrates require fast and reliable processing of olfactory information. Parallel processing has been shown to improve processing speed and power in other sensory systems and is characterized by extraction of different stimulus parameters along parallel sensory information streams. Honeybees possess an elaborate olfactory system with unique neuronal architecture: a dual olfactory pathway comprising a medial projection-neuron (PN) antennal lobe (AL) protocerebral output tract (m-APT) and a lateral PN AL output tract (l-APT) connecting the olfactory lobes with higher-order brain centers. We asked whether this neuronal architecture serves parallel processing and employed a novel technique for simultaneous multiunit recordings from both tracts. The results revealed response profiles from a high number of PNs of both tracts to floral, pheromonal, and biologically relevant odor mixtures tested over multiple trials. PNs from both tracts responded to all tested odors, but with different characteristics indicating parallel processing of similar odors. Both PN tracts were activated by widely overlapping response profiles, which is a requirement for parallel processing. The l-APT PNs had broad response profiles suggesting generalized coding properties, whereas the responses of m-APT PNs were comparatively weaker and less frequent, indicating higher odor specificity. Comparison of response latencies within and across tracts revealed odor-dependent latencies. We suggest that parallel processing via the honeybee dual olfactory pathway provides enhanced odor processing capabilities serving sophisticated odor perception and olfactory demands associated with a complex olfactory world of this social insect.
Collapse
|
36
|
Function and central projections of gustatory receptor neurons on the antenna of the noctuid moth Spodoptera littoralis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:403-16. [DOI: 10.1007/s00359-013-0803-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
|
37
|
Abstract
Reward seeking is a major motivator and organizer of behavior, and animals readily learn to modify their behavior to more easily obtain reward, or to respond to stimuli that are predictive of reward. Here, we compare what is known of reward processing mechanisms in insects with the well-studied vertebrate reward systems. In insects almost all of what is known of reward processing is derived from studies of reward learning. This is localized to the mushroom bodies and antennal lobes and organized by a network of hierarchically arranged modulatory circuits, especially those involving octopamine and dopamine. Neurogenetic studies with Drosophila have identified distinct circuit elements for reward learning, "wanting," and possibly "liking" in Drosophila, suggesting a modular structure to the insect reward processing system, which broadly parallels that of the mammals in terms of functional organization.
Collapse
Affiliation(s)
- Clint J Perry
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | | |
Collapse
|
38
|
Frost EH, Shutler D, Hillier NK. The proboscis extension reflex to evaluate learning and memory in honeybees (Apis mellifera): some caveats. Naturwissenschaften 2012; 99:677-86. [PMID: 22869163 DOI: 10.1007/s00114-012-0955-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 11/25/2022]
Abstract
The proboscis extension reflex (PER) is widely used in a classical conditioning (Pavlovian) context to evaluate learning and memory of a variety of insect species. The literature is particularly prodigious for honeybees (Apis mellifera) with more than a thousand publications. Imagination appears to be the only limit to the types of challenges to which researchers subject honeybees, including all the sensory modalities and a broad diversity of environmental treatments. Accordingly, some remarkable insights have been achieved using PER. However, there are several challenges to evaluating the PER literature that warrant a careful and thorough review. We assess here variation in methods that makes interpretation of studies, even those researching the same question, tenuous. We suggest that the numerous variables that might influence experimental outcomes from PER be thoroughly detailed by researchers. Moreover, the influence of individual variables on results needs to carefully evaluated, as well as among two or more variables. Our intent is to encourage investigation of the influence of numerous variables on PER results.
Collapse
Affiliation(s)
- Elisabeth H Frost
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia, B4P 2R6, Canada
| | | | | |
Collapse
|
39
|
Carcaud J, Hill T, Giurfa M, Sandoz JC. Differential coding by two olfactory subsystems in the honeybee brain. J Neurophysiol 2012; 108:1106-21. [PMID: 22572948 DOI: 10.1152/jn.01034.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory systems use parallel processing to extract and process different features of environmental stimuli. Parallel processing has been studied in the auditory, visual, and somatosensory systems, but equivalent research in the olfactory modality is scarce. The honeybee Apis mellifera is an interesting model for such research as its relatively simple brain contains a dual olfactory system, with a clear neural dichotomy from the periphery to higher-order centers, based on two main neuronal tracts [medial (m) and lateral (l) antenno-protocerebral tract (APT)]. The function of this dual system is as yet unknown, and attributes like odor quality and odor quantity might be separately encoded in these subsystems. We have thus studied olfactory coding at the input of both subsystems, using in vivo calcium imaging. As one of the subsystems (m-APT) has never been imaged before, a novel imaging preparation was developed to this end, and responses to a panel of aliphatic odorants at different concentrations were compared in both subsystems. Our data show a global redundancy of olfactory coding at the input of both subsystems but unravel some specificities for encoding chemical group and carbon chain length of odor molecules.
Collapse
Affiliation(s)
- Julie Carcaud
- Université de Toulouse (UPS), Centre de Recherches sur la Cognition Animale, Toulouse Cedex, France
| | | | | | | |
Collapse
|
40
|
Galizia CG, Franke T, Menzel R, Sandoz JC. Optical imaging of concealed brain activity using a gold mirror in honeybees. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:743-749. [PMID: 22414536 DOI: 10.1016/j.jinsphys.2012.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 05/31/2023]
Abstract
Brain activity is inherently combinatorial and three-dimensional. Optical imaging techniques offer a suitable opportunity to record many activity foci simultaneously, but under conventional microscopy conditions, optical access is generally limited to the frontal part of the brain. Thus, even for cases in which optical recordings have delivered substantial data, our knowledge of deeper layers is deficient. Using the honeybee olfactory system as a test system, we report that by using a gold-sputtered cover slip as a minute mirror, it is possible to optically access and record from otherwise inaccessible brain areas. In insects, the first brain area to code for odors is the antennal lobe (comparable to the vertebrate olfactory bulb). Several previous studies have characterized glomerular odor response patterns of the frontal view, readily accessible when the head capsule of the bee is opened. However, until now, the back and the sides of the antennal lobe have remained utterly unexplored. This is particularly relevant because in the honeybee these two views coincide with two separate olfactory subsystems, related to two axonal tracts of second-order neurons: the lAPT and the mAPT. Combining wide-field microscopy, calcium imaging, and a minute mirror, we report the first glomerular odor responses from the side of the honeybee antennal lobe.
Collapse
|
41
|
Capurro A, Baroni F, Olsson SB, Kuebler LS, Karout S, Hansson BS, Pearce TC. Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks. FRONTIERS IN NEUROENGINEERING 2012; 5:6. [PMID: 22529799 PMCID: PMC3329896 DOI: 10.3389/fneng.2012.00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
Neural responses to odor blends often exhibit non-linear interactions to blend components. The first olfactory processing center in insects, the antennal lobe (AL), exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth Manduca sexta with those generated using a population-based computational model constructed from the morphologically based connectivity pattern of projection neurons (PNs) and local interneurons (LNs) with randomized connection probabilities from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition) exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies.
Collapse
Affiliation(s)
- Alberto Capurro
- Department of Engineering, Centre for Bioengineering, University of Leicester Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Riveros AJ, Seid MA, Wcislo WT. Evolution of brain size in class-based societies of fungus-growing ants (Attini). Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.01.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Repeated unrewarded scent exposure influences the food choice of stingless bee foragers, Melipona scutellaris. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2011.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Girardin CC, Galizia CG. The "Where" and "Who" in Brain Science: Probing Brain Networks with Local Perturbations. Cognit Comput 2012. [DOI: 10.1007/s12559-011-9122-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
45
|
Sombke A, Lipke E, Kenning M, Müller CH, Hansson BS, Harzsch S. Comparative analysis of deutocerebral neuropils in Chilopoda (Myriapoda): implications for the evolution of the arthropod olfactory system and support for the Mandibulata concept. BMC Neurosci 2012; 13:1-17. [PMID: 22214384 PMCID: PMC3320525 DOI: 10.1186/1471-2202-13-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/03/2012] [Indexed: 02/08/2023] Open
Abstract
Background Originating from a marine ancestor, the myriapods most likely invaded land independently of the hexapods. As these two evolutionary lineages conquered land in parallel but separately, we are interested in comparing the myriapod chemosensory system to that of hexapods to gain insights into possible adaptations for olfaction in air. Our study connects to a previous analysis of the brain and behavior of the chilopod (centipede) Scutigera coleoptrata in which we demonstrated that these animals do respond to volatile substances and analyzed the structure of their central olfactory pathway. Results Here, we examined the architecture of the deutocerebral brain areas (which process input from the antennae) in seven additional representatives of the Chilopoda, covering all major subtaxa, by histology, confocal laser-scan microscopy, and 3D reconstruction. We found that in all species that we studied the majority of antennal afferents target two separate neuropils, the olfactory lobe (chemosensory, composed of glomerular neuropil compartments) and the corpus lamellosum (mechanosensory). The numbers of olfactory glomeruli in the different chilopod taxa ranged from ca. 35 up to ca. 90 and the shape of the glomeruli ranged from spheroid across ovoid or drop-shape to elongate. Conclusion A split of the afferents from the (first) pair of antennae into separate chemosensory and mechanosensory components is also typical for Crustacea and Hexapoda, but this set of characters is absent in Chelicerata. We suggest that this character set strongly supports the Mandibulata hypothesis (Myriapoda + (Crustacea + Hexapoda)) as opposed to the Myriochelata concept (Myriapoda + Chelicerata). The evolutionary implications of our findings, particularly the plasticity of glomerular shape, are discussed.
Collapse
Affiliation(s)
- Andy Sombke
- Ernst Moritz Arndt University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, 17487 Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Sandoz JC. Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Front Syst Neurosci 2011; 5:98. [PMID: 22163215 PMCID: PMC3233682 DOI: 10.3389/fnsys.2011.00098] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/16/2011] [Indexed: 11/23/2022] Open
Abstract
The honeybee Apis mellifera has been a central insect model in the study of olfactory perception and learning for more than a century, starting with pioneer work by Karl von Frisch. Research on olfaction in honeybees has greatly benefited from the advent of a range of behavioral and neurophysiological paradigms in the Lab. Here I review major findings about how the honeybee brain detects, processes, and learns odors, based on behavioral, neuroanatomical, and neurophysiological approaches. I first address the behavioral study of olfactory learning, from experiments on free-flying workers visiting artificial flowers to laboratory-based conditioning protocols on restrained individuals. I explain how the study of olfactory learning has allowed understanding the discrimination and generalization ability of the honeybee olfactory system, its capacity to grant special properties to olfactory mixtures as well as to retain individual component information. Next, based on the impressive amount of anatomical and immunochemical studies of the bee brain, I detail our knowledge of olfactory pathways. I then show how functional recordings of odor-evoked activity in the brain allow following the transformation of the olfactory message from the periphery until higher-order central structures. Data from extra- and intracellular electrophysiological approaches as well as from the most recent optical imaging developments are described. Lastly, I discuss results addressing how odor representation changes as a result of experience. This impressive ensemble of behavioral, neuroanatomical, and neurophysiological data available in the bee make it an attractive model for future research aiming to understand olfactory perception and learning in an integrative fashion.
Collapse
Affiliation(s)
- Jean Christophe Sandoz
- Evolution, Genomes and Speciation Lab, Centre National de la Recherche ScientifiqueGif-sur-Yvette, France
| |
Collapse
|
47
|
Just follow your nose: homing by olfactory cues in ants. Curr Opin Neurobiol 2011; 22:231-5. [PMID: 22137100 DOI: 10.1016/j.conb.2011.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 09/30/2011] [Accepted: 10/11/2011] [Indexed: 11/21/2022]
Abstract
How is an ant-equipped with a brain that barely exceeds the size of a pinhead-capable of achieving navigational marvels? Even though evidences suggest that navigation is a multimodal process, ants heavily depend on olfactory cues-of pheromonal and non-pheromonal nature-for foraging and orientation. Recent studies have directed their attention to the efficiency of pheromone trail networks. Advances in neurophysiological techniques make it possible to investigate trail pheromone processing in the ant's brain. In addition to relying on pheromone odours, ants also make use of volatiles emanating from the nest surroundings. Deposited in the vicinity of the nest, these home-range markings help the ants to home after a foraging run. Furthermore, olfactory landmarks associated with the nest enhance ants' homing abilities.
Collapse
|
48
|
Meyer A, Galizia CG. Elemental and configural olfactory coding by antennal lobe neurons of the honeybee (Apis mellifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2011; 198:159-71. [PMID: 22083110 PMCID: PMC3283949 DOI: 10.1007/s00359-011-0696-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 11/25/2022]
Abstract
When smelling an odorant mixture, olfactory systems can be analytical (i.e. extract information about the mixture elements) or synthetic (i.e. creating a configural percept of the mixture). Here, we studied elemental and configural mixture coding in olfactory neurons of the honeybee antennal lobe, local neurons in particular. We conducted intracellular recordings and stimulated with monomolecular odorants and their coherent or incoherent binary mixtures to reproduce a temporally dynamic environment. We found that about half of the neurons responded as ‘elemental neurons’, i.e. responses evoked by mixtures reflected the underlying feature information from one of the components. The other half responded as ‘configural neurons’, i.e. responses to mixtures were clearly different from responses to their single components. Elemental neurons divided in late responders (above 60 ms) and early responder neurons (below 60 ms), whereas responses of configural coding neurons concentrated in-between these divisions. Latencies of neurons with configural responses express a tendency to be faster for coherent stimuli which implies employment in different processing circuits.
Collapse
Affiliation(s)
- Anneke Meyer
- Department of Biology, University of Konstanz, Constance, Germany
| | | |
Collapse
|
49
|
Girling RD, Stewart-Jones A, Dherbecourt J, Staley JT, Wright DJ, Poppy GM. Parasitoids select plants more heavily infested with their caterpillar hosts: a new approach to aid interpretation of plant headspace volatiles. Proc Biol Sci 2011; 278:2646-53. [PMID: 21270031 PMCID: PMC3136836 DOI: 10.1098/rspb.2010.2725] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/07/2011] [Indexed: 11/12/2022] Open
Abstract
Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant-herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography-mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant-herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment.
Collapse
Affiliation(s)
- Robbie D Girling
- School of Biological Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Hu JH, Wang ZY, Sun F. Anatomical organization of antennal-lobe glomeruli in males and females of the scarab beetle Holotrichia diomphalia (Coleoptera: Melolonthidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:420-428. [PMID: 21889404 DOI: 10.1016/j.asd.2011.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 03/13/2011] [Accepted: 03/16/2011] [Indexed: 05/31/2023]
Abstract
The glomerular organization of the primary olfactory brain center, the antennal lobe, was studied in males and females of Holotrichia diomphalia adults using serial histological sections labeled by the reduced silver-stain technique. The results revealed an apparent sexual dimorphism. Whereas an enlarged cap-shaped glomerulus was found at the antennal nerve entrance into the antennal lobe in males, no such unit was present in females. Also the size of the antennal lobe differed between the sexes, the antennal lobe of males being larger than that of females. We estimated the total number of glomeruli at approximately 60 units in the female antennal lobe. In males, we could discriminate only those glomeruli that were located in the anterior area of the antennal lobe.
Collapse
Affiliation(s)
- Ji-Hua Hu
- School of Forestry, Northeast Forestry University, Harbin, PR China
| | | | | |
Collapse
|