1
|
Beltrí R, Monteiro HR, Toubarro D, Simões N, Garriga A. Biocontrol potential of six Heterorhabditis bacteriophora strains isolated in the Azores Archipelago. J Helminthol 2024; 98:e43. [PMID: 38800903 DOI: 10.1017/s0022149x24000336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Entomopathogenic nematodes (EPNs) are closely associated with Popillia japonica and potentially used as their biological control agents, although field results proved inconsistent and evoked a continual pursuit of native EPNs more adapted to the environment. Therefore, we surveyed the Azorean Archipelago to isolate new strains of Heterorhabditis bacteriophora and to evaluate their virulence against the model organism Galleria mellonella under laboratory conditions. Six strains were obtained from pasture and coastal environments and both nematode and symbiont bacteria were molecularly identified. The bioassays revealed that Az172, Az186, and Az171 presented high virulence across the determination of a lethal dose (LD50) and short exposure time experiments with a comparable performance to Az29. After 72 hours, these virulent strains presented a mean determination of a lethal dose of 11 infective juveniles cm-2, a lethal time (LT50) of 34 hours, and achieved 40% mortality after an initial exposure time of only 60 minutes. Az170 exhibited an intermediate performance, whereas Az179 and Az180 were classified as low virulent strains. However, both strains presented the highest reproductive potential with means of 1700 infective juveniles/mg of larvae. The bioassays of the native EPNs obtained revealed that these strains hold the potential to be used in biological control initiatives targeting P. japonica because of their high virulence and locally adapted to environmental conditions.
Collapse
Affiliation(s)
- R Beltrí
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321Ponta Delgada, Portugal
| | - H R Monteiro
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321Ponta Delgada, Portugal
| | - D Toubarro
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321Ponta Delgada, Portugal
| | - N Simões
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321Ponta Delgada, Portugal
| | - A Garriga
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193Bellaterra, Spain
- Centro de Biotecnologia dos Açores, Faculdade de Ciências e Tecnologia, Universidade dos Açores, 9500-321Ponta Delgada, Portugal
| |
Collapse
|
2
|
Kim IH, Aryal SK, Aghai DT, Casanova-Torres ÁM, Hillman K, Kozuch MP, Mans EJ, Mauer TJ, Ogier JC, Ensign JC, Gaudriault S, Goodman WG, Goodrich-Blair H, Dillman AR. The insect pathogenic bacterium Xenorhabdus innexi has attenuated virulence in multiple insect model hosts yet encodes a potent mosquitocidal toxin. BMC Genomics 2017; 18:927. [PMID: 29191166 PMCID: PMC5709968 DOI: 10.1186/s12864-017-4311-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/16/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Xenorhabdus innexi is a bacterial symbiont of Steinernema scapterisci nematodes, which is a cricket-specialist parasite and together the nematode and bacteria infect and kill crickets. Curiously, X. innexi expresses a potent extracellular mosquitocidal toxin activity in culture supernatants. We sequenced a draft genome of X. innexi and compared it to the genomes of related pathogens to elucidate the nature of specialization. RESULTS Using green fluorescent protein-expressing X. innexi we confirm previous reports using culture-dependent techniques that X. innexi colonizes its nematode host at low levels (~3-8 cells per nematode), relative to other Xenorhabdus-Steinernema associations. We found that compared to the well-characterized entomopathogenic nematode symbiont X. nematophila, X. innexi fails to suppress the insect phenoloxidase immune pathway and is attenuated for virulence and reproduction in the Lepidoptera Galleria mellonella and Manduca sexta, as well as the dipteran Drosophila melanogaster. To assess if, compared to other Xenorhabdus spp., X. innexi has a reduced capacity to synthesize virulence determinants, we obtained and analyzed a draft genome sequence. We found no evidence for several hallmarks of Xenorhabdus spp. toxicity, including Tc and Mcf toxins. Similar to other Xenorhabdus genomes, we found numerous loci predicted to encode non-ribosomal peptide/polyketide synthetases. Anti-SMASH predictions of these loci revealed one, related to the fcl locus that encodes fabclavines and zmn locus that encodes zeamines, as a likely candidate to encode the X. innexi mosquitocidal toxin biosynthetic machinery, which we designated Xlt. In support of this hypothesis, two mutants each with an insertion in an Xlt biosynthesis gene cluster lacked the mosquitocidal compound based on HPLC/MS analysis and neither produced toxin to the levels of the wild type parent. CONCLUSIONS The X. innexi genome will be a valuable resource in identifying loci encoding new metabolites of interest, but also in future comparative studies of nematode-bacterial symbiosis and niche partitioning among bacterial pathogens.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
- Present address: Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD USA
| | | | - Dariush T. Aghai
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Kai Hillman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Michael P. Kozuch
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | - Erin J. Mans
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Terra J. Mauer
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | | | - Jerald C. Ensign
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
| | | | - Walter G. Goodman
- Department of Entomology, University of Wisconsin-Madison, Madison, WI USA
| | - Heidi Goodrich-Blair
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI USA
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, TN USA
| | - Adler R. Dillman
- Department of Nematology, University of California, Riverside, CA USA
| |
Collapse
|
3
|
Bisch G, Ogier JC, Médigue C, Rouy Z, Vincent S, Tailliez P, Givaudan A, Gaudriault S. Comparative Genomics between Two Xenorhabdus bovienii Strains Highlights Differential Evolutionary Scenarios within an Entomopathogenic Bacterial Species. Genome Biol Evol 2016; 8:148-60. [PMID: 26769959 PMCID: PMC4758244 DOI: 10.1093/gbe/evv248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Within Xenorhabdus bovienii species, the X. bovienii CS03 strain (Xb CS03) is nonvirulent when directly injected into lepidopteran insects, and displays a low virulence when associated with its Steinernema symbiont. The genome of Xb CS03 was sequenced and compared with the genome of a virulent strain, X. bovienii SS-2004 (Xb SS-2004). The genome size and content widely differed between the two strains. Indeed, Xb CS03 had a large genome containing several specific loci involved in the inhibition of competitors, including a few NRPS-PKS loci (nonribosomal peptide synthetases and polyketide synthases) producing antimicrobial molecules. Consistently, Xb CS03 had a greater antimicrobial activity than Xb SS-2004. The Xb CS03 strain contained more pseudogenes than Xb SS-2004. Decay of genes involved in the host invasion and exploitation (toxins, invasins, or extracellular enzymes) was particularly important in Xb CS03. This may provide an explanation for the nonvirulence of the strain when injected into an insect host. We suggest that Xb CS03 and Xb SS-2004 followed divergent evolutionary scenarios to cope with their peculiar life cycle. The fitness strategy of Xb CS03 would involve competitor inhibition, whereas Xb SS-2004 would quickly and efficiently kill the insect host. Hence, Xenorhabdus strains would have widely divergent host exploitation strategies, which impact their genome structure.
Collapse
Affiliation(s)
- Gaëlle Bisch
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Jean-Claude Ogier
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Claudine Médigue
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Zoé Rouy
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Stéphanie Vincent
- CEA, Genoscope & CNRS-UMR 8030, Laboratoire D'analyse Bioinformatique En Génomique Et Métabolisme, Evry Cedex, France
| | - Patrick Tailliez
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Alain Givaudan
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| | - Sophie Gaudriault
- Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Institut National De La Recherche Agronomique, Montpellier Cedex, France Diversité, Génomes Et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier, France
| |
Collapse
|
4
|
Kangassalo K, Valtonen TM, Roff D, Pölkki M, Dubovskiy IM, Sorvari J, Rantala MJ. Intra- and trans-generational effects of larval diet on susceptibility to an entomopathogenic fungus, Beauveria bassiana
, in the greater wax moth, Galleria mellonella. J Evol Biol 2015; 28:1453-64. [DOI: 10.1111/jeb.12666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- K. Kangassalo
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - T. M. Valtonen
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - D. Roff
- Department of Biology; University of California; Riverside CA USA
| | - M. Pölkki
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - I. M. Dubovskiy
- Institute of Animal Systematics and Ecology; Siberian Branch of Russian Academy of Science; Novosibirsk Russia
| | - J. Sorvari
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
| | - M. J. Rantala
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
- Turku Brain and Mind Center; University of Turku; Turku Finland
| |
Collapse
|
5
|
Nansen C, Ribeiro LP, Dadour I, Roberts JD. Detection of temporal changes in insect body reflectance in response to killing agents. PLoS One 2015; 10:e0124866. [PMID: 25923362 PMCID: PMC4414589 DOI: 10.1371/journal.pone.0124866] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 03/17/2015] [Indexed: 01/15/2023] Open
Abstract
Computer vision and reflectance-based analyses are becoming increasingly important methods to quantify and characterize phenotypic responses by whole organisms to environmental factors. Here, we present the first study of how a non-destructive and completely non-invasive method, body reflectance profiling, can be used to detect and time stress responses in adult beetles. Based on high-resolution hyperspectral imaging, we acquired time series of average reflectance profiles (70 spectral bands from 434-876 nm) from adults in two beetle species, maize weevils (Sitophilus zeamais) and larger black flour beetles (Cynaus angustus). For each species, we acquired reflectance data from untreated controls and from individuals exposed continuously to killing agents (an insecticidal plant extract applied to maize kernels or entomopathogenic nematodes applied to soil applied at levels leading to ≈100% mortality). In maize weevils (exposed to hexanic plant extract), there was no significant effect of the on reflectance profiles acquired from adult beetles after 0 and 12 hours of exposure, but a significant treatment response in spectral bands from 434 to 550 nm was detected after 36 to 144 hours of exposure. In larger black flour beetles, there was no significant effect of exposure to entomopathogenic nematodes after 0 to 26 hours of exposure, but a significant response in spectral bands from 434-480 nm was detected after 45 and 69 hours of exposure. Spectral bands were used to develop reflectance-based classification models for each species, and independent validation of classification algorithms showed sensitivity (ability to positively detect terminal stress in beetles) and specificity (ability to positively detect healthy beetles) of about 90%. Significant changes in body reflectance occurred at exposure times, which coincided with published exposure times and known physiological responses to each killing agent. The results from this study underscore the potential of hyperspectral imaging as an approach to non-destructively and non-invasively quantify stress detection in insects and other animals.
Collapse
Affiliation(s)
- Christian Nansen
- Department of Entomology and Nematology, University of California Davis, Davis, California, United States of America
- * E-mail:
| | - Leandro Prado Ribeiro
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Ian Dadour
- Centre for Forensic Science, The University of Western Australia, Perth, Western Australia, Australia
| | - John Dale Roberts
- School of Animal Biology and Centre for Evolutionary Biology and Centre of Excellence in Natural Resource Management, The University of Western Australia, Albany, Western Australia, Australia
| |
Collapse
|
6
|
Bisch G, Pagès S, McMullen JG, Stock SP, Duvic B, Givaudan A, Gaudriault S. Xenorhabdus bovienii CS03, the bacterial symbiont of the entomopathogenic nematode Steinernema weiseri, is a non-virulent strain against lepidopteran insects. J Invertebr Pathol 2014; 124:15-22. [PMID: 25315609 DOI: 10.1016/j.jip.2014.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 01/20/2023]
Abstract
Xenorhabdus bacteria (γ-proteobacteria: Enterobacteriaceae) have dual lifestyles. They have a mutualistic relationship with Steinernema nematodes (Nematoda: Steinernematidae) and are pathogenic to a wide range of insects. Each Steinernema nematode associates with a specific Xenorhabdus species. However, a Xenorhabdus species can have multiple nematode hosts. For example, Xenorhabdus bovienii (Xb) colonizes at least nine Steinernema species from two different phylogenetic clades. The Steinernema-Xb partnership has been found in association with different insect hosts. Biological and molecular data on the Steinernema jollieti-Xb strain SS-2004 pair have recently been described. In particular, the Xb SS-2004 bacteria are virulent alone after direct injection into insect, making this strain a model for studying Xb virulence. In this study, we searched for Xb strains attenuated in virulence. For this purpose, we underwent infection assays with five Steinernema spp.-Xb pairs with two insects, Galleria mellonella (Lepidoptera: Pyralidae) and Spodoptera littoralis (Lepidoptera: Noctuidae). The S. weiseri-Xb CS03 pair showed attenuated virulence and lower fitness in S. littoralis in comparison to the other nematode-bacteria pairs. Furthermore, when injected alone into the hemolymph of G. mellonella or S. littoralis, the Xb CS03 bacterial strain was the only non-virulent strain. By comparison with the virulent Xb SS-2004 strain, Xb CS03 showed an increased sensitivity to the insect antimicrobial peptides, suggesting an attenuated response to the insect humoral immunity. To our current knowledge, Xb CS03 is the first non-virulent Xb strain identified. We propose this strain as a new model for studying the Xenorhabdus virulence.
Collapse
Affiliation(s)
- Gaëlle Bisch
- Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Institut National de la Recherche Agronomique, 34095 Montpellier Cedex 05, France; Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier 2, 34095 Montpellier Cedex 05, France
| | - Sylvie Pagès
- Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Institut National de la Recherche Agronomique, 34095 Montpellier Cedex 05, France; Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier 2, 34095 Montpellier Cedex 05, France
| | - John G McMullen
- Department of Entomology, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721-0036, United States; School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, United States
| | - S Patricia Stock
- Department of Entomology, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721-0036, United States
| | - Bernard Duvic
- Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Institut National de la Recherche Agronomique, 34095 Montpellier Cedex 05, France; Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier 2, 34095 Montpellier Cedex 05, France
| | - Alain Givaudan
- Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Institut National de la Recherche Agronomique, 34095 Montpellier Cedex 05, France; Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier 2, 34095 Montpellier Cedex 05, France
| | - Sophie Gaudriault
- Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Institut National de la Recherche Agronomique, 34095 Montpellier Cedex 05, France; Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Université Montpellier 2, 34095 Montpellier Cedex 05, France.
| |
Collapse
|
7
|
Ogier JC, Pagès S, Bisch G, Chiapello H, Médigue C, Rouy Z, Teyssier C, Vincent S, Tailliez P, Givaudan A, Gaudriault S. Attenuated virulence and genomic reductive evolution in the entomopathogenic bacterial symbiont species, Xenorhabdus poinarii. Genome Biol Evol 2014; 6:1495-513. [PMID: 24904010 PMCID: PMC4079199 DOI: 10.1093/gbe/evu119] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacteria of the genus Xenorhabdus are symbionts of soil entomopathogenic nematodes of the genus Steinernema. This symbiotic association constitutes an insecticidal complex active against a wide range of insect pests. Unlike other Xenorhabdus species, Xenorhabdus poinarii is avirulent when injected into insects in the absence of its nematode host. We sequenced the genome of the X. poinarii strain G6 and the closely related but virulent X. doucetiae strain FRM16. G6 had a smaller genome (500–700 kb smaller) than virulent Xenorhabdus strains and lacked genes encoding potential virulence factors (hemolysins, type 5 secretion systems, enzymes involved in the synthesis of secondary metabolites, and toxin–antitoxin systems). The genomes of all the X. poinarii strains analyzed here had a similar small size. We did not observe the accumulation of pseudogenes, insertion sequences or decrease in coding density usually seen as a sign of genomic erosion driven by genetic drift in host-adapted bacteria. Instead, genome reduction of X. poinarii seems to have been mediated by the excision of genomic blocks from the flexible genome, as reported for the genomes of attenuated free pathogenic bacteria and some facultative mutualistic bacteria growing exclusively within hosts. This evolutionary pathway probably reflects the adaptation of X. poinarii to specific host.
Collapse
Affiliation(s)
- Jean-Claude Ogier
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Sylvie Pagès
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Gaëlle Bisch
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Hélène Chiapello
- INRA Toulouse Midi-Pyrénées, Unité MIA-T, Chemin de Borde Rouge, Castanet-Tolosan, France
| | - Claudine Médigue
- CEA, Genoscope & CNRS, UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Zoé Rouy
- CEA, Genoscope & CNRS, UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Corinne Teyssier
- Université Montpellier 1, UFR des Sciences Pharmaceutiques et Biologiques/UMR95 Qualisud, CIRAD-Persyst, France
| | - Stéphanie Vincent
- CEA, Genoscope & CNRS, UMR 8030, Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, Evry, France
| | - Patrick Tailliez
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Alain Givaudan
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| | - Sophie Gaudriault
- INRA, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), Montpellier, FranceUniversité Montpellier 2, UMR Diversité, Génomes et Interactions Microorganismes-Insectes (DGIMI), France
| |
Collapse
|
8
|
Toubarro D, Avila MM, Hao Y, Balasubramanian N, Jing Y, Montiel R, Faria TQ, Brito RM, Simões N. A serpin released by an entomopathogen impairs clot formation in insect defense system. PLoS One 2013; 8:e69161. [PMID: 23874900 PMCID: PMC3712955 DOI: 10.1371/journal.pone.0069161] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/07/2013] [Indexed: 11/18/2022] Open
Abstract
Steinernema carpocapsae is an entomopathogenic nematode widely used for the control of insect pests due to its virulence, which is mainly attributed to the ability the parasitic stage has to overcome insect defences. To identify the mechanisms underlying such a characteristic, we studied a novel serpin-like inhibitor (sc-srp-6) that was detected in a transcriptome analysis. Recombinant Sc-SRP-6 produced in Escherichia coli had a native fold of serpins belonging to the α-1-peptidase family and exhibited inhibitory activity against trypsin and α-chymotrypsin with Ki of 0.42×10−7 M and 1.22×10−7 M, respectively. Functional analysis revealed that Sc-SRP-6 inhibits insect digestive enzymes, thus preventing the hydrolysis of ingested particles. Moreover, Sc-SRP-6 impaired the formation of hard clots at the injury site, a major insect defence mechanism against invasive pathogens. Sc-SRP-6 does not prevent the formation of clot fibres and the activation of prophenoloxidases but impairs the incorporation of the melanin into the clot. Binding assays showed a complex formation between Sc-SRP-6 and three proteins in the hemolymph of lepidopteran required for clotting, apolipophorin, hexamerin and trypsin-like, although the catalytic inhibition occurred exclusively in trypsin-like. This data allowed the conclusion that Sc-SRP-6 promotes nematode virulence by inhibiting insect gut juices and by impairing immune clot reaction.
Collapse
Affiliation(s)
- Duarte Toubarro
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Mónica M. Avila
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - YouJin Hao
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Natesan Balasubramanian
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Yingjun Jing
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, Mexico
| | - Tiago Q. Faria
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui M. Brito
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Nelson Simões
- Centro Investigação Recursos Naturais do Centro de Biotecnologia dos Açores, Associate Laboratory of Institute for Biotechnology and Bioengineering, Department of Biology, University of Azores, Ponta Delgada, Portugal
- * E-mail:
| |
Collapse
|
9
|
Cloning and molecular analysis of the aspartic protease Sc-ASP110 gene transcript in Steinernema carpocapsae. Parasitology 2013; 140:1158-67. [PMID: 23731543 DOI: 10.1017/s0031182013000577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many protease genes have previously been shown to be involved in parasitism and in the development of Steinernema carpocapsae, including a gene predicted to encode an aspartic protease, Sc-ASP110, which was cloned and was analysed in this study. A cDNA encoding Sc-ASP110 was cloned based on an expressed sequence tag (EST) fragment from our EST library. The full-length cDNA of Sc-ASP110 consists of 1112 nucleotides with a catalytic aspartic domain (aa18-337). The putative 341 amino acid residues have a calculated molecular mass of 37·1 kDa and a theoretical pI of 4·7. BLASTp analysis of the Sc-ASP110 amino acid sequence showed 45-77% amino acid sequence identity to parasitic and non-parasitic nematode aspartic proteases. An expression analysis showed that the sc-asp110 gene was upregulated during the late parasitic stage, L4, and 24 h after induction of in vitro nematodes. A sequence comparison revealed that Sc-ASP110 was a member of an aspartic protease family; additionally, a phylogenetic analysis indicated that Sc-ASP110 was clustered with the closely related nematode Steinernema feltiae. In situ hybridization showed that sc-asp110 was expressed in the body walls of dorsal cells. The upregulated Sc-ASP110 expression revealed that this protease could play a role in the late parasitic process. In this study, we have cloned and analysed the gene transcript of Sc-ASP110 in S. carpocapsae.
Collapse
|
10
|
Hao YJ, Montiel R, Lucena MA, Costa M, Simoes N. Genetic diversity and comparative analysis of gene expression between Heterorhabditis bacteriophora Az29 and Az36 isolates: Uncovering candidate genes involved in insect pathogenicity. Exp Parasitol 2012; 130:116-25. [DOI: 10.1016/j.exppara.2011.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 11/26/2011] [Accepted: 12/05/2011] [Indexed: 11/29/2022]
|
11
|
Stevens L, Rizzo D. Local adaptation to biocontrol agents: A multi-objective data-driven optimization model for the evolution of resistance. ECOLOGICAL COMPLEXITY 2008. [DOI: 10.1016/j.ecocom.2008.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Cabral CM, Cherqui A, Pereira A, Simões N. Purification and characterization of two distinct metalloproteases secreted by the entomopathogenic bacterium Photorhabdus sp. strain Az29. Appl Environ Microbiol 2004; 70:3831-8. [PMID: 15240252 PMCID: PMC444805 DOI: 10.1128/aem.70.7.3831-3838.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus sp. strain Az29 is symbiotic with an Azorean nematode of the genus Heterorhabditis in a complex that is highly virulent to insects even at low temperatures. The virulence of the bacteria is mainly attributed to toxins and bacterial enzymes secreted during parasitism. The bacteria secrete proteases during growth, with a peak at the end of the exponential growth phase. Protease secretion was higher in cultures growing at lower temperatures. At 10 degrees C the activity was highest and remained constant for over 7 days, whereas at 23 and 28 degrees C it showed a steady decrease. Two proteases, PrtA and PrtS, that are produced in the growth medium were purified by liquid chromatography. PrtA was inhibited by 1,10-phenantroline and by EDTA and had a molecular mass of 56 kDa and an optimal activity at pH 9 and 50 degrees C. Sequences of three peptides of PrtA showed strong homologies with alkaline metalloproteases from Photorhabdus temperata K122 and Photorhabdus luminescens W14. Peptide PrtA-36 contained the residues characteristic of metzincins, known to be involved in bacterial virulence. In vitro, PrtA inhibited antibacterial factors of inoculated Lepidoptera and of cecropins A and B. PrtS had a molecular mass of 38 kDa and was inhibited by 1,10-phenanthroline but not by EDTA. Its activity ranged between 10 and 80 degrees C and was optimal at pH 7 and 50 degrees C. PrtS also destroyed insect antibacterial factors. Three fragments of PrtS showed homology with a putative metalloprotease of P. luminescens TTO1. Polyclonal antibody raised against PrtA did not recognize PrtS, showing they are distinct molecules.
Collapse
Affiliation(s)
- C M Cabral
- CIRN and Departamento de Biologia, Universidade dos Açores, 9501-801 Ponta Delgada, Azores, Portugal
| | | | | | | |
Collapse
|