1
|
Carmona-Pírez J, Salsoso R, Charpentier E, Olmedo C, Medrano FJ, Román L, de la Horra C, de Armas Y, Calderón EJ, Friaza V. Proteomic Approach to Study the Effect of Pneumocystis jirovecii Colonization in Idiopathic Pulmonary Fibrosis. J Fungi (Basel) 2025; 11:102. [PMID: 39997396 PMCID: PMC11857022 DOI: 10.3390/jof11020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and interstitial disease with an unclear cause, believed to involve genetic, environmental, and molecular factors. Recent research suggested that Pneumocystis jirovecii (PJ) could contribute to disease exacerbations and severity. This article explores how PJ colonization might influence the pathogenesis of IPF. We performed a proteomic analysis to study the profile of control and IPF patients, with/without PJ. We recruited nine participants from the Virgen del Rocio University Hospital (Seville, Spain). iTRAQ and bioinformatics analyses were performed to identify differentially expressed proteins (DEPs), including a functional analysis of DEPs and of the protein-protein interaction networks built using the STRING database. We identified a total of 92 DEPs highlighting the protein vimentin when comparing groups. Functional differences were observed, with the glycolysis pathway highlighted in PJ-colonized IPF patients; as well as the pentose phosphate pathway and miR-133A in non-colonized IPF patients. We found 11 protein complexes, notably the JAK-STAT signaling complex in non-colonized IPF patients. To our knowledge, this is the first study that analyzed PJ colonization's effect on IPF patients. However, further research is needed, especially on the complex interactions with the AKT/GSK-3β/snail pathway that could explain some of our results.
Collapse
Affiliation(s)
- Jonás Carmona-Pírez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Subdirección Técnica Asesora de Gestión de la Información, Servicio Andaluz de Salud (SAS), 41071 Seville, Spain
| | - Rocío Salsoso
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
| | - Eléna Charpentier
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Departamento de Medicina, Hospital Universitario Virgen del Rocío, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Cinta Olmedo
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain; (C.O.); (L.R.)
| | - Francisco J. Medrano
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - Lucas Román
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, 41013 Seville, Spain; (C.O.); (L.R.)
| | - Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
| | - Yaxsier de Armas
- Departments of Clinical Microbiology Diagnostic and Pathology, Hospital Center of Institute of Tropical Medicine “Pedro Kourí”, Havana 11400, Cuba;
- Departamento de Microbiología y Patología, Instituto de Patología Infecciosa y Experimental “Francisco Ruiz Sánchez”, Guadalajara 44100, Mexico
| | - Enrique J. Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Departamento de Medicina, Hospital Universitario Virgen del Rocío, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, 28029 Madrid, Spain
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, 41013 Seville, Spain; (J.C.-P.); (R.S.); (F.J.M.); (C.d.l.H.); (V.F.)
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, 28029 Madrid, Spain
| |
Collapse
|
2
|
Özarslan TO, Sırmatel F, Karabörk ŞÖ, Düzcü SE, Astarcı HM. Acinetobacter baumannii pneumonia increases surfactant proteins SP-A, SP-B, and SP-D levels, while decreasing SP-C level in bronchoalveolar lavage in rats. Microbes Infect 2022. [DOI: 10.1016/j.micinf.2022.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Kottom TJ, Carmona EM, Limper AH. Current State of Carbohydrate Recognition and C-Type Lectin Receptors in Pneumocystis Innate Immunity. Front Immunol 2021; 12:798214. [PMID: 34975910 PMCID: PMC8716372 DOI: 10.3389/fimmu.2021.798214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis jirovecii is one of the most common fungal pathogens in immunocompromised individuals. Pneumocystis jirovecii pneumonia (PJP) causes a significant host immune response that is driven greatly by the organism’s cell wall components including β-glucans and major surface glycoprotein (Msg). These ligands interact with a number of C-type lectin receptors (CLRs) leading to downstream activation of proinflammatory signaling pathways. This minireview provides a brief overview summarizing known CLR/Pneumocystis interactions.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Theodore J. Kottom,
| | - Eva M. Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Andrew H. Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Rojas P, Friaza V, García E, de la Horra C, Vargas SL, Calderón EJ, Pavón A. Early Acquisition of Pneumocystis jirovecii Colonization and Potential Association With Respiratory Distress Syndrome in Preterm Newborn Infants. Clin Infect Dis 2018; 65:976-981. [PMID: 28520902 DOI: 10.1093/cid/cix454] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Background Pneumocystis pneumonia is a well-recognized lung disease of premature and malnourished babies. Even though serologic studies have shown that children are exposed to Pneumocystis jirovecii early in life, the epidemiology of human P. jirovecii infection and the host-microorganism relationship in infancy remain poorly understood. The aim of the present study was to investigate the prevalence of P. jirovecii colonization in preterm infants and its possible association with medical complications. Methods A prospective observational study of preterm infants (birth weight <1500 g and/or gestational age <32 weeks) was carried out. Identification of P. jirovecii colonization was performed by means of molecular techniques in nasal aspirated samples at birth. Results A total of 128 preterm infants were included during the study period. Pneumocystis DNA was identified in 25.7% (95% confidence interval [CI], 17.8%-33.7%) of newborns studied. A significant increase of respiratory distress syndrome in colonized group, even after adjusting for confounding factors (odds ratio, 2.7 [95% CI, 1.0-7.5]; P = .04), was observed. No differences were observed in other medical conditions between the 2 groups. Conclusions Pneumocystis jirovecii colonization is frequent in preterm births and could be a risk factor to develop respiratory distress syndrome among preterm infants.
Collapse
Affiliation(s)
- Pilar Rojas
- Neonatology Unit, Virgen del Rocío University Children's Hospital
| | - Vicente Friaza
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Elisa García
- Neonatology Unit, Virgen del Rocío University Children's Hospital
| | - Carmen de la Horra
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Sergio L Vargas
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago
| | - Enrique J Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, and Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Antonio Pavón
- Neonatology Unit, Virgen del Rocío University Children's Hospital
| |
Collapse
|
5
|
Ferretti A, Fortwendel JR, Gebb SA, Barrington RA. Autoantibody-Mediated Pulmonary Alveolar Proteinosis in Rasgrp1-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:470-9. [PMID: 27279372 DOI: 10.4049/jimmunol.1502248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/13/2016] [Indexed: 11/19/2022]
Abstract
Pulmonary alveolar proteinosis (PAP) is a rare lung syndrome caused by the accumulation of surfactants in the alveoli. The most prevalent clinical form of PAP is autoimmune PAP (aPAP) whereby IgG autoantibodies neutralize GM-CSF. GM-CSF is a pleiotropic cytokine that promotes the differentiation, survival, and activation of alveolar macrophages, the cells responsible for surfactant degradation. IgG-mediated neutralization of GM-CSF thereby inhibits alveolar macrophage homeostasis and function, leading to surfactant accumulation and innate immunodeficiency. Importantly, there are no rodent models for this disease; therefore, underlying immune mechanisms regulating GM-CSF-specific IgG in aPAP are not well understood. In this article, we identify that autoimmune-prone Rasgrp1-deficient mice develop aPAP: 1) Rasgrp1-deficient mice exhibit reduced pulmonary compliance and lung histopathology characteristic of PAP; 2) alveolar macrophages from Rasgrp1-deficient mice are enlarged and exhibit reduced surfactant degradation; 3) the concentration of GM-CSF-specific IgG is elevated in both serum and bronchoalveolar lavage fluid from Rasgrp1-deficient mice; 4) GM-CSF-specific IgG is capable of neutralizing GM-CSF bioactivity; and 5) Rasgrp1-deficient mice also lacking CD275/ICOSL, a molecule necessary for conventional T cell-dependent Ab production, have reduced GM-CSF-specific autoantibody and do not develop PAP. Collectively, these studies reveal that Rasgrp1-deficient mice, to our knowledge, represent the first rodent model for aPAP.
Collapse
Affiliation(s)
- Andrew Ferretti
- Department of Microbiology & Immunology, University of South Alabama, Mobile, AL 36688; Center for Lung Biology, University of South Alabama, Mobile, AL 36688; and
| | - Jarrod R Fortwendel
- Department of Microbiology & Immunology, University of South Alabama, Mobile, AL 36688; Center for Lung Biology, University of South Alabama, Mobile, AL 36688; and
| | - Sarah A Gebb
- Center for Lung Biology, University of South Alabama, Mobile, AL 36688; and Department of Physiology & Cell Biology, University of South Alabama, Mobile, AL 36688
| | - Robert A Barrington
- Department of Microbiology & Immunology, University of South Alabama, Mobile, AL 36688; Center for Lung Biology, University of South Alabama, Mobile, AL 36688; and
| |
Collapse
|
6
|
Kebaabetswe LP, Haick AK, Gritsenko MA, Fillmore TL, Chu RK, Purvine SO, Webb-Robertson BJ, Matzke MM, Smith RD, Waters KM, Metz TO, Miura TA. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. Virology 2015; 483:96-107. [PMID: 25965799 DOI: 10.1016/j.virol.2015.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/13/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Infection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation. Proteins involved in mitochondrial membrane permeability, energy metabolism, and chromatin formation had reduced levels in PR8-infected cells. Phenotypic markers of ATII cells in vivo were identified, confirming the differentiation status of the cultures. Surfactant protein B had decreased levels in PR8-infected cells, which was confirmed by immunoblotting and immunofluorescence assays. Analysis of ATII cell protein profiles will elucidate cellular processes in IAV pathogenesis, which may provide insight into potential therapies to modulate disease severity.
Collapse
Affiliation(s)
- Lemme P Kebaabetswe
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Anoria K Haick
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas L Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bobbie-Jo Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Melissa M Matzke
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
7
|
Bein K, Di Giuseppe M, Mischler SE, Ortiz LA, Leikauf GD. LPS-treated macrophage cytokines repress surfactant protein-B in lung epithelial cells. Am J Respir Cell Mol Biol 2013; 49:306-15. [PMID: 23590297 PMCID: PMC3824031 DOI: 10.1165/rcmb.2012-0283oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/07/2013] [Indexed: 02/04/2023] Open
Abstract
In the mouse lung, Escherichia coli LPS can decrease surfactant protein-B (SFTPB) mRNA and protein concentrations. LPS also regulates the expression, synthesis, and concentrations of a variety of gene and metabolic products that inhibit SFTPB gene expression. The purpose of the present study was to determine whether LPS acts directly or indirectly on pulmonary epithelial cells to trigger signaling pathways that inhibit SFTPB expression, and whether the transcription factor CCAAT/enhancer binding protein (C/EBP)-β (CEBPB) is a downstream inhibitory effector. To investigate the mechanism of SFTPB repression, the human pulmonary epithelial cell lines NCI-H441 (H441) and NCI-H820 (H820) and the mouse macrophage-like cell line RAW264.7 were treated with LPS. Whereas LPS did not decrease SFTPB transcripts in H441 or H820 cells, the conditioned medium of LPS-treated RAW264.7 cells decreased SFTPB transcripts in H441 and H820 cells, and inhibited SFTPB promoter activity in H441 cells. In the presence of neutralizing anti-tumor necrosis factor (TNF) antibodies, the conditioned medium of LPS-treated RAW264.7 cells did not inhibit SFTPB promoter activity. In H441 cells treated with recombinant TNF protein, SFTPB transcripts decreased, whereas CEBPB transcripts increased and the transient coexpression of CEBPB decreased SFTPB promoter activity. Further, CEBPB short, interfering RNA increased basal SFTPB transcripts and countered the decrease of SFTPB transcripts by TNF. Together, these findings suggest that macrophages participate in the repression of SFTPB expression by LPS, and that macrophage-released cytokines (including TNF) regulate the transcription factor CEBPB, which can function as a downstream transcriptional repressor of SFTPB gene expression in pulmonary epithelial cells.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Gaunsbaek MQ, Rasmussen KJ, Beers MF, Atochina-Vasserman EN, Hansen S. Lung surfactant protein D (SP-D) response and regulation during acute and chronic lung injury. Lung 2013; 191:295-303. [PMID: 23435873 DOI: 10.1007/s00408-013-9452-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/24/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Surfactant protein D (SP-D) is a collection that plays important roles in modulating host defense functions and maintaining phospholipid homeostasis in the lung. The aim of current study was to characterize comparatively the SP-D response in bronchoalveolar lavage (BAL) and serum in three murine models of lung injury, using a validated ELISA technology for estimation of SP-D levels. METHODS Mice were exposed to lipopolysaccharide, bleomycin, or Pneumocystis carinii (Pc) and sacrificed at different time points. RESULTS In lipopolysaccharide-challenged mice, the level of SP-D in BAL increased within 6 h, peaked at 51 h (4,518 ng/ml), and returned to base level at 99 h (612 ng/ml). Serum levels of SP-D increased immediately (8.6 ng/ml), peaked at 51 h (16 ng/ml), and returned to base levels at 99 h (3.8 ng/ml). In a subacute bleomycin inflammation model, SP-D levels were 4,625 and 367 ng/ml in BAL and serum, respectively, 8 days after exposure. In a chronic Pc inflammation model, the highest level of SP-D was observed 6 weeks after inoculation, with BAL and serum levels of 1,868 and 335 ng/ml, respectively. CONCLUSIONS We conclude that serum levels of SP-D increase during lung injury, with a sustained increment during chronic inflammation compared with acute inflammation. A quick upregulation of SP-D in serum in response to acute airway inflammation supports the notion that SP-D translocates from the airways into the vascular system, in favor of being synthesized systemically. The study also confirms the concept of using increased SP-D serum levels as a biomarker of especially chronic airway inflammation.
Collapse
Affiliation(s)
- Maria Quisgaard Gaunsbaek
- Department of Otorhinolaryngology, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark.
| | | | | | | | | |
Collapse
|
10
|
Boggaram V, Chandru H, Gottipati KR, Thakur V, Das A, Berhane K. Transcriptional regulation of SP-B gene expression by nitric oxide in H441 lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 299:L252-62. [PMID: 20418387 PMCID: PMC2928609 DOI: 10.1152/ajplung.00062.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/20/2010] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein B (SP-B) is essential for the surface tension-lowering function of pulmonary surfactant. Surfactant dysfunction and reduced SP-B levels are associated with elevated nitric oxide (NO) in inflammatory lung diseases, such as acute respiratory distress syndrome. We previously found that NO donors decreased SP-B expression in H441 and MLE-12 lung epithelial cells by reducing SP-B promoter activity. In this study, we determined the roles of DNA elements and interacting transcription factors necessary for NO inhibition of SP-B promoter activity in H441 cells. We found that the NO donor diethylenetriamine-nitric oxide adduct (DETA-NO) decreased SP-B promoter thyroid transcription factor 1 (TTF-1), hepatocyte nuclear factor 3 (HNF-3), and Sp1 binding activities but increased activator protein 1 (AP-1) binding activity. DETA-NO decreased TTF-1, but not Sp1, levels, suggesting that reduced TTF-1 expression contributes to reduced TTF-1 binding activity. Lack of effect on Sp1 levels suggested that DETA-NO inhibits Sp1 binding activity per se. Overexpression of Sp1, but not TTF-1, blocked DETA-NO inhibition of SP-B promoter activity. DETA-NO inhibited SP-B promoter induction by exogenous TTF-1 without altering TTF-1 levels. DETA-NO decreased TTF-1 mRNA levels and gene transcription rate, indicating that DETA-NO inhibits TTF-1 expression at the transcriptional level. We conclude that NO inhibits SP-B promoter by decreasing TTF-1, Sp1, and HNF-3 binding activities and increasing AP-1 binding activity. NO inhibits TTF-1 levels and activity to decrease SP-B expression. NO inhibition of SP-B expression could be a mechanism by which surfactant dysfunction occurs in inflammatory lung diseases.
Collapse
Affiliation(s)
- Vijay Boggaram
- Center for Biomedical Research, Univ. of Texas Health Science Center at Tyler, TX 75708-3154, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Pneumocystis jirovecii is the opportunistic fungal organism that causes Pneumocystis pneumonia (PCP) in humans. Similar to other opportunistic pathogens, Pneumocystis causes disease in individuals who are immunocompromised, particularly those infected with HIV. PCP remains the most common opportunistic infection in patients with AIDS. Incidence has decreased greatly with the advent of HAART. However, an increase in the non-HIV immunocompromised population, noncompliance with current treatments, emergence of drug-resistant strains and rise in HIV(+) cases in developing countries makes Pneumocystis a pathogen of continued interest and a public health threat. A great deal of research interest has addressed therapeutic interventions to boost waning immunity in the host to prevent or treat PCP. This article focuses on research conducted during the previous 5 years regarding the host immune response to Pneumocystis, including innate, cell-mediated and humoral immunity, and associated immunotherapies tested against PCP.
Collapse
Affiliation(s)
- Michelle N Kelly
- Section of Pulmonary/Critical Care Medicine, LSU Health Sciences Center, Medical Education Building 3205, 1901 Perdido Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|
12
|
Atochina-Vasserman EN, Gow AJ, Abramova H, Guo CJ, Tomer Y, Preston AM, Beck JM, Beers MF. Immune reconstitution during Pneumocystis lung infection: disruption of surfactant component expression and function by S-nitrosylation. THE JOURNAL OF IMMUNOLOGY 2009; 182:2277-87. [PMID: 19201882 DOI: 10.4049/jimmunol.0802775] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pneumocystis pneumonia (PCP), the most common opportunistic pulmonary infection associated with HIV infection, is marked by impaired gas exchange and significant hypoxemia. Immune reconstitution disease (IRD) represents a syndrome of paradoxical respiratory failure in patients with active or recently treated PCP subjected to immune reconstitution. To model IRD, C57BL/6 mice were selectively depleted of CD4(+) T cells using mAb GK1.5. Following inoculation with Pneumocystis murina cysts, infection was allowed to progress for 2 wk, GK1.5 was withdrawn, and mice were followed for another 2 or 4 wk. Flow cytometry of spleen cells demonstrated recovery of CD4(+) cells to >65% of nondepleted controls. Lung tissue and bronchoalveolar lavage fluid harvested from IRD mice were analyzed in tandem with samples from CD4-depleted mice that manifested progressive PCP for 6 wks. Despite significantly decreased pathogen burdens, IRD mice had persistent parenchymal lung inflammation, increased bronchoalveolar lavage fluid cellularity, markedly impaired surfactant biophysical function, and decreased amounts of surfactant phospholipid and surfactant protein (SP)-B. Paradoxically, IRD mice also had substantial increases in the lung collectin SP-D, including significant amounts of an S-nitrosylated form. By native PAGE, formation of S-nitrosylated SP-D in vivo resulted in disruption of SP-D multimers. Bronchoalveolar lavage fluid from IRD mice selectively enhanced macrophage chemotaxis in vitro, an effect that was blocked by ascorbate treatment. We conclude that while PCP impairs pulmonary function and produces abnormalities in surfactant components and biophysics, these responses are exacerbated by IRD. This worsening of pulmonary inflammation, in response to persistent Pneumocystis Ags, is mediated by recruitment of effector cells modulated by S-nitrosylated SP-D.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Currier PF, Gong MN, Zhai R, Pothier LJ, Boyce PD, Xu L, Yu CL, Thompson BT, Christiani DC. Surfactant protein-B polymorphisms and mortality in the acute respiratory distress syndrome. Crit Care Med 2008; 36:2511-6. [PMID: 18679120 PMCID: PMC3090262 DOI: 10.1097/ccm.0b013e318183f608] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine whether polymorphisms of the surfactant protein B gene may be associated with increased mortality in patients with the acute respiratory distress syndrome. DESIGN A prospective cohort study. SETTING Four adult intensive care units at a tertiary academic medical center. PATIENTS Two hundred fourteen white patients who had met criteria for acute respiratory distress syndrome. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Patients were genotyped for a variable nuclear tandem repeat polymorphism in intron 4 of the surfactant protein B gene and the surfactant protein B gene +1580 polymorphism. For the variable nuclear tandem repeat surfactant protein B gene polymorphism, patients were found to have either a homozygous wild-type genotype or a variant genotype consisting of either a heterozygous insertion or deletion polymorphism. Logistic regression was performed to analyze the relationship of the polymorphisms to mortality in patients with acute respiratory distress syndrome. In multivariate analysis, the presence of variable nuclear tandem repeat surfactant protein B gene polymorphism was associated with a 3.51 greater odds of death at 60 days in patients with acute respiratory distress syndrome as compared to those patients with the wild-type genotype (95% confidence interval 1.39-8.88, p = 0.008). There was no association found between the +1580 variant and outcome (p = 0.15). CONCLUSIONS In this study, the variable nuclear tandem repeat surfactant protein B gene polymorphism in intron 4 is associated with an increased 60 day mortality in acute respiratory distress syndrome after adjusting for age, severity of illness, and other potential confounders. Additional studies in other populations are needed to confirm this finding.
Collapse
Affiliation(s)
- Paul F Currier
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Haque AK, Adegboyega PA. Pneumocystis jiroveci Pneumonia. DAIL AND HAMMAR’S PULMONARY PATHOLOGY 2008. [PMCID: PMC7121032 DOI: 10.1007/978-0-387-68792-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pneumocystis pneumonia (PCP) is one of the most common pulmonary infections in persons with impaired cell-mediated immunity, and particularly those infected with human immunodeficiency virus (HIV).1–7 Pneumocystis was first described in the lungs of guinea pigs, during experiments on American trypanosomiasis by Carlos Chagas8 in 1909 and by Antonio Carinii9 in 1910. Both considered the cysts of Pneumocystis as part of the trypanosome’s life cycle. Shortly afterward the Delanoes10 found identical forms in the lungs of rats that had not been infected with trypanosomes and recognized the organism as a separate species. The name Pneumocystis carinii, was given to this organism as a generic name (Greek:pneumon, “lung”; kystis, “cyst”), honoring Carinii.11
Collapse
|
15
|
Thomas CF, Limper AH. Current insights into the biology and pathogenesis of Pneumocystis pneumonia. Nat Rev Microbiol 2007; 5:298-308. [PMID: 17363968 DOI: 10.1038/nrmicro1621] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fungal infection Pneumocystis pneumonia is the most prevalent opportunistic infection in patients with AIDS. Although the analysis of this opportunistic fungal pathogen has been hindered by the inability to isolate it in pure culture, the use of molecular techniques and genomic analysis have brought insights into its complex cell biology. Analysis of the intricate relationship between Pneumocystis and the host lung during infection has revealed that the attachment of Pneumocystis to the alveolar epithelium promotes the transition of the organism from the trophic to the cyst form. It also revealed that Pneumocystis infection elicits the production of inflammatory mediators, culminating in lung injury and impaired gas exchange. Here we discuss these and other recent findings relating to the biology and pathogenesis of this intractable fungus.
Collapse
Affiliation(s)
- Charles F Thomas
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
16
|
Lasbury ME, Merali S, Durant PJ, Tschang D, Ray CA, Lee CH. Polyamine-mediated apoptosis of alveolar macrophages during Pneumocystis pneumonia. J Biol Chem 2007; 282:11009-20. [PMID: 17314093 DOI: 10.1074/jbc.m611686200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The number of alveolar macrophages is decreased during Pneumocystis pneumonia (Pcp), partly because of activation of apoptosis in these cells. This apoptosis occurs in both rat and mouse models of Pcp. Bronchoalveolar lavage (BAL) fluids from Pneumocystis-infected animals were found to contain high levels of polyamines, including spermidine, N1-acetylspermine, and N1-acetylspermidine. These BAL fluids and exogenous polyamines were able to induce apoptosis in alveolar macrophages. Apoptosis of alveolar macrophages during infection, after incubation with BAL fluids from Pneumocystis-infected animals, or after incubation with polyamines was marked by an increase in intracellular reactive oxygen species, activation of caspases-3 and -9, DNA fragmentation, and leakage of mitochondrial cytochrome c into the cytoplasm. When polyamines were depleted from the BAL fluids of infected animals, the ability of these BAL fluids to induce apoptosis was lost. Interestingly, the apoptosis inducing activity of the polyamine-depleted BAL fluids was restored when polyamines were added back. The results of this study suggested that Pneumocystis infection results in accumulation of high levels of polyamines in the lung. These polyamines activate apoptosis of alveolar macrophages, perhaps because of the ROS that are produced during polyamine metabolism.
Collapse
Affiliation(s)
- Mark E Lasbury
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Schmidt R, Markart P, Ruppert C, Temmesfeld B, Nass R, Lohmeyer J, Seeger W, Günther A. Pulmonary surfactant in patients with Pneumocystis pneumonia and acquired immunodeficiency syndrome. Crit Care Med 2006; 34:2370-6. [PMID: 16849999 DOI: 10.1097/01.ccm.0000234036.19145.52] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Pneumocystis pneumonia (PCP) is a severe infection of the immunocompromised host, resulting in diffuse alveolar damage and life-threatening respiratory failure. We analyzed pulmonary surfactant composition and function in bronchoalveolar lavage fluid (BALF) from ventilated and spontaneously breathing HIV-positive patients with PCP. DESIGN Prospective clinical trial. SETTING University hospital intensive care unit. PATIENTS Thirty-four spontaneously breathing (SB-PCP) and 20 ventilated HIV-positive patients with PCP (V-PCP), ten patients with acute respiratory distress syndrome (ARDS), 11 spontaneously breathing patients with bacterial pneumonia (PNEU), and 22 healthy volunteers. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Total phospholipid in BALF did not differ between any category vs. controls, whereas total protein increased approximately 14-fold in V-PCP and five-fold in SB-PCP compared with controls (p < .001). The relative content of large surfactant aggregates (LA) was reduced in SB-PCP and V-PCP compared with controls (p < .05). The phospholipid and fatty acid profiles showed a significant reduction in the relative content of phosphatidylcholine (PC), phosphatidylglycerol, and palmitic acid in PC in all patient categories compared with controls, with more in V-PCP (p < .001) compared with SB-PCP (p < .05). The neutral lipid-to-phospholipid ratio in LA was three-fold elevated in V-PCP (p < .01 compared with control) but not in SB-PCP. Analysis of neutral lipid classes showed a significant increase in the relative content of triglycerides and a reduction in free fatty acids in V-PCP compared with controls. BALF surfactant protein (SP)-A and SP-D significantly increased in V-PCP and SB-PCP, but not in ARDS and PNEU, compared with controls (p < .05). SP-B and SP-C content in LA remained unchanged in PCP compared with controls but decreased significantly in ARDS and PNEU. The minimum surface tension of LA was impaired (p < .001) in V-PCP more than in SB-PCP and was strongly correlated with the reduction in palmitic acid levels in PC LA (r = -.81). Reductions in phosphatidylglycerol strongly correlated with decreased Pao2/Fio2 values (r = .72). CONCLUSIONS We conclude that severe alterations in surfactant function and composition occur in patients with PCP and are even more pronounced in ventilated patients than in nonventilated patients. Surfactant lipid changes in PCP, but not surfactant protein profiles, closely resemble those found in ARDS.
Collapse
|
18
|
Wang Z, Foye A, Chang Y, Chess PR, Wright TW, Bhagwat S, Gigliotti F, Notter RH. Inhibition of surfactant activity by Pneumocystis carinii organisms and components in vitro. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1124-31. [PMID: 15886399 DOI: 10.1152/ajplung.00453.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examines the direct inhibitory effects of Pneumocystis carinii (Pc) organisms and chemical components on the surface activity and composition of whole calf lung surfactant (WLS) and calf lung surfactant extract (CLSE) in vitro. Incubation of WLS suspensions with intact Pc organisms (10(7) per milligram of surfactant phospholipid) did not significantly alter total phospholipid levels or surfactant protein A content. Incubation with intact Pc organisms also did not impair dynamic surface tension lowering in suspensions of WLS or centrifuged large surfactant aggregates on a bubble surfactometer (37 degrees C, 20 cycles/min, 0.5 and 2.5 mg phospholipid/ml). However, exposure of WLS or CLSE to disrupted (sonicated) Pc organisms led to severe detriments in activity, with minimum surface tensions of 17-19 mN/m vs. <1 mN/m for surfactants alone. Extracted hydrophobic chemical components from Pc (98.8% lipids, 0.1 mM) reduced the surface activity of WLS and CLSE similarly to sonicated Pc organisms, whereas extracted hydrophilic chemical components from Pc (primarily proteins) had only minor effects on surface tension lowering. These results indicate that in addition to surfactant dysfunction induced by inflammatory lung injury and edema-derived inhibitors in Pc pneumonia, disrupted Pc organisms in the alveolar lumen also have the potential to directly inhibit endogenous and exogenous lung surfactants in affected patients.
Collapse
Affiliation(s)
- Zhengdong Wang
- Dept. of Pediatrics, Box 850, Univ. of Rochester School of Medicine, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nesslein LL, Melton KR, Ikegami M, Na CL, Wert SE, Rice WR, Whitsett JA, Weaver TE. Partial SP-B deficiency perturbs lung function and causes air space abnormalities. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1154-61. [PMID: 15722377 DOI: 10.1152/ajplung.00392.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein B (SP-B) is required for function of newborn and adult lung, and partial deficiency has been associated with susceptibility to lung injury. In the present study, transgenic mice were produced in which expression of SP-B in type II epithelial cells was conditionally regulated. Concentrations of SP-B were maintained at 60–70% of that normally present in control. Immunostaining for SP-B demonstrated cellular heterogeneity in expression of the protein. In subsets of type II cells in which SP-B staining was decreased, immunostaining for pro-SP-C was increased and lamellar body ultrastructure was disrupted, consistent with focal SP-B deficiency. Fluorescence-activated cell sorting analyses of freshly isolated type II cells identified a population of cells with low SP-B content and a smaller population with increased SP-B content, confirming nonuniform expression of the SP-B transgene. Focal air space enlargement, without cellular infiltration or inflammation, was observed. Pressure-volume curves indicated that maximal tidal volume was unchanged; however, hysteresis was modestly altered and residual volumes were significantly decreased in the SP-B-deficient mice. Chronic, nonuniform SP-B deficiency perturbed pulmonary function and caused air space enlargement.
Collapse
Affiliation(s)
- Lori L Nesslein
- Cincinnati Children's Hospital Medical Center, Division of Neonatology, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Guttentag SH, Akhtar A, Tao JQ, Atochina E, Rusiniak ME, Swank RT, Bates SR. Defective surfactant secretion in a mouse model of Hermansky-Pudlak syndrome. Am J Respir Cell Mol Biol 2005; 33:14-21. [PMID: 15790974 PMCID: PMC2715302 DOI: 10.1165/rcmb.2004-0293oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hermansky-Pudlak syndrome (HPS) in humans represents a family of disorders of lysosome-related organelle biogenesis associated with severe, progressive pulmonary disease. Human case reports and a mouse model of HPS, the pale ear/pearl mouse (ep/pe), exhibit giant lamellar bodies (GLB) in type II alveolar epithelial cells. We examined surfactant proteins and phospholipid from ep/pe mice to elucidate the process of GLB formation. The 2.8-fold enrichment of tissue phospholipids in ep/pe mice resulted from accumulation from birth through adulthood. Tissue surfactant protein (SP)-B and -C were increased in adult ep/pe mice compared with wild-type mice (WT), whereas SP-A and -D were not different. Large aggregate surfactant (LA) from adult ep/pe mice had decreased phospholipid, SP-B, and SP-C, with no differences in SP-A and -D compared with WT. Although LA from ep/pe animals exhibited an increased total protein-to-total phospholipid ratio compared with WT, surface tension was not compromised. Phospholipid secretion from isolated type II cells showed that basal and stimulated secretion from ep/pe cells were approximately 50% of WT cells. Together, our data indicate that GLB formation is not associated with abnormal trafficking or recycling of surfactant material. Instead, impaired secretion is an important component of GLB formation in ep/pe mice.
Collapse
Affiliation(s)
- Susan H Guttentag
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Philadelphia, 19104-4318, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Atochina EN, Beck JM, Preston AM, Haczku A, Tomer Y, Scanlon ST, Fusaro T, Casey J, Hawgood S, Gow AJ, Beers MF. Enhanced lung injury and delayed clearance of Pneumocystis carinii in surfactant protein A-deficient mice: attenuation of cytokine responses and reactive oxygen-nitrogen species. Infect Immun 2004; 72:6002-11. [PMID: 15385504 PMCID: PMC517574 DOI: 10.1128/iai.72.10.6002-6011.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surfactant protein A (SP-A), a member of the collectin family, selectively binds to Pneumocystis carinii and mediates interactions between pathogen and host alveolar macrophages in vitro. To test the hypothesis that mice lacking SP-A have delayed clearance of Pneumocystis organisms and enhanced lung injury, wild-type C57BL/6 (WT) and SP-A-deficient mice (SP-A(-/-)) with or without selective CD4(+)-T-cell depletion were intratracheally inoculated with Pneumocystis organisms. Four weeks later, CD4-depleted SP-A-deficient mice had developed a more severe Pneumocystis infection than CD4-depleted WT (P. carinii pneumonia [PCP] scores of 3 versus 2, respectively). Whereas all non-CD4-depleted WT mice were free of PCP, intact SP-A(-/-) mice also had evidence of increased organism burden. Pneumocystis infection in SP-A-deficient mice was associated histologically with enhanced peribronchial and/or perivascular cellularity (score of 4 versus 2, SP-A(-/-) versus C57BL/6 mice, respectively) and a corresponding increase in bronchoalveolar lavage (BAL) cell counts. Increases in SP-D content, gamma interferon, interleukin-4, interleukin-5, and tumor necrosis factor alpha in BAL fluid occurred but were attenuated in PCP-infected SP-A(-/-) mice compared to WT mice. There were increases in total BAL NO levels in both infected groups, but nitrite levels were higher in SP-A(-/-) mice, indicating a reduction in production of higher oxides of nitrogen that was also reflected in lower levels of 3-nitrotyrosine staining in the SP-A(-/-) group. We conclude that despite increases in inflammatory cells, SP-A-deficient mice infected with P. carinii exhibit an enhanced susceptibility to the organism and attenuated production of proinflammatory cytokines and reactive oxygen-nitrogen species. These data support the concept that SP-A is a local effector molecule in the lung host defense against P. carinii in vivo.
Collapse
Affiliation(s)
- Elena N. Atochina
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - James M. Beck
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - Angela M. Preston
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - Angela Haczku
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - Yaniv Tomer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - Seth T. Scanlon
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - Trevor Fusaro
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - John Casey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - Samuel Hawgood
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - Andrew J. Gow
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
| | - Michael F. Beers
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania School of Medicine, Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School and Veterans Affairs Medical Center, Ann Arbor, Michigan, Division of Neonatology, University of California at San Francisco, San Francisco, California
- Corresponding author. Mailing address: Pulmonary and Critical Care Division, University of Pennsylvania School of Medicine, 807 BRB II/III Bldg., 421 Curie Blvd., Philadelphia, PA 19104. Phone: (215) 898-9106. Fax: (215) 573-4469. E-mail:
| |
Collapse
|
22
|
Affiliation(s)
- Charles F Thomas
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minn, USA
| | | |
Collapse
|
23
|
Cao Y, Tao JQ, Bates SR, Beers MF, Haczku A. IL-4 induces production of the lung collectin surfactant protein-D. J Allergy Clin Immunol 2004; 113:439-44. [PMID: 15007344 DOI: 10.1016/j.jaci.2003.11.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Surfactant protein (SP)-D is an epithelial cell product of the distal air spaces that aids uptake and clearance of inhaled pathogens and allergens. Allergic airway inflammation significantly increases SP-D levels in the bronchoalveolar lavage fluid in asthmatic patients and mouse models, but the mechanisms involved remain unknown. OBJECTIVE To investigate the effects of the TH2-type cytokine IL-4 on SP-D production by isolated pulmonary epithelial cells. METHODS Rat type II alveolar epithelial cells were purified and cultured with dexamethasone, cAMP, and isobutyl-1-methylxanthine (DCI). The effects of IL-4 on SP-D expression were investigated at the protein and mRNA levels by means of Western and Northern blot analyses. RESULTS In contrast to a lamellar body protein ABCA3 and surfactant protein-A, expression of SP-D significantly declined when cells were cultured in medium alone for 24 hours. The presence of DCI in the culture medium restored SP-D levels, which were enhanced by 2-fold after addition of recombinant IL-4. The enhancing effects of IL-4 were concentration-dependent, with maximum effects observed at 20 ng/mL (1.43 nmol/L). IL-4 did not rescue cycloheximide-induced decrease of intracellular SP-D levels and did not inhibit extracellular release of SP-D. However, IL-4 significantly augmented DCI-induced SP-D mRNA expression by approximately 2.5-fold over control levels. CONCLUSIONS IL-4 selectively upregulates SP-D expression, and it may act at the level of mRNA in isolated pulmonary epithelial cells. Since SP-D has a potent anti-inflammatory function, this mechanism may be part of a negative feedback loop providing a regulatory link between adaptive and innate immunity during allergic inflammation.
Collapse
Affiliation(s)
- Yang Cao
- Pulmonary Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-6061, USA
| | | | | | | | | |
Collapse
|
24
|
Gong MN, Wei Z, Xu LL, Miller DP, Thompson BT, Christiani DC. Polymorphism in the Surfactant Protein-B Gene, Gender, and the Risk of Direct Pulmonary Injury and ARDS. Chest 2004; 125:203-11. [PMID: 14718442 DOI: 10.1378/chest.125.1.203] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE Major risk factors for ARDS have been identified. However, only a minority of patients with such risks develops ARDS. It is likely that, given the same type and degree of insult, there are heritable determinants of susceptibility to ARDS. To investigate the possibility of variable genetic susceptibility to ARDS, we examined the association between ARDS and a polymorphism in intron 4 of the surfactant protein-B (SP-B) gene. DESIGN Nested case-control study conducted from September 1999 to March 2001. SETTING Four adult medical and surgical ICUs at a tertiary academic center. PATIENTS One hundred eighty-nine patients meeting study criteria for a defined risk factor for ARDS were enrolled and prospectively followed. MEASUREMENTS AND RESULTS Seventy-two patients (38%) developed ARDS. After stratification by gender and adjustment for potential confounders, there was a significantly increased odds for women with the variant SP-B gene to develop ARDS compared to women homozygous for the wild-type allele (odds ratio [OR], 4.5; 95% confidence interval [CI], 1.1 to 18.8; p = 0.03). Women with the variant SP-B polymorphism also had significantly increased odds of having a direct pulmonary injury such as aspiration or pneumonia as a risk factor for ARDS as opposed to an indirect pulmonary risk for ARDS (OR, 4.6; 95% CI, 1.1 to 19.9; p = 0.04). No such association with ARDS or direct pulmonary injury was found for men. CONCLUSION The variant polymorphism of the SP-B gene is associated with ARDS and with direct pulmonary injury in women, but not in men. Further study is needed to confirm the association between the variant SP-B gene, and gender, ARDS, and direct pulmonary injury.
Collapse
Affiliation(s)
- Michelle Ng Gong
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Harvard Medical School, Goston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
25
|
Salinas D, Sparkman L, Berhane K, Boggaram V. Nitric oxide inhibits surfactant protein B gene expression in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L1153-65. [PMID: 12896877 DOI: 10.1152/ajplung.00084.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein B (SP-B) is an essential constituent of pulmonary surfactant. In a number of inflammatory diseases of the lung, elevated nitric oxide (NO) levels are associated with decreased SP-B levels, suggesting that reduced SP-B levels contribute to lung injury. In this study, we investigated the effects of NO on SP-B gene expression in H441 and MLE-12 cells, cell lines with characteristics of bronchiolar (Clara) and alveolar type II epithelial cells, respectively. Results show that NO donors decreased SP-B mRNA levels in a concentration- and time-dependent manner in H441 and MLE-12 cells. The NO donors also antagonized dexamethasone induction of SP-B mRNA in H441 cells. NO donor inhibition of SP-B mRNA was blocked by the transcriptional inhibitor 5,6-dichloro-1-beta-D-ribofuranozyl-benzimidazole. NO donors decreased luciferase expression from a reporter plasmid containing -911/+41 bp of human SP-B 5'-flanking DNA in H441 and MLE-12 cells, indicating inhibitory effects on SP-B promoter activity. NO inhibition of SP-B mRNA levels was not blocked by LY-83583 and KT-5823, inhibitors of soluble guanylate cyclase and protein kinase G, respectively. Furthermore, cell-permeable cGMP analog 8-bromo-cGMP had no effect on SP-B mRNA levels. These data indicate that elevated NO levels negatively regulate SP-B gene expression by inhibiting gene transcription and that NO inhibits SP-B gene expression independently of cGMP levels. These data imply that reduced SP-B expression due to elevated NO levels can contribute to lung injury.
Collapse
Affiliation(s)
- Darrell Salinas
- Department of Molecular Biology, University of Texas Health Center at Tyler, Tyler, Texas 75708-3154, USA
| | | | | | | |
Collapse
|
26
|
Melton KR, Nesslein LL, Ikegami M, Tichelaar JW, Clark JC, Whitsett JA, Weaver TE. SP-B deficiency causes respiratory failure in adult mice. Am J Physiol Lung Cell Mol Physiol 2003; 285:L543-9. [PMID: 12639841 DOI: 10.1152/ajplung.00011.2003] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Targeted deletion of the surfactant protein (SP)-B locus in mice causes lethal neonatal respiratory distress. To assess the importance of SP-B for postnatal lung function, compound transgenic mice were generated in which the mouse SP-B cDNA was conditionally expressed under control of exogenous doxycycline in SP-B-/- mice. Doxycycline-regulated expression of SP-B fully corrected lung function in compound SP-B-/- mice and protected mice from respiratory failure at birth. Withdrawal of doxycycline from adult compound SP-B-/- mice resulted in decreased alveolar content of SP-B, causing respiratory failure when SP-B concentration was reduced to <25% of normal levels. Decreased SP-B was associated with low alveolar content of phosphatidylglycerol, accumulation of misprocessed SP-C proprotein in the air spaces, increased protein content in bronchoalveolar lavage fluid, and altered surfactant activity in vitro. Consistent with surfactant dysfunction, hysteresis, maximal tidal volumes, and end expiratory volumes were decreased. Reduction of alveolar SP-B content causes surfactant dysfunction and respiratory failure, indicating that SP-B is required for postnatal lung function.
Collapse
Affiliation(s)
- Kristin R Melton
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Epaud R, Ikegami M, Whitsett JA, Jobe AH, Weaver TE, Akinbi HT. Surfactant protein B inhibits endotoxin-induced lung inflammation. Am J Respir Cell Mol Biol 2003; 28:373-8. [PMID: 12594064 DOI: 10.1165/rcmb.2002-0071oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transgenic mice, in which the level of surfactant protein (SP)-B mature peptide varied 5.6-fold between SP-B(+/-) and SP-B-overexpressing lines (SP-B+/+/+), were used to test the hypothesis that SP-B protects against endotoxin-induced lung inflammation. Intratracheal administration of endotoxin resulted in significantly lower concentration of SP-B mature peptide and elevated levels of total protein in bronchoalveolar lavage fluid of SP-B(+/-) mice compared with SP-B-overexpressing mice, indicating that endotoxin treatment leads to impairment of SP-B expression coincident with increased lung injury in SP-B(+/-) mice. Recruitment of inflammatory cells and elaboration of proinflammatory cytokines in bronchoalveolar lavage fluid were reduced in SP-B-overexpressing mice compared with SP-B(+/-) mice, suggesting that SP-B inhibited endotoxin-induced lung inflammation. Lung compliance and tissue damping were significantly decreased in SP-B(+/+) and SP-B(+/-) mice, but were not changed in SP-B(+/+/+) mice, consistent with a protective effect of SP-B. The minimum surface tension of large aggregate surfactant was significantly lower for surfactant isolated from SP-B-overexpressing mice, both in the absence and the presence of added plasma proteins. These data suggest that SP-B protected against endotoxin-induced lung inflammation by enhancing surfactant function, resulting in reduced lung injury, decreased influx of inflammatory cells, and lower cytokine levels; in contrast, levels of SP-B in SP-B(+/-) mice were further decreased by endotoxin treatment, likely exacerbating lung injury in this group.
Collapse
Affiliation(s)
- Ralph Epaud
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
28
|
Haczku A, Atochina EN, Tomer Y, Cao Y, Campbell C, Scanlon ST, Russo SJ, Enhorning G, Beers MF. The late asthmatic response is linked with increased surface tension and reduced surfactant protein B in mice. Am J Physiol Lung Cell Mol Physiol 2002; 283:L755-65. [PMID: 12225952 DOI: 10.1152/ajplung.00062.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant dysfunction may significantly contribute to small airway obstruction during the asthmatic response, but neither its exact role nor its regulation is clear. Surfactant function and composition was studied in an Aspergillus fumigatus (Af)-induced late-phase allergic airway response in sensitized BALB/c mice. The peak of Af-induced airway hyperresponsiveness in sensitized and challenged mice 24 h after allergen provocation coincided with a significant fall in surface activity of the pulmonary surfactant. The underlying changes included time-dependent elaboration of eotaxin and IL-5 followed by eosinophil influx into the airways. The height of airway inflammation and hyperresponsiveness was preceded by release of IL-4 and marked reductions in surfactant protein (SP)-B, a hydrophobic surfactant protein responsible for maintaining low surface tension of the lining fluid of distal air spaces. Furthermore, intratracheal administration of IL-4 significantly inhibited SP-B, indicating a regulatory role of this cytokine in the surfactant biophysical changes. Thus surfactant dysfunction induced by an IL-4-driven SP-B deficiency after allergen provocation may be an important part of the late asthmatic airway response.
Collapse
Affiliation(s)
- Angela Haczku
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania Medical School, Philadelphia 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Strayer M, Savani RC, Gonzales LW, Zaman A, Cui Z, Veszelovszky E, Wood E, Ho YS, Ballard PL. Human surfactant protein B promoter in transgenic mice: temporal, spatial, and stimulus-responsive regulation. Am J Physiol Lung Cell Mol Physiol 2002; 282:L394-404. [PMID: 11839532 DOI: 10.1152/ajplung.00188.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein B (SP-B) is a developmentally and hormonally regulated lung protein that is required for normal surfactant function. We generated transgenic mice carrying the human SP-B promoter (-1,039/+431 bp) linked to chloramphenicol acetyltransferase (CAT). CAT activity was high in lung and immunoreactive protein localized to alveolar type II and bronchiolar epithelial cells. In addition, thyroid, trachea, and intestine demonstrated CAT activity, and each of these tissues also expressed low levels of SP-B mRNA. Developmental expression of CAT activity and SP-B mRNA in fetal lung were similar and both increased during explant culture. SP-B mRNA but not CAT activity decreased during culture of adult lung, and both were reduced by transforming growth factor (TGF)-beta(1). Treatment of adult mice with intratracheal bleomycin caused similar time-dependent decreases in lung SP-B mRNA and CAT activity. These findings indicate that the human SP-B promoter fragment directs tissue- and lung cell-specific transgene expression and contains cis-acting elements involved in regulated expression during development, fetal lung explant culture, and responsiveness to TGF-beta and bleomycin-induced lung injury.
Collapse
Affiliation(s)
- Marlene Strayer
- Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Savani RC, Godinez RI, Godinez MH, Wentz E, Zaman A, Cui Z, Pooler PM, Guttentag SH, Beers MF, Gonzales LW, Ballard PL. Respiratory distress after intratracheal bleomycin: selective deficiency of surfactant proteins B and C. Am J Physiol Lung Cell Mol Physiol 2001; 281:L685-96. [PMID: 11504697 DOI: 10.1152/ajplung.2001.281.3.l685] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intratracheal bleomycin in rats is associated with respiratory distress of uncertain etiology. We investigated the expression of surfactant components in this model of lung injury. Maximum respiratory distress, determined by respiratory rate, occurred at 7 days, and surfactant dysfunction was confirmed by increased surface tension of the large-aggregate fraction of bronchoalveolar lavage (BAL). In injured animals, phospholipid content and composition were similar to those of controls, mature surfactant protein (SP) B was decreased 90%, and SP-A and SP-D contents were increased. In lung tissue, SP-B and SP-C mRNAs were decreased by 2 days and maximally at 4--7 days and recovered between 14 and 21 days after injury. Immunostaining of SP-B and proSP-C was decreased in type II epithelial cells but strong in macrophages. By electron microscopy, injured lungs had type II cells lacking lamellar bodies and macrophages with phagocytosed lamellar bodies. Surface activity of BAL phospholipids of injured animals was restored by addition of exogenous SP-B. We conclude that respiratory distress after bleomycin in rats results from surfactant dysfunction in part secondary to selective downregulation of SP-B and SP-C.
Collapse
Affiliation(s)
- R C Savani
- Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-4399, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Haczku A, Atochina EN, Tomer Y, Chen H, Scanlon ST, Russo S, Xu J, Panettieri RA, Beers MF. Aspergillus fumigatus-induced allergic airway inflammation alters surfactant homeostasis and lung function in BALB/c mice. Am J Respir Cell Mol Biol 2001; 25:45-50. [PMID: 11472974 DOI: 10.1165/ajrcmb.25.1.4391] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The differential regulation of pulmonary surfactant proteins (SPs) is demonstrated in a murine model of Aspergillus fumigatus (Af )-induced allergic airway inflammation and hyperresponsiveness. BALB/c mice were sensitized intraperitoneally and challenged intranasally with Af extract. Enzyme-linked immunosorbent assay analysis of serum immunoglobulin (Ig) levels in these mice showed markedly increased total IgE and Af-specific IgE and IgG1. This was associated with peribronchial/perivascular tissue inflammation, airway eosinophilia, and secretion of interleukin (IL)-4 and IL-5 into the bronchoalveolar lavage fluid (BALF). Functional analysis revealed that in comparison with nonsensitized mice, allergic sensitization and challenge resulted in significant increases in acetylcholine responsiveness. To analyze levels of SPs, the cell-free supernate of the BALF was further fractionated by high-speed (20,000 x g) centrifugation. After sensitization and challenges, the pellet (large-aggregate fraction) showed a selective downregulation of hydrophobic SPs SP-B and SP-C by 50%. This reduction was reflected by commensurate decreases in SP-B and SP-C messenger RNA (mRNA) expression of the lung tissue of these animals. In contrast, there was a 9-fold increase in SP-D protein levels in the 20,000 x g supernate without changes in SP-D mRNA. The increased levels of SP-D showed a significant positive correlation with serum IgE (r = 0.85, P < 0.001). Tissue mRNA and protein levels of SP-A in either the large- or the small-aggregate fractions were unaffected. Our data indicate that allergic airway inflammation induces selective inhibition of hydrophobic SP synthesis accompanied by marked increases in the lung collectin SP-D protein content of BALF. These changes may contribute significantly to the pathophysiology of Af-induced allergic airway hyperresponsiveness.
Collapse
Affiliation(s)
- A Haczku
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Atochina EN, Beck JM, Scanlon ST, Preston AM, Beers MF. Pneumocystis carinii pneumonia alters expression and distribution of lung collectins SP-A and SP-D. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2001; 137:429-39. [PMID: 11385364 DOI: 10.1067/mlc.2001.115220] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Surfactant proteins SP-A and SP-D, members of the collectin family, have been shown to play a significant role in lung host defense. Both proteins selectively bind Pneumocystis carinii (PC) organisms and modulate the interaction of this pathogen with alveolar macrophages. We hypothesized that the expression and distribution of lung collectins SP-A and SP-D is altered by PC lung infection. PC organisms (2 x 10(5)) were inoculated intratracheally into C.B-17 scid/scid mice that do not require steroids for immunosuppression. Four weeks after inoculation, bronchoalveolar lavage (BAL) fluid was fractionated into three fractions-cell pellet, large aggregate (LA), and small aggregate (SA) surfactant-and each fraction was analyzed for the expression of surfactant components. In uninfected mice, the majority of SP-A (62% +/- 10%) was found in association with lipids in the LA fraction, while 55% +/- 14% of SP-D was distributed in the SA fraction. In contrast, both hydrophobic proteins SP-B and SP-C were associated exclusively with LA. PC infection resulted in major changes in the expression of all surfactant components. Total protein content of LA was unchanged by PC infection (115% +/- 18% of control), whereas SA protein content markedly increased (240% +/- 18% of control level, P <.001). In contrast, the phospholipid content of LA was significantly decreased (53% +/- 5% of control level, P <.001), whereas the SA phospholipid content of infected mice was increased (172% +/- 16% of control level, P <.001). By Western blotting, PC pneumonia (PCP) induced a 3-fold increase in the total alveolar SP-D protein that was reflected mainly in increases in SA SP-D (454% +/- 135% of control, P <.05). The total alveolar SP-A protein content was also increased in PCP because of a large increase in SP-A in SA (720% +/- 115% of control, P <.05); SP-A levels in LA were unchanged. The increases in lung collectin expression were selective, because PCP resulted in the down-regulation of both SP-B and SP-C in LA (5% +/- 2% and 13% +/- 2% of control, respectively, P <.001). We conclude that PCP induces marked elevations in alveolar collectin levels because of increased expression and accumulation of SP-A and SP-D protein in SA surfactant.
Collapse
Affiliation(s)
- E N Atochina
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104-6061, USA
| | | | | | | | | |
Collapse
|
33
|
Vargas SL, Hughes WT, Santolaya ME, Ulloa AV, Ponce CA, Cabrera CE, Cumsille F, Gigliotti F. Search for primary infection by Pneumocystis carinii in a cohort of normal, healthy infants. Clin Infect Dis 2001; 32:855-61. [PMID: 11247708 DOI: 10.1086/319340] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2000] [Revised: 07/26/2000] [Indexed: 11/03/2022] Open
Abstract
To determine whether Pneumocystis carinii is associated with clinical illness in the competent host, 107 normal, healthy infants were enrolled in a 2-year prospective cohort study in Chile. P. carinii was identified by specific stains and nested--deoxyribonucleic acid (DNA) amplification of the large subunit mitochondrial ribosomal ribonucleic acid gene of P. carinii f. sp. hominis, and seroconversion was assessed by enzyme-linked immunosorbent assay of serum samples drawn every 2 months. P. carinii DNA was identified in nasopharyngeal aspirates obtained during episodes of mild respiratory infection in 24 (32%) of 74 infants from whom specimens were available for testing. Three (12.5%) of those 24 infants versus 0 of 50 infants who tested negative for P. carinii had apnea episodes. Seroconversion developed in 67 (85%) of 79 infants who remained in the study by 20 months of age and occurred in the absence of any symptoms of disease in 14 (20.8%). The study indicates that P. carinii DNA can be frequently detected in healthy infants, and it raises the hypothesis that they may be an infectious reservoir of P. carinii in the community. Further investigation is needed to identify whether P. carinii causes overt respiratory disease in infants.
Collapse
Affiliation(s)
- S L Vargas
- Program in Microbiology, Instituto de Ciencias Biomedicus, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Wright TW, Notter RH, Wang Z, Harmsen AG, Gigliotti F. Pulmonary inflammation disrupts surfactant function during Pneumocystis carinii pneumonia. Infect Immun 2001; 69:758-64. [PMID: 11159965 PMCID: PMC97949 DOI: 10.1128/iai.69.2.758-764.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Pneumocystis carinii pneumonia (PCP) in mice, the degree of pulmonary inflammation correlates directly with the severity of lung function deficits. Therefore, studies were undertaken to determine whether the host inflammatory response contributes to PCP-related respiratory impairment, at least in part, by disrupting the pulmonary surfactant system. Protein and phospholipid content and surfactant activity were measured in the lavage fluid of infected mice in either the absence or presence of an inflammatory response. At 9 weeks postinfection with P. carinii, nonreconstituted SCID mice exhibited no signs of pulmonary inflammation, respiratory impairment, or surfactant dysfunction. Lavage fluid obtained from these mice had protein/phospholipid (Pr/PL) ratios (64% +/- 4.7%) and minimum surface tension values (4.0 +/- 0.9 mN/m) similar to those of P. carinii-free control mice. However, when infected SCID mice were immunologically reconstituted, an intense inflammatory response ensued. Pr/PL ratios (218% +/- 42%) and minimum surface tension values (27.2 +/- 2.7 mN/m) of the lavage fluid were significantly elevated compared to those of the lavage fluid from infected, nonreconstituted mice (P < 0.05). To examine the specific role of CD8(+) T-cell-mediated inflammation in surfactant dysfunction during PCP, mice with defined T-cell populations were studied. P. carinii-infected, CD4(+)-depleted mice had elevated lavage fluid Pr/PL ratios (126% +/- 20%) and elevated minimum surface tension values (16.3 +/- 1.0 mN/m) compared to normal mice (P < 0.05). However, when infected mice were additionally depleted of CD8(+) cells, Pr/PL ratios were normal and surfactant activity was improved. These findings demonstrate that the surfactant pathology associated with PCP is related to the inflammatory process rather than being a direct effect of P. carinii. Moreover, CD8(+) lymphocytes are involved in the mechanism leading to surfactant dysfunction.
Collapse
Affiliation(s)
- T W Wright
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| | | | | | | | | |
Collapse
|
35
|
Atochina EN, Beers MF, Scanlon ST, Preston AM, Beck JM. P. carinii induces selective alterations in component expression and biophysical activity of lung surfactant. Am J Physiol Lung Cell Mol Physiol 2000; 278:L599-609. [PMID: 10710533 DOI: 10.1152/ajplung.2000.278.3.l599] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of Pneumocystis carinii pneumonia (PCP) suggest an important role for the surfactant system in the pathogenesis of the hypoxemic respiratory insufficiency associated with this infection. We hypothesized that PCP induces selective alterations in alveolar surfactant component expression and resultant biophysical properties. PCP was induced by intratracheal inoculation of 2 x 10(5) P. carinii organisms into C.B-17 scid/scid mice. Six weeks after inoculation, large (LA)- and small (SA)-aggregate surfactant fractions were prepared from bronchoalveolar lavage fluids and analyzed for expression of surfactant components and for biophysical activity. Total phospholipid content was significantly reduced in LA surfactant fractions from mice infected with PCP (53 +/- 15% of uninfected mice; P < 0.05). Quantitation of hydrophobic surfactant protein (SP) content demonstrated significant reductions of alveolar SP-B and SP-C protein levels in mice with PCP compared with those in uninfected mice (46 +/- 7 and 19 +/- 6%, respectively; P < 0.05 for both). The reductions in phospholipid, SP-B, and SP-C in LA fractions measured during PCP were associated with an increase in the minimum surface tension of LAs as measured by pulsating bubble surfactometer (13.1 +/- 1.1 vs. 5.4 +/- 1.8 mN/m; P < 0.05). In contrast to decreases in the hydrophobic SPs, SP-D content in the SA fraction was markedly increased (343 +/- 30% of control value; P < 0. 05) and SP-A levels in LA surfactant were maintained (93 +/- 26% of control value) during P. carinii infection. In all cases, the changes in SP content were reflected by commensurate changes in the levels of mRNA. We conclude that PCP induces selective alterations in surfactant component expression, including profound decreases in hydrophobic protein contents and resultant increases in surface tension. These changes, demonstrated in an immunologically relevant animal model, suggest that alterations in surfactant could contribute to the hypoxemic respiratory insufficiency observed in PCP.
Collapse
Affiliation(s)
- E N Atochina
- Pulmonary and Critical Care Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA
| | | | | | | | | |
Collapse
|
36
|
|