1
|
Yazdani B, Delgado GE, Berg AH, Wanner C, Krämer BK, März W, Kleber ME, Drechsler C. Carbamylated Albumin, Heart Failure, and Mortality in Patients Undergoing Coronary Angiography. Clin Chem 2025; 71:587-598. [PMID: 40105890 PMCID: PMC12046634 DOI: 10.1093/clinchem/hvaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/10/2025] [Indexed: 03/21/2025]
Abstract
BACKGROUND Urea is elevated in chronic kidney disease (CKD) and end-stage renal disease (ESRD), and promotes the carbamylation of proteins, including human albumin, on multiple lysine side chains. Higher proportions of carbamylated albumin (C-Alb) have been associated with increased mortality risk in patients with ESRD. Whether C-Alb predicts mortality in patients with no or mild impairment of kidney function is unknown. METHODS We measured C-Alb in 3197 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study who had been referred to coronary angiography and followed-up for 10 years. Association of baseline C-Alb with all-cause and cause-specific mortality was investigated using Cox proportional hazards regression. RESULTS Higher quartiles of C-Alb were associated with a significantly increased risk of death from any cause, with hazard ratios (HRs, 95%CI) of 1.53 (1.26-1.85) and 2.52 (2.11-3.01) in the third and fourth quartiles, respectively. After adjustment for cardiovascular (CV) risk factors, including estimate glomerular filtration rate (eGFR), the association with mortality was attenuated with a HR of 1.25 (1.02-1.53) for the fourth quartile as compared to the first quartile. We observed the strongest association with death due to congestive heart failure (HF) with a HR of 7.19 (4.57-11.3) and 3.99 (2.40-6.63) per 1-unit increase of log-transformed C-Alb in unadjusted and multivariate adjusted analyses, respectively. CONCLUSIONS We observed a strong association of C-Alb with CV risk in patients with no or mild CKD. This association was independent of traditional CV risk factors including eGFR and particularly strong regarding death due to congestive HF.
Collapse
Affiliation(s)
- Babak Yazdani
- Fifth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology, Pneumology), University Medical Center Mannheim UMM, Faculty of Medicine of the University of Heidelberg, Mannheim, Germany
| | - Graciela E Delgado
- Fifth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology, Pneumology), University Medical Center Mannheim UMM, Faculty of Medicine of the University of Heidelberg, Mannheim, Germany
- European Center for Angioscience, Faculty of Medicine of the University of Heidelberg, Mannheim, Germany
| | - Anders H Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Christoph Wanner
- Department of Medicine 1, Division of Nephrology, University of Würzburg, Würzburg, Germany
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology, Pneumology), University Medical Center Mannheim UMM, Faculty of Medicine of the University of Heidelberg, Mannheim, Germany
- European Center for Angioscience, Faculty of Medicine of the University of Heidelberg, Mannheim, Germany
| | - Winfried März
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
- Medical Clinic III, Medical Faculty Heidelberg, University of Heidelberg, Germany
| | - Marcus E Kleber
- Fifth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology, Pneumology), University Medical Center Mannheim UMM, Faculty of Medicine of the University of Heidelberg, Mannheim, Germany
- SYNLAB MVZ Humangenetik Mannheim GmbH, Mannheim, Germany
| | - Christiane Drechsler
- Department of Medicine 1, Division of Nephrology, University of Würzburg, Würzburg, Germany
- Interdisciplinary Center for Palliative Medicine, University Hospital Wuerzburg, Würzburg, Germany, Germany
| |
Collapse
|
2
|
Awwad A, Rhee EP, Grams M, Choles HR, Sondheimer J, He J, Chen J, Hsu CY, Vasan RS, Kimmel PL, Wulczyn K, Berg A, Lash J, Tang M, Kalim S. Comparative CKD risk prediction using homocitrulline and carbamylated albumin: two circulating markers of protein carbamylation. BMC Nephrol 2024; 25:185. [PMID: 38816682 PMCID: PMC11140876 DOI: 10.1186/s12882-024-03619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Protein carbamylation, a post-translational protein modification primarily driven by urea, independently associates with adverse clinical outcomes in patients with CKD. Biomarkers used to quantify carbamylation burden have mainly included carbamylated albumin (C-Alb) and homocitrulline (HCit, carbamylated lysine). In this study, we aimed to compare the prognostic utility of these two markers in order to facilitate comparisons of existing studies employing either marker alone, and to inform future carbamylation studies. METHODS Both serum C-Alb and free HCit levels were assayed from the same timepoint in 1632 individuals with CKD stages 2-4 enrolled in the prospective Chronic Renal Insufficiency Cohort (CRIC) study. Adjusted Cox proportional hazard models were used to assess risks for the outcomes of death (primary) and end stage kidney disease (ESKD) using each marker. C-statistics, net reclassification improvement, and integrated discrimination improvement were used to compare the prognostic value of each marker. RESULTS Participant demographics included mean (SD) age 59 (11) years; 702 (43%) females; 700 (43%) white. C-Alb and HCit levels were positively correlated with one another (Pearson correlation coefficient 0.64). Higher C-Alb and HCit levels showed similar increased risk of death (e.g., the adjusted hazard ratio [HR] for death in the 4th carbamylation quartile compared to the 1st was 1.90 (95% confidence interval [CI] 1.35-2.66) for C-Alb, and 1.89 [1.27-2.81] for HCit; and on a continuous scale, the adjusted HR for death using C-Alb was 1.24 [1.11 to 1.39] per standard deviation increase, and 1.27 [1.10-1.46] using HCit). Both biomarkers also had similar HRs for ESKD. The C-statistics were similar when adding each carbamylation biomarker to base models (e.g., for mortality models, the C-statistic was 0.725 [0.707-0.743] with C-Alb and 0.725 [0.707-0.743] with HCit, both compared to a base model 0.723). Similarities were also observed for the net reclassification improvement and integrated discrimination improvement metrics. CONCLUSIONS C-Alb and HCit had similar performance across multiple prognostic assessments. The markers appear readily comparable in CKD epidemiological studies.
Collapse
Affiliation(s)
- Aya Awwad
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eugene P Rhee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Grams
- Department of Medicine, New York University, New York, NY, USA
| | - Hernan Rincon Choles
- Department of Nephrology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James Sondheimer
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Chi-Yuan Hsu
- Division of Nephrology, University of California San Francisco School of Medicine, San Francisco, CA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Ramachandran S Vasan
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Department of Medicine, Sections of Preventive Medicine and Epidemiology and Cardiology, Boston University School of Medicine, Boston, MA, USA
| | - Paul L Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Bethesda, MD, USA
| | - Kendra Wulczyn
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anders Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jim Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mengyao Tang
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Kalim S, Zhao S, Tang M, Rhee EP, Allegretti AS, Nigwekar S, Karumanchi SA, Lash JP, Berg AH. Protein Carbamylation and the Risk of ESKD in Patients with CKD. J Am Soc Nephrol 2023; 34:876-885. [PMID: 36757153 PMCID: PMC10125635 DOI: 10.1681/asn.0000000000000078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/18/2022] [Indexed: 02/05/2023] Open
Abstract
SIGNIFICANCE STATEMENT Protein carbamylation, a nonenzymatic post-translational protein modification partially driven by elevated blood urea levels, associates with mortality and adverse outcomes in patients with ESKD on dialysis. However, little is known about carbamylation's relationship to clinical outcomes in the much larger population of patients with earlier stages of CKD. In this prospective observational cohort study of 3111 individuals with CKD stages 2-4, higher levels of carbamylated albumin (a marker of protein carbamylation burden) were associated with a greater risk of developing ESKD and other significant adverse clinical outcomes. These findings indicate that protein carbamylation is an independent risk factor for CKD progression. They suggest that further study of therapeutic interventions to prevent or reduce carbamylation is warranted. BACKGROUND Protein carbamylation, a post-translational protein modification partially driven by elevated blood urea levels, associates with adverse outcomes in ESKD. However, little is known about protein carbamylation's relationship to clinical outcomes in the much larger population of patients with earlier stages of CKD. METHODS To test associations between protein carbamylation and the primary outcome of progression to ESKD, we measured baseline serum carbamylated albumin (C-Alb) in 3111 patients with CKD stages 2-4 enrolled in the prospective observational Chronic Renal Insufficiency Cohort study. RESULTS The mean age of study participants was 59 years (SD 10.8); 1358 (43.7%) were female, and 1334 (42.9%) were White. The mean eGFR at the time of C-Alb assessment was 41.8 (16.4) ml/minute per 1.73 m 2 , and the median C-Alb value was 7.8 mmol/mol (interquartile range, 5.8-10.7). During an average of 7.9 (4.1) years of follow-up, 981 (31.5%) individuals developed ESKD. In multivariable adjusted Cox models, higher C-Alb (continuous or quartiles) independently associated with an increased risk of ESKD. For example, compared with quartile 1 (C-Alb ≤5.80 mmol/mol), those in quartile 4 (C-Alb >10.71 mmol/mol) had a greater risk for ESKD (adjusted hazard ratio, 2.29; 95% confidence interval, 1.75 to 2.99), and the ESKD incidence rate per 1000 patient-years increased from 15.7 to 88.5 from quartile 1 to quartile 4. The results remained significant across numerous subgroup analyses, when treating death as a competing event, and using different assessments of eGFR. CONCLUSIONS Having a higher level of protein carbamylation as measured by circulating C-Alb is an independent risk factor for ESKD in individuals with CKD stages 2-4. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2023_04_24_JSN_URE_EP22_042423.mp3.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sophia Zhao
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Analytica Now, Brookline, Massachusetts
| | - Mengyao Tang
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Eugene P. Rhee
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew S. Allegretti
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sagar Nigwekar
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - James P. Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anders H. Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
4
|
Ma K, Zheng ZR, Meng Y. Pathogenesis of Chronic Kidney Disease Is Closely Bound up with Alzheimer's Disease, Especially via the Renin-Angiotensin System. J Clin Med 2023; 12:jcm12041459. [PMID: 36835994 PMCID: PMC9966558 DOI: 10.3390/jcm12041459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Chronic kidney disease (CKD) is a clinical syndrome secondary to the definitive change in function and structure of the kidney, which is characterized by its irreversibility and slow and progressive evolution. Alzheimer's disease (AD) is characterized by the extracellular accumulation of misfolded β-amyloid (Aβ) proteins into senile plaques and the formation of neurofibrillary tangles (NFTs) containing hyperphosphorylated tau. In the aging population, CKD and AD are growing problems. CKD patients are prone to cognitive decline and AD. However, the connection between CKD and AD is still unclear. In this review, we take the lead in showing that the development of the pathophysiology of CKD may also cause or exacerbate AD, especially the renin-angiotensin system (RAS). In vivo studies had already shown that the increased expression of angiotensin-converting enzyme (ACE) produces a positive effect in aggravating AD, but ACE inhibitors (ACEIs) have protective effects against AD. Among the possible association of risk factors in CKD and AD, we mainly discuss the RAS in the systemic circulation and the brain.
Collapse
Affiliation(s)
- Ke Ma
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Zi-Run Zheng
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
| | - Yu Meng
- The First Affiliated Hospital of Jinan University, Guangzhou 510000, China
- Central Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
- Institute of Nephrology, Jinan University, Guangzhou 510000, China
- Correspondence:
| |
Collapse
|
5
|
|
6
|
Binder V, Chruścicka-Smaga B, Bergum B, Jaisson S, Gillery P, Sivertsen J, Hervig T, Kaminska M, Tilvawala R, Nemmara VV, Thompson PR, Potempa J, Marti HP, Mydel P. Carbamylation of Integrin α IIb β 3: The Mechanistic Link to Platelet Dysfunction in ESKD. J Am Soc Nephrol 2022; 33:1841-1856. [PMID: 36038265 PMCID: PMC9528322 DOI: 10.1681/asn.2022010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/05/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Bleeding diatheses, common among patients with ESKD, can lead to serious complications, particularly during invasive procedures. Chronic urea overload significantly increases cyanate concentrations in patients with ESKD, leading to carbamylation, an irreversible modification of proteins and peptides. METHODS To investigate carbamylation as a potential mechanistic link between uremia and platelet dysfunction in ESKD, we used liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to quantify total homocitrulline, and biotin-conjugated phenylglyoxal labeling and Western blot to detect carbamylated integrin α IIb β 3 (a receptor required for platelet aggregation). Flow cytometry was used to study activation of isolated platelets and platelet-rich plasma. In a transient transfection system, we tested activity and fibrinogen binding of different mutated forms of the receptor. We assessed platelet adhesion and aggregation in microplate assays. RESULTS Carbamylation inhibited platelet activation, adhesion, and aggregation. Patients on hemodialysis exhibited significantly reduced activation of α IIb β 3 compared with healthy controls. We found significant carbamylation of both subunits of α IIb β 3 on platelets from patients receiving hemodialysis versus only minor modification in controls. In the transient transfection system, modification of lysine 185 in the β 3 subunit was associated with loss of receptor activity and fibrinogen binding. Supplementation of free amino acids, which was shown to protect plasma proteins from carbamylation-induced damage in patients on hemodialysis, prevented loss of α IIb β 3 activity in vitro. CONCLUSIONS Carbamylation of α IIb β 3-specifically modification of the K185 residue-might represent a mechanistic link between uremia and dysfunctional primary hemostasis in patients on hemodialysis. The observation that free amino acids prevented the carbamylation-induced loss of α IIb β 3 activity suggests amino acid administration during dialysis may help to normalize platelet function.
Collapse
Affiliation(s)
- Veronika Binder
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | | | - Brith Bergum
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Stéphane Jaisson
- Laboratory of Biochemistry and Molecular Biology, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Gillery
- Laboratory of Biochemistry and Molecular Biology, Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Joar Sivertsen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Tor Hervig
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marta Kaminska
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Ronak Tilvawala
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Venkatesh V. Nemmara
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Paul R. Thompson
- Department of Biochemistry and Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jan Potempa
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Piotr Mydel
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
7
|
He J, Chen J, Chen F, Chen L, Giesy JP, Guo Y, Liang G, Deng X, Wang W, Xie P. Health Risks of Chronic Exposure to Small Doses of Microcystins: An Integrative Metabolomic and Biochemical Study of Human Serum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6548-6559. [PMID: 35510355 DOI: 10.1021/acs.est.2c00973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Health risks of chronic exposure to microcystins (MCs), a family of aquatic contaminants produced mainly by cyanobacteria, are critical yet unsolved problems. Despite a few epidemiological studies, the metabolic profiles of humans exposed to MCs remain unknown, hindering the deep understanding of the molecular toxicity mechanisms. Here, sensitive nuclear magnetic resonance (NMR)- and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were applied to investigate the serum metabolic profiles of humans living near Lake Chao, where toxic cyanobacterial blooms occur annually. MCs were positively detected in 92 of 144 sera by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) with a median concentration of 0.016 μg/L. The estimated daily intake (0.15-0.27 μg MC-LReq/day) was less than the tolerable daily intake (TDI, 2.4 μg MC-LR for 60 kg adults) recommended by the World Health Organization (WHO). Obvious disruptions of the amino acid metabolism were confirmed and played important roles in renal impairments associated with serum MC burdens. Chronic oral exposure of mice to 30 μg MC-LR/kg body mass, which is less than the no observed adverse effect level, also led to obvious renal lesions and metabolic dysfunction. These observations provide the first evidence of metabolic disturbance of humans exposed to MCs and indicate that the WHO's TDI value determined traditionally should be lessened to protect human health effectively.
Collapse
Affiliation(s)
- Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liang Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatoon S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatoon S7N 5B4, Canada
- Zoology Department, Institute for Integrative Toxicology, Michigan State University, 1129 Farm Lane Road, East Lansing, Michigan 48824, United States
- Department of Environmental Sciences, Baylor University, Waco 76706, Texas, United States
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Gaodao Liang
- Wuhan Centers for Disease Control and Prevention, Wuhan 430072, China
| | - Xuwei Deng
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wenjing Wang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| |
Collapse
|
8
|
Laget J, Duranton F, Argilés À, Gayrard N. Renal insufficiency and chronic kidney disease – Promotor or consequence of pathological post-translational modifications. Mol Aspects Med 2022; 86:101082. [DOI: 10.1016/j.mam.2022.101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
9
|
Avenues for post-translational protein modification prevention and therapy. Mol Aspects Med 2022; 86:101083. [PMID: 35227517 PMCID: PMC9378364 DOI: 10.1016/j.mam.2022.101083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 12/22/2022]
Abstract
Non-enzymatic post-translational modifications (nPTMs) of proteins have emerged as novel risk factors for the genesis and progression of various diseases. We now have a variety of experimental and established therapeutic strategies to target harmful nPTMs and potentially improve clinical outcomes. Protein carbamylation and glycation are two common and representative nPTMs that have gained considerable attention lately as favorable therapeutic targets with emerging clinical evidence. Protein carbamylation is associated with the occurrence of cardiovascular disease (CVD) and mortality in patients with chronic kidney disease (CKD); and advanced glycation end products (AGEs), a heterogeneous group of molecules produced in a series of glycation reactions, have been linked to various diabetic complications. Therefore, reducing the burden of protein carbamylation and AGEs is an appealing and promising therapeutic approach. This review chapter summarizes potential anti-nPTM therapy options in CKD, CVD, and diabetes along with clinical implications. Using two prime examples-protein carbamylation and AGEs-we discuss the varied preventative and therapeutic options to mitigate these pathologic nPTMs in detail. We provide in-depth case studies on carbamylation in the setting of kidney disease and AGEs in metabolic disorders, with an emphasis on the relevance to reducing adverse clinical outcomes such as CKD progression, cardiovascular events, and mortality. Overall, whether specific efforts to lower carbamylation and AGE burden will yield definitive clinical improvement in humans remains largely to be seen. However, the scientific rationale for such pursuits is demonstrated herein.
Collapse
|
10
|
Gorisse L, Jaisson S, Piétrement C, Gillery P. Carbamylated Proteins in Renal Disease: Aggravating Factors or Just Biomarkers? Int J Mol Sci 2022; 23:574. [PMID: 35008998 PMCID: PMC8745352 DOI: 10.3390/ijms23010574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Carbamylation is a nonenzymatic post-translational modification resulting from the reaction between cyanate, a urea by-product, and proteins. In vivo and in vitro studies have demonstrated that carbamylation modifies protein structures and functions, triggering unfavourable molecular and cellular responses. An enhanced formation of carbamylation-derived products (CDPs) is observed in pathological contexts, especially during chronic kidney disease (CKD), because of increased blood urea. Significantly, studies have reported a positive correlation between serum CDPs and the evolutive state of renal failure. Further, serum concentrations of carbamylated proteins are characterized as strong predictors of mortality in end-stage renal disease patients. Over time, it is likely that these modified compounds become aggravating factors and promote long-term complications, including cardiovascular disorders and inflammation or immune system dysfunctions. These poor clinical outcomes have led researchers to consider strategies to prevent or slow down CDP formation. Even if growing evidence suggests the involvement of carbamylation in the pathophysiology of CKD, the real relevance of carbamylation is still unclear: is it a causal phenomenon, a metabolic consequence or just a biological feature? In this review, we discuss how carbamylation, a consequence of renal function decline, may become a causal phenomenon of kidney disease progression and how CDPs may be used as biomarkers.
Collapse
Affiliation(s)
- Laëtitia Gorisse
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
| | - Stéphane Jaisson
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| | - Christine Piétrement
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Pediatrics Department, University Hospital of Reims, 51092 Reims, France
| | - Philippe Gillery
- MEDyC Unit CNRS UMR n° 7369, Faculty of Medicine, University of Reims Champagne-Ardenne, 51092 Reims, France; (L.G.); (S.J.); (C.P.)
- Biochemistry Department, University Hospital of Reims, 51092 Reims, France
| |
Collapse
|
11
|
Kalim S, Berg AH, Karumanchi SA, Thadhani R, Allegretti AS, Nigwekar S, Zhao S, Srivastava A, Raj D, Deo R, Frydrych A, Chen J, Sondheimer J, Shafi T, Weir M, Lash JP. Protein carbamylation and chronic kidney disease progression in the Chronic Renal Insufficiency Cohort Study. Nephrol Dial Transplant 2021; 37:139-147. [PMID: 33661286 PMCID: PMC8719615 DOI: 10.1093/ndt/gfaa347] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Protein carbamylation is a post-translational protein modification caused, in part, by exposure to urea's dissociation product cyanate. Carbamylation is linked to cardiovascular outcomes and mortality in dialysis-dependent end-stage kidney disease (ESKD), but its effects in earlier pre-dialysis stages of chronic kidney disease (CKD) are not established. METHODS We conducted two nested case-control studies within the Chronic Renal Insufficiency Cohort Study. First, we matched 75 cases demonstrating CKD progression [50% estimated glomerular filtration rate (eGFR) reduction or reaching ESKD] to 75 controls (matched on baseline eGFR, 24-h proteinuria, age, sex and race). In the second study, we similarly matched 75 subjects who died during follow-up (cases) to 75 surviving controls. Baseline carbamylated albumin levels (C-Alb, a validated carbamylation assay) were compared between cases and controls in each study. RESULTS At baseline, in the CKD progression study, other than blood urea nitrogen (BUN) and smoking status, there were no significant differences in any matched or other parameter. In the mortality group, the only baseline difference was smoking status. Adjusting for baseline differences, the top tertile of C-Alb was associated with an increased risk of CKD progression [odds ratio (OR) = 7.9; 95% confidence interval (CI) 1.9-32.8; P = 0.004] and mortality (OR = 3.4; 95% CI 1.0-11.4; P = 0.05) when compared with the bottom tertile. C-Alb correlated with eGFR but was more strongly correlated with BUN. CONCLUSIONS Our data suggest that protein carbamylation is a predictor of CKD progression, beyond traditional risks including eGFR and proteinuria. Carbamylation's association with mortality was smaller in this limited sample size.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anders H Berg
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Ravi Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew S Allegretti
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sagar Nigwekar
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sophia Zhao
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Anand Srivastava
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dominic Raj
- Department of Medicine, Division of Renal Diseases and Hypertension, George Washington University School of Medicine, Washington, DC, USA
| | - Rajat Deo
- Departments of Medicine and Epidemiology and Biostatistics, University of Pennsylvania Philadelphia, PA, USA
| | - Anne Frydrych
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jing Chen
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - James Sondheimer
- Department of Medicine, Wayne State University, Detroit, MI, USA
| | - Tariq Shafi
- Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Matthew Weir
- Department of Medicine, Division of Nephrology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James P Lash
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Verdier V, Soulage CO, Koppe L. New clinical evidence for urea toxicity. Nephrol Dial Transplant 2021; 37:1-4. [PMID: 34519782 DOI: 10.1093/ndt/gfab269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vincent Verdier
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France
| | - Christophe O Soulage
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.,Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Pierre-Bénite, France.,Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
13
|
Neuropathy - Exponent of Accelerated Involution in Uremia: The Role of Carbamylation. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Premature loss of functional integrity of the nervous system in chronic renal failure (CRF) as a consequence of persistent biological activities of the general uremic milieu is almost identical to its structural and functional involution during the process of physiological ageing, but disproportionate and independent of chronological age. In the hyperuremic status of CRF (urea - carbamide), forced carbamylation, as a non-enzymatic post-translational modification (NEPTM) of proteins and amino acids, by changing their biological properties and decreasing proteolysis capacity, represents pathogenetic potential of intensified molecular ageing and accelerated, pathological involution. Physiological predisposition and the exposure of neuropathy before complications of other organs and organ systems in CRF, due to the simultaneous and mutually pathogenetically related uremic lesion and the tissue and vascular segment of the nervous system, direct interest towards proteomic analytical techniques of quantification of carbamylated products as biomarkers of uremic neurotoxicity. Hypothetically, identical to the already established applications of other NEPTM products in practice, they have the potential of clinical methodology in the evaluation of uremic neuropathy and its contribution to the general prediction, but also to the change of the conventional CRF classification. In addition, the identification and therapeutic control of the substrate of accelerated involution, responsible for the amplification of not only neurological but also general degenerative processes in CRF, is attractive in the context of the well-known attitude towards aging.
Collapse
|
14
|
Effects of blood urea nitrogen independent of the estimated glomerular filtration rate on the development of anemia in non-dialysis chronic kidney disease: The results of the KNOW-CKD study. PLoS One 2021; 16:e0257305. [PMID: 34506574 PMCID: PMC8432877 DOI: 10.1371/journal.pone.0257305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Anemia is a common complication of chronic kidney disease (CKD). Blood urea nitrogen (BUN) in CKD represents nitrogenous uremic toxin accumulation which could be involved in anemia of CKD. We investigated the effects of BUN independent of estimated glomerular filtration rate (eGFR) on anemia in non-dialysis CKD (NDCKD). METHODS This prospective study included 2,196 subjects enrolled in the KoreaN Cohort Study for Outcome in Patients With Chronic Kidney Disease (KNOW-CKD) cohort with BUN and hemoglobin level data. Initially, we investigated the association between BUN and hemoglobin level. To examine the impact of baseline BUN on the incident anemia, a longitudinal study was performed on 1,169 patients without anemia at study enrollment. BUN residuals were obtained from the fitted curve between BUN and eGFR. Anemia was defined as a hemoglobin level of <13.0 g/dL for men and <12.0 g/dL for women. RESULTS BUN residuals were not related to eGFR but to daily protein intake (DPI), while BUN was related to both eGFR and DPI. BUN was inversely associated with hemoglobin level (β -0.03; 95% confidence interval [CI] -0.04, -0.03; P <0.001) in the multivariable linear regression analysis adjusted for multiple confounders including eGFR, and BUN residual used instead of BUN was also inversely associated with hemoglobin level (β -0.03; 95% CI -0.04, -0.02; P <0.001). Among the 1,169 subjects without anemia at baseline, 414 (35.4%) subjects newly developed anemia during the follow-up period of 37.5 ± 22.1 months. In the multivariable Cox regression analysis with adjustment, both high BUN level (Hazard ratio [HR] 1.02; 95% CI 1.01, 1.04; P = 0.002) and BUN residual used instead of BUN (HR 1.02; 95% CI 1.00, 1.04; P = 0.031) increased the risk of anemia development. Moreover, BUN, rather than eGFR, increased the risk of anemia development in patients with CKD stage 3 in the multivariable Cox regression. CONCLUSION Higher BUN levels derived from inappropriately high protein intake relative to renal function were associated with low hemoglobin levels and the increased risk of anemia independent of eGFR in NDCKD patients.
Collapse
|
15
|
Lenglet A, Rahali MA, Sauvage FL, Liabeuf S, Choukroun G, Essig M, El Balkhi S, Massy ZA. Effect of Sevelamer and Nicotinamide on Albumin Carbamylation in Patients with End-Stage Kidney Disease. Drugs R D 2021; 21:231-238. [PMID: 34101139 PMCID: PMC8206311 DOI: 10.1007/s40268-021-00350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Objective In end-stage kidney disease, high urea levels promote the carbamylation of lysine side chains on a variety of proteins, including albumin. Albumin carbamylation has been identified as a risk factor for mortality and sevelamer led to a decrease in urea levels in dialysis patients. In the present secondary analysis of the NICOREN trial, we investigated the putative impacts of sevelamer and nicotinamide on albumin carbamylation, and the potential correlation between carbamylation and vascular calcifications. Methods All possible carbamylation of circulating albumin were screened for with high-resolution liquid chromatography-tandem mass spectrometry. Levels of three carbamylated peptides were then measured as a guide to the extent of albumin carbamylation. Carbamylation was measured at baseline in 55 patients included in the NICOREN trial and 29 patients at 24 weeks of treatment. Calcifications on plain radiographs were quantified as the Kauppila score and the Adragao score. Results Baseline albumin carbamylation was present at three different sites in subjects with end-stage kidney disease. At baseline, we observed only a correlation between urea and the KQTA carbamylation site in these patients. Albumin carbamylation levels did not decrease after 24 weeks of treatment with either sevelamer or nicotinamide. Furthermore, the proportion of carbamylated serum albumin was not correlated with vascular calcification scores in this population. Conclusions Our results confirmed the presence of carbamylated albumin in patients with end-stage kidney disease and demonstrated the presence of carbamylation beyond the LRVP residues. The results also demonstrated the lack of impact of sevelamer or nicotinamide on albumin carbamylation levels. Therapeutic strategies to lower carbamylation load should probably be focused on direct anti-carbamylation processes and/or potentially anti-inflammatory therapies. Supplementary Information The online version contains supplementary material available at 10.1007/s40268-021-00350-7.
Collapse
Affiliation(s)
- Aurelie Lenglet
- EA7517, MP3CV Laboratory, CURS, Faculty of Pharmacy, Jules Verne University of Picardie, Amiens, France.,Pharmacy, Amiens University Hospital, Amiens, France
| | | | | | - Sophie Liabeuf
- EA7517, MP3CV Laboratory, CURS, Faculty of Pharmacy, Jules Verne University of Picardie, Amiens, France.,Division of Pharmacology, Amiens University Hospital, Amiens, France
| | - Gabriel Choukroun
- EA7517, MP3CV Laboratory, CURS, Faculty of Pharmacy, Jules Verne University of Picardie, Amiens, France.,Department of Nephrology Dialysis and Transplantation, Amiens University Hospital, Amiens, France
| | - Marie Essig
- INSERM U-1018, Centre de Recherche en Épidémiologie et Santé des Populations (CESP), Paris-Saclay University (PSU), University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), Equipe 5, Villejuif, Paris, France.,Division of Nephrology, Ambroise Paré Hospital, Paris Ile de France Ouest University, 9 Avenue Charles de Gaulle, 92104, Boulogne Billancourt Cedex, France
| | - Souleiman El Balkhi
- INSERM, IPPRITT, U1248, Limoges, France.,Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges, France
| | - Ziad A Massy
- INSERM U-1018, Centre de Recherche en Épidémiologie et Santé des Populations (CESP), Paris-Saclay University (PSU), University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), Equipe 5, Villejuif, Paris, France. .,Division of Nephrology, Ambroise Paré Hospital, Paris Ile de France Ouest University, 9 Avenue Charles de Gaulle, 92104, Boulogne Billancourt Cedex, France.
| |
Collapse
|
16
|
Uremic Toxins and Their Relation with Oxidative Stress Induced in Patients with CKD. Int J Mol Sci 2021; 22:ijms22126196. [PMID: 34201270 PMCID: PMC8229520 DOI: 10.3390/ijms22126196] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022] Open
Abstract
The presence of toxins is believed to be a major factor in the development of uremia in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Uremic toxins have been divided into 3 groups: small substances dissolved in water, medium molecules: peptides and low molecular weight proteins, and protein-bound toxins. One of the earliest known toxins is urea, the concentration of which was considered negligible in CKD patients. However, subsequent studies have shown that it can lead to increased production of reactive oxygen species (ROS), and induce insulin resistance in vitro and in vivo, as well as cause carbamylation of proteins, peptides, and amino acids. Other uremic toxins and their participation in the damage caused by oxidative stress to biological material are also presented. Macromolecules and molecules modified as a result of carbamylation, oxidative stress, and their adducts with uremic toxins, may lead to cardiovascular diseases, and increased risk of mortality in patients with CKD.
Collapse
|
17
|
Cupisti A, Bolasco P, D’Alessandro C, Giannese D, Sabatino A, Fiaccadori E. Protection of Residual Renal Function and Nutritional Treatment: First Step Strategy for Reduction of Uremic Toxins in End-Stage Kidney Disease Patients. Toxins (Basel) 2021; 13:toxins13040289. [PMID: 33921862 PMCID: PMC8073165 DOI: 10.3390/toxins13040289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
The retention of uremic toxins and their pathological effects occurs in the advanced phases of chronic kidney disease (CKD), mainly in stage 5, when the implementation of conventional thrice-weekly hemodialysis is the prevalent and life-saving treatment. However, the start of hemodialysis is associated with both an acceleration of the loss of residual kidney function (RKF) and the shift to an increased intake of proteins, which are precursors of uremic toxins. In this phase, hemodialysis treatment is the only way to remove toxins from the body, but it can be largely inefficient in the case of high molecular weight and/or protein-bound molecules. Instead, even very low levels of RKF are crucial for uremic toxins excretion, which in most cases are protein-derived waste products generated by the intestinal microbiota. Protection of RKF can be obtained even in patients with end-stage kidney disease (ESKD) by a gradual and soft shift to kidney replacement therapy (KRT), for example by combining a once-a-week hemodialysis program with a low or very low-protein diet on the extra-dialysis days. This approach could represent a tailored strategy aimed at limiting the retention of both inorganic and organic toxins. In this paper, we discuss the combination of upstream (i.e., reduced production) and downstream (i.e., increased removal) strategies to reduce the concentration of uremic toxins in patients with ESKD during the transition phase from pure conservative management to full hemodialysis treatment.
Collapse
Affiliation(s)
- Adamasco Cupisti
- Department of Clinical and Experimental Medicine, University of Pisa, 56121 Pisa, Italy; (C.D.); (D.G.)
- “Conservative Treatment of Chronic Kidney Disease” Project Group of the Italian Society of Nephrology, 00185 Rome, Italy;
- Correspondence:
| | - Piergiorgio Bolasco
- “Conservative Treatment of Chronic Kidney Disease” Project Group of the Italian Society of Nephrology, 00185 Rome, Italy;
| | - Claudia D’Alessandro
- Department of Clinical and Experimental Medicine, University of Pisa, 56121 Pisa, Italy; (C.D.); (D.G.)
- “Conservative Treatment of Chronic Kidney Disease” Project Group of the Italian Society of Nephrology, 00185 Rome, Italy;
| | - Domenico Giannese
- Department of Clinical and Experimental Medicine, University of Pisa, 56121 Pisa, Italy; (C.D.); (D.G.)
| | - Alice Sabatino
- Department of Medicine and Surgery, University of Parma, Nephrology Unit, Parma University Hospital, 43121 Parma, Italy; (A.S.); (E.F.)
| | - Enrico Fiaccadori
- Department of Medicine and Surgery, University of Parma, Nephrology Unit, Parma University Hospital, 43121 Parma, Italy; (A.S.); (E.F.)
| |
Collapse
|
18
|
Simsek B, Yanar K, Çakatay U. Proatherogenic Importance of Carbamylation-induced Protein Damage and Type 2 Diabetes Mellitus: A Systematic Review. Curr Diabetes Rev 2020; 16:608-618. [PMID: 31914914 DOI: 10.2174/1573399816666200107102918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/26/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION & BACKGROUND Protein carbamylation is a non-enzymatic and irreversible posttranslational process. It affects functions of numerous enzymes, hormones and receptors playing several roles in diabetes pathogenesis by changing their native structures. Detrimental consequences of oxidative protein damage comprise, but are not limited to glyoxidation, lipoxidation and carbonylation reactions. Since the carbamylated plasma proteins are strongly related to the glycemic control parameters of diabetes, they may have an additive value and emerge as potential biomarkers for the follow up, prognosis and treatment of diabetes mellitus. METHODS & RESULTS To conduct our systematic review, we used PubMed and Semantic Scholar, and used 'Protein carbamylation and diabetes' and 'Protein carbamylation and atherosclerosis' as keywords and looked into about five hundred manuscripts. Manuscripts that are not in English were excluded as well as manuscripts that did not mention carbamylation to maintain the focus of the present article. Similar to glycation, carbamylation is able to alter functions of plasma proteins and their interactions with endothelial cells and has been shown to be involved in the development of atherosclerosis. CONCLUSION At this stage, it seems clear that protein carbamylation leads to worse clinical outcomes. To improve patient care, but maybe more importantly to improve healthcare-prevention, we believe the next stage involves understanding how exactly protein carbamylation leads to worse outcomes and when and in what group of people anti-carbamylation therapies must be employed.
Collapse
Affiliation(s)
- Bahadir Simsek
- Cerrahpasa, Cerrahpasa Medical School, Medical Program, 34096, Istanbul, Turkey
| | - Karolin Yanar
- Department of Medical Biochemistry, Cerrahpasa Medical School , Istanbul University, 34096, Istanbul, Turkey
| | - Ufuk Çakatay
- Department of Medical Biochemistry, Cerrahpasa Medical School , Istanbul University, 34096, Istanbul, Turkey
| |
Collapse
|
19
|
Wang H, Huang B, Wang W, Li J, Chen Y, Flynn T, Zhao M, Zhou Z, Lin X, Zhang Y, Xu M, Li K, Tian K, Yuan D, Zhou P, Hu L, Zhong D, Zhu S, Li J, Chen D, Wang K, Liang J, He Q, Sun J, Shi J, Yan L, Sands JM, Xie Z, Lian X, Xu D, Ran J, Yang B. High urea induces depression and LTP impairment through mTOR signalling suppression caused by carbamylation. EBioMedicine 2019; 48:478-490. [PMID: 31628020 PMCID: PMC6838447 DOI: 10.1016/j.ebiom.2019.09.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Urea, the end product of protein metabolism, has been considered to have negligible toxicity for a long time. Our previous study showed a depression phenotype in urea transporter (UT) B knockout mice, which suggests that abnormal urea metabolism may cause depression. The purpose of this study was to determine if urea accumulation in brain is a key factor causing depression using clinical data and animal models. METHODS A meta-analysis was used to identify the relationship between depression and chronic diseases. Functional Magnetic Resonance Imaging (fMRI) brain scans and common biochemical indexes were compared between the patients and healthy controls. We used behavioural tests, electrophysiology, and molecular profiling techniques to investigate the functional role and molecular basis in mouse models. FINDINGS After performing a meta-analysis, we targeted the relevance between chronic kidney disease (CKD) and depression. In a CKD mouse model and a patient cohort, depression was induced by impairing the medial prefrontal cortex. The enlarged cohort suggested that urea was responsible for depression. In mice, urea was sufficient to induce depression, interrupt long-term potentiation (LTP) and cause loss of synapses in several models. The mTORC1-S6K pathway inhibition was necessary for the effect of urea. Lastly, we identified that the hydrolysate of urea, cyanate, was also involved in this pathophysiology. INTERPRETATION These data indicate that urea accumulation in brain is an independent factor causing depression, bypassing the psychosocial stress. Urea or cyanate carbamylates mTOR to inhibit the mTORC1-S6K dependent dendritic protein synthesis, inducing impairment of synaptic plasticity in mPFC and depression-like behaviour. CKD patients may be able to attenuate depression only by strict management of blood urea.
Collapse
Affiliation(s)
- Hongkai Wang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Boyue Huang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Weiling Wang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jinfang Li
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Chen
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Trevor Flynn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Meng Zhao
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiming Zhou
- Department of Radiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojing Lin
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yinan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Bejing, China
| | - Mengmeng Xu
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Keqiong Li
- Chongqing Cancer Research Institute, Chongqing, China
| | - Kuan Tian
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Dezhi Yuan
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zhou
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Ling Hu
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Dandan Zhong
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Shuai Zhu
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jing Li
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Dilong Chen
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China; Chongqing Three Gorges Medical College, Chongqing, China
| | - Kejian Wang
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Jianhui Liang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Bejing, China
| | - Qihua He
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Jianbin Sun
- Clinical Laboratory, Peking University Third Hospital, Beijing, China
| | - Jie Shi
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China; National Institute on Drug Dependence, Peking University, Bejing, China
| | - Li Yan
- Ion Channel Explorer Bioscience INC., Beijing, China
| | - Jeff M Sands
- Renal Division, Department of Medicine and Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhengwei Xie
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xuemei Lian
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jianhua Ran
- Department of Anatomy, and Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, China.
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
20
|
Di Iorio BR, Marzocco S, Bellasi A, De Simone E, Dal Piaz F, Rocchetti MT, Cosola C, Di Micco L, Gesualdo L. Nutritional therapy reduces protein carbamylation through urea lowering in chronic kidney disease. Nephrol Dial Transplant 2019; 33:804-813. [PMID: 28992314 DOI: 10.1093/ndt/gfx203] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/28/2017] [Indexed: 11/13/2022] Open
Abstract
Background Protein carbamylation is one of the non-enzymatic reactions involved in protein molecular ageing. We sought to investigate the relationship between urea levels and protein carbamylation, and whether a Mediterranean diet (MD) and a very low protein diet (VLPD) reduce protein carbamylation through reduction in urea levels in patients with chronic kidney disease (CKD). Methods This is a prospective, randomized, crossover controlled trial that investigated 60 patients with CKD grades 3B-4 (46 males, mean age of 67 years). The enrolled CKD patients were randomly assigned (1:1) to two different nutritional treatment arms: (i) 3 months of free diet (FD), 6 months of VLPD, 3 months of FD and 6 months of MD; and (ii) 3 months of FD, 6 months of MD, 3 months of FD and 6 months of VLPD. Blood levels of lysine (Lys) and homocitrulline (Hcit) and their ratio were used as markers of cyanate levels. Due to a lack of pre-existing data on the potential effects of different dietary regimens and in light of the exploratory nature of the study, no formal sample size estimation was carried out. Results At study completion, lower diastolic blood pressure and decreased serum levels of urea, sodium, phosphorus and parathyroid hormone, but higher serum levels of bicarbonate and haemoglobin, were noted with MD and VLPD. When compared with FD, both MD and VLPD were also associated with a decrease in serum Hcit levels and Hcit/Lys ratios (P < 0.001). Notably, reductions in urea levels correlated with substantial reductions in Hcit levels (R2 = 0.16 and 0.17 for VLPD and MD, respectively). Conclusion In conclusion, nutritional treatments that significantly decrease serum levels of urea are associated with reduced protein carbamylation.
Collapse
Affiliation(s)
- Biagio R Di Iorio
- Division of Nephrology and Dialysis, 'A. Landolfi Hospital', Solofra (AV), Italy
| | - Stefania Marzocco
- Department of Pharmacology, University of Salerno, Fisciano (SA), Italy
| | - Antonio Bellasi
- Department of Nephrology and Dialysis, ASST-Lariana, Ospedale S. Anna, Como, Italy
| | - Emanuele De Simone
- Department of Nephrology and Dialysis, AORN 'San Giuseppe Moscati', Avellino, Italy
| | - Fabrizio Dal Piaz
- Department of Pharmacology, University of Salerno, Fisciano (SA), Italy
| | - Maria Teresa Rocchetti
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Carmela Cosola
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Lucia Di Micco
- Division of Nephrology and Dialysis, 'A. Landolfi Hospital', Solofra (AV), Italy
| | - Loreto Gesualdo
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
21
|
Seki M, Nakayama M, Sakoh T, Yoshitomi R, Fukui A, Katafuchi E, Tsuda S, Nakano T, Tsuruya K, Kitazono T. Blood urea nitrogen is independently associated with renal outcomes in Japanese patients with stage 3-5 chronic kidney disease: a prospective observational study. BMC Nephrol 2019; 20:115. [PMID: 30940101 PMCID: PMC6444850 DOI: 10.1186/s12882-019-1306-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Background Blood urea nitrogen (BUN) is one of the substances that affects the calculated serum osmolality (cSosm). A previous study demonstrated that BUN and cSosm were independently associated with the development of chronic kidney disease (CKD) in patients with preserved kidney function. In advanced CKD stages, there is a concomitant increase in cSosm and BUN levels. However, it remains unclear whether BUN or cSosm levels are related to renal outcomes in patients with moderate to severe kidney dysfunction. The aim of this study was to clarify whether the BUN or cSosm level is associated with kidney disease progression in patients with advanced CKD. Methods In this prospective study, we enrolled 459 patients with CKD (stages 3–5). The composite renal endpoint was end-stage renal disease (ESRD) or death, and ESRD alone was added as an alternative outcome. A Cox proportional hazards model was utilized to determine the risk factors for a poor renal outcome. We adjusted for covariates including estimated glomerular filtration rate (eGFR). The cSosm (mOsm/kg) was calculated using the following formula: (2 × sodium) + (BUN/2.8) + (glucose/18). Results During a median follow-up of 25.8 months, the renal endpoint was observed in 210 patients. Multivariable Cox analysis determined the hazard ratio (HR) [95% confidence interval (CI)] for the composite renal outcome in the second, third, and fourth BUN quartiles were 1.36 (0.72–2.58), 1.87 (0.95–3.66), and 2.66 (1.23–5.76) (P for trend < 0.01), respectively compared with the first BUN quartile. Conversely, by multivariable Cox analysis, the HRs (95% CIs) for poor outcomes in the second, third, and fourth cSosm quartiles, compared with the first cSosm quartile, were 1.13 (0.69–1.87), 0.95 (0.58–1.55), and 1.26 (0.78–2.03), respectively (P for trend = 0.39). In addition, with regard to the renal outcome of ESRD alone, higher BUN quartiles had a significantly increased risk for the outcome, but cSosm levels were not associated with the outcome. Conclusions Higher BUN levels, but not cSosm levels, were associated with adverse renal outcomes independent of the eGFR, suggesting that BUN may be a useful marker for predicting kidney disease progression. Electronic supplementary material The online version of this article (10.1186/s12882-019-1306-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Makiko Seki
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Masaru Nakayama
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan.
| | - Teppei Sakoh
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Ryota Yoshitomi
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Akiko Fukui
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Eisuke Katafuchi
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Susumu Tsuda
- Division of Nephrology and Clinical Research Institute, Department of Internal Medicine, National Hospital Organization Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka, 810-8563, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhiko Tsuruya
- Department of Nephrology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8521, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
22
|
High rate of calories from protein is associated with higher prevalence of hypertension. J Hum Hypertens 2019; 33:340-344. [PMID: 30647467 DOI: 10.1038/s41371-019-0162-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/25/2018] [Accepted: 12/21/2018] [Indexed: 11/08/2022]
Abstract
The desirable distribution of three major nutrients intake to prevent hypertension is not established. This study is to clarify the relationship between the prevalence of hypertension and the rate of intake of three major nutrients. This is a large-scale cross-sectional study. We analyzed Japanese subjects who had their annual medical examination at St Luke's International Hospital, Tokyo from January 2004 to June 2010. The amount of three major nutrients and salt intake were checked by a questionnaire method, and this study clarified the relationship between the prevalence of hypertension and the rate of three major nutrients with adjustment for age, sex, body mass index (BMI), smoking, dyslipidemia, diabetes mellitus, hyperuricemia, and salt intake. We analyzed 89,851 subjects. Of those, the number of hypertensive subjects was 13,926 (15.5%). The hypertensive group had significantly higher rate of calories from protein (19.7% vs. 19.4%, P < 0.001) but lower rate of calories from fat (16.1% vs. 16.4%, P < 0.001) than that in the non-hypertensive group. The rate of calories from carbohydrate was almost the same between the two groups (64.2% vs. 64.2%). After multiple adjustments, high rate of calories from protein was associated with high prevalence of hypertension (odds ratio: 1.011, 95% confidence interval (CI), 1.005-1.017), as well as aging, male, high BMI, smoking habits, dyslipidemia, diabetes mellitus, and hyperuricemia. High rate of calories from protein could be associated with high risk of hypertension. Therefore, protein-restricted diet may have a favorable effect in preventing hypertension and cardiovascular diseases.
Collapse
|
23
|
Vanholder R, Gryp T, Glorieux G. Urea and chronic kidney disease: the comeback of the century? (in uraemia research). Nephrol Dial Transplant 2018; 33:4-12. [PMID: 28407121 DOI: 10.1093/ndt/gfx039] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 02/15/2017] [Indexed: 02/05/2023] Open
Abstract
Urea, a marker of uraemic retention in chronic kidney disease (CKD) and of adequacy of intradialytic solute removal, has traditionally been considered to be biologically inert. However, a number of recent experimental data suggest that urea is toxic at concentrations representative for CKD. First of all, at least five studies indicate that urea itself induces molecular changes related to insulin resistance, free radical production, apoptosis and disruption of the protective intestinal barrier. Second, urea is at the origin of the generation of cyanate, ammonia and carbamylated compounds, which as such all have been linked to biological changes. Especially carbamylation has been held responsible for post-translational protein modifications that are involved in atherogenesis and other functional changes. In observational clinical studies, these carbamylated compounds were associated with cardiovascular and overall morbidity and mortality. These findings shed new light on the validity of Kt/Vurea as a marker of dialysis adequacy. Yet, also the views that the kinetics of urea are not representative of the kinetics of several other uraemic retention solutes, and that urea cannot be held responsible for all complex metabolic and clinical changes responsible for the uraemic syndrome, still remain valid. Future efforts to improve the outcome of patients with CKD might be directed at further improving removal of solutes implied in the uraemic syndrome, including but not restricted to urea, also taking into account the impact of the intestine and (residual) renal function on solute concentration.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tessa Gryp
- Laboratory for Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Griet Glorieux
- Laboratory for Bacteriology Research, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Abstract
Protein carbamylation is a nonenzymatic posttranslational protein modification that can be driven, in part, by exposure to urea's dissociation product, cyanate. In humans, when kidney function is impaired and urea accumulates, systemic protein carbamylation levels increase. Additional mediators of protein carbamylation have been identified including inflammation, diet, smoking, circulating free amino acid levels, and environmental exposures. Carbamylation reactions on proteins are capable of irreversibly changing protein charge, structure, and function, resulting in pathologic molecular and cellular responses. Carbamylation has been mechanistically linked to the biochemical pathways implicated in atherosclerosis, dysfunctional erythropoiesis, kidney fibrosis, autoimmunity, and other pathological domains highly relevant to patients with chronic kidney disease. In this review, we describe the biochemical impact of carbamylation on human proteins, the mechanistic role carbamylation can have on clinical outcomes in kidney disease, the clinical association studies of carbamylation in chronic kidney disease, including patients on dialysis, and the promise of therapies aimed at reducing carbamylation burden in this vulnerable patient population.
Collapse
Affiliation(s)
- Joshua Long
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Xavier Vela Parada
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Carbamylation is a competitor of glycation for protein modification in vivo. DIABETES & METABOLISM 2018; 44:160-167. [DOI: 10.1016/j.diabet.2017.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/09/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022]
|
26
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:33. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β₂-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
27
|
Jaisson S, Pietrement C, Gillery P. Protein Carbamylation: Chemistry, Pathophysiological Involvement, and Biomarkers. Adv Clin Chem 2018; 84:1-38. [PMID: 29478512 DOI: 10.1016/bs.acc.2017.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Protein carbamylation refers to a nonenzymatic modification, which consists in the binding of isocyanic acid on protein functional groups. This reaction is responsible for the alteration in structural and functional properties of proteins, which participate in their molecular aging. Protein molecular aging is now considered a molecular substratum for the development of chronic and inflammatory diseases, including atherosclerosis, chronic kidney disease, or rheumatoid arthritis. As a consequence, carbamylation-derived products have been proposed as interesting biomarkers in various pathological contexts and appropriate analytical methods have been developed for their quantification in biological fluids. The purpose of this review is (i) to describe the biochemical bases of the carbamylation reaction, (ii) to explain how it contributes to protein molecular aging, (iii) to provide evidence of its involvement in aging and chronic diseases, and (iv) to list the available biomarkers of carbamylation process and the related analytical methods.
Collapse
|
28
|
Delanghe S, Biesen WV, Velde NVD, Eloot S, Pletinck A, Schepers E, Glorieux G, Delanghe JR, Speeckaert MM. Binding of bromocresol green and bromocresol purple to albumin in hemodialysis patients. Clin Chem Lab Med 2017; 56:436-440. [DOI: 10.1515/cclm-2017-0444] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/23/2017] [Indexed: 12/30/2022]
Abstract
Abstract
Background:
Colorimetric albumin assays based on binding to bromocresol purple (BCP) and bromocresol green (BCG) yield different results in chronic kidney disease. Altered dye binding of carbamylated albumin has been suggested as a cause. In the present study, a detailed analysis was carried out in which uremic toxins, acute phase proteins and Kt/V, a parameter describing hemodialysis efficiency, were compared with colorimetrically assayed (BCP and BCG) serum albumin.
Methods:
Albumin was assayed using immunonephelometry on a BN II nephelometer and colorimetrically based on, respectively, BCP and BCG on a Modular P analyzer. Uremic toxins were assessed using high-performance liquid chromatography. Acute phase proteins (C-reactive protein and α1-acid glycoprotein) and plasma protein α2-macroglobulin were assayed nephelometrically. In parallel, Kt/V was calculated.
Results:
Sixty-two serum specimens originating from hemodialysis patients were analyzed. Among the uremic toxins investigated, total para-cresyl sulfate (PCS) showed a significant positive correlation with the BCP/BCG ratio. The serum α1-acid glycoprotein concentration correlated negatively with the BCP/BCG ratio. The BCP/BCG ratio showed also a negative correlation with Kt/V.
Conclusions:
In renal insufficiency, the BCP/BCG ratio of serum albumin is affected by multiple factors: next to carbamylation, uremic toxins (total PCS) and α1-acid glycoprotein also play a role.
Collapse
Affiliation(s)
- Sigurd Delanghe
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Wim Van Biesen
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | | | - Sunny Eloot
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Anneleen Pletinck
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Eva Schepers
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Griet Glorieux
- Department of Nephrology , Ghent University Hospital , Ghent , Belgium
| | - Joris R. Delanghe
- Department of Clinical Chemistry , Ghent University Hospital , Ghent , Belgium
| | | |
Collapse
|
29
|
Delanghe S, Delanghe JR, Speeckaert R, Van Biesen W, Speeckaert MM. Mechanisms and consequences of carbamoylation. Nat Rev Nephrol 2017; 13:580-593. [PMID: 28757635 DOI: 10.1038/nrneph.2017.103] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein carbamoylation is a non-enzymatic post-translational modification that binds isocyanic acid, which can be derived from the dissociation of urea or from the myeloperoxidase-mediated catabolism of thiocyanate, to the free amino groups of a multitude of proteins. Although the term 'carbamoylation' is usually replaced by the term "carbamylation" in the literature, carbamylation refers to a different chemical reaction (the reversible interaction of CO2 with α and ε-amino groups of proteins). Depending on the altered molecule (for example, collagen, erythropoietin, haemoglobin, low-density lipoprotein or high-density lipoprotein), carbamoylation can have different pathophysiological effects. Carbamoylated proteins have been linked to atherosclerosis, lipid metabolism, immune system dysfunction (such as inhibition of the classical complement pathway, inhibition of complement-dependent rituximab cytotoxicity, reduced oxidative neutrophil burst, and the formation of anti-carbamoylated protein antibodies) and renal fibrosis. In this Review, we discuss the carbamoylation process and evaluate the available biomarkers of carbamoylation (for example, homocitrulline, the percentage of carbamoylated albumin, carbamoylated haemoglobin, and carbamoylated low-density lipoprotein). We also discuss the relationship between carbamoylation and the occurrence of cardiovascular events and mortality in patients with chronic kidney disease and assess the effects of strategies to lower the carbamoylation load.
Collapse
Affiliation(s)
- Sigurd Delanghe
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Reinhart Speeckaert
- Department of Clinical Chemistry, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Wim Van Biesen
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium
| |
Collapse
|
30
|
Urea, a true uremic toxin: the empire strikes back. Clin Sci (Lond) 2017; 131:3-12. [PMID: 27872172 DOI: 10.1042/cs20160203] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/18/2023]
Abstract
Blood levels of urea rise with progressive decline in kidney function. Older studies examining acute urea infusion suggested that urea was well-tolerated at levels 8-10× above normal values. More recent in vitro and in vivo work argue the opposite and demonstrate both direct and indirect toxicities of urea, which probably promote the premature aging phenotype that is pervasive in chronic kidney disease (CKD). Elevated urea at concentrations typically encountered in uremic patients induces disintegration of the gut epithelial barrier, leading to translocation of bacterial toxins into the bloodstream and systemic inflammation. Urea induces apoptosis of vascular smooth muscle cells as well as endothelial dysfunction, thus directly promoting cardiovascular disease. Further, urea stimulates oxidative stress and dysfunction in adipocytes, leading to insulin resistance. Finally, there are widespread indirect effects of elevated urea as a result of the carbamylation reaction, where isocyanic acid (a product of urea catabolism) alters the structure and function of proteins in the body. Carbamylation has been linked with renal fibrosis, atherosclerosis and anaemia. In summary, urea is a re-emerging Dark Force in CKD pathophysiology. Trials examining low protein diet to minimize accumulation of urea and other toxins suggest a clinical benefit in terms of slowing progression of CKD.
Collapse
|
31
|
Delanghe S, Moerman A, Pletinck A, Schepers E, Glorieux G, Van Biesen W, Delanghe JR, Speeckaert MM. Quantification of carbamylated albumin in serum based on capillary electrophoresis. Electrophoresis 2017; 38:2135-2140. [PMID: 28556931 DOI: 10.1002/elps.201700068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/27/2017] [Accepted: 05/14/2017] [Indexed: 11/09/2022]
Abstract
Protein carbamylation, a nonenzymatic posttranslational modification promoted during uremia, is linked to a poor prognosis. In the present study, carbamylation of serum albumin was assayed using the symmetry factor on a capillary electrophoresis instrument (Helena V8). The symmetry factor has been defined as the distance from the center line of the peak to the back slope, divided by the distance from the center line of the peak to the front slope, with all measurements made at 10% of the maximum peak height. Serum albumin, creatinine, and urea concentrations were assayed using routine methods, whereas uremic toxins were determined using HPLC. In vitro carbamylation induced a marked albumin peak asymmetry. Reference values for the albumin symmetry factor were 0.69-0.92. In kidney patients, albumin peak asymmetry corresponded to the chronic kidney disease stage (p < 0.0001). The symmetry factor correlated well with serum urea (r = -0.5595, p < 0.0001) and creatinine (r = -0.5986, p < 0.0001) concentrations. Several protein-bound uremic toxins showed a significant negative correlation with the symmetry factor. Morphology of the albumin fraction was not affected by presence of glycated albumin and protein-bound antibiotics. In conclusion, the presented method provides a simple, practical way for monitoring protein carbamylation.
Collapse
Affiliation(s)
- Sigurd Delanghe
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Alena Moerman
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| | - Anneleen Pletinck
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Eva Schepers
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Griet Glorieux
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Wim Van Biesen
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| | - Joris R Delanghe
- Department of Clinical Chemistry, Ghent University Hospital, Gent, Belgium
| | - Marijn M Speeckaert
- Department of Internal Medicine, Nephrology division, Ghent University Hospital, Gent, Belgium
| |
Collapse
|
32
|
Massy ZA, Pietrement C, Touré F. Reconsidering the Lack of Urea Toxicity in Dialysis Patients. Semin Dial 2016; 29:333-7. [DOI: 10.1111/sdi.12515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ziad A. Massy
- Division of Nephrology; Ambroise Paré Hospital; APHP; Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ); Boulogne Billancourt/Paris France
- Inserm U-1018 Team 5; Paris-Saclay University and UVSQ; Villejuif France
| | - Christine Pietrement
- Department of Pediatrics; Nephrology Unit; University Hospital of Reims; Reims France
- Laboratoire de Biochimie et de biologie moléculaire; Faculté de médecine; Université de Reims Champagne-Ardenne; CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC); Reims France
| | - Fatouma Touré
- Laboratoire de néphrologie; Faculté de médecine; Université de Reims Champagne-Ardenne; CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC); Reims France
- Division of Nephrology; CHU Reims; Reims France
| |
Collapse
|
33
|
Gillery P, Jaisson S, Gorisse L, Pietrement C. [Role of protein carbamylation in chronic kidney disease complications]. Nephrol Ther 2015; 11:129-34. [PMID: 25794932 DOI: 10.1016/j.nephro.2014.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 12/01/2022]
Abstract
Carbamylation corresponds to the non-enzymatic binding of isocyanic acid, mainly derived from urea decomposition, on amino groups of proteins, and participates in their molecular aging. This process is increased during chronic kidney disease (CKD) because of hyperuremia, and in other pathologies like atherosclerosis, where isocyanic may be formed from thiocyanate by myeloperoxidase in atheroma plates. Carbamylation triggers structural and functional modifications of proteins, thus impairing their biological roles and their interactions with cells. Much experimental evidence in vitro has shown the potential deleterious effects of carbamylated proteins on cell and tissue functions. Carbamylation-derived products (CDPs), and especially their major component homocitrulline, accumulate in organism in long half-life proteins, and may participate in the development of different complications of CKD, especially cardiovascular diseases, renal fibrosis, or nutritional and metabolic troubles. Recent clinical studies have confirmed the link between serum protein carbamylation and morbi-mortality in patients suffering from CKD or undergoing hemodialysis. Some CDPs could be used as biomarkers in these pathologies.
Collapse
Affiliation(s)
- Philippe Gillery
- Laboratoire de biologie et de recherche pédiatriques, hôpital Maison Blanche, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France.
| | - Stéphane Jaisson
- Laboratoire de biologie et de recherche pédiatriques, hôpital Maison Blanche, CHU de Reims, 45, rue Cognacq-Jay, 51092 Reims cedex, France; Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France
| | - Laëtitia Gorisse
- Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France
| | - Christine Pietrement
- Laboratoire de biochimie médicale et biologie moléculaire, UMR CNRS/URCA n(o) 7369, faculté de médecine, université de Reims Champagne-Ardenne, 51, rue Cognacq-Jay, 51095 Reims cedex, France; Service de néphrologie-rhumatologie pédiatriques, American Memorial Hospital, CHU de Reims, 47, rue Cognacq-Jay, 51092 Reims cedex, France
| |
Collapse
|
34
|
Kalim S, Karumanchi SA, Thadhani RI, Berg AH. Protein carbamylation in kidney disease: pathogenesis and clinical implications. Am J Kidney Dis 2014; 64:793-803. [PMID: 25037561 PMCID: PMC4209336 DOI: 10.1053/j.ajkd.2014.04.034] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/30/2014] [Indexed: 12/29/2022]
Abstract
Carbamylation describes a nonenzymatic posttranslational protein modification mediated by cyanate, a dissociation product of urea. When kidney function declines and urea accumulates, the burden of carbamylation naturally increases. Free amino acids may protect proteins from carbamylation, and protein carbamylation has been shown to increase in uremic patients with amino acid deficiencies. Carbamylation reactions are capable of altering the structure and functional properties of certain proteins and have been implicated directly in the underlying mechanisms of various disease conditions. A broad range of studies has demonstrated how the irreversible binding of urea-derived cyanate to proteins in the human body causes inappropriate cellular responses leading to adverse outcomes such as accelerated atherosclerosis and inflammation. Given carbamylation's relationship to urea and the evidence that it contributes to disease pathogenesis, measurements of carbamylated proteins may serve as useful quantitative biomarkers of time-averaged urea concentrations while also offering risk assessment in patients with kidney disease. Moreover, the link between carbamylated proteins and disease pathophysiology creates an enticing therapeutic target for reducing the rate of carbamylation. This article reviews the biochemistry of the carbamylation reaction, its role in specific diseases, and the potential diagnostic and therapeutic implications of these findings based on recent advances.
Collapse
Affiliation(s)
- Sahir Kalim
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - S Ananth Karumanchi
- Harvard Medical School, Boston, MA; Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, MA; Howard Hughes Medical Institute, Boston, MA
| | - Ravi I Thadhani
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Anders H Berg
- Harvard Medical School, Boston, MA; Department of Pathology, Division of Clinical Chemistry, Beth Israel Deaconess Medical Center, Boston, MA.
| |
Collapse
|
35
|
Chronic increase of urea leads to carbamylated proteins accumulation in tissues in a mouse model of CKD. PLoS One 2013; 8:e82506. [PMID: 24324801 PMCID: PMC3853192 DOI: 10.1371/journal.pone.0082506] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022] Open
Abstract
Carbamylation is a general process involved in protein molecular ageing due to the nonenzymatic binding of isocyanic acid, mainly generated by urea dissociation, to free amino groups. In vitro experiments and clinical studies have suggested the potential involvement of carbamylated proteins (CPs) in chronic kidney disease (CKD) complications like atherosclerosis, but their metabolic fate in vivo is still unknown. To address this issue, we evaluated protein carbamylation in the plasma and tissues of control and 75% nephrectomised C57BL/6J mice by LC-MS/MS assay of homocitrulline, the major carbamylation-derived product (CDP). A basal level of carbamylation was evidenced under all conditions, showing that carbamylation is a physiological process of protein modification in vivo. CP plasma concentrations increased in nephrectomized vs. control mice over the 20 weeks of the experiment (e.g. 335±43 vs. 167±19 μmol homocitrulline/mol lysine (p<0.001) 20 weeks after nephrectomy). Simultaneously, CP content increased roughly by two-fold in all tissues throughout the experiment. The progressive accumulation of CPs was specifically noted in long-lived extracellular matrix proteins, especially collagen (e.g. 1264±123 vs. 726±99 μmol homocitrulline/mol lysine (p<0.01) in the skin of nephrectomized vs. control mice after 20 weeks of evolution). These results show that chronic increase of urea, as seen in CKD, increases the carbamylation rate of plasma and tissue proteins. These results may be considered in the perspective of the deleterious effects of CPs demonstrated in vitro and of the correlation evidenced recently between plasma CPs and cardiovascular risk or mortality in CKD patients.
Collapse
|
36
|
Shi J, van Veelen PA, Mahler M, Janssen GMC, Drijfhout JW, Huizinga TWJ, Toes REM, Trouw LA. Carbamylation and antibodies against carbamylated proteins in autoimmunity and other pathologies. Autoimmun Rev 2013; 13:225-30. [PMID: 24176675 DOI: 10.1016/j.autrev.2013.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Carbamylation is a non-enzymatic post-translational modification in which cyanate binds to molecules containing primary amine or thiol groups and forms carbamyl groups. Cyanate is in equilibrium with urea in body fluid and increased carbamylation was first reported in patients with increased urea levels such as patients suffering renal diseases. Next, increased carbamylation related to inflammation has also been described in other conditions such as cardiovascular disease. Recently, a new consequence of carbamylation has been observed: induction of an autoantibody response. We identified anti-carbamylated protein (anti-CarP) antibodies in rheumatoid arthritis (RA) patients and in patients having 'pre-RA' symptoms, arthralgia. The presence of anti-CarP antibodies in arthralgia patients is associated with an increased risk of developing RA. The presence of anti-CarP antibodies in RA patients is associated with more severe joint damage in RA patients who do not have anti-citrullinated protein antibodies. It is currently unknown to what extent carbamylation and/or the formation of anti-CarP antibodies contributes to the disease processes of chronic diseases such as renal diseases, cardiovascular diseases and RA. This review summarizes the current knowledge on carbamylation and the formation of anti-CarP antibodies and discusses their possibly important implications.
Collapse
Affiliation(s)
- Jing Shi
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Peter A van Veelen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - George M C Janssen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jan W Drijfhout
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
37
|
Jaisson S, Pietrement C, Gillery P. Carbamylation-derived products: bioactive compounds and potential biomarkers in chronic renal failure and atherosclerosis. Clin Chem 2011; 57:1499-505. [PMID: 21768218 DOI: 10.1373/clinchem.2011.163188] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Carbamylation is a posttranslational modification of proteins resulting from the nonenzymatic reaction between isocyanic acid and specific free functional groups. This reaction alters protein structural and functional properties and thus contributes to molecular ageing. Many studies have shown the involvement of carbamylated proteins in diseases, especially in chronic renal failure and atherosclerosis. CONTENT In this review we describe the biochemical basis of the carbamylation process and its role in protein molecular ageing. We summarize the current evidence of protein carbamylation involvement in disease, identify available biomarkers of the carbamylation process and their related analytical methods, and discuss the practical relevance of these biomarkers. SUMMARY Carbamylation-induced protein alterations are involved in the progression of various diseases, because carbamylation-derived products (CDPs) are bioactive compounds that trigger specific and inappropriate cellular responses. For instance, carbamylation may promote hormone and enzyme inactivation, and carbamylated proteins, as diverse as collagen or LDLs, induce characteristic biochemical events of atherosclerosis progression. CDPs are potential biomarkers to monitor diseases characterized by an increased rate of carbamylation (e.g., chronic renal failure and atherosclerosis). Different methods (e.g., liquid chromatography-tandem mass spectrometry and immunoassays) to measure specific carbamylated proteins or general markers of carbamylation, such as protein-bound homocitrulline, have been described. Their use in clinical practice must still be validated by appropriate clinical studies.
Collapse
Affiliation(s)
- Stéphane Jaisson
- Laboratory of Pediatric Biology and Research, American Memorial Hospital, University Hospital of Reims,France.
| | | | | |
Collapse
|
38
|
Pieniazek A, Brzeszczynska J, Kruszynska I, Gwozdzinski K. Investigation of albumin properties in patients with chronic renal failure. Free Radic Res 2009; 43:1008-18. [DOI: 10.1080/10715760903165003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Jaisson S, Delevallée-Forte C, Touré F, Rieu P, Garnotel R, Gillery P. Carbamylated albumin is a potent inhibitor of polymorphonuclear neutrophil respiratory burst. FEBS Lett 2007; 581:1509-13. [PMID: 17376441 DOI: 10.1016/j.febslet.2007.03.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 02/13/2007] [Accepted: 03/06/2007] [Indexed: 11/26/2022]
Abstract
Carbamylation is a post-translational modification of proteins characterized by the binding of cyanate to amino groups, increased in renal failure. Pathophysiological consequences of carbamylation and adverse effects of carbamylated proteins on cell functions are poorly understood. We studied the influence of carbamylated albumin on polymorphonuclear neutrophil (PMN) O(2)(-) production. Carbamylated albumin significantly decreased O(2)(-) production in PMNs stimulated by type I collagen, but not by phorbol 12-myristate 13-acetate or tumor necrosis factor-alpha. This effect was related to inhibition of p(125)FAK phosphorylation. Such an alteration of neutrophil oxidative functions might explain characteristic complications of renal failure, such as increased occurrence of inflammation or infections.
Collapse
Affiliation(s)
- Stéphane Jaisson
- Laboratory of Biochemistry and Molecular Biology, CNRS UMR 6198, Faculty of Medicine, University of Reims Champagne Ardenne, 51, rue Cognacq Jay, CNRS, F-51095 Reims Cedex, France.
| | | | | | | | | | | |
Collapse
|
40
|
Jaisson S, Lorimier S, Ricard-Blum S, Sockalingum GD, Delevallée-Forte C, Kegelaer G, Manfait M, Garnotel R, Gillery P. Impact of Carbamylation on Type I Collagen Conformational Structure and Its Ability to Activate Human Polymorphonuclear Neutrophils. ACTA ACUST UNITED AC 2006; 13:149-59. [PMID: 16492563 DOI: 10.1016/j.chembiol.2005.11.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 10/31/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Carbamylation by urea-derived cyanate is a posttranslational modification of proteins increasing during chronic renal insufficiency, which alters structural and functional properties of proteins and modifies their interactions with cells. We report here the major structural alterations of type I collagen induced by carbamylation. Biophysical methods revealed that carbamylated collagen retained its triple-helical structure, but that slight changes destabilized some regions within the triple helix and decreased its ability to polymerize into normal fibrils. These changes were associated with the incapacity of carbamylated collagen to stimulate polymorphonuclear neutrophil oxidative functions. This process involved their interaction with LFA-1 integrin, but no subsequent p(125)FAK phosphorylation. Carbamylation of collagen might alter interactions between collagen and inflammatory cells in vivo and interfere with the normal remodeling of extracellular matrix, thus participating in the pathophysiological processes occurring during renal insufficiency.
Collapse
Affiliation(s)
- Stéphane Jaisson
- Laboratory of Medical Biochemistry and Molecular Biology, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6198, Faculty of Medicine, University of Reims Champagne-Ardenne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Garnotel R, Sabbah N, Jaisson S, Gillery P. Enhanced activation of and increased production of matrix metalloproteinase-9 by human blood monocytes upon adhering to carbamylated collagen. FEBS Lett 2004; 563:13-6. [PMID: 15063715 DOI: 10.1016/s0014-5793(04)00233-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 02/13/2004] [Accepted: 02/17/2004] [Indexed: 10/26/2022]
Abstract
Carbamylation refers to chemical modification of protein side chains by cyanate derived e.g. from urea. It alters their structural and functional properties. We have studied the influence of the carbamylation of type I collagen in vitro on its interactions with elutriated human monocytes, and its potential role in atherosclerosis. Adhesion of monocytes onto carbamylated collagen was significantly enhanced compared to native collagen. There was no change in superoxide anion production. On the other hand, there was an increase in the production and the activation of matrix metalloproteinase-9. No effect was found on tissue inhibitor of metalloproteinase-1 production. Thus, the presence of carbamylated collagen may stimulate the remodelling of extracellular matrix mediated by activated monocytes. Such alterations may contribute to enhanced atherosclerosis in renal insufficiency, a pathological condition associated with elevated levels of carbamylation.
Collapse
Affiliation(s)
- Roselyne Garnotel
- Laboratory of Biochemistry and Molecular Biology, CNRS UMR 6198, IFR 53-Biomolecules, Faculty of Medicine, University of Reims Champagne-Ardenne, 51 Rue Cognacq Jay, 51095 Reims Cedex, France
| | | | | | | |
Collapse
|