1
|
Goedken M, McCormick S, Leidal KG, Suzuki K, Kameoka Y, Astern JM, Huang M, Cherkasov A, Nauseef WM. Impact of Two Novel Mutations on the Structure and Function of Human Myeloperoxidase. J Biol Chem 2007; 282:27994-8003. [PMID: 17650507 DOI: 10.1074/jbc.m701984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The heme protein myeloperoxidase (MPO) contributes critically to O(2)-dependent neutrophil antimicrobial activity. Two Japanese adults were identified with inherited MPO deficiency because of mutations at Arg-499 or Gly-501, conserved residues near the proximal histidine in the heme pocket. Because of the proximity of these residues to a critical histidine in the heme pocket, we examined the biosynthesis, function, and spectral properties of the peroxidase stably expressed in human embryonic kidney cells. Biosynthesis of normal MPO by human embryonic kidney cells faithfully mirrored events previously identified in cells expressing endogenous MPO. Mutant apopro-MPO was 90 kDa and interacted normally with the molecular chaperones ERp57, calreticulin, and calnexin in the endoplasmic reticulum. However, mutant precursors were not proteolytically processed into subunits of MPO, although secretion of the unprocessed precursors occurred normally. Although delta-[(14)C]aminolevulinic acid incorporation demonstrated formation of pro-MPO in both mutants, neither protein was enzymatically active. The Soret band for each mutant was shifted from the normal 430 to approximately 412 nm, confirming that heme was incorporated but suggesting that the number of covalent bonds or other structural aspects of the heme pocket were disrupted by the mutations. These studies demonstrate that despite heme incorporation, mutations in the heme environs compromised the oxidizing potential of MPO.
Collapse
Affiliation(s)
- Melissa Goedken
- Inflammation Program, Department of Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa 52241, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Gelebart P, Opas M, Michalak M. Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 2005; 37:260-6. [PMID: 15474971 DOI: 10.1016/j.biocel.2004.02.030] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 02/23/2004] [Accepted: 02/26/2004] [Indexed: 11/17/2022]
Abstract
Calreticulin is a 46-kDa Ca2+-binding chaperone found across a diverse range of species. The protein is involved in the regulation of intracellular Ca2+ homeostasis and endoplasmic reticulum (ER) Ca2+ storage capacity. Calreticulin is also an important molecular chaperone involved in "quality control" within secretory pathways. The protein contains structurally and functionally unique domains with specialized functions. Studies on calreticulin knockout mice indicate that the protein is essential in early cardiac development. The protein also plays an important role in autoimmunity and cancer.
Collapse
Affiliation(s)
- Pascal Gelebart
- Canadian Institute of Health Research Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alta., T6G 2H7C, Canada
| | | | | |
Collapse
|
3
|
Deas DE, Mackey SA, McDonnell HT. Systemic disease and periodontitis: manifestations of neutrophil dysfunction. Periodontol 2000 2003; 32:82-104. [PMID: 12756035 DOI: 10.1046/j.0906-6713.2003.03207.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- David E Deas
- Director of Clinical Periodontics US Air Force Periodontics Residency Wilford Hall Medical Center, Lackland Air Force Base, San Antonio, Texas, USA
| | | | | |
Collapse
|
4
|
Abstract
The mammalian cell continuously adjusts its sterol content by regulating levels of key sterol synthetic enzymes and levels of LDL receptors that mediate uptake of cholesterol-laden particles. Control is brought about by sterol-regulated transcription of relevant genes and by regulated degradation of the committed step enzyme HMG-CoA reductase (HMGR). Current work has revealed that proteolysis is at the heart of each of these mechanistically distinct axes. Transcriptional control is effected by regulated cleavage of the membrane-bound transcription factor sterol regulatory element binding protein (SREBP), and HMGR degradation is brought about by ubiquitin-mediated degradation. In each case, ongoing cell biological processes are being harnessed to bring about regulation. The secretory pathway plays a central role in allowing sterol-mediated control of transcription. The constitutively active endoplasmic reticulum (ER) quality control apparatus is employed to bring about regulated destruction of HMGR. This review describes the methods and results of various studies to understand the mechanisms and molecules involved in these distinct but interrelated aspects of sterol regulation and the intriguing similarities that appear to exist at the levels of protein sequence and cell biology.
Collapse
Affiliation(s)
- Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla 92093-0347, USA.
| |
Collapse
|
5
|
Michalak M, Lynch J, Groenendyk J, Guo L, Robert Parker JM, Opas M. Calreticulin in cardiac development and pathology. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:32-7. [PMID: 12445456 DOI: 10.1016/s1570-9639(02)00441-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Calreticulin is a Ca(2+) binding/storage chaperone resident in the lumen of endoplasmic reticulum (ER). The protein is an important component of the calreticulin/calnexin cycle and the quality control pathways in the ER. In mice, calreticulin deficiency is lethal due to impaired cardiac development. This is not surprising because the protein is expressed at high level at early stages of cardiac development. Overexpression of the protein in developing and postnatal heart leads to bradycardia, complete heart block and sudden death. Recent studies on calreticulin-deficient and transgenic mice revealed that the protein is a key upstream regulator of calcineurin-dependent pathways during cardiac development. Calreticulin and ER may play important role in cardiac development and postnatal pathologies.
Collapse
Affiliation(s)
- Marek Michalak
- Canadian Institutes of Health Research Membrane Protein Research Group and Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Michalak M, Robert Parker JM, Opas M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 2002; 32:269-78. [PMID: 12543089 DOI: 10.1016/s0143416002001884] [Citation(s) in RCA: 350] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The endoplasmic reticulum is a centrally located organelle which affects virtually every cellular function. Its unique luminal environment consists of Ca(2+) binding chaperones, which are involved in protein folding, post-translational modification, Ca(2+) storage and release, and lipid synthesis and metabolism. The environment within the lumen of the endoplasmic reticulum has profound effects on endoplasmic reticulum function and signaling, including apoptosis, stress responses, organogenesis, and transcriptional activity. Calreticulin, a major Ca(2+) binding (storage) chaperone in the endoplasmic reticulum, is a key component of the calreticulin/calnexin cycle which is responsible for the folding of newly synthesized proteins and glycoproteins and for quality control pathways in the endoplasmic reticulum. The function of calreticulin, calnexin and other endoplasmic reticulum proteins is affected by continuous fluctuations in the concentration of Ca(2+) in the endoplasmic reticulum. Thus, changes in Ca(2+) concentration may play a signaling role in the lumen of the endoplasmic reticulum as well as in the cytosol. Recent studies on calreticulin-deficient and transgenic mice have revealed that calreticulin and the endoplasmic reticulum may be upstream regulators in the Ca(2+)-dependent pathways that control cellular differentiation and/or organ development.
Collapse
Affiliation(s)
- M Michalak
- Department of Biochemistry, Canadian Institutes of Health Research Membrane Protein Research Group, University of Alberta, Alta., T6G 2H7, Edmonton, Canada.
| | | | | |
Collapse
|
7
|
Bülow E, Nauseef WM, Goedken M, McCormick S, Calafat J, Gullberg U, Olsson I. Sorting for storage in myeloid cells of nonmyeloid proteins and chimeras with the propeptide of myeloperoxidase precursor. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.2.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- E. Bülow
- Department of Hematology, Lund University, Sweden
| | - W. M. Nauseef
- Inflammation Program and Department of Medicine, Veterans Administration Medical Center and University of Iowa, Iowa City; and
| | - M. Goedken
- Inflammation Program and Department of Medicine, Veterans Administration Medical Center and University of Iowa, Iowa City; and
| | - S. McCormick
- Inflammation Program and Department of Medicine, Veterans Administration Medical Center and University of Iowa, Iowa City; and
| | - J. Calafat
- The Netherlands Cancer Institute, Amsterdam
| | - U. Gullberg
- Department of Hematology, Lund University, Sweden
| | - I. Olsson
- Department of Hematology, Lund University, Sweden
| |
Collapse
|
8
|
Bhattacharjee S, Pennathur S, Byun J, Crowley J, Mueller D, Gischler J, Hotchkiss RS, Heinecke JW. NADPH oxidase of neutrophils elevates o,o'-dityrosine cross-links in proteins and urine during inflammation. Arch Biochem Biophys 2001; 395:69-77. [PMID: 11673867 DOI: 10.1006/abbi.2001.2557] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Reactive intermediates generated by phagocytic white blood cells are of central importance in destroying microorganisms, but they may also damage normal tissue at sites of inflammation. To investigate the potential role of such oxidants in tissue injury, we used gas chromatography/mass spectrometry to quantify levels of o,o'-dityrosine in mouse peritoneal neutrophils and urine. In wild-type animals, neutrophils markedly increased their content of protein-bound dityrosine when they were activated in vivo. This increase failed to occur in mice that were deficient in the phagocyte NADPH oxidase. Levels of o,o'-dityrosine in urine mirrored those in neutrophil proteins. When o,o'-[(14)C]dityrosine was injected intravenously into mice, the radiolabel was not metabolized or incorporated into tissue proteins: instead, it was recovered in urine with near-quantitative yield. Patients with sepsis markedly increased their output of o,o'-dityrosine into urine, suggesting that systemic inflammation also may be a potent source of oxidative stress in humans. These observations demonstrate that activated neutrophils produce o,o'-dityrosine cross-links in tissue proteins, which may subsequently be degraded into free amino acids and excreted into urine. Our results indicate that mouse phagocytes use oxidants produced by the NADPH oxidase to create o,o'-dityrosine cross-links in vivo and raise the possibility that reactive intermediates produced by this pathway promote inflammatory tissue damage in humans.
Collapse
Affiliation(s)
- S Bhattacharjee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abu-Soud HM, Hazen SL. Interrogation of heme pocket environment of mammalian peroxidases with diatomic ligands. Biochemistry 2001; 40:10747-55. [PMID: 11535049 DOI: 10.1021/bi010478v] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent studies demonstrate that myeloperoxidase (MPO), eosinophil peroxidase (EPO), and lactoperoxidase (LPO), homologous members of the mammalian peroxidase superfamily, can all serve as catalysts for generating nitric oxide- (nitrogen monoxide, NO) derived oxidants. These enzymes contain heme prosthetic groups that are ligated through a histidine nitrogen and use H(2)O(2) as the electron acceptor in the catalysis of oxidative reactions. Here we show that heme reduction of these peroxidases results in distinct electronic and/or conformational changes in their heme pockets using a combination of rapid kinetics measurements, optical absorbance, and diatomic ligand binding studies. Addition of reducing agent to each peroxidase at ground state [Fe(III) state] causes immediate buildup of the corresponding Fe(II) complexes. Spectral changes indicate that two LPO-Fe(II) species are present in solution at equilibrium. Analyses of stopped-flow traces collected when EPO, MPO, or LPO solutions rapidly mixed with NO were accurately fit by single-exponential functions. Plots of the apparent rate constants as a function of NO concentration for all Fe(III) and Fe(II) forms were linear with positive intercepts, consistent with NO binding to each form in a simple reversible one-step mechanism. Fe(II) forms of MPO and LPO, but not EPO, displayed significantly lower affinity toward NO compared to Fe(III) forms, suggesting that heme reduction causes a dramatic change in the heme pocket electronic environment that alters the affinity and/or accessibility of heme iron toward NO. Optical absorbance spectra indicate that CO binds to the Fe(II) forms of both LPO and EPO, but not with MPO, and generates their respective low-spin six-coordinate complexes. Kinetic analyses indicate that the binding of CO to EPO is monophasic while CO binding to LPO is biphasic. Collectively, these results illustrate for the first time functional differences in the heme pocket environments of Fe(II) forms of EPO, LPO, and MPO toward binding of diatomic ligands. Our results suggest that, upon reduction, the heme pocket of MPO collapses, LPO adopts two spectroscopically and kinetically distinguishable forms (one partially open and the other relatively closed), and EPO remains open.
Collapse
Affiliation(s)
- H M Abu-Soud
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
10
|
Cui L, Hou YX, Riordan JR, Chang XB. Mutations of the Walker B motif in the first nucleotide binding domain of multidrug resistance protein MRP1 prevent conformational maturation. Arch Biochem Biophys 2001; 392:153-61. [PMID: 11469806 DOI: 10.1006/abbi.2001.2441] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters couple the binding and hydrolysis of ATP to the translocation of solutes across biological membranes. The so-called "Walker motifs" in each of the nucleotide binding domains (NBDs) of these proteins contribute directly to the binding and the catalytic site for the MgATP substrate. Hence mutagenesis of residues in these motifs may interfere with function. This is the case with the MRP1 multidrug transporter. However, interpretation of the effect of mutation in the Walker B motif of NBD1 (D792L/D793L) was confused by the fact that it prevented biosynthetic maturation of the protein. We have determined now that this latter effect is entirely due to the D792L substitution. This variant is unable to mature conformationally as evidenced by its remaining more sensitive to trypsin digestion in vitro than the mature wild-type protein. In vivo, the core-glycosylated form of that mutant is retained in the endoplasmic reticulum and degraded by the proteasome. A different substitution of the same residue (D792A) had a less severe effect enabling accumulation of approximately equal amounts of mature and immature MRP1 proteins in the membrane vesicles but still resulted in defective nucleotide interaction and organic anion transport, indicating that nucleotide hydrolysis at NBD1 is essential to MRP1 function.
Collapse
Affiliation(s)
- L Cui
- Mayo Clinic Scottsdale, S. C. Johnson Medical Research Center, 13400 East Shea Boulevard, Scottsdale, Arizona 85259, USA
| | | | | | | |
Collapse
|
11
|
Nauseef WM, McCormick S, Goedken M. Impact of missense mutations on biosynthesis of myeloperoxidase. Redox Rep 2001; 5:197-206. [PMID: 10994874 DOI: 10.1179/135100000101535753] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We have examined the biosynthesis of normal and mutant forms of myeloperoxidase (MPO) in order to gain insights into the critical features of normal biogenesis of MPO. The expression of wild-type and mutant forms of MPO in a stably transfected cell line devoid of endogenous MPO as well as in established human promyelocytic cell lines has allowed understanding of several features of MPO biosynthesis. It is clear that heme insertion into apoproMPO is necessary for proper folding, egress from the endoplasmic reticulum (ER), and eventual entry into the maturation pathway. In addition, molecular chaperones calreticulin and calnexin interact with normal MPO precursors in a sequential and regulated fashion. Studies of naturally occurring mutants, specifically missense mutations underlying inherited MPO deficiency, and mutations in putatively important residues in MPO have highlighted special features of the ER quality control system in the context of MPO biosynthesis. With identification of additional genotypes of MPO deficiency and the recent solution of MPO crystal structure at 1.8 A, this approach provides a powerful technique to assess structure-function relationships in MPO that are likely applicable to other members of the family of animal peroxidases.
Collapse
Affiliation(s)
- W M Nauseef
- Inflammation Program and Department of Medicine, University of Iowa, and Veterans Affairs Medical Center at Iowa City, 52422, USA.
| | | | | |
Collapse
|
12
|
Abstract
As a rule, only proteins that have reached a native, folded and assembled structure are transported to their target organelles and compartments within the cell. In the secretory pathway of eukaryotic cells, this type of sorting is particularly important. A variety of molecular mechanisms are involved that distinguish between folded and unfolded proteins, modulate their intracellular transport, and induce degradation if they fail to fold. This phenomenon, called quality control, occurs at several levels and involves different types of folding sensors. The quality control system provides a stringent and versatile molecular sorting system that guaranties fidelity of protein expression in the secretory pathway.
Collapse
Affiliation(s)
- A Helenius
- Swiss Federal Institute of Technology (ETH), Institute of Biochemistry, Universitätstrasse 16, CH-8092 Zurich, Switzerland.
| |
Collapse
|
13
|
Abstract
Rare hereditary deficiencies have been described which affect each functional stage of polymorphonuclear neutrophils. They almost invariably lead to recurrent acute infection. Among the abnormalities involving adhesion and motility, the following can be noted: the Buckley syndrome; and leucocyte type 1 and 2 adhesion deficiencies, respectively caused by a deficiency in membrane expression of beta 2 integrin CD11/CD18, and sialyl lewis X. Granulation system abnormalities include relatively non-symptomatic myeloperoxidase deficiency, specific granulation deficiency or the Chediak-Higashi syndrome with the presence of giant lysosomal granulations. Chronic or familial septic granulomatosis constitutes the main disease described due to the oxidative PMN burst connected with the functional impairment of one of the constituents of NADPH oxidase (with an incidence of one in 5.10(6) to one in 10(6) births) The transmission is X-linked, or autosomal recessive depending on the mutation. The antenatal detection of the X-linked component, gp91 phox, can be made in suspected carrier mothers. In addition to the standard treatment (Bactrim and Itraconazole), bone marrow transplantation may also be carried out, and in future gene therapy may be introduced.
Collapse
Affiliation(s)
- S Chollet-Martin
- Service d'hématologie et d'immunologie biologiques et Inserm U479, CHU Bichat-Claude-Bernard, 46, rue Henri-Huchard, 75018 Paris, France
| | | |
Collapse
|