1
|
La Chica Lhoëst MT, Martínez A, Garcia E, Dandurand J, Polishchuk A, Benitez-Amaro A, Cenarro A, Civeira F, Bernabé A, Vilades D, Escolà-Gil JC, Samouillan V, Llorente-Cortes V. ApoB100 remodeling and stiffened cholesteryl ester core raise LDL aggregation in familial hypercholesterolemia patients. J Lipid Res 2025; 66:100703. [PMID: 39557294 PMCID: PMC11731490 DOI: 10.1016/j.jlr.2024.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024] Open
Abstract
Patients with familial hypercholesterolemia (FH) exhibit a significant residual cardiovascular risk. A new cardiovascular risk factor is the susceptibility of individual LDL particles to aggregation. This study examined LDL aggregation and its relationship with LDL lipid composition and biophysical properties in patients with FH compared to controls. LDL aggregation was measured as the change in particle size, assessed by dynamic light scattering, after exposure to sphingomyelinase, which breaks down sphingomyelin in the LDL phospholipid layer. Dynamic light scattering and transmission electron microscopy showed that LDL in FH patients exhibited smaller size and greater susceptibility to aggregation. Biochemical analyses revealed a higher cholesteryl ester (CE)/ApoB100 ratio in LDL from FH patients. Differential scanning calorimetry showed that LDL from FH patients had higher transition temperatures, indicating a more ordered CE core. Fourier transform infrared spectroscopy revealed fewer flexible α-helices (1658 cm⁻1) and more stable α-helices (1651 cm⁻1) in ApoB100 of LDL from FH patients. These structural changes correlated with higher CE content and increased LDL aggregation. In conclusion, a more ordered CE core in smaller LDL particles, combined with a higher proportion of stable α-helices in ApoB100, promotes LDL aggregation in FH patients. These findings suggest ApoB100 conformational structure as a new potential therapeutic targets within LDL to reduce cardiovascular risk in FH patients.
Collapse
Affiliation(s)
- Maria Teresa La Chica Lhoëst
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain; Biochemistry Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrea Martínez
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain
| | - Eduardo Garcia
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain; Biochemistry Department, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jany Dandurand
- CIRIMAT, Université de Toulouse Paul Sabatier, Equipe PHYPOL, Toulouse, France
| | - Anna Polishchuk
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain
| | - Aleyda Benitez-Amaro
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Fernando Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, Instituto Aragonés de Ciencias de la Salud, Universidad de Zaragoza, Zaragoza, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Amable Bernabé
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Spain
| | - David Vilades
- CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, Madrid, Spain; Cardiac Imaging Unit, Department of Cardiology, Hospital de la Santa Creu i Sant Pau, IIB SANT PAU, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain; Biochemistry Department, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valerie Samouillan
- CIRIMAT, Université de Toulouse Paul Sabatier, Equipe PHYPOL, Toulouse, France.
| | - Vicenta Llorente-Cortes
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Cardiovascular Area, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Area, Institut de Recerca de l'Hospital Santa Creu i Sant Pau, Institut d'Investigacions Biomèdiques IIB Sant Pau, Barcelona, Spain; CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Akyol O, Chowdhury I, Akyol HR, Tessier K, Vural H, Akyol S. Why are cardiovascular diseases more common among patients with severe mental illness? The potential involvement of electronegative low-density lipoprotein (LDL) L5. Med Hypotheses 2020; 142:109821. [PMID: 32417641 DOI: 10.1016/j.mehy.2020.109821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/22/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Despite tremendous efforts of experimental and clinical studies and knowledge, the pathophysiology of severe mental illness (SMI), including bipolar disorder (BD), unipolar depression (mood disorders, MD), and schizophrenia (SCZ), remains poorly understood. Besides their chronic course and high prevalence in society, mental and somatic comorbidities are really serious problems; patients with these disorders have increased risk of cardiovascular (CV) diseases (CVD) including coronary artery diseases (CAD, i.e. myocardial infarction and angina), stroke, sudden cardiac death, hypertension, cardiomyopathy, arrhythmia, and thromboembolic disease. Although it is determined that triglycerides, cholesterol, glucose, and low-density lipoprotein (LDL) levels are increased in MD and SCZ, the underlying reason remains unknown. Considering this, we propose that electronegative LDL (L5) is probably the main crucial element to understanding CVD induced by SMI and to discovering novel remedial approaches for these diseases. When it is hypothesized that L5 is greatly presupposed in CV system abnormalities, it follows that the anti-L5 therapies and even antioxidant treatment options may open new therapeutic opportunities to prevent CVD diseases secondary to SMI. In this review article, we tried to bring a very original subject to the attention of readers who are interested in lipoprotein metabolism in terms of experimental, clinical, and cell culture studies that corroborate the involvement of L5 in physiopathology of CVD secondary to SMI and also the new therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Omer Akyol
- Michigan Math & Science Academy, Department of Science, Warren, MI, USA.
| | - Imtihan Chowdhury
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Hafsa Rana Akyol
- Illinois Institute of Technology, Biology, Sophomore, Chicago, IL, USA
| | - Kylie Tessier
- Michigan Math & Science Academy, High School, 11th grade, Warren, MI, USA
| | - Huseyin Vural
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Sumeyya Akyol
- Beaumont Health, Beaumont Research Institute, Royal Oak, MI, USA
| |
Collapse
|
3
|
Rivas-Urbina A, Rull A, Montoliu-Gaya L, Pérez-Cuellar M, Ordóñez-Llanos J, Villegas S, Sánchez-Quesada JL. Low-density lipoprotein aggregation is inhibited by apolipoprotein J-derived mimetic peptide D-[113-122]apoJ. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158541. [PMID: 31672573 DOI: 10.1016/j.bbalip.2019.158541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/25/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
Abstract
Mimetic peptides are promising therapeutic agents for atherosclerosis prevention. A 10-residue class G* peptide from apolipoprotein J (apoJ), namely, D-[113-122]apoJ, possesses anti-inflammatory and anti-atherogenic properties. This prompted us to determine its effect on the aggregation process of low-density lipoprotein (LDL) particles, an early event in the development of atherosclerosis. LDL particles with and without [113-122]apoJ peptide were incubated at 37 °C with sphingomyelinase (SMase) or were left to aggregate spontaneously at room temperature. The aggregation process was analyzed by size-exclusion chromatography (SEC), native gradient gel electrophoresis (GGE), absorbance at 405 nm, dynamic light scattering (DLS), and transmission electronic microscopy (TEM). In addition, circular dichroism was used to determine changes in the secondary structure of apoB, and SDS-PAGE was performed to assess apoB degradation. At an equimolar ratio of [113-122]apoJ peptide to apoB-100, [113-122]apoJ inhibited both SMase-induced or spontaneous LDL aggregation. All methods showed that [113-122]apoJ retarded the progression of SMase-induced LDL aggregation at long incubation times. No effect of [113-122]apoJ on apoB secondary structure was observed. Binding experiments showed that [113-122]apoJ presents low affinity for native LDL but binds readily to LDL during the first stages of aggregation. Laurdan fluorescence experiments showed that mild aggregation of LDL resulted in looser lipid packaging, which was partially prevented by D-[113-122]apoJ. These results demonstrate that [113-122]apoJ peptide prevents SMase-induced LDL aggregation at an equimolar ratio and opens the possibility for the use of this peptide as a therapeutic tool.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain; Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Laia Montoliu-Gaya
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Montserrat Pérez-Cuellar
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain; Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Sandra Villegas
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain.
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Spain.
| |
Collapse
|
4
|
Rivas-Urbina A, Rull A, Ordóñez-Llanos J, Sánchez-Quesada JL. Electronegative LDL: An Active Player in Atherogenesis or a By- Product of Atherosclerosis? Curr Med Chem 2019; 26:1665-1679. [PMID: 29600751 DOI: 10.2174/0929867325666180330093953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/12/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Low-density lipoproteins (LDLs) are the major plasma carriers of cholesterol. However, LDL particles must undergo various molecular modifications to promote the development of atherosclerotic lesions. Modified LDL can be generated by different mechanisms, but as a common trait, show an increased electronegative charge of the LDL particle. A subfraction of LDL with increased electronegative charge (LDL(-)), which can be isolated from blood, exhibits several pro-atherogenic characteristics. LDL(-) is heterogeneous, due to its multiple origins but is strongly related to the development of atherosclerosis. Nevertheless, the implication of LDL(-) in a broad array of pathologic conditions is complex and in some cases anti-atherogenic LDL(-) properties have been reported. In fact, several molecular modifications generating LDL(-) have been widely studied, but it remains unknown as to whether these different mechanisms are specific or common to different pathological disorders. In this review, we attempt to address these issues examining the most recent findings on the biology of LDL(-) and discussing the relationship between this LDL subfraction and the development of different diseases with increased cardiovascular risk. Finally, the review highlights the importance of minor apolipoproteins associated with LDL(-) which would play a crucial role in the different properties displayed by these modified LDL particles.
Collapse
Affiliation(s)
- Andrea Rivas-Urbina
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - Anna Rull
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Hospital Universitari Joan XXIII, IISPV, Universitat Rovira i Virgili, Tarragona, Spain
| | - Jordi Ordóñez-Llanos
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | - José Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERDEM. Institute of Health Carlos III, Madrid 28029, Spain
| |
Collapse
|
5
|
Thermal stability of human plasma electronegative low-density lipoprotein: A paradoxical behavior of low-density lipoprotein aggregation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1015-1024. [PMID: 27233433 DOI: 10.1016/j.bbalip.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/08/2016] [Accepted: 05/21/2016] [Indexed: 12/20/2022]
Abstract
Low-density lipoprotein (LDL) aggregation is central in triggering atherogenesis. A minor fraction of electronegative plasma LDL, termed LDL(-), plays a special role in atherogenesis. To better understand this role, we analyzed the kinetics of aggregation, fusion and disintegration of human LDL and its fractions, LDL(+) and LDL(-). Thermal denaturation of LDL was monitored by spectroscopy and electron microscopy. Initially, LDL(-) aggregated and fused faster than LDL(+), but later the order reversed. Most LDL(+) disintegrated and precipitated upon prolonged heating. In contrast, LDL(-) partially retained lipoprotein morphology and formed soluble aggregates. Biochemical analysis of all fractions showed no significant degradation of major lipids, mild phospholipid oxidation, and an increase in non-esterified fatty acid (NEFA) upon thermal denaturation. The main baseline difference between LDL subfractions was higher content of NEFA in LDL(-). Since NEFA promote lipoprotein fusion, increased NEFA content can explain rapid initial aggregation and fusion of LDL(-) but not its resistance to extensive disintegration. Partial hydrolysis of apoB upon heating was similar in LDL subfractions, suggesting that minor proteins importantly modulate LDL disintegration. Unlike LDL(+), LDL(-) contains small amounts of apoA-I and apoJ. Addition of exogenous apoA-I to LDL(+) hampered lipoprotein aggregation, fusion and precipitation, while depletion of endogenous apoJ had an opposite effect. Therefore, the initial rapid aggregation of LDL(-) is apparently counterbalanced by the stabilizing effects of minor proteins such as apoA-I and apoJ. These results help identify key determinants for LDL aggregation, fusion and coalescence into lipid droplets in vivo.
Collapse
|
6
|
Lu M, Gantz DL, Herscovitz H, Gursky O. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis. J Lipid Res 2012; 53:2175-2185. [PMID: 22855737 DOI: 10.1194/jlr.m029629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118.
| | - Donald L Gantz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Haya Herscovitz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118.
| |
Collapse
|
7
|
Bancells C, Villegas S, Blanco FJ, Benítez S, Gállego I, Beloki L, Pérez-Cuellar M, Ordóñez-Llanos J, Sánchez-Quesada JL. Aggregated electronegative low density lipoprotein in human plasma shows a high tendency toward phospholipolysis and particle fusion. J Biol Chem 2010; 285:32425-35. [PMID: 20670941 DOI: 10.1074/jbc.m110.139691] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Aggregation and fusion of lipoproteins trigger subendothelial retention of cholesterol, promoting atherosclerosis. The tendency of a lipoprotein to form fused particles is considered to be related to its atherogenic potential. We aimed to isolate and characterize aggregated and nonaggregated subfractions of LDL from human plasma, paying special attention to particle fusion mechanisms. Aggregated LDL was almost exclusively found in electronegative LDL (LDL(-)), a minor modified LDL subfraction, but not in native LDL (LDL(+)). The main difference between aggregated (agLDL(-)) and nonaggregated LDL(-) (nagLDL(-)) was a 6-fold increased phospholipase C-like activity in agLDL(-). agLDL(-) promoted the aggregation of LDL(+) and nagLDL(-). Lipoprotein fusion induced by α-chymotrypsin proteolysis was monitored by NMR and visualized by transmission electron microscopy. Particle fusion kinetics was much faster in agLDL(-) than in nagLDL(-) or LDL(+). NMR and chromatographic analysis revealed a rapid and massive phospholipid degradation in agLDL(-) but not in nagLDL(-) or LDL(+). Choline-containing phospholipids were extensively degraded, and ceramide, diacylglycerol, monoacylglycerol, and phosphorylcholine were the main products generated, suggesting the involvement of phospholipase C-like activity. The properties of agLDL(-) suggest that this subfraction plays a major role in atherogenesis by triggering lipoprotein fusion and cholesterol accumulation in the arterial wall.
Collapse
Affiliation(s)
- Cristina Bancells
- Departament de Bioquímica, Institut d'Investigacions Biomèdiques Sant Pau, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lähdesmäki K, Ollila OS, Koivuniemi A, Kovanen PT, Hyvönen MT. Membrane simulations mimicking acidic pH reveal increased thickness and negative curvature in a bilayer consisting of lysophosphatidylcholines and free fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:938-46. [DOI: 10.1016/j.bbamem.2010.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 12/18/2009] [Accepted: 01/22/2010] [Indexed: 12/18/2022]
|
9
|
Soininen P, Oörni K, Maaheimo H, Laatikainen R, Kovanen PT, Kaski K, Ala-Korpela M. 1H NMR at 800MHz facilitates detailed phospholipid follow-up during atherogenic modifications in low density lipoproteins. Biochem Biophys Res Commun 2007; 360:290-4. [PMID: 17592725 DOI: 10.1016/j.bbrc.2007.06.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Accepted: 06/12/2007] [Indexed: 11/25/2022]
Abstract
The structure of low density lipoprotein (LDL) particles and, particularly, the enzymatic and oxidative modifications of their surface is crucial in the initiation of atherosclerosis. Due to the structural complexity of LDL, there is a lack of suitable methods for dynamic follow-up studies of the molecular mechanisms in native and modified particles in physiological conditions. Here, we report that phosphatidylcholine (PC), lysophosphatidylcholine (lyso-PC), and sphingomyelin (SM) can all be identified and quantified in LDL particles by (1)H NMR spectroscopy at 800 MHz. The signal assignment for the lyso-PC is novel and we illustrate the applicability of the methodology in the case of lipid peroxidation that is generally considered as one of the key proatherogenic modifications of LDL. It was found, somewhat surprisingly, that the LDL-associated phospholipase A(2) is activated in the very beginning of the formation of PC-hydroperoxides. The (patho)physiological rationale of the resulting lyso-PC generation is also briefly discussed.
Collapse
Affiliation(s)
- Pasi Soininen
- Laboratory of Chemistry, Department of Biosciences, University of Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
10
|
Jayaraman S, Gantz D, Gursky O. Structural Basis for Thermal Stability of Human Low-Density Lipoprotein. Biochemistry 2005; 44:3965-71. [PMID: 15751972 DOI: 10.1021/bi047493v] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stability of human low-density lipoprotein (LDL), the major cholesterol carrier in plasma, was analyzed by heating samples of different concentrations at a rate from 11 to 90 K/h. Correlation of the calorimetric, circular dichroism, fluorescence, turbidity, and electron microscopic data shows that thermal disruption of LDL involves irreversible changes in the particle morphology and protein conformation but no global protein unfolding. Heating to 85 degrees C induces LDL conversion into smaller and larger particles and apparent partial dissociation, but not unfolding, of its sole protein, apoB. Further heating leads to partial unfolding of the beta-sheets in apoB and to fusion of the protein-depleted LDL into large aggregated lipid droplets, resulting in a previously unidentified high-temperature calorimetric peak. These lipid droplets resemble in size and morphology the extracellular lipid deposits formed in the arterial wall in early atherosclerosis. The strong concentration dependence of LDL fusion revealed by near-UV/visible CD, turbidity, and calorimetry indicates high reaction order, and the heating rate dependence suggests high activation energy that arises from transient disruption of lipid and/or protein packing interactions in the course of particle fusion and apparent apoB dissociation. Consequently, thermal stability of LDL is modulated by kinetic barriers. Similar barriers may confer structural integrity to LDL subclasses in vivo.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology and Biophysics, W329, Boston University School of Medicine, 715 Albany Street, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
11
|
Oörni K, Sneck M, Brömme D, Pentikäinen MO, Lindstedt KA, Mäyränpää M, Aitio H, Kovanen PT. Cysteine protease cathepsin F is expressed in human atherosclerotic lesions, is secreted by cultured macrophages, and modifies low density lipoprotein particles in vitro. J Biol Chem 2004; 279:34776-84. [PMID: 15184381 DOI: 10.1074/jbc.m310814200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During atherogenesis, low density lipoprotein (LDL) particles in the arterial intima become modified and fuse to form extracellular lipid droplets. Proteolytic modification of apolipoprotein (apo) B-100 may be one mechanism of droplet formation from LDL. Here we studied whether the newly described acid protease cathepsin F can generate LDL-derived lipid droplets in vitro. Treatment of LDL particles with human recombinant cathepsin F led to extensive degradation of apoB-100, which, as determined by rate zonal flotation, electron microscopy, and NMR spectroscopy, triggered both aggregation and fusion of the LDL particles. Two other acid cysteine proteases, cathepsins S and K, which have been shown to be present in the arterial intima, were also capable of degrading apoB-100, albeit less efficiently. Cathepsin F treatment resulted also in enhanced retention of LDL to human arterial proteoglycans in vitro. Cultured monocyte-derived macrophages were found to secrete active cathepsin F. In addition, similarly with cathepsins S and K, cathepsin F was found to be localized mainly within the macrophage-rich areas of the human coronary atherosclerotic plaques. These results suggest that proteolytic modification of LDL by cathepsin F may be one mechanism leading to the extracellular accumulation of LDL-derived lipid droplets within the proteoglycan-rich extracellular matrix of the arterial intima during atherogenesis.
Collapse
Affiliation(s)
- Katariina Oörni
- Wihuri Research Institute, Kalliolinnantie 4, FIN-00140 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Brunelli R, Greco G, Barteri M, Krasnowska EK, Mei G, Natella F, Pala A, Rotella S, Ursini F, Zichella L, Parasassi T. One site on the apoB-100 specifically binds 17-beta-estradiol and regulates the overall structure of LDL. FASEB J 2003; 17:2127-9. [PMID: 14500554 DOI: 10.1096/fj.02-1181fje] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The major protein component (apoB-100) of low-density lipoprotein (LDL) is known as a multipotential molecule the several functional regions of which can all be affected by key structural modifications driven by specific domains. Based on our previous report on structural and conformational modifications of apoB-100 in the presence of 17-beta-estradiol (E2), we characterized the interaction between E2 and the apoB-100 and further explored the induced alterations in terms of the structural arrangement of the whole LDL particle. We report evidence for the existence on apoB-100 of a single specific and saturable binding site for E2, the occupancy of which modifies the overall structure of the protein, inducing an increase in the alpha-helix fraction. As a consequence, the structure of the LDL particle is deeply perturbed, with a change in the arrangement of both the outer shell and lipid core and an overall volume shrinkage. The evidence of a regulation of apoB-100 structure by a physiological ligand opens new perspectives in the study of the biological addressing of the LDL particle and suggests a novel rationale in the search for mechanisms underlying the beneficial role of E2 in decreasing the risk of early lesions in atherosclerosis.
Collapse
Affiliation(s)
- Roberto Brunelli
- Dipartimento di Scienze Ginecologiche, Perinatologia e Puericultura, Università di Roma La Sapienza, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ursini F, Davies KJA, Maiorino M, Parasassi T, Sevanian A. Atherosclerosis: another protein misfolding disease? Trends Mol Med 2002; 8:370-4. [PMID: 12127722 DOI: 10.1016/s1471-4914(02)02382-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The secondary structure and conformation of apo-B 100 in low-density lipoproteins (LDL) are imposed by lipid-protein interactions and dynamics, and affected by the introduction or removal of lipids during the course of lipoprotein metabolism. Following an alteration of the water-lipid interface as a result of, for example, oxidation of lipids, the supramolecular structure becomes destabilized and apoB can misfold. These events have been observed in LDL(-), a fraction of oxidatively modified LDL isolated in vivo. This modified lipoprotein possesses several atherogenic properties and represents an in vivo counterpart of in vitro modified LDL that is implicated in atherosclerosis. The misfolding of apoB, its aggregation, resistance to proteolysis, and cytotoxicity are common motifs shared by LDL(-) and amyloidogenic proteins. Based on these analogies, we propose that atherogenesis could be considered as a disease produced by the accumulation of cytotoxic and pro-inflammatory misfolded lipoproteins.
Collapse
Affiliation(s)
- Fulvio Ursini
- Dept of Biological Chemistry, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy.
| | | | | | | | | |
Collapse
|