1
|
Hryckowian ND, Ramírez-Flores CJ, Zinda C, Park SC, Kelty MT, Knoll LJ. Host cell-specific metabolism of linoleic acid controls Toxoplasma gondii growth in cell culture. Infect Immun 2024; 92:e0029924. [PMID: 39194219 PMCID: PMC11475615 DOI: 10.1128/iai.00299-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
The obligate intracellular parasite Toxoplasma gondii can infect and replicate in any warm-blooded cell tested to date, but much of our knowledge about T. gondii cell biology comes from just one host cell type: human foreskin fibroblasts (HFFs). To expand our knowledge of host-parasite lipid interactions, we studied T. gondii in intestinal epithelial cells, the first site of host-parasite contact following oral infection and the exclusive site of parasite sexual development in feline hosts. We found that highly metabolic Caco-2 cells are permissive to T. gondii growth even when treated with high levels of linoleic acid (LA), a polyunsaturated fatty acid (PUFA) that kills parasites in HFFs. Caco-2 cells appear to sequester LA away from the parasite, preventing membrane disruptions and lipotoxicity that characterize LA-induced parasite death in HFFs. Our work is an important step toward understanding host-parasite interactions in feline intestinal epithelial cells, an understudied but important cell type in the T. gondii life cycle.
Collapse
Affiliation(s)
- Nicole D. Hryckowian
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Carlos J. Ramírez-Flores
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caitlin Zinda
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sung Chul Park
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Martin T. Kelty
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Hryckowian ND, Zinda C, Park SC, Kelty MT, Knoll LJ. Host cell-specific metabolism of linoleic acid controls Toxoplasma gondii growth in cell culture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586332. [PMID: 38562845 PMCID: PMC10983968 DOI: 10.1101/2024.03.22.586332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The obligate intracellular parasite Toxoplasma gondii can infect and replicate in any warm-blooded cell tested to date, but much of our knowledge about T. gondii cell biology comes from just one host cell type: human foreskin fibroblasts (HFFs). To expand our knowledge of host-parasite lipid interactions, we studied T. gondii in intestinal epithelial cells, the first site of host-parasite contact following oral infection and the exclusive site of parasite sexual development in feline hosts. We found that highly metabolic Caco-2 cells are permissive to T. gondii growth even when treated with high levels of linoleic acid (LA), a polyunsaturated fatty acid (PUFA) that kills parasites in HFFs. Caco-2 cells appear to sequester LA away from the parasite, preventing membrane disruptions and lipotoxicity that characterize LA-induced parasite death in HFFs. Our work is an important step toward understanding host-parasite interactions in feline intestinal epithelial cells, an understudied but important cell type in the T. gondii life cycle.
Collapse
Affiliation(s)
- Nicole D. Hryckowian
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Caitlin Zinda
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sung Chul Park
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin T. Kelty
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Laura J. Knoll
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Selvam C, Saito T, Sissener NH, Philip AJP, Sæle Ø. Intracellular trafficking of fatty acids in the fish intestinal epithelial cell line RTgutGC. FRONTIERS IN MARINE SCIENCE 2022; 9. [DOI: 10.3389/fmars.2022.954773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The shift towards higher inclusion of vegetable oils (VOs) in aquafeeds has resulted in major changes in dietary fatty acid composition, especially increased amounts of monounsaturated fatty acids (MUFAs) and decreased polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs). However, little is known about how this change in fatty acid (FA) profile affects the intracellular fate of these fatty acids in the intestinal cells. To investigate this topic, we used the rainbow trout intestinal epithelial cell line (RTgutGC) as an in vitro model. The cells were incubated with either palmitic acid (16:0, PA), oleic acid (18:1n-9, OA), or arachidonic acid (20:4n-6, ARA), to represent the SFA, MUFA, and PUFA, respectively. In all experiments, the RTgutGC were incubated with either non-labeled or radiolabeled FA (PA, OA, or ARA) for 16 h at 190C. The cells were then analyzed for the occurrence of cytosolic lipid droplets (CLD) with confocal microscopy, transcriptomic analysis (non-labeled FA experiments) and lipid class composition in the cells and serosal media from the basolateral side of the cells (radiolabeled FA experiments). CLD accumulation was higher in RTgutGC exposed to OA compared to cells given PA or ARA. This was coupled with increased volume, diameter, and surface area of CLDs in OA treated cells than with other FAs (PA, ARA). The results from radiolabeled FAs performed on permeable transwell inserts showed that OA increased the triacylglycerides (TAG) synthesis and was primarily stored in the cells in CLDs; whereas a significant amount of ARA was transported as TAG to the basolateral compartment. A significant proportion of free FAs was found to be excreted to the serosal basolateral side by the cells, which was significantly higher for PA and OA than ARA. Although there were clear clusters in differentially expressed genes (DEGs) for each treatment group, results from transcriptomics did not correlate to lipid transport and CLD analysis. Overall, the accumulation of TAG in CLDs was higher for oleic acid (OA) compared to arachidonic acid (ARA) and palmitic acid (PA). To conclude, carbon chain length and saturation level of FA differently regulate their intracellular fate during fatty acid absorption.
Collapse
|
4
|
A Planar Culture Model of Human Absorptive Enterocytes Reveals Metformin Increases Fatty Acid Oxidation and Export. Cell Mol Gastroenterol Hepatol 2022; 14:409-434. [PMID: 35489715 PMCID: PMC9305019 DOI: 10.1016/j.jcmgh.2022.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Fatty acid oxidation by absorptive enterocytes has been linked to the pathophysiology of type 2 diabetes, obesity, and dyslipidemia. Caco-2 and organoids have been used to study dietary lipid-handling processes including fatty acid oxidation, but are limited in physiological relevance or preclude simultaneous apical and basal access. Here, we developed a high-throughput planar human absorptive enterocyte monolayer system for investigating lipid handling, and then evaluated the role of fatty acid oxidation in fatty acid export, using etomoxir, C75, and the antidiabetic drug metformin. METHODS Single-cell RNA-sequencing, transcriptomics, and lineage trajectory was performed on primary human jejunum. In vivo absorptive enterocyte maturational states informed conditions used to differentiate human intestinal stem cells (ISCs) that mimic in vivo absorptive enterocyte maturation. The system was scaled for high-throughput drug screening. Fatty acid oxidation was modulated pharmacologically and BODIPY (Thermo Fisher Scientific, Waltham, MA) (B)-labeled fatty acids were used to evaluate fatty acid handling via fluorescence and thin-layer chromatography. RESULTS Single-cell RNA-sequencing shows increasing expression of lipid-handling genes as absorptive enterocytes mature. Culture conditions promote ISC differentiation into confluent absorptive enterocyte monolayers. Fatty acid-handling gene expression mimics in vivo maturational states. The fatty acid oxidation inhibitor etomoxir decreased apical-to-basolateral export of medium-chain B-C12 and long-chain B-C16 fatty acids, whereas the CPT1 agonist C75 and the antidiabetic drug metformin increased apical-to-basolateral export. Short-chain B-C5 was unaffected by fatty acid oxidation inhibition and diffused through absorptive enterocytes. CONCLUSIONS Primary human ISCs in culture undergo programmed maturation. Absorptive enterocyte monolayers show in vivo maturational states and lipid-handling gene expression profiles. Absorptive enterocytes create strong epithelial barriers in 96-Transwell format. Fatty acid export is proportional to fatty acid oxidation. Metformin enhances fatty acid oxidation and increases basolateral fatty acid export, supporting an intestine-specific role.
Collapse
|
5
|
Sesorova IS, Dimov ID, Kashin AD, Sesorov VV, Karelina NR, Zdorikova MA, Beznoussenko GV, Mirоnоv AA. Cellular and sub-cellular mechanisms of lipid transport from gut to lymph. Tissue Cell 2021; 72:101529. [PMID: 33915359 DOI: 10.1016/j.tice.2021.101529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Although the general structure of the barrier between the gut and the blood is well known, many details are still missing. Here, we analyse the literature and our own data related to lipid transcytosis through adult mammalian enterocytes, and their absorption into lymph at the tissue level of the intestine. After starvation, the Golgi complex (GC) of enterocytes is in a resting state. The addition of lipids in the form of chyme leads to the initial appearance of pre-chylomicrons (ChMs) in the tubules of the smooth endoplasmic reticulum, which are attached at the basolateral plasma membrane, immediately below the 'belt' of the adhesive junctions. Then pre-ChMs move into the cisternae of the rough endoplasmic reticulum and then into the expansion of the perforated Golgi cisternae. Next, they pass through the GC, and are concentrated in the distensions of the perforated cisternae on the trans-side of the GC. The arrival of pre-ChMs at the GC leads to the transition of the GC to a state of active transport, with formation of intercisternal connections, attachment of cis-most and trans-most perforated cisternae to the medial Golgi cisternae, and disappearance of COPI vesicles. Post-Golgi carriers then deliver ChMs to the basolateral plasma membrane, fuse with it, and secret ChMs into the intercellular space between enterocytes at the level of their interdigitating contacts. Finally, ChMs are squeezed out into the interstitium through pores in the basal membrane, most likely due to the function of the actin-myosin 'cuff' around the interdigitating contacts. These pores appear to be formed by protrusions of the dendritic cells and the enterocytes per se. ChMs are absorbed from the interstitium into the lymphatic capillaries through the special oblique contacts between endothelial cells, which function as valves through the contraction-relaxation of bundles of smooth muscle cells in the interstitium. Lipid overloading of enterocytes results in accumulation of cytoplasmic lipid droplets, an increase in diameter of ChMs, inhibition of intra-Golgi transport, and fusion of ChMs in the interstitium. Here, we summarise and analyse recent findings, and discuss their functional implications.
Collapse
Affiliation(s)
- Irina S Sesorova
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | - Ivan D Dimov
- Department of Anatomy, Ivanovo State Medical Academy, Ivanovo, Russia
| | - Alexandre D Kashin
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | - Vitaly V Sesorov
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | | | - Maria A Zdorikova
- Department of Anatomy, Saint Petersburg State Paediatric Medical University, S. Petersburg, Russia
| | | | | |
Collapse
|
6
|
In Vivo Digestion of Egg Products Enriched with DHA: Effect of the Food Matrix on DHA Bioavailability. Foods 2020; 10:foods10010006. [PMID: 33375011 PMCID: PMC7822025 DOI: 10.3390/foods10010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to determine to what extent the food matrix could affect the release of docosahexaenoic acid (DHA) during digestion and its incorporation into systemic circulation. In this aim, three DHA-enriched egg products having the same composition but different structure were developed: omelet, hard-boiled egg, and mousse. Then, nine pigs fitted with T-shape cannulas at duodenal level and a jugular venous catheter were fed with the DHA-enriched egg products, and duodenal effluents and plasma were collected throughout the postprandial period. Results highlighted an undeniable effect of the food matrix on digestion parameters and DHA bioavailability. The transit of DHA and protein through the duodenum was faster after the ingestion of the mousse than after the ingestion of the omelet and hard-boiled egg. While most of the DHA and protein ingested under the form of mousse had already passed through the duodenum 4.5 h after its ingestion, significantly higher quantities were still present in the case of the omelet and hard-boiled egg. In terms of bioavailability, the omelet was the most efficient vector for delivering DHA into systemic circulation. It supplied 56% and 120% more DHA than the hard-boiled egg and the mousse, respectively.
Collapse
|
7
|
Suárez M, Canclini L, Esteves A. Identification of a non-classical three-dimensional nuclear localization signal in the intestinal fatty acid binding protein. PLoS One 2020; 15:e0242312. [PMID: 33180886 PMCID: PMC7660557 DOI: 10.1371/journal.pone.0242312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/30/2020] [Indexed: 11/18/2022] Open
Abstract
The intestinal fatty acid binding protein (FABP) is a small protein expressed along the small intestine that bind long-chain fatty acids and other hydrophobic ligands. Several lines of evidence suggest that, once in the nucleus, it interacts with nuclear receptors, activating them and thus transferring the bound ligand into the nucleus. Previous work by our group suggests that FABP2 would participate in the cytoplasm-nucleus translocation of fatty acids. Because the consensus NLS is absent in the sequence of FABP2, we propose that a 3D signal could be responsible for its nuclear translocation. The results obtained by transfection assays of recombinant wild type and mutated forms of Danio rerio Fabp2 in Caco-2 cell cultures, showed that lysine 17, arginine 29 and lysine 30 residues, which are located in the helix-turn-helix region, would constitute a functional non-classical three-dimensional NLS.
Collapse
Affiliation(s)
- Mariana Suárez
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Lucía Canclini
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
8
|
Araujo M, Beekman JK, Mapa MS, MacMahon S, Zhao Y, Flynn TJ, Flannery B, Mossoba ME, Sprando RL. Assessment of intestinal absorption/metabolism of 3-chloro-1,2-propanediol (3-MCPD) and three 3-MCPD monoesters by Caco-2 cells. Toxicol In Vitro 2020; 67:104887. [DOI: 10.1016/j.tiv.2020.104887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 11/24/2022]
|
9
|
Ntika S, Thombare K, Aryapoor M, Kristinsson H, Bergsten P, Krizhanovskii C. Oleate increase neutral lipid accumulation, cellular respiration and rescues palmitate-exposed GLP-1 secreting cells by reducing ceramide-induced ROS. Biochimie 2019; 159:23-35. [DOI: 10.1016/j.biochi.2018.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
|
10
|
Jay AG, Hamilton JA. The enigmatic membrane fatty acid transporter CD36: New insights into fatty acid binding and their effects on uptake of oxidized LDL. Prostaglandins Leukot Essent Fatty Acids 2018; 138:64-70. [PMID: 27288302 DOI: 10.1016/j.plefa.2016.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/11/2016] [Indexed: 12/15/2022]
Abstract
The scavenger receptor CD36 binds numerous small biomolecules, including fatty acids, and even large ligands such as oxidized LDL, for which it is considered a receptor. Although CD36 has often been postulated to "transport" fatty acids across the plasma membrane, fatty acids translocation (mass transport or kinetics) was not affected by expression of CD36 in HEK293 cells; however, esterification of fatty acids (cellular uptake) was increased. These recent results from our lab are consistent with the established mechanism of fatty acid entry into cells by passive diffusion (flip-flop) and also with the well-documented enhancement of uptake of fatty acids by CD36 in other cell types. A fascinating new discovery is that CD36 has multiple fatty acid binding sites on the extracellular domain of CD36. As illuminated by new methodologies that we have applied, these sites have high affinity and exhibit rapid exchange with the medium. In an initial study of functional consequences of binding, several dietary fatty acids enhanced uptake of oxidized LDL into HEK293 cells expressing CD36. This is the first established link between physical binding of fatty acids and a function of CD36, and has implications for obesity and atherosclerosis. New methods as those used in our study could also be applied to elucidate other functional roles of fatty acid binding to CD36.
Collapse
Affiliation(s)
- Anthony G Jay
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, United States; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, United States
| | - James A Hamilton
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118, United States.
| |
Collapse
|
11
|
Abstract
Phospholipids are major constituents of biological membranes. The fatty acyl chain composition of phospholipids determines the biophysical properties of membranes and thereby affects their impact on biological processes. The composition of fatty acyl chains is also actively regulated through a deacylation and reacylation pathway called Lands' cycle. Recent studies of mouse genetic models have demonstrated that lysophosphatidylcholine acyltransferases (LPCATs), which catalyze the incorporation of fatty acyl chains into the sn-2 site of phosphatidylcholine, play important roles in pathophysiology. Two LPCAT family members, LPCAT1 and LPCAT3, have been particularly well studied. LPCAT1 is crucial for proper lung function due to its role in pulmonary surfactant biosynthesis. LPCAT3 maintains systemic lipid homeostasis by regulating lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Mounting evidence also suggests that changes in LPCAT activity may be potentially involved in pathological conditions, including nonalcoholic fatty liver disease, atherosclerosis, viral infections, and cancer. Pharmacological manipulation of LPCAT activity and membrane phospholipid composition may provide new therapeutic options for these conditions.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90272, USA;
| |
Collapse
|
12
|
Auclair N, Melbouci L, St-Pierre D, Levy E. Gastrointestinal factors regulating lipid droplet formation in the intestine. Exp Cell Res 2018; 363:1-14. [PMID: 29305172 DOI: 10.1016/j.yexcr.2017.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022]
Abstract
Cytoplasmic lipid droplets (CLD) are considered as neutral lipid reservoirs, which protect cells from lipotoxicity. It became clear that these fascinating dynamic organelles play a role not only in energy storage and metabolism, but also in cellular lipid and protein handling, inter-organelle communication, and signaling among diverse functions. Their dysregulation is associated with multiple disorders, including obesity, liver steatosis and cardiovascular diseases. The central aim of this review is to highlight the link between intra-enterocyte CLD dynamics and the formation of chylomicrons, the main intestinal dietary lipid vehicle, after overviewing the morphology, molecular composition, biogenesis and functions of CLD.
Collapse
Affiliation(s)
- N Auclair
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5
| | - L Melbouci
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - D St-Pierre
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Department of Sciences and Physical Activities, UQAM, Quebec, Canada H2X 1Y4
| | - E Levy
- Research Centre, CHU Sainte-Justine and Department of Montreal, Quebec, Canada H3T 1C5; Nutrition, Université de Montréal, Montreal, Quebec, Canada H3T 1C5; Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, Quebec, Canada G1V 0A6.
| |
Collapse
|
13
|
Dasilva G, Boller M, Medina I, Storch J. Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake. J Nutr Biochem 2017; 55:68-75. [PMID: 29413491 DOI: 10.1016/j.jnutbio.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 01/31/2023]
Abstract
Previous research showed that increasing the proportion of docosahexaenoic acid (DHA) in marine lipid supplements significantly reduces associated health benefits compared with balanced eicosapentaenoic acid (EPA):DHA supplementation Dasilva et al., 2015 [1]. It was therefore hypothesized that the EPA and DHA molecules might have differential resistance to oxidation during gastric digestion and that the oxidation level achieved could be inversely correlated with intestinal absorption and, hence, with the resultant health benefits. Accordingly, we tested this proposed mechanism of action by investigating the degree of oxidation in the stomach, and the levels of bioaccessible lipids, of varying molar proportions of DHA and EPA (2:1, 1:1 and 1:2) using the dynamic gastrointestinal tract model TIM-1. In addition, small intestine enterocyte absorption and metabolism were simulated by Caco-2 cell monolayers that were incubated with these same varying proportions of DHA and EPA, and comparing oxidized and nonoxidized polyunsaturated fatty acids (PUFAs). The results show an inverse correlation between lipid oxidation products in the stomach and the levels of bioaccessible lipids. The balanced 1:1 EPA:DHA diet resulted in lower oxidation of PUFAs during stomach digestion relative to the other ratios tested. Finally, cell-based studies showed significantly lower assimilation of oxidized EPA and DHA substrates compared to nonoxidized PUFAs, as well as significant differences between the net uptake of EPA and DHA. Overall, the present work suggests that the correct design of diets and/or supplements containing marine lipids can strongly influence the stability and bioaccessibility of PUFAs during gastrointestinal digestion and subsequent absorption. This could modulate their health benefits related with inflammation, oxidative stress and metabolic disorders.
Collapse
Affiliation(s)
- Gabriel Dasilva
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain; Department of Analytical Chemistry, Nutrition and Bromatology and Research Institute for Food Analysis (I.I.A.A.), University of Santiago de Compostela, E-15782, Spain.
| | - Matthew Boller
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Isabel Medina
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), E-36208 Vigo, Spain
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Poquet L, Wooster TJ. Infant digestion physiology and the relevance of in vitro biochemical models to test infant formula lipid digestion. Mol Nutr Food Res 2017; 60:1876-95. [PMID: 27279140 DOI: 10.1002/mnfr.201500883] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 01/30/2023]
Abstract
Lipids play an important role in the diet of preterm and term infants providing a key energy source and essential lipid components for development. While a lot is known about adult lipid digestion, our understanding of infant digestion physiology is still incomplete, the greatest gap being on the biochemistry of the small intestine, particularly the activity and relative importance of the various lipases active in the intestine. The literature has been reviewed to identify the characteristics of lipid digestion of preterm and term infants, but also to better understand the physiology of the infant gastrointestinal tract compared to adults that impacts the absorption of lipids. The main differences are a higher gastric pH, submicellar bile salt concentration, a far more important role of gastric lipases as well as differences at the level of the intestinal barrier. Importantly, the consequences of improper in vitro replication of gastric digestions conditions (pH and lipase specificity) are demonstrated using examples from the most recent of studies. It is true that some animal models could be adapted to study infant lipid digestion physiology, however the ethical relevance of such models is questionable, hence the development of accurate in vitro models is a must. In vitro models that combine up to date knowledge of digestion biochemistry with intestinal cells in culture are the best choice to replicate digestion and absorption in infant population, this would allow the adaptation of infant formula for a better digestion and absorption of dietary lipids by preterm and term infants.
Collapse
Affiliation(s)
- Laure Poquet
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne 26, Switzerland
| | - Tim J Wooster
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne 26, Switzerland
| |
Collapse
|
15
|
Khan S, Cabral PD, Schilling WP, Schmidt ZW, Uddin AN, Gingras A, Madhavan SM, Garvin JL, Schelling JR. Kidney Proximal Tubule Lipoapoptosis Is Regulated by Fatty Acid Transporter-2 (FATP2). J Am Soc Nephrol 2017; 29:81-91. [PMID: 28993506 DOI: 10.1681/asn.2017030314] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/08/2017] [Indexed: 11/03/2022] Open
Abstract
Albuminuria and tubular atrophy are among the highest risks for CKD progression to ESRD. A parsimonious mechanism involves leakage of albumin-bound nonesterified fatty acids (NEFAs) across the damaged glomerular filtration barrier and subsequent reabsorption by the downstream proximal tubule, causing lipoapoptosis. We sought to identify the apical proximal tubule transporter that mediates NEFA uptake and cytotoxicity. We observed transporter-mediated uptake of fluorescently labeled NEFA in cultured proximal tubule cells and microperfused rat proximal tubules, with greater uptake from the apical surface than from the basolateral surface. Protein and mRNA expression analyses revealed that kidney proximal tubules express transmembrane fatty acid transporter-2 (FATP2), encoded by Slc27a2, but not the other candidate transporters CD36 and free fatty acid receptor 1. Kidney FATP2 localized exclusively to proximal tubule epithelial cells along the apical but not the basolateral membrane. Treatment of mice with lipidated albumin to induce proteinuria caused a decrease in the proportion of tubular epithelial cells and an increase in the proportion of interstitial space in kidneys from wild-type but not Slc27a2-/- mice. Ex vivo microperfusion and in vitro experiments with NEFA-bound albumin at concentrations that mimic apical proximal tubule exposure during glomerular injury revealed significantly reduced NEFA uptake and palmitate-induced apoptosis in microperfused Slc27a2-/- proximal tubules and Slc27a2-/- or FATP2 shRNA-treated proximal tubule cell lines compared with wild-type or scrambled oligonucleotide-treated cells, respectively. We conclude that FATP2 is a major apical proximal tubule NEFA transporter that regulates lipoapoptosis and may be an amenable target for the prevention of CKD progression.
Collapse
Affiliation(s)
- Shenaz Khan
- Department of Medicine, The MetroHealth System and
| | - Pablo D Cabral
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | - William P Schilling
- Department of Medicine, The MetroHealth System and.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | | | - Asif N Uddin
- Department of Medicine, The MetroHealth System and
| | | | | | - Jeffrey L Garvin
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
16
|
Rodriguez Sawicki L, Bottasso Arias NM, Scaglia N, Falomir Lockhart LJ, Franchini GR, Storch J, Córsico B. FABP1 knockdown in human enterocytes impairs proliferation and alters lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1587-1594. [PMID: 28919479 DOI: 10.1016/j.bbalip.2017.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 09/06/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022]
Abstract
Fatty Acid-Binding Proteins (FABPs) are abundant intracellular proteins that bind long chain fatty acids (FA) and have been related with inmunometabolic diseases. Intestinal epithelial cells express two isoforms of FABPs: liver FABP (LFABP or FABP1) and intestinal FABP (IFABP or FABP2). They are thought to be associated with intracellular dietary lipid transport and trafficking towards diverse cell fates. But still their specific functions are not well understood. To study FABP1's functions, we generated an FABP1 knockdown model in Caco-2 cell line by stable antisense cDNA transfection (FABP1as). In these cells FABP1 expression was reduced up to 87%. No compensatory increase in FABP2 was observed, strengthening the idea of differential functions of both isoforms. In differentiated FABP1as cells, apical administration of oleate showed a decrease in its initial uptake rate and in long term incorporation compared with control cells. FABP1 depletion also reduced basolateral oleate secretion. The secreted oleate distribution showed an increase in FA/triacylglyceride ratio compared to control cells, probably due to FABP1's role in chylomicron assembly. Interestingly, FABP1as cells exhibited a dramatic decrease in proliferation rate. A reduction in oleate uptake as well as a decrease in its incorporation into the phospholipid fraction was observed in proliferating cells. Overall, our studies indicate that FABP1 is essential for proper lipid metabolism in differentiated enterocytes, particularly concerning fatty acids uptake and its basolateral secretion. Moreover, we show that FABP1 is required for enterocyte proliferation, suggesting that it may contribute to intestinal homeostasis.
Collapse
Affiliation(s)
- Luciana Rodriguez Sawicki
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia María Bottasso Arias
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Natalia Scaglia
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Lisandro Jorge Falomir Lockhart
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gisela Raquel Franchini
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ, USA
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Perazzolo S, Hirschmugl B, Wadsack C, Desoye G, Lewis RM, Sengers BG. The influence of placental metabolism on fatty acid transfer to the fetus. J Lipid Res 2017; 58:443-454. [PMID: 27913585 PMCID: PMC5282960 DOI: 10.1194/jlr.p072355] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
The factors determining fatty acid transfer across the placenta are not fully understood. This study used a combined experimental and computational modeling approach to explore placental transfer of nonesterified fatty acids and identify the rate-determining processes. Isolated perfused human placenta was used to study the uptake and transfer of 13C-fatty acids and the release of endogenous fatty acids. Only 6.2 ± 0.8% of the maternal 13C-fatty acids taken up by the placenta was delivered to the fetal circulation. Of the unlabeled fatty acids released from endogenous lipid pools, 78 ± 5% was recovered in the maternal circulation and 22 ± 5% in the fetal circulation. Computational modeling indicated that fatty acid metabolism was necessary to explain the discrepancy between uptake and delivery of 13C-fatty acids. Without metabolism, the model overpredicts the fetal delivery of 13C-fatty acids 15-fold. Metabolic rate was predicted to be the main determinant of uptake from the maternal circulation. The microvillous membrane had a greater fatty acid transport capacity than the basal membrane. This study suggests that incorporation of fatty acids into placental lipid pools may modulate their transfer to the fetus. Future work needs to focus on the factors regulating fatty acid incorporation into lipid pools.
Collapse
Affiliation(s)
- Simone Perazzolo
- Faculty of Engineering and Environment, University of Southampton, SO17 1BJ, UK
- Institute for Life Sciences Southampton, University of Southampton, SO17 1BJ, UK
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria
| | - Rohan M Lewis
- Institute for Life Sciences Southampton, University of Southampton, SO17 1BJ, UK
- Bioengineering Research Group, Faculty of Medicine, University of Southampton, SO17 1BJ, UK
| | - Bram G Sengers
- Faculty of Engineering and Environment, University of Southampton, SO17 1BJ, UK
- Institute for Life Sciences Southampton, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
18
|
Wang B, Rong X, Duerr MA, Hermanson DJ, Hedde PN, Wong JS, Vallim TQDA, Cravatt BF, Gratton E, Ford DA, Tontonoz P. Intestinal Phospholipid Remodeling Is Required for Dietary-Lipid Uptake and Survival on a High-Fat Diet. Cell Metab 2016; 23:492-504. [PMID: 26833026 PMCID: PMC4785086 DOI: 10.1016/j.cmet.2016.01.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/02/2015] [Accepted: 12/30/2015] [Indexed: 01/31/2023]
Abstract
Phospholipids are important determinants of membrane biophysical properties, but the impact of membrane acyl chain composition on dietary-lipid absorption is unknown. Here we demonstrate that the LXR-responsive phospholipid-remodeling enzyme Lpcat3 modulates intestinal fatty acid and cholesterol absorption and is required for survival on a high-fat diet. Mice lacking Lpcat3 in the intestine thrive on carbohydrate-based chow but lose body weight rapidly and become moribund on a triglyceride-rich diet. Lpcat3-dependent incorporation of polyunsaturated fatty acids into phospholipids is required for the efficient transport of dietary lipids into enterocytes. Furthermore, loss of Lpcat3 amplifies the production of gut hormones, including GLP-1 and oleoylethanolamide, in response to high-fat feeding, contributing to the paradoxical cessation of food intake in the setting of starvation. These results reveal that membrane phospholipid composition is a gating factor in passive lipid absorption and implicate LXR-Lpcat3 signaling in a gut-brain feedback loop that couples absorption to food intake.
Collapse
Affiliation(s)
- Bo Wang
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Rong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark A Duerr
- Department of Biochemistry and Molecular Biology, Center for Cardiovascular Research, Saint Louis University, St. Louis, MO 63104, USA
| | - Daniel J Hermanson
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Per Niklas Hedde
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Jinny S Wong
- Electron Microscopy Core, Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Thomas Q de Aguiar Vallim
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Enrico Gratton
- Laboratory of Fluorescence Dynamics, Biomedical Engineering Department, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Center for Cardiovascular Research, Saint Louis University, St. Louis, MO 63104, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Esteves A, Knoll-Gellida A, Canclini L, Silvarrey MC, André M, Babin PJ. Fatty acid binding proteins have the potential to channel dietary fatty acids into enterocyte nuclei. J Lipid Res 2015; 57:219-32. [PMID: 26658423 DOI: 10.1194/jlr.m062232] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/13/2022] Open
Abstract
Intracellular lipid binding proteins, including fatty acid binding proteins (FABPs) 1 and 2, are highly expressed in tissues involved in the active lipid metabolism. A zebrafish model was used to demonstrate differential expression levels of fabp1b.1, fabp1b.2, and fabp2 transcripts in liver, anterior intestine, and brain. Transcription levels of fabp1b.1 and fabp2 in the anterior intestine were upregulated after feeding and modulated according to diet formulation. Immunofluorescence and electron microscopy immunodetection with gold particles localized these FABPs in the microvilli, cytosol, and nuclei of most enterocytes in the anterior intestinal mucosa. Nuclear localization was mostly in the interchromatin space outside the condensed chromatin clusters. Native PAGE binding assay of BODIPY-FL-labeled FAs demonstrated binding of BODIPY-FLC(12) but not BODIPY-FLC(5) to recombinant Fabp1b.1 and Fabp2. The binding of BODIPY-FLC(12) to Fabp1b.1 was fully displaced by oleic acid. In vivo experiments demonstrated, for the first time, that intestinal absorption of dietary BODIPY-FLC(12) was followed by colocalization of the labeled FA with Fabp1b and Fabp2 in the nuclei. These data suggest that dietary FAs complexed with FABPs are able to reach the enterocyte nucleus with the potential to modulate nuclear activity.
Collapse
Affiliation(s)
- Adriana Esteves
- Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Anja Knoll-Gellida
- University Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), F-33615 Pessac, France INSERM, U1211, F-33076, Bordeaux, France
| | - Lucia Canclini
- Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | | | - Michèle André
- University Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), F-33615 Pessac, France INSERM, U1211, F-33076, Bordeaux, France
| | - Patrick J Babin
- University Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), F-33615 Pessac, France INSERM, U1211, F-33076, Bordeaux, France
| |
Collapse
|
20
|
Han L, Yang Q, Shen T, Qing J, Wang J. Lymphatic transport of orally administered probucol-loaded mPEG-DSPE micelles. Drug Deliv 2015; 23:1955-61. [DOI: 10.3109/10717544.2015.1028600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
21
|
Goncalves A, Gleize B, Roi S, Nowicki M, Dhaussy A, Huertas A, Amiot MJ, Reboul E. Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. J Nutr Biochem 2013; 24:1751-7. [DOI: 10.1016/j.jnutbio.2013.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/15/2013] [Accepted: 03/25/2013] [Indexed: 10/26/2022]
|
22
|
Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva Pinto M. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 2013; 75:588-602. [PMID: 22897361 DOI: 10.1111/j.1365-2125.2012.04425.x] [Citation(s) in RCA: 486] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 07/12/2012] [Indexed: 12/27/2022] Open
Abstract
Bioavailability is a key step in ensuring bioefficacy of bioactive food compounds or oral drugs. Bioavailability is a complex process involving several different stages: liberation, absorption, distribution, metabolism and elimination phases (LADME). Bioactive food compounds, whether derived from various plant or animal sources, need to be bioavailable in order to exert any beneficial effects. Through a better understanding of the digestive fate of bioactive food compounds we can impact the promotion of health and improvement of performance. Many varying factors affect bioavailability, such as bioaccessibility, food matrix effect, transporters, molecular structures and metabolizing enzymes. Bioefficacy may be improved through enhanced bioavailability. Therefore, several technologies have been developed to improve the bioavailability of xenobiotics, including structural modifications, nanotechnology and colloidal systems. Due to the complex nature of food bioactive compounds and also to the different mechanisms of absorption of hydrophilic and lipophilic bioactive compounds, unravelling the bioavailability of food constituents is challenging. Among the food sources discussed during this review, coffee, tea, citrus fruit and fish oil were included as sources of food bioactive compounds (e.g. (poly)phenols and polyunsaturated fatty acids (PUFAs)) since they are examples of important ingredients for the food industry. Although there are many studies reporting on bioavailability and bioefficacy of these bioactive food components, understanding their interactions, metabolism and mechanism of action still requires extensive work. This review focuses on some of the major factors affecting the bioavailability of the aforementioned bioactive food compounds.
Collapse
Affiliation(s)
- Maarit J Rein
- Nutrient Bioavailability Group, Nestle Research Center, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
23
|
In Vitro Lipolysis and Intestinal Transport of β-Arteether-Loaded Lipid-Based Drug Delivery Systems. Pharm Res 2013; 30:2694-705. [DOI: 10.1007/s11095-013-1094-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/28/2013] [Indexed: 11/29/2022]
|
24
|
Gürsoy RN, Çevik Ö. Design, characterization andin vitroevaluation of SMEDDS containing an anticancer peptide, linear LyP-1. Pharm Dev Technol 2013; 19:486-90. [DOI: 10.3109/10837450.2013.795170] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Maestre R, Douglass JD, Kodukula S, Medina I, Storch J. Alterations in the intestinal assimilation of oxidized PUFAs are ameliorated by a polyphenol-rich grape seed extract in an in vitro model and Caco-2 cells. J Nutr 2013; 143:295-301. [PMID: 23325921 PMCID: PMC3713019 DOI: 10.3945/jn.112.160101] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The (n-3) PUFAs 20:5 (n-3) (EPA) and 22:6 (n-3) (DHA) are thought to benefit human health. The presence of prooxidant compounds in foods, however, renders them susceptible to oxidation during both storage and digestion. The development of oxidation products during digestion and the potential effects on intestinal PUFA uptake are incompletely understood. In the present studies, we examined: (1) the development and bioaccessibility of lipid oxidation products in the gastrointestinal lumen during active digestion of fatty fish using the in vitro digestive tract TNO Intestinal Model-1 (TIM-1); (2) the mucosal cell uptake and metabolism of oxidized compared with unoxidized PUFAs using Caco-2 intestinal cells; and 3) the potential to limit the development of oxidation products in the intestine by incorporating antioxidant polyphenols in food. We found that during digestion, the development of oxidation products occurs in the stomach compartment, and increased amounts of oxidation products became bioaccessible in the jejunal and ileal compartments. Inclusion of a polyphenol-rich grape seed extract (GSE) during the digestion decreased the amounts of oxidation products in the stomach compartment and intestinal dialysates (P < 0.05). In Caco-2 intestinal cells, the uptake of oxidized (n-3) PUFAs was ~10% of the uptake of unoxidized PUFAs (P < 0.05) and addition of GSE or epigallocatechin gallate protected against the development of oxidation products, resulting in increased uptake of PUFAs (P < 0.05). These results suggest that addition of polyphenols during active digestion can limit the development of (n-3) PUFA oxidation products in the small intestine lumen and thereby promote intestinal uptake of the beneficial, unoxidized, (n-3) PUFAs.
Collapse
Affiliation(s)
- Rodrigo Maestre
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain.
| | - John D. Douglass
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Sarala Kodukula
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Isabel Medina
- Department of Seafood Chemistry, Instituto de Investigaciones Marinas, Vigo, Spain; and
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|
26
|
Le Maux S, Giblin L, Croguennec T, Bouhallab S, Brodkorb A. β-Lactoglobulin as a molecular carrier of linoleate: characterization and effects on intestinal epithelial cells in vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9476-9483. [PMID: 22924475 DOI: 10.1021/jf3028396] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The dairy protein β-lactoglobulin (βlg) is known to bind hydrophobic ligands such as fatty acids. In the present work, we investigated the biological activity in vitro of linoleate once complexed to bovine βlg. Binding of linoleate (C18:2) to bovine βlg was achieved by heating at 60 °C for 30 min at pH 7.4, resulting in a linoleate/βlg molar binding stoichiometry of 1.1, 2.1, and 3.4. Two types of binding sites were determined by ITC titrations. Binding of linoleate induced the formation of covalent dimers and trimers of βlg. The LD(50) on Caco-2 cells after 24 h was 58 μM linoleate. However, cell viability was unaffected when 200 μM linoleate was presented to the Caco-2 cells as part of the βlg complex. The Caco-2 cells did not increase mRNA transcript levels of long chain fatty acid transport genes, FATP4 and FABPpm, or increase levels of the cAMP signal, in response to the presence of 50 μM linoleate alone or as part of the βlg complex. Therefore, it is proposed that βlg can act as a molecular carrier and alter the bioaccessibility of linoleate/linoleic acid.
Collapse
|
27
|
Uptake of conjugated linolenic acids and conversion to cis-9, trans-11-or trans-9, trans-11-conjugated linoleic acids in Caco-2 cells. Br J Nutr 2012; 109:57-64. [PMID: 22472138 DOI: 10.1017/s0007114512000608] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Dietary oils containing large amounts of conjugated linolenic acids (CLnA) may be regarded as a source of conjugated linoleic acids (CLA), which have been suspected to bear health-promoting properties. Indeed, CLnA can be converted into CLA in mammals. The objective of the present study was to investigate the uptake of CLnA and their metabolism into CLA in Caco-2 cells, as a validated in vitro model of the intestinal barrier. Caco-2 cells were incubated for 24 h in the presence of either α-eleostearic, β-eleostearic, catalpic or punicic acid. We first observed that Caco-2 cells take these CLnA up at different rates and then convert them but with varying efficiency depending on the structure of the Δ13 double bond. Finally, the distribution of CLnA between neutral lipids (NL) and phospholipids appeared to be linked to their number of trans double bonds: the higher the number, the higher the accumulation in the NL fraction.
Collapse
|
28
|
Buhrke T, Merkel R, Lengler I, Lampen A. Absorption and metabolism of cis-9,trans-11-CLA and of its oxidation product 9,11-furan fatty acid by Caco-2 cells. Lipids 2012; 47:435-42. [PMID: 22249938 PMCID: PMC3311842 DOI: 10.1007/s11745-012-3653-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
Abstract
Furan fatty acids (furan-FA) can be formed by auto-oxidation of conjugated linoleic acids (CLA) and may therefore be ingested when CLA-containing foodstuff is consumed. Due to the presence of a furan ring structure, furan-FA may have toxic properties, however, these substances are toxicologically not well characterized so far. Here we show that 9,11-furan-FA, the oxidation product of the major CLA isomer cis-9,trans-11-CLA (c9,t11-CLA), is not toxic to human intestinal Caco-2 cells up to a level of 100 μM. Oil-Red-O staining indicated that 9,11-furan-FA as well as c9,t11-CLA and linoleic acid are taken up by the cells and stored in the form of triglycerides in lipid droplets. Chemical analysis of total cellular lipids revealed that 9,11-furan-FA is partially elongated probably by the enzymatic activity of cellular fatty acid elongases whereas c9,t11-CLA is partially converted to other isomers such as c9,c11-CLA or t9,t11-CLA. In the case of 9,11-furan-FA, there is no indication for any modification or activation of the furan ring system. From these results, we conclude that 9,11-furan-FA has no properties of toxicological relevance at least for Caco-2 cells which serve as a model for enterocytes of the human small intestine.
Collapse
Affiliation(s)
- Thorsten Buhrke
- Department of Food Safety, Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany.
| | | | | | | |
Collapse
|
29
|
|
30
|
Do K, Jeun J, Houng SJ, Jun HJ, Lee JH, Jia Y, Lee SJ. Soybean (Glycine max L. Merr.) hexane extracts inhibit cellular fatty acid uptake by reducing the expression of fatty acid transporters. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0032-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Reboul E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier JF, Jourdheuil-Rahmani D, Dufour C, Collet X, Borel P. Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol Nutr Food Res 2011; 55:691-702. [PMID: 21280209 DOI: 10.1002/mnfr.201000553] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/02/2010] [Accepted: 12/06/2010] [Indexed: 11/09/2022]
Abstract
SCOPE It is assumed that vitamin D is absorbed by passive diffusion. However, since cholecalciferol (vitamin D(3) ) and cholesterol display similar structures, we hypothesized that common absorption pathways may exist. METHODS AND RESULTS Cholecalciferol apical transport was first examined in human Caco-2 and transfected Human embryonic kidney (HEK) cells. Cholecalciferol uptake was then valuated ex vivo and in vivo, using either wild-type mice, mice overexpressing Scavenger Receptor class B type I (SR-BI) at the intestinal level or mice treated or not with ezetimibe. Cholecalciferol uptake was concentration-, temperature- and direction-dependent, and was significantly impaired by a co-incubation with cholesterol or tocopherol in Caco-2 cells. Moreover Block Lipid Transport-1 (SR-BI inhibitor) and ezetimibe glucuronide (Niemann-Pick C1 Like 1 inhibitor) significantly decreased cholecalciferol transport. Transfection of HEK cells with SR-BI, Cluster Determinant 36 and Niemann-Pick C1 Like 1 significantly enhanced vitamin D uptake, which was significantly decreased by the addition of Block Lipid Transport-1, sulfo-N-succinimidyl oleate (Cluster Determinant 36 inhibitor) or ezetimibe glucuronide, respectively. Similar results were obtained in mouse intestinal explants. In vivo, cholecalciferol uptake in proximal intestinal fragments was 60% higher in mice overexpressing SR-BI than in wild-type mice (p<0.05), while ezetimibe effect remained non-significant. CONCLUSION These data show for the first time that vitamin D intestinal absorption is not passive only but involves, at least partly, some cholesterol transporters.
Collapse
Affiliation(s)
- Emmanuelle Reboul
- INRA, UMR1260 Nutriments Lipidiques et Prévention des Maladies Métaboliques, Marseille, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Selvaraj V, Asano A, Page JL, Nelson JL, Kothapalli KSD, Foster JA, Brenna JT, Weiss RS, Travis AJ. Mice lacking FABP9/PERF15 develop sperm head abnormalities but are fertile. Dev Biol 2010; 348:177-89. [PMID: 20920498 DOI: 10.1016/j.ydbio.2010.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/22/2022]
Abstract
The male germ cell-specific fatty acid-binding protein 9 (FABP9/PERF15) is the major component of the murine sperm perforatorium and perinuclear theca. Based on its cytoskeletal association and sequence homology to myelin P2 (FABP8), it has been suggested that FABP9 tethers sperm membranes to the underlying cytoskeleton. Furthermore, its upregulation in apoptotic testicular germ cells and its increased phosphorylation status during capacitation suggested multiple important functions for FABP9. Therefore, we investigated specific functions for FABP9 by means of targeted gene disruption in mice. FABP9(-/-) mice were viable and fertile. Phenotypic analysis showed that FABP9(-/-) mice had significant increases in sperm head abnormalities (~8% greater than their WT cohorts); in particular, we observed the reduction or absence of the characteristic structural element known as the "ventral spur" in ~10% of FABP9(-/-) sperm. However, deficiency of FABP9 affected neither membrane tethering to the perinuclear theca nor the fatty acid composition of sperm. Moreover, epididymal sperm numbers were not affected in FABP9(-/-) mice. Therefore, we conclude that FABP9 plays only a minor role in providing the murine sperm head its characteristic shape and is not absolutely required for spermatogenesis or sperm function.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Boudry G, David ES, Douard V, Monteiro IM, Le Huërou-Luron I, Ferraris RP. Role of intestinal transporters in neonatal nutrition: carbohydrates, proteins, lipids, minerals, and vitamins. J Pediatr Gastroenterol Nutr 2010; 51:380-401. [PMID: 20808244 DOI: 10.1097/mpg.0b013e3181eb5ad6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To support rapid growth and a high metabolic rate, infants require enormous amounts of nutrients. The small intestine must have the complete array of transporters that absorb the nutrients released from digested food. Failure of intestinal transporters to function properly often presents symptoms as "failure to thrive" because nutrients are not absorbed and as diarrhea because unabsorbed nutrients upset luminal osmolality or become substrates of intestinal bacteria. We enumerate the nutrients that constitute human milk and various infant milk formulas, explain their importance in neonatal nutrition, then describe for each nutrient the transporter(s) that absorbs it from the intestinal lumen into the enterocyte cytosol and from the cytosol to the portal blood. More than 100 membrane and cytosolic transporters are now thought to facilitate absorption of minerals and vitamins as well as products of digestion of the macronutrients carbohydrates, proteins, and lipids. We highlight research areas that should yield information needed to better understand the important role of these transporters during normal development.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Institut National de Recherche Agronomique, UMR1079 Système d'Elevage, Nutrition, Animale et Humaine, St-Gilles, France
| | | | | | | | | | | |
Collapse
|
34
|
Niot I, Poirier H, Tran TTT, Besnard P. Intestinal absorption of long-chain fatty acids: evidence and uncertainties. Prog Lipid Res 2010; 48:101-15. [PMID: 19280719 DOI: 10.1016/j.plipres.2009.01.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the two last decades, cloning of proteins responsible for trafficking and metabolic fate of long-chain fatty acids (LCFA) in gut has provided new insights on cellular and molecular mechanisms involved in fat absorption. To this systematic cloning period, functional genomics has succeeded in providing a new set of surprises. Disruption of several genes, thought to play a crucial role in LCFA absorption, did not lead to clear phenotypes. This observation raises the question of the real physiological role of lipid-binding proteins and lipid-metabolizing enzymes expressed in enterocytes. The goal of this review is to analyze present knowledge concerning the main steps of intestinal fat absorption from LCFA uptake to lipoprotein release and to assess their impact on health.
Collapse
Affiliation(s)
- Isabelle Niot
- Physiologie de la Nutrition, UMR Inserm U866, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation, Université de Bourgogne, 1, Esplanade Erasme, F-21000 Dijon, France.
| | | | | | | |
Collapse
|
35
|
Riihimäki L, Galkin A, Finel M, Heikura J, Valkonen K, Virtanen V, Laaksonen R, Slotte JP, Vuorela P. Transport properties of bovine and reindeer β-lactoglobulin in the Caco-2 cell model. Int J Pharm 2008; 347:1-8. [PMID: 17658229 DOI: 10.1016/j.ijpharm.2007.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/12/2007] [Accepted: 06/13/2007] [Indexed: 11/30/2022]
Abstract
Beta-lactoglobulin (betaLG) is a protein that binds ligands like fatty acids and retinol into the hydrophobic pocket. Our purpose was to study bovine and reindeer betaLG as transporter molecules and compare their transport properties across Caco-2 cell membrane. The reindeer betaLG has more valuable binder characteristics than bovine betaLG because it has only one genetic phenotype and it seems to exhibit better immunological properties. The permeation of betaLG in Caco-2 cells was evaluated by immunoblotting, and the permeation of the model substances retinol, palmitic acid and cholesterol with and without betaLG was determined using [(3)H]-labelled ligands. Both bovine and reindeer betaLG were able to pass across a Caco-2 cell monolayer similarly. Unbound and betaLG-bound [(3)H]retinol and [(3)H]palmitic acid were equally transported across the Caco-2 cell layer, whereas [(3)H]cholesterol could not pass across Caco-2 cells with or without betaLG at any of the studied circumstances. Thus, the bovine and reindeer milk betaLG is not a suitable protein to enhance transport of ligands across the Caco-2 cell membrane, used for predicting intestinal absorption.
Collapse
Affiliation(s)
- Laura Riihimäki
- Drug Discovery and Development Technology Center, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Vasiluk L, Pinto LJ, Tsang WS, Gobas FAPC, Eickhoff C, Moore MM. The uptake and metabolism of benzo[a]pyrene from a sample food substrate in an in vitro model of digestion. Food Chem Toxicol 2007; 46:610-8. [PMID: 17959292 DOI: 10.1016/j.fct.2007.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 08/23/2007] [Accepted: 09/04/2007] [Indexed: 11/28/2022]
Abstract
Food ingestion is the major route of exposure to many hydrophobic organic contaminants (HOCs) such as benzo[a]pyrene (BaP). It has been proposed that food-bound HOCs may become bioavailable after their mobilization by gastrointestinal fluids. The purpose of this research was to measure the uptake efficiency of [(14)C]-BaP bound to skim milk powder using an in vitro model of gastrointestinal digestion followed by sorption to human enterocytes (Caco-2 cells). Neutralization of intestinal fluids released [(14)C]-BaP into the soluble fraction. Ageing of benzo[a]pyrene onto skim milk for 6 months significantly decreased the mobilized fraction but did not affect the amount of benzo[a]pyrene taken up into Caco-2 cells. Hence, significant differences in aqueous phase concentrations may not always be reflected in significant differences in uptake. We obtained evidence that the digestion/uptake of skim milk lipids is accompanied by the diffusive uptake of BaP (the fat flush hypothesis) as trans-cellular transfer of BaP was favoured in the apical to basolateral direction. These data support the theory that non-polar substances including HOCs are preferentially transferred from the lumen into the bloodstream and provide indirect evidence that the uptake is related to the fugacity gradient created by the unidirectional uptake of dietary lipids.
Collapse
Affiliation(s)
- Luba Vasiluk
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | | | | | |
Collapse
|
37
|
Thumser AE, Storch J. Characterization of a BODIPY-labeled fluorescent fatty acid analogue. Binding to fatty acid-binding proteins, intracellular localization, and metabolism. Mol Cell Biochem 2007; 299:67-73. [PMID: 16645726 DOI: 10.1007/s11010-005-9041-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The BODIPY-labeled fatty acid analogues are a useful addition to the tools employed to study the cellular uptake and metabolism of lipids. In this study, we show that BODIPY FL C(16) binds to purified liver and intestinal fatty acid-binding proteins with high affinity at a site similar to that for the physiological fatty acid oleic acid. Further, in human intestinal Caco-2 cells BODIPY FL C(16) co-localizes extensively with mitochondria, endoplasmic reticulum/Golgi, and L-FABP. Virtually no esterification of BODIPY FL C(16) was observed under the experimental conditions employed. We conclude that BODIPY FL C(16) may be a useful tool for studying the distribution and function of FABPs in a cellular environment.
Collapse
Affiliation(s)
- Alfred E Thumser
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | | |
Collapse
|
38
|
Tsuzuki W. Absorption Properties of Micellar Lipid Metabolites into Caco2 Cells. Lipids 2007; 42:613-9. [PMID: 17582542 DOI: 10.1007/s11745-007-3076-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 05/10/2007] [Indexed: 11/25/2022]
Abstract
To elucidate the absorption characteristics of dietary lipids in the human intestine, we investigated the cellular uptake of lipid metabolites using a differential monolayer of the Caco2 cells. As lipid metabolites, several free fatty acids and 2-monoacylglycerols, were formed a mixed micelle by bile salts and lysophospholipids and they were supplied to the Caco2 cells. To estimate the effect of the mixed micelles on the permeability of cells' membranes during incubation with the mixed micelles, the transepitherial electrical resistance (TEER) value was monitored, and no pronounced changes of TEER was detected. This suggested that mixed micelles did not affect their cellular properties of the barrier measured by TEER. The lipid metabolites transferred from the mixed micelle into the Caco2 cells were determined quantitatively by an enzymatic colorimetric method and were done by thin layer chromatography (TLC) for a species of acylglycerols. These highly sensitive methods enabled us to monitor the transepithelial transports of various kinds of non-isotope-labeled various lipid metabolites. Newly re-synthesized triacylglycerols were accumulated in Caco2 cells after 30 min incubation with the mixed micelles, and their amounts increased gradually for 4 h. The secretion of re-esterified triacylglycerols into a basolateral medium from the Caco2 cells began at 2 h after the mixed micelles were added to the apical medium. The intake of external lipid metabolites by the Caco2 cells were evaluated by an initial 2-h incubation with the mixed micelles. For example, 2-monomyristin and 2-monopalmitin were more rapidly transferred into the Caco2 cells from the mixed micelles than 2-monocaprin was. On the other hand, the absorption rates of capric acid, lauric acid and myristic acid by the cells were larger than those of stearic acid and oleic acid. It revealed that the side-chain structure of these lipid metabolites affected their absorption by the Caco2 cells. The results of this study suggested that the Caco2 cell monolayer could be a useful model for investigating the involvement of dietary lipids in the transepithelial absorption in the human intestine.
Collapse
Affiliation(s)
- Wakako Tsuzuki
- National Food Research Institute, Kannondai 2-1-12, Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
39
|
Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem 2007; 282:19493-501. [PMID: 17507371 DOI: 10.1074/jbc.m703330200] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CD36, a membrane protein that facilitates fatty acid uptake, is highly expressed in the intestine on the luminal surface of enterocytes. Cd36 null (Cd36(-/-)) mice exhibit impaired chylomicron secretion but no overall lipid absorption defect. Because chylomicron production is most efficient proximally we examined whether CD36 function is important for proximal lipid absorption. CD36 levels followed a steep decreasing gradient along three equal-length, proximal to distal intestinal segments (S1-S3). Enterocytes isolated from the small intestines of Cd36(-/-) mice, when compared with wild type counterparts, exhibited reduced uptake of fatty acid (50%) and cholesterol (60%) in S1. The high affinity fatty acid uptake component was missing in Cd36(-/-) cells. Fatty acid incorporation into triglyceride and triglyceride secretion were also reduced in Cd36(-/-) S1 enterocytes. In vivo, proximal absorption was monitored using mass spectrometry from oleic acid enrichment of S1 lipids, 90 min (active absorption) and 5 h (steady state) after intragastric olive oil (70% triolein). Oleate enrichment was 50% reduced at 90 min in Cd36(-/-) tissue consistent with defective uptake whereas no differences were measured at 5 h. In Cd36(-/-) S1, mRNA for L-fabp, Dgat1, and apoA-IV was reduced. Protein levels for FATP4, SR-BI, and NPC1L1 were similar, whereas those for apoB48 and apoA-IV were significantly lower. A large increase in NPC1L1 was observed in Cd36(-/-) S2 and S3. The findings support the role of CD36 in proximal absorption of dietary fatty acid and cholesterol for optimal chylomicron formation, whereas CD36-independent mechanisms predominate in distal segments.
Collapse
Affiliation(s)
- Fatiha Nassir
- Department of Medicine, Division of Nutritional Science, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
40
|
Salvini S, Charbonnier M, Defoort C, Alquier C, Lairon D. Functional characterization of three clones of the human intestinal Caco-2 cell line for dietary lipid processing. Br J Nutr 2007. [DOI: 10.1079/bjn2001507] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We aimed to improve the use of the human intestinal Caco-2 cell line for studying dietary lipid and cholesterol processing by using isolated pure clones (). Three clones (TC7, PD7 and PF11) were grown as monolayers on semi-permeable filters and compared for cell viability, fatty acid and cholesterol apical uptake or basolateral secretion, apolipoprotein B-48 basolateral secretion and 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity. The TC7 clone showed the best viability upon apical incubation with mixed micelles and should be preferred for routine work. Short-term (3·0 h) rates of apical uptake of cholesterol were not different with the three clones, whereas the rate of apical uptake of oleic acid (18 : 1) was lower (P<0·05) with PF11 (250·6 nmol/mg) and the basolateral secretion of cholesterol and oleic acid was lower with the TC7 clone (0·40 and 29·1 nmol/mg respectively). The secretion of apolipoprotein B-48 basolaterally was about 2-fold lower than from PD7 clone. The basal levels of HMG-CoA reductase activity were significantly different (P<0·05; TC7>PF11>PD7). The down-regulation of the enzyme activity was moderate (range 13·8–21·0 %) and comparable in the presence of apical micellar cholesterol, but was much marked upon basolateral incubation with LDL (range 34·0–53·6 %), especially for the PD7 clone. In conclusion, the Caco-2 clones characterized here proved to be particularly suitable for studying lipid nutrients processing. Because these three clones exhibit some different metabolic capabilities, they provide a new tool to study intestinal response to lipid nutrients.
Collapse
|
41
|
Ménez C, Buyse M, Farinotti R, Barratt G. Inward Translocation of the Phospholipid Analogue Miltefosine across Caco-2 Cell Membranes Exhibits Characteristics of a Carrier-mediated Process. Lipids 2007; 42:229-40. [PMID: 17393228 DOI: 10.1007/s11745-007-3026-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
Miltefosine (hexadecylphosphocholine, HePC) is the first effective oral agent for the treatment of visceral leishmaniasis. The characteristics of HePC incorporation into the human intestinal epithelial cell line Caco-2 were investigated in order to understand its oral absorption mechanism. The results provide evidence for the involvement of a carrier-mediated mechanism, since the association of HePC at the apical pole of Caco-2 cells was (1) saturable as a function of time with a rapid initial incorporation over 5 min followed by a more gradual increase; (2) saturable as a function of concentration over the range studied (2-200 microM) with a saturable component which followed Michaelis-Menten kinetics (apparent K (m) 15.7 micromol/L, V (max) 39.2 nmol/mg protein/h) and a nonspecific diffusion component; (3) partially inhibited by low temperature and ATP depletion, indicating the temperature and energy-dependence of the uptake process. Moreover, we demonstrated, by an albumin back-extraction method, that HePC is internalized via translocation from the outer to the inner leaflet of the plasma membrane and that HePC may preferentially diffuse through intact raft microdomains. In conclusion, our results suggest that incorporation of HePC at the apical membrane of Caco-2 cells may occur through a passive diffusion followed by a translocation in the inner membrane leaflet through an active carrier-mediated mechanism.
Collapse
Affiliation(s)
- Cécile Ménez
- Laboratoire de Physico-chimie, Pharmacotechnie et Biopharmacie, UMR CNRS 8612 Faculté de Pharmacie, Univ. Paris-Sud 11, IFR 141, Tour D5, 2éme étage, 5 rue J.B. Clément, Châtenay-Malabry, Cedex 92296, France
| | | | | | | |
Collapse
|
42
|
Yang Y, Chen M, Georgeson KE, Harmon CM. Mechanism of oleoylethanolamide on fatty acid uptake in small intestine after food intake and body weight reduction. Am J Physiol Regul Integr Comp Physiol 2007; 292:R235-41. [PMID: 16902188 DOI: 10.1152/ajpregu.00270.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The increase in the prevalence of human obesity highlights the need to identify molecular and cellular mechanisms involved in control of feeding and energy balance. Oleoylethanolamide (OEA), an endogenous lipid produced primarily in the small intestine, has been identified to play an important role in the regulation of animal food intake and body weight. Previous studies indicated that OEA activates peroxisome proliferator-activated receptor-α, which is required to mediate the effects of appetite suppression, reduces blood lipid levels, and enhances peripheral fatty acid catabolism. However, the effect of OEA on enterocyte function is unclear. In this study, we have examined the effect of OEA on intestinal fatty acid uptake and FAT/CD36 expression in vivo and in vitro. We intraperitoneally administered OEA to rats and examined FAT/CD36 mRNA level and fatty acid uptake in enterocytes isolated from the proximal small intestine, as well as in adipocytes. Our results indicate that OEA treatment significantly increased FAT/CD36 mRNA expression in intestinal mucosa and isolated jejunal enterocytes. In addition, we also found that OEA treatment significantly increases fatty acid uptake in isolated enterocytes in vitro. These results suggest that in addition to appetite regulation, OEA may regulate body weight by altered peripheral lipid metabolism, including increased lipolysis in adipocytes and enhanced fatty acid uptake in enterocytes, both in conjunction with increased expression of FAT/CD36. This study may have important implications in understanding the mechanism of OEA in the regulation of fatty acid absorption in human physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | | | | |
Collapse
|
43
|
Vaz JDS, Deboni F, Azevedo MJD, Gross JL, Zelmanovitz T. Ácidos graxos como marcadores biológicos da ingestão de gorduras. REV NUTR 2006. [DOI: 10.1590/s1415-52732006000400008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Os ácidos graxos da dieta têm sido associados ao desenvolvimento de doenças crônicas. Os inquéritos alimentares, utilizados em estudos clínicos e epidemiológicos para estimativa da ingestão de nutrientes, apresentam limitações na coleta de informações. Nesse sentido, a utilização da composição de ácidos graxos do plasma e do tecido adiposo como marcadores do tipo de gordura alimentar pode fornecer uma medida mais acurada da ingestão de gorduras. Esta pesquisa tem como objetivo evidenciar aspectos metabólicos de alguns ácidos graxos e o papel como marcadores da ingestão de gorduras, e apresentar as técnicas analíticas empregadas na sua determinação. A biópsia do tecido adiposo, com determinação da composição de ácidos graxos, fornece uma informação a longo prazo da ingestão de gorduras, enquanto que a avaliação da composição das frações lipídicas séricas representa a ingestão a curto e médio prazos. Os ácidos graxos essenciais, os ácidos graxos saturados com número ímpar de carbonos (15:0 e 17:0) e os ácidos graxos trans, por não apresentarem síntese endógena, são utilizados como marcadores biológicos da ingestão de gorduras ou de sua própria ingestão. As principais técnicas utilizadas para a determinação de ácidos graxos são a cromatografia gasosa e a cromatografia líquida de alta precisão. No presente momento, o uso de marcadores biológicos para a ingestão de gorduras, associados aos inquéritos alimentares, representa a forma mais completa de avaliação da ingestão de gorduras.
Collapse
Affiliation(s)
| | | | - Mirela Jobim de Azevedo
- Universidade Federal do Rio Grande do Sul, Brasil; Universidade Federal do Rio Grande do Sul, Brasil
| | - Jorge Luiz Gross
- Universidade Federal do Rio Grande do Sul, Brasil; Hospital de Clínicas de Porto Alegre, Brasil
| | - Themis Zelmanovitz
- Universidade Federal do Rio Grande do Sul, Brasil; Universidade Federal do Rio Grande do Sul, Brasil; Hospital de Clínicas de Porto Alegre, Brasil
| |
Collapse
|
44
|
Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv 2005; 3:97-110. [PMID: 16370943 DOI: 10.1517/17425247.3.1.97] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The supersaturatable self-emulsifying drug delivery system (S-SEDDS) represents a new thermodynamically stable formulation approach wherein it is designed to contain a reduced amount of a surfactant and a water-soluble cellulosic polymer (or other polymers) to prevent precipitation of the drug by generating and maintaining a supersaturated state in vivo. The S-SEDDS formulations can result in enhanced oral absorption as compared with the related self-emulsifying drug delivery systems (SEDDS) formulation and the reduced surfactant levels may minimise gastrointestinal surfactant side effects.
Collapse
Affiliation(s)
- Ping Gao
- PGRD, Pfizer, Inc., 301 Henrietta Street, Kalamazoo, MI 49007, USA.
| | | |
Collapse
|
45
|
Reboul E, Abou L, Mikail C, Ghiringhelli O, André M, Portugal H, Jourdheuil-Rahmani D, Amiot MJ, Lairon D, Borel P. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). Biochem J 2005; 387:455-61. [PMID: 15554873 PMCID: PMC1134974 DOI: 10.1042/bj20040554] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The carotenoid lutein is thought to play a role in the human eye and to protect against age-related macular degeneration. Lutein transport in the human intestine has not been characterized. We examined lutein transport processes using Caco-2 TC-7 monolayers as a model for human intestinal epithelium. Purified lutein was mixed with phospholipids, lysophospholipids, cholesterol, mono-olein, oleic acid and taurocholate to obtain lutein-rich mixed micelles that mimicked those found under physiological conditions. The micelles were added to the apical side of Caco-2 TC-7 cell monolayers for 30 min or 3 h at 37 degrees C. Absorbed lutein, i.e. the sum of lutein recovered in the scraped cells and in the basolateral chamber, was quantified by HPLC. Transport rate was measured (i) as a function of time (from 15 to 60 min), (ii) as a function of micellar lutein concentration (from 1.5 to 15 microM), (iii) at 4 degrees C, (iv) in the basolateral to apical direction, (v) after trypsin pretreatment, (vi) in the presence of beta-carotene and/or lycopene, (vii) in the presence of increasing concentrations of antibody against SR-BI (scavenger receptor class B type 1) and (viii) in the presence of increasing concentrations of a chemical inhibitor of the selective transfer of lipids mediated by SR-BI, i.e. BLT1 (blocks lipid transport 1). The rate of transport of lutein as a function of time and as a function of concentration was saturable. It was significantly lower at 4 degrees C than at 37 degrees C (approx. 50%), in the basal to apical direction than in the opposite direction (approx. 85%), and after trypsin pretreatment (up to 45%). Co-incubation with beta-carotene, but not lycopene, decreased the lutein absorption rate (approx. 20%) significantly. Anti-SR-BI antibody and BLT1 significantly impaired the absorption rate (approx. 30% and 57% respectively). Overall, these results indicate that lutein absorption is, at least partly, protein-mediated and that some lutein is taken up through SR-BI.
Collapse
Affiliation(s)
- Emmanuelle Reboul
- *UMR 476 INSERM, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
- †1260 INRA, Marseille F-13385, France
- ‡Univ Aix-Marseille, Marseille F-13385, France
- §IPHM, Marseille F-13385, France
| | - Lydia Abou
- ∥Service de Chimie Analytique, Faculté de Pharmacie, 27 Bd Jean Moulin, Marseille 13005, France
| | - Céline Mikail
- ∥Service de Chimie Analytique, Faculté de Pharmacie, 27 Bd Jean Moulin, Marseille 13005, France
| | - Odette Ghiringhelli
- *UMR 476 INSERM, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
- †1260 INRA, Marseille F-13385, France
- ‡Univ Aix-Marseille, Marseille F-13385, France
- §IPHM, Marseille F-13385, France
| | - Marc André
- *UMR 476 INSERM, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
- †1260 INRA, Marseille F-13385, France
- ‡Univ Aix-Marseille, Marseille F-13385, France
- §IPHM, Marseille F-13385, France
| | - Henri Portugal
- ∥Service de Chimie Analytique, Faculté de Pharmacie, 27 Bd Jean Moulin, Marseille 13005, France
| | - Dominique Jourdheuil-Rahmani
- *UMR 476 INSERM, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
- †1260 INRA, Marseille F-13385, France
- ‡Univ Aix-Marseille, Marseille F-13385, France
- §IPHM, Marseille F-13385, France
- ¶Laboratoire de Biochimie et Sémiologie Cliniques, Faculté de Pharmacie, 27 Bd Jean Moulin, Marseille, 13005, France
| | - Marie-Josèphe Amiot
- *UMR 476 INSERM, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
- †1260 INRA, Marseille F-13385, France
- ‡Univ Aix-Marseille, Marseille F-13385, France
- §IPHM, Marseille F-13385, France
| | - Denis Lairon
- *UMR 476 INSERM, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
- †1260 INRA, Marseille F-13385, France
- ‡Univ Aix-Marseille, Marseille F-13385, France
- §IPHM, Marseille F-13385, France
| | - Patrick Borel
- *UMR 476 INSERM, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
- †1260 INRA, Marseille F-13385, France
- ‡Univ Aix-Marseille, Marseille F-13385, France
- §IPHM, Marseille F-13385, France
- To whom correspondence should be addressed, at UMR 476 INSERM/1260 INRA (email )
| |
Collapse
|
46
|
Linderborg (née Yli-Jokipii) KM, Kallio HPT. Triacylglycerol Fatty Acid Positional Distribution and Postprandial Lipid Metabolism. FOOD REVIEWS INTERNATIONAL 2005. [DOI: 10.1080/fri-200061623] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Murota K, Storch J. Uptake of micellar long-chain fatty acid and sn-2-monoacylglycerol into human intestinal Caco-2 cells exhibits characteristics of protein-mediated transport. J Nutr 2005; 135:1626-30. [PMID: 15987840 DOI: 10.1093/jn/135.7.1626] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-chain fatty acid and sn-2-monoacylglycerol (2-MG) are the digestive products of dietary triacylglycerol (TG) hydrolysis. Although fatty acid uptake into the enterocyte has been examined widely, less is known about 2-MG uptake, and few studies have mimicked the physiologic conditions present in the postprandial situation. In this study, the cellular uptake of oleic acid and 2-monoolein, presented in taurocholate micellar solution, was examined in human intestinal Caco-2 cells to model the postprandial intestinal milieu. Initial uptake of oleic acid and 2-MG displayed a saturable function of their monomer concentrations, suggesting that fatty acid and 2-MG uptake may be protein-mediated processes at low unbound concentrations of lipid. The initial rate of oleate uptake was faster and the apparent Km was lower than values for 2-MG. Unlabeled oleic acid and, to a lesser extent, unlabeled 2-MG, inhibited the uptakes of both [3H]oleic acid and [3H]2-monoolein, suggesting competitive uptake. The nonphysiologic isomer sn-1-MG had effects similar to 2-MG, whereas the intermediate digestive product, diacylglycerol (DG), did not inhibit either oleate or 2-monoolein uptake. These results suggest that in the postprandial state, fatty acid and 2-MG derived from dietary TG are transported into the enterocyte, at least in part, via a protein-mediated pathway that is shared by both lipids, but not by the intermediate digestive product, DG.
Collapse
Affiliation(s)
- Kaeko Murota
- Department of Nutritional Sciences, Cook College, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
48
|
Peretti N, Marcil V, Drouin E, Levy E. Mechanisms of lipid malabsorption in Cystic Fibrosis: the impact of essential fatty acids deficiency. Nutr Metab (Lond) 2005; 2:11. [PMID: 15869703 PMCID: PMC1134666 DOI: 10.1186/1743-7075-2-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 05/03/2005] [Indexed: 12/26/2022] Open
Abstract
Transport mechanisms, whereby alimentary lipids are digested and packaged into small emulsion particles that enter intestinal cells to be translocated to the plasma in the form of chylomicrons, are impaired in cystic fibrosis. The purpose of this paper is to focus on defects that are related to intraluminal and intracellular events in this life-limiting genetic disorder. Specific evidence is presented to highlight the relationship between fat malabsorption and essential fatty acid deficiency commonly found in patients with cystic fibrosis that are often related to the genotype. Given the interdependency of pulmonary disease, pancreatic insufficiency and nutritional status, greater attention should be paid to the optimal correction of fat malabsorption and essential fatty acid deficiency in order to improve the quality of life and extend the life span of patients with cystic fibrosis.
Collapse
Affiliation(s)
- N Peretti
- Department of Nutrition, CHU-Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - V Marcil
- Department of Nutrition, CHU-Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - E Drouin
- Department of Pediatrics, CHU-Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| | - E Levy
- Department of Nutrition, CHU-Sainte-Justine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
49
|
Pei Z, Fraisl P, Berger J, Jia Z, Forss-Petter S, Watkins PA. Mouse very long-chain Acyl-CoA synthetase 3/fatty acid transport protein 3 catalyzes fatty acid activation but not fatty acid transport in MA-10 cells. J Biol Chem 2004; 279:54454-62. [PMID: 15469937 DOI: 10.1074/jbc.m410091200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The family of proteins that includes very long-chain acyl-CoA synthetases (ACSVL) consists of six members. These enzymes have also been designated fatty acid transport proteins. We cloned full-length mouse Acsvl3 cDNA and characterized its protein product ACSVL3/fatty acid transport protein 3. The predicted amino acid sequence contains two highly conserved motifs characteristic of acyl-CoA synthetases. Northern blot analysis revealed that the mouse Acsvl3 mRNA is highly expressed in adrenal gland, testis, and ovary, with lower expression in the brain of adult mice. A developmental Northern blot revealed that Acsvl3 mRNA levels were significantly higher in embryonic mouse brain (embryonic days 12-14) than in newborn or adult mice, suggesting a possible role in nervous system development. Immunohistochemistry revealed high ACSVL3 expression in adrenal cortical cells, spermatocytes and interstitial cells of the testis, theca cells of the ovary, cerebral cortical neurons, and cerebellar Purkinje cells. Endogenous ACSVL3 was found primarily in mitochondria of MA-10 and Neuro2a cells by both Western blot analysis of subcellular fractions and immunofluorescence analysis. In MA-10 cells, loss-of-function studies using RNA interference confirmed that endogenous ACSVL3 is an acyl-CoA synthetase capable of activating both long-chain (C16:0) and very long-chain (C24:0) fatty acids. However, despite decreased acyl-CoA synthetase activity, initial rates of fatty acid uptake were unaffected by knockdown of Acsvl3 expression in MA-10 cells. These studies cast doubt on the designation of ACSVL3 as a fatty acid transport protein.
Collapse
Affiliation(s)
- Zhengtong Pei
- Kennedy Krieger Research Institute and Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
50
|
Murota K, Terao J. Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism. Arch Biochem Biophys 2003; 417:12-7. [PMID: 12921774 DOI: 10.1016/s0003-9861(03)00284-4] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Quercetin is a typical flavonoid ubiquitously present in fruits and vegetables, and its antioxidant effect is implied to be helpful for human health. The bioavailability of quercetin glycosides should be clarified, because dietary quercetin is mostly present as its glycoside form. Although quercetin glycosides are subject to deglycosidation by enterobacteria for the absorption at large intestine, small intestine acts as an effective absorption site for glucose-bound glycosides (quercertin glucosides). This is because small intestinal cells possess a glucoside-hydrolyzing activity and their glucose transport system is capable of participating in the glucoside absorption. A study using a cultured cell model for intestinal absorption explains that the hydrolysis of the glucosides accelerates their absorption in the small intestine. Small intestine is also recognized as the site for metabolic conversion of quercetin and other flavonoids as it possesses enzymatic activity of glucuronidation and sulfation. Modulation of the intestinal absorption and metabolism may be beneficial for regulating the biological effects of dietary quercetin.
Collapse
Affiliation(s)
- Kaeko Murota
- Department of Nutrition, School of Medicine, The University of Tokushima, Kuramoto-cho 3, Tokushima 770-8503, Japan
| | | |
Collapse
|