1
|
Xu Y, Wang Y, Chen Y, Wang Y, Zhang S, Luo G, Cui F, Du T, Liu Z. TCMD: A High-Throughput and Rapid Method for Screening Antimicrobial Ingredients from Renewable Bio-Based Resources. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502156. [PMID: 40289662 DOI: 10.1002/advs.202502156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Indexed: 04/30/2025]
Abstract
Antibiotic resistance and pathogenic infections underscore the importance and urgency of novel control agent development. Bio-based products represent a rich reservoir of antimicrobial agents. However, traditional strategies for screening new active compounds are time-consuming, costly, and limited by accessible resources. Here, transcriptomic combinatorial molecular docking (TCMD), a novel method enabling fast identification of antimicrobial components in complex mixtures without requiring prior knowledge is proposed. Results show that, in eukaryotic microorganism systems, TCMD demonstrates superior performances in screening antifungal compounds within hydrothermal liquefaction aqueous. The high accuracy is confirmed by molecular dynamics simulation, antifungal experiments, and RT-qPCR (reverse transcription real-time quantitative polymerase chain reaction) analysis. Furthermore, TCMD exhibits cross-system applicability, as evidenced by successful antibacterial substances screening in prokaryotic systems using plant essential oil and traditional Chinese medicine from previous studies. Compared to conventional approaches, TCMD is estimated to be 3-20 times faster and ≈10 times more cost-effective, while maintaining high-throughput capacity for analyzing thousands of compounds simultaneously. These demonstrate that TCMD is a rapid, precise, and flexible method for antimicrobial compound discovery, significantly accelerating the development of new antibacterial agents.
Collapse
Affiliation(s)
- Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
- Water & Energy Technologies (WET) Lab, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| | - Yongming Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, 261325, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
2
|
Rousseau DL, Ishigami I, Yeh SR. Structural and functional mechanisms of cytochrome c oxidase. J Inorg Biochem 2025; 262:112730. [PMID: 39276716 PMCID: PMC11896598 DOI: 10.1016/j.jinorgbio.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Cytochrome c oxidase (CcO) is the terminal enzyme in the electron transfer chain in mitochondria. It catalyzes the four-electron reduction of O2 to H2O and harnesses the redox energy to drive unidirectional proton translocation against a proton electrochemical gradient. A great deal of research has been conducted to comprehend the molecular properties of CcO. However, the mechanism by which the oxygen reduction reaction is coupled to proton translocation remains poorly understood. Here, we review the chemical properties of a variety of key oxygen intermediates of bovine CcO (bCcO) revealed by time-resolved resonance Raman spectroscopy and the structural features of the enzyme uncovered by serial femtosecond crystallography, an innovative technique that allows structural determination at room temperature without radiation damage. The implications of these data on the proton translocation mechanism are discussed.
Collapse
Affiliation(s)
- Denis L Rousseau
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
3
|
Nie LS, Liu XC, Yu L, Liu AK, Sun LJ, Gao SQ, Lin YW. Rational Design of an Artificial Metalloenzyme by Constructing a Metal-Binding Site Close to the Heme Cofactor in Myoglobin. Inorg Chem 2024; 63:18531-18535. [PMID: 39311200 DOI: 10.1021/acs.inorgchem.4c03093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
In this study, we constructed a metal-binding site close to the heme cofactor in myoglobin (Mb) by covalently attaching a nonnative metal-binding ligand of bipyridine to Cys46 through the F46C mutation in the heme distal site. The X-ray structure of the designed enzyme, termed F46C-mBpy Mb, was solved in the Cu(II)-bound form, which revealed the formation of a heterodinuclear center of Cu-His-H2O-heme. Cu(II)-F46C-mBpy Mb exhibits not only nitrite reductase reactivity but also cascade reaction activity involving both hydrolysis and oxidation. Furthermore, F46C-mBpy Mb displays Mn-peroxidase activity by the oxidation of Mn2+ to Mn3+ using H2O2 as an oxidant. This study shows that the construction of a nonnative metal-binding site close to the heme cofactor is a convenient approach to creating an artificial metalloenzyme with a heterodinuclear center that confers multiple functions.
Collapse
Affiliation(s)
- Lv-Suo Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Ao-Kun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
4
|
Awala SI, Gwak JH, Kim Y, Jung MY, Dunfield PF, Wagner M, Rhee SK. Nitrous oxide respiration in acidophilic methanotrophs. Nat Commun 2024; 15:4226. [PMID: 38762502 PMCID: PMC11102522 DOI: 10.1038/s41467-024-48161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024] Open
Abstract
Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (N2O) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen. We study two strains that possess N2O reductase genes: Methylocella tundrae T4 and Methylacidiphilum caldifontis IT6. We show that N2O respiration supports growth of Methylacidiphilum caldifontis at an extremely acidic pH of 2.0, exceeding the known physiological pH limits for microbial N2O consumption. Methylocella tundrae simultaneously consumes N2O and CH4 in suboxic conditions, indicating robustness of its N2O reductase activity in the presence of O2. Furthermore, in O2-limiting conditions, the amount of CH4 oxidized per O2 reduced increases when N2O is added, indicating that Methylocella tundrae can direct more O2 towards methane monooxygenase. Thus, our results demonstrate that some methanotrophs can respire N2O independently or simultaneously with O2, which may facilitate their growth and survival in dynamic environments. Such metabolic capability enables these bacteria to simultaneously reduce the release of the key greenhouse gases CO2, CH4, and N2O.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
- Center for Ecology and Environmental Toxicology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Yongman Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Man-Young Jung
- Interdisciplinary Graduate Programme in Advance Convergence Technology and Science, Jeju National University, Jeju, Republic of Korea
- Department of Science Education, Jeju National University, Jeju, Republic of Korea
- Jeju Microbiome Center, Jeju National University, Jeju, Republic of Korea
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
- Department of Chemistry and Bioscience, Center for Microbial Communities, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
5
|
Christoffer C, Harini K, Archit G, Kihara D. Assembly of Protein Complexes in and on the Membrane with Predicted Spatial Arrangement Constraints. J Mol Biol 2024; 436:168486. [PMID: 38336197 PMCID: PMC10942765 DOI: 10.1016/j.jmb.2024.168486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Gupta Archit
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Safari C, Ghosh S, Andersson R, Johannesson J, Båth P, Uwangue O, Dahl P, Zoric D, Sandelin E, Vallejos A, Nango E, Tanaka R, Bosman R, Börjesson P, Dunevall E, Hammarin G, Ortolani G, Panman M, Tanaka T, Yamashita A, Arima T, Sugahara M, Suzuki M, Masuda T, Takeda H, Yamagiwa R, Oda K, Fukuda M, Tosha T, Naitow H, Owada S, Tono K, Nureki O, Iwata S, Neutze R, Brändén G. Time-resolved serial crystallography to track the dynamics of carbon monoxide in the active site of cytochrome c oxidase. SCIENCE ADVANCES 2023; 9:eadh4179. [PMID: 38064560 PMCID: PMC10708180 DOI: 10.1126/sciadv.adh4179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.
Collapse
Affiliation(s)
- Cecilia Safari
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Rebecka Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Jonatan Johannesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Owens Uwangue
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Peter Dahl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Doris Zoric
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Emil Sandelin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Eriko Nango
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rie Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Per Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Elin Dunevall
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Giorgia Ortolani
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Tomoyuki Tanaka
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Ayumi Yamashita
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Toshi Arima
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Michihiro Sugahara
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mamoru Suzuki
- Laboratory of Supramolecular Crystallography, Research Center for Structural and Functional Proteomics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Hanae Takeda
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Raika Yamagiwa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Kazumasa Oda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masahiro Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Hisashi Naitow
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - So Iwata
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-40530 Gothenburg, Sweden
| |
Collapse
|
7
|
Christoffer C, Harini K, Archit G, Kihara D. Assembly of Protein Complexes In and On the Membrane with Predicted Spatial Arrangement Constraints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563303. [PMID: 37961264 PMCID: PMC10634698 DOI: 10.1101/2023.10.20.563303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Membrane proteins play crucial roles in various cellular processes, and their interactions with other proteins in and on the membrane are essential for their proper functioning. While an increasing number of structures of more membrane proteins are being determined, the available structure data is still sparse. To gain insights into the mechanisms of membrane protein complexes, computational docking methods are necessary due to the challenge of experimental determination. Here, we introduce Mem-LZerD, a rigid-body membrane docking algorithm designed to take advantage of modern membrane modeling and protein docking techniques to facilitate the docking of membrane protein complexes. Mem-LZerD is based on the LZerD protein docking algorithm, which has been constantly among the top servers in many rounds of CAPRI protein docking assessment. By employing a combination of geometric hashing, newly constrained by the predicted membrane height and tilt angle, and model scoring accounting for the energy of membrane insertion, we demonstrate the capability of Mem-LZerD to model diverse membrane protein-protein complexes. Mem-LZerD successfully performed unbound docking on 13 of 21 (61.9%) transmembrane complexes in an established benchmark, more than shown by previous approaches. It was additionally tested on new datasets of 44 transmembrane complexes and 92 peripheral membrane protein complexes, of which it successfully modeled 35 (79.5%) and 15 (16.3%) complexes respectively. When non-blind orientations of peripheral targets were included, the number of successes increased to 54 (58.7%). We further demonstrate that Mem-LZerD produces complex models which are suitable for molecular dynamics simulation. Mem-LZerD is made available at https://lzerd.kiharalab.org.
Collapse
Affiliation(s)
- Charles Christoffer
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
| | - Kannan Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gupta Archit
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
8
|
Baserga F, Storm J, Schlesinger R, Heberle J, Stripp ST. The catalytic reaction of cytochrome c oxidase probed by in situ gas titrations and FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149000. [PMID: 37516233 DOI: 10.1016/j.bbabio.2023.149000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Cytochrome c oxidase (CcO) is a transmembrane heme‑copper metalloenzyme that catalyzes the reduction of O2 to H2O at the reducing end of the respiratory electron transport chain. To understand this reaction, we followed the conversion of CcO from Rhodobacter sphaeroides between several active-ready and carbon monoxide-inhibited states via attenuated total reflection Fourier-transform infrared (ATR FTIR) difference spectroscopy. Utilizing a novel gas titration setup, we prepared the mixed-valence, CO-inhibited R2CO state as well as the fully-reduced R4 and R4CO states and induced the "active ready" oxidized state OH. These experiments are performed in the dark yielding FTIR difference spectra exclusively triggered by exposure to O2, the natural substrate of CcO. Our data demonstrate that the presence of CO at heme a3 does not impair the catalytic oxidation of CcO when the cycle starts from the fully-reduced states. Interestingly, when starting from the R2CO state, the release of the CO ligand upon purging with inert gas yield a product that is indistinguishable from photolysis-induced states. The observed changes at heme a3 in the catalytic binuclear center (BNC) result from the loss of CO and are unrelated to electronic excitation upon illumination. Based on our experiments, we re-evaluate the assignment of marker bands that appear in time-resolved photolysis and perfusion-induced experiments on CcO.
Collapse
Affiliation(s)
- Federico Baserga
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Julian Storm
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany; Technische Universität Berlin, Division of Physical Chemistry, Strasse des 17. Juni 115, D-10623 Berlin, Germany.
| |
Collapse
|
9
|
Siletsky SA. Investigation of the Mechanism of Membrane Potential Generation by Heme-Copper Respiratory Oxidases in a Real Time Mode. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1513-1527. [PMID: 38105021 DOI: 10.1134/s0006297923100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 12/19/2023]
Abstract
Heme-copper respiratory oxidases are highly efficient molecular machines. These membrane enzymes catalyze the final step of cellular respiration in eukaryotes and many prokaryotes: the transfer of electrons from cytochromes or quinols to molecular oxygen and oxygen reduction to water. The free energy released in this redox reaction is converted by heme-copper respiratory oxidases into the transmembrane gradient of the electrochemical potential of hydrogen ions H+). Heme-copper respiratory oxidases have a unique mechanism for generating H+, namely, a redox-coupled proton pump. A combination of direct electrometric method for measuring the kinetics of membrane potential generation with the methods of prestationary kinetics and site-directed mutagenesis in the studies of heme-copper oxidases allows to obtain a unique information on the translocation of protons inside the proteins in real time. The review summarizes the data of studies employing time-resolved electrometry to decipher the mechanisms of functioning of these important bioenergetic enzymes.
Collapse
Affiliation(s)
- Sergei A Siletsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Han F, Hu Y, Wu M, He Z, Tian H, Zhou L. Structures of Tetrahymena thermophila respiratory megacomplexes on the tubular mitochondrial cristae. Nat Commun 2023; 14:2542. [PMID: 37248254 DOI: 10.1038/s41467-023-38158-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Tetrahymena thermophila, a classic ciliate model organism, has been shown to possess tubular mitochondrial cristae and highly divergent electron transport chain involving four transmembrane protein complexes (I-IV). Here we report cryo-EM structures of its ~8 MDa megacomplex IV2 + (I + III2 + II)2, as well as a ~ 10.6 MDa megacomplex (IV2 + I + III2 + II)2 at lower resolution. In megacomplex IV2 + (I + III2 + II)2, each CIV2 protomer associates one copy of supercomplex I + III2 and one copy of CII, forming a half ring-shaped architecture that adapts to the membrane curvature of mitochondrial cristae. Megacomplex (IV2 + I + III2 + II)2 defines the relative position between neighbouring half rings and maintains the proximity between CIV2 and CIII2 cytochrome c binding sites. Our findings expand the current understanding of divergence in eukaryotic electron transport chain organization and how it is related to mitochondrial morphology.
Collapse
Affiliation(s)
- Fangzhu Han
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Yiqi Hu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Mengchen Wu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Zhaoxiang He
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Hongtao Tian
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Long Zhou
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Department of Critical Care Medicine of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
11
|
Azarkina NV, Borisov VB, Oleynikov IP, Sudakov RV, Vygodina TV. Interaction of Terminal Oxidases with Amphipathic Molecules. Int J Mol Sci 2023; 24:ijms24076428. [PMID: 37047401 PMCID: PMC10095113 DOI: 10.3390/ijms24076428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The review focuses on recent advances regarding the effects of natural and artificial amphipathic compounds on terminal oxidases. Terminal oxidases are fascinating biomolecular devices which couple the oxidation of respiratory substrates with generation of a proton motive force used by the cell for ATP production and other needs. The role of endogenous lipids in the enzyme structure and function is highlighted. The main regularities of the interaction between the most popular detergents and terminal oxidases of various types are described. A hypothesis about the physiological regulation of mitochondrial-type enzymes by lipid-soluble ligands is considered.
Collapse
Affiliation(s)
- Natalia V Azarkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| | - Vitaliy B Borisov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| | - Ilya P Oleynikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| | - Roman V Sudakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| | - Tatiana V Vygodina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, 119992 Moscow, Russia
| |
Collapse
|
12
|
The Influence of Calcium on the Growth, Morphology and Gene Regulation in Gemmatimonas phototrophica. Microorganisms 2022; 11:microorganisms11010027. [PMID: 36677319 PMCID: PMC9862903 DOI: 10.3390/microorganisms11010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The bacterium Gemmatimonas phototrophica AP64 isolated from a freshwater lake in the western Gobi Desert represents the first phototrophic member of the bacterial phylum Gemmatimonadota. This strain was originally cultured on agar plates because it did not grow in liquid medium. In contrast, the closely related species G. groenlandica TET16 grows both on solid and in liquid media. Here, we show that the growth of G. phototrophica in liquid medium can be induced by supplementing the medium with 20 mg CaCl2 L-1. When grown at a lower concentration of calcium (2 mg CaCl2 L-1) in the liquid medium, the growth was significantly delayed, cells were elongated and lacked flagella. The elevated requirement for calcium is relatively specific as it can be partially substituted by strontium, but not by magnesium. The transcriptome analysis documented that several groups of genes involved in flagella biosynthesis and transport of transition metals were co-activated after amendment of 20 mg CaCl2 L-1 to the medium. The presented results document that G. phototrophica requires a higher concentration of calcium for its metabolism and growth compared to other Gemmatimonas species.
Collapse
|
13
|
Król S, Fedotovskaya O, Högbom M, Ädelroth P, Brzezinski P. Electron and proton transfer in the M. smegmatis III 2IV 2 supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148585. [PMID: 35753381 DOI: 10.1016/j.bbabio.2022.148585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The M. smegmatis respiratory III2IV2 supercomplex consists of a complex III (CIII) dimer flanked on each side by a complex IV (CIV) monomer, electronically connected by a di-heme cyt. cc subunit of CIII. The supercomplex displays a quinol oxidation‑oxygen reduction activity of ~90 e-/s. In the current work we have investigated the kinetics of electron and proton transfer upon reaction of the reduced supercomplex with molecular oxygen. The data show that, as with canonical CIV, oxidation of reduced CIV at pH 7 occurs in three resolved components with time constants ~30 μs, 100 μs and 4 ms, associated with the formation of the so-called peroxy (P), ferryl (F) and oxidized (O) intermediates, respectively. Electron transfer from cyt. cc to the primary electron acceptor of CIV, CuA, displays a time constant of ≤100 μs, while re-reduction of cyt. cc by heme b occurs with a time constant of ~4 ms. In contrast to canonical CIV, neither the P → F nor the F → O reactions are pH dependent, but the P → F reaction displays a H/D kinetic isotope effect of ~3. Proton uptake through the D pathway in CIV displays a single time constant of ~4 ms, i.e. a factor of ~40 slower than with canonical CIV. The slowed proton uptake kinetics and absence of pH dependence are attributed to binding of a loop from the QcrB subunit of CIII at the D proton pathway of CIV. Hence, the data suggest that function of CIV is modulated by way of supramolecular interactions with CIII.
Collapse
Affiliation(s)
- Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
14
|
Saura P, Riepl D, Frey DM, Wikström M, Kaila VRI. Electric fields control water-gated proton transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 2022; 119:e2207761119. [PMID: 36095184 PMCID: PMC9499568 DOI: 10.1073/pnas.2207761119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Aerobic life is powered by membrane-bound enzymes that catalyze the transfer of electrons to oxygen and protons across a biological membrane. Cytochrome c oxidase (CcO) functions as a terminal electron acceptor in mitochondrial and bacterial respiratory chains, driving cellular respiration and transducing the free energy from O2 reduction into proton pumping. Here we show that CcO creates orientated electric fields around a nonpolar cavity next to the active site, establishing a molecular switch that directs the protons along distinct pathways. By combining large-scale quantum chemical density functional theory (DFT) calculations with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations and atomistic molecular dynamics (MD) explorations, we find that reduction of the electron donor, heme a, leads to dissociation of an arginine (Arg438)-heme a3 D-propionate ion-pair. This ion-pair dissociation creates a strong electric field of up to 1 V Å-1 along a water-mediated proton array leading to a transient proton loading site (PLS) near the active site. Protonation of the PLS triggers the reduction of the active site, which in turn aligns the electric field vectors along a second, "chemical," proton pathway. We find a linear energy relationship of the proton transfer barrier with the electric field strength that explains the effectivity of the gating process. Our mechanism shows distinct similarities to principles also found in other energy-converting enzymes, suggesting that orientated electric fields generally control enzyme catalysis.
Collapse
Affiliation(s)
- Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel M. Frey
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
15
|
Di Trani JM, Moe A, Riepl D, Saura P, Kaila VRI, Brzezinski P, Rubinstein JL. Structural basis of mammalian complex IV inhibition by steroids. Proc Natl Acad Sci U S A 2022; 119:e2205228119. [PMID: 35858451 PMCID: PMC9335260 DOI: 10.1073/pnas.2205228119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/18/2022] [Indexed: 01/21/2023] Open
Abstract
The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.
Collapse
Affiliation(s)
- Justin M. Di Trani
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
| | - Agnes Moe
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel Riepl
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - John L. Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada M5G 1L7
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
16
|
Baserga F, Vorkas A, Crea F, Schubert L, Chen JL, Redlich A, La Greca M, Storm J, Oldemeyer S, Hoffmann K, Schlesinger R, Heberle J. Membrane Protein Activity Induces Specific Molecular Changes in Nanodiscs Monitored by FTIR Difference Spectroscopy. Front Mol Biosci 2022; 9:915328. [PMID: 35769914 PMCID: PMC9234331 DOI: 10.3389/fmolb.2022.915328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
It is well known that lipids neighboring integral membrane proteins directly influence their function. The opposite effect is true as well, as membrane proteins undergo structural changes after activation and thus perturb the lipidic environment. Here, we studied the interaction between these molecular machines and the lipid bilayer by observing changes in the lipid vibrational bands via FTIR spectroscopy. Membrane proteins with different functionalities have been reconstituted into lipid nanodiscs: Microbial rhodopsins that act as light-activated ion pumps (the proton pumps NsXeR and UmRh1, and the chloride pump NmHR) or as sensors (NpSRII), as well as the electron-driven cytochrome c oxidase RsCcO. The effects of the structural changes on the surrounding lipid phase are compared to mechanically induced lateral tension exerted by the light-activatable lipid analogue AzoPC. With the help of isotopologues, we show that the ν(C = O) ester band of the glycerol backbone reports on changes in the lipids’ collective state induced by mechanical changes in the transmembrane proteins. The perturbation of the nanodisc lipids seems to involve their phase and/or packing state. 13C-labeling of the scaffold protein shows that its structure also responds to the mechanical expansion of the lipid bilayer.
Collapse
Affiliation(s)
- Federico Baserga
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Antreas Vorkas
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Fucsia Crea
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Aoife Redlich
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | | | - Julian Storm
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Sabine Oldemeyer
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Kirsten Hoffmann
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger, ; Joachim Heberle,
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger, ; Joachim Heberle,
| |
Collapse
|
17
|
Diversity of Cytochrome c Oxidase Assembly Proteins in Bacteria. Microorganisms 2022; 10:microorganisms10050926. [PMID: 35630371 PMCID: PMC9145763 DOI: 10.3390/microorganisms10050926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022] Open
Abstract
Cytochrome c oxidase in animals, plants and many aerobic bacteria functions as the terminal enzyme of the respiratory chain where it reduces molecular oxygen to form water in a reaction coupled to energy conservation. The three-subunit core of the enzyme is conserved, whereas several proteins identified to function in the biosynthesis of the common family A1 cytochrome c oxidase show diversity in bacteria. Using the model organisms Bacillus subtilis, Corynebacterium glutamicum, Paracoccus denitrificans, and Rhodobacter sphaeroides, the present review focuses on proteins for assembly of the heme a, heme a3, CuB, and CuA metal centers. The known biosynthesis proteins are, in most cases, discovered through the analysis of mutants. All proteins directly involved in cytochrome c oxidase assembly have likely not been identified in any organism. Limitations in the use of mutants to identify and functionally analyze biosynthesis proteins are discussed in the review. Comparative biochemistry helps to determine the role of assembly factors. This information can, for example, explain the cause of some human mitochondrion-based diseases and be used to find targets for new antimicrobial drugs. It also provides information regarding the evolution of aerobic bacteria.
Collapse
|
18
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
19
|
Manoj KM, Gideon DA, Jaeken L. Interaction of membrane-embedded cytochrome b-complexes with quinols: Classical Q-cycle and murburn model. Cell Biochem Funct 2022; 40:118-126. [PMID: 35026863 DOI: 10.1002/cbf.3682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
We recently proposed a diffusible reactive (oxygen) species (DRS/DROS) based function for cytochrome b complexes (CBC) and quinones (Q)/quinols (QH2 ) in the murburn model of bioenergetics. This proposal is in direct conflict with the classical purview of Q-cycle. Via extensive analyses of the structure-function correlations of membrane-quinones/quinols and proteins, we present qualitative and quantitative arguments to infer that the classical model cannot explain the energetics, kinetics, mechanism and probabilistic considerations. Therefore, it is proposed that Q-cycle is neither necessary nor feasible at CBCs. In contrast, we substantiate that the murburn model explains: (a) crucial structural data of CBCs, (b) why quinones/quinols are utilized in bioenergetic membranes, (c) how trans-membrane potential is generated owing to effective charge separation at CBCs, (d) mobility data of O2 , DRS, Q/QH2 , and (e) utility of other reaction/membrane components. Further, the murburn model also accommodates the absence of quinones in anaerobic Archaea, wherein methanophenazines are prevalent. The work mandates that the textbooks and research agendas are refreshed to reflect the new perception. SIGNIFICANCE: The current article must be seen as a critical and detailed analysis of the role and working mechanism of quinone (Q) /quinols (QH2 ) in bioenergetic membranes. In the classical model, QH2 are perceived as highly mobile electron-transport agents that bind and donate electrons to cytochrome b complexes (CBCs), using sophisticated electronic circuitries, in order to recycle Q and pump protons. The classical perception sees radicals (such as Q*-, O2 *-, etc., also called diffusible reactive species, DRS) as wasteful or toxic (patho) physiological manifestations. It is highlighted herein that QH2 has low mobility and matrix has little protons to pump. New insights from the structural analyses of diverse CBCs and quinols, in conjunction with murburn reaction thermodynamics suggest that the electrons from substrates/quinols are effectively utilized via DRS. This perception fits into a much broader analysis of 1 and 2 electron transfers in overall redox metabolism, as recently brought out by the murburn model, wherein DRS are considered obligatory ingredients of physiology. Thus, the findings mandate a reorientation in the pertinent research field.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Biochemistry, Satyamjayatu: The Science & Ethics Foundation, Palakkad, India
| | | | - Laurent Jaeken
- Karel de Grote University College, Antwerp University Association, Campus Hoboken, Hoboken, Belgium
| |
Collapse
|
20
|
Lewis AJO, Hegde RS. A unified evolutionary origin for the ubiquitous protein transporters SecY and YidC. BMC Biol 2021; 19:266. [PMID: 34911545 PMCID: PMC8675477 DOI: 10.1186/s12915-021-01171-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. RESULTS The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY's halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC's sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. CONCLUSIONS SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.
Collapse
Affiliation(s)
- Aaron J O Lewis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
21
|
Moe A, Kovalova T, Król S, Yanofsky DJ, Bott M, Sjöstrand D, Rubinstein JL, Högbom M, Brzezinski P. The respiratory supercomplex from C. glutamicum. Structure 2021; 30:338-349.e3. [PMID: 34910901 DOI: 10.1016/j.str.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Corynebacterium glutamicum is a preferentially aerobic gram-positive bacterium belonging to the phylum Actinobacteria, which also includes the pathogen Mycobacterium tuberculosis. In these bacteria, respiratory complexes III and IV form a CIII2CIV2 supercomplex that catalyzes oxidation of menaquinol and reduction of dioxygen to water. We isolated the C. glutamicum supercomplex and used cryo-EM to determine its structure at 2.9 Å resolution. The structure shows a central CIII2 dimer flanked by a CIV on two sides. A menaquinone is bound in each of the QN and QP sites in each CIII and an additional menaquinone is positioned ∼14 Å from heme bL. A di-heme cyt. cc subunit electronically connects each CIII with an adjacent CIV, with the Rieske iron-sulfur protein positioned with the iron near heme bL. Multiple subunits interact to form a convoluted sub-structure at the cytoplasmic side of the supercomplex, which defines a path for proton transfer into CIV.
Collapse
Affiliation(s)
- Agnes Moe
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Terezia Kovalova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - David J Yanofsky
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dan Sjöstrand
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada.
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| |
Collapse
|
22
|
Ren T, Chi Y, Wang Y, Shi X, Jin X, Jin P. Diversified metabolism makes novel Thauera strain highly competitive in low carbon wastewater treatment. WATER RESEARCH 2021; 206:117742. [PMID: 34653797 DOI: 10.1016/j.watres.2021.117742] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/01/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Thauera, as one of the core members of wastewater biological treatment systems, plays an important role in the process of nitrogen and phosphorus removal from low-carbon source sewage. However, there is a lack of systematic understanding of Thauera's metabolic pathway and genomics. Here we report on the newly isolated Thauera sp. RT1901, which is capable of denitrification using variety carbon sources including aromatic compounds. By comparing the denitrification processes under the conditions of insufficient, adequate and surplus carbon sources, it was found that strain RT1901 could simultaneously use soluble microbial products (SMP) and extracellular polymeric substances (EPS) as electron donors for denitrification. Strain RT1901 was also found to be a denitrifying phosphate accumulating bacterium, able to use nitrate, nitrite, or oxygen as electron acceptors during poly-β-hydroxybutyrate (PHB) catabolism. The annotated genome was used to reconstruct the complete nitrogen and phosphorus metabolism pathways of RT1901. In the process of denitrifying phosphorus accumulation, glycolysis was the only pathway for glycogen metabolism, and the glyoxylic acid cycle replaced the tricarboxylic acid cycle (TCA) to supplement the reduced energy. In addition, the abundance of conventional phosphorus accumulating bacteria decreased significantly and the removal rates of total nitrogen (TN) and chemical oxygen demand (COD) increased after the addition of RT1901 in the low carbon/nitrogen (C/N) ratio of anaerobic aerobic anoxic-sequencing batch reactor (AOA-SBR). This research indicated that the diverse metabolic capabilities of Thauera made it more competitive than other bacteria in the wastewater treatment system.
Collapse
Affiliation(s)
- Tong Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yulei Chi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Yu Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xuan Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xin Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Pengkang Jin
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China; School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China.
| |
Collapse
|
23
|
Siletsky SA, Borisov VB. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. Int J Mol Sci 2021; 22:10852. [PMID: 34639193 PMCID: PMC8509429 DOI: 10.3390/ijms221910852] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Terminal respiratory oxidases are highly efficient molecular machines. These most important bioenergetic membrane enzymes transform the energy of chemical bonds released during the transfer of electrons along the respiratory chains of eukaryotes and prokaryotes from cytochromes or quinols to molecular oxygen into a transmembrane proton gradient. They participate in regulatory cascades and physiological anti-stress reactions in multicellular organisms. They also allow microorganisms to adapt to low-oxygen conditions, survive in chemically aggressive environments and acquire antibiotic resistance. To date, three-dimensional structures with atomic resolution of members of all major groups of terminal respiratory oxidases, heme-copper oxidases, and bd-type cytochromes, have been obtained. These groups of enzymes have different origins and a wide range of functional significance in cells. At the same time, all of them are united by a catalytic reaction of four-electron reduction in oxygen into water which proceeds without the formation and release of potentially dangerous ROS from active sites. The review analyzes recent structural and functional studies of oxygen reduction intermediates in the active sites of terminal respiratory oxidases, the features of catalytic cycles, and the properties of the active sites of these enzymes.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vitaliy B. Borisov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia;
| |
Collapse
|
24
|
Dragelj J, Mroginski MA, Knapp EW. Beating Heart of Cytochrome c Oxidase: The Shared Proton of Heme a3 Propionates. J Phys Chem B 2021; 125:9668-9677. [PMID: 34427096 DOI: 10.1021/acs.jpcb.1c03619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cytochrome c oxidase (CcO) pumps protons from the N-side to the P-side and consumes electrons from the P-side of the mitochondrial membrane driven by energy gained from reduction of dioxygen to water. ATP synthesis uses the resulting proton gradient and electrostatic potential difference. Since the distance a proton travels through CcO is too large for a one-step transfer process, proton-loading sites (PLS) that can carry protons transiently are necessary. One specific pump-active PLS couples to the redox reaction, thus energizing the proton to move across the membrane against electric potential and proton gradient. The PLS should also prevent proton backflow. Therefore, the propionates of the two redox-active hemes in CcO were suggested as PLS candidates although, according to CcO crystal structures, none of the four propionates can be protonated on account of strong H-bonds. Here, we show that modeling the local structure around heme a3 propionates enhances significantly their capability of carrying a proton jointly. This was not possible for the propionates of heme a. The modeled structures are stable in molecular dynamics simulations (MDS) and are energetically similar to the crystal structure. Precise electrostatic energy computations of MDS data are used to estimate the pKA values of all titratable residues in CcO. For the modeled structures, the heme a3 propionates have pKA values high enough to host a proton transiently but not too high to fix the proton permanently. The change in pKA throughout the redox reaction is sufficient to push the proton to the P-side of the membrane and to provide the protons with the necessary amount of energy for ATP synthesis.
Collapse
Affiliation(s)
- Jovan Dragelj
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany.,Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Ernst Walter Knapp
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Fabeckstrasse 36a, 14195 Berlin, Germany
| |
Collapse
|
25
|
Reidelbach M, Zimmer C, Meunier B, Rich PR, Sharma V. Electron Transfer Coupled to Conformational Dynamics in Cell Respiration. Front Mol Biosci 2021; 8:711436. [PMID: 34422907 PMCID: PMC8378252 DOI: 10.3389/fmolb.2021.711436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Cellular respiration is a fundamental process required for energy production in many organisms. The terminal electron transfer complex in mitochondrial and many bacterial respiratory chains is cytochrome c oxidase (CcO). This converts the energy released in the cytochrome c/oxygen redox reaction into a transmembrane proton electrochemical gradient that is used subsequently to power ATP synthesis. Despite detailed knowledge of electron and proton transfer paths, a central question remains as to whether the coupling between electron and proton transfer in mammalian mitochondrial forms of CcO is mechanistically equivalent to its bacterial counterparts. Here, we focus on the conserved span between H376 and G384 of transmembrane helix (TMH) X of subunit I. This conformationally-dynamic section has been suggested to link the redox activity with the putative H pathway of proton transfer in mammalian CcO. The two helix X mutants, Val380Met (V380M) and Gly384Asp (G384D), generated in the genetically-tractable yeast CcO, resulted in a respiratory-deficient phenotype caused by the inhibition of intra-protein electron transfer and CcO turnover. Molecular aspects of these variants were studied by long timescale atomistic molecular dynamics simulations performed on wild-type and mutant bovine and yeast CcOs. We identified redox- and mutation-state dependent conformational changes in this span of TMH X of bovine and yeast CcOs which strongly suggests that this dynamic module plays a key role in optimizing intra-protein electron transfers.
Collapse
Affiliation(s)
- Marco Reidelbach
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Christoph Zimmer
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Peter R Rich
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Helsinki, Finland.,HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
26
|
Brzezinski P, Moe A, Ädelroth P. Structure and Mechanism of Respiratory III-IV Supercomplexes in Bioenergetic Membranes. Chem Rev 2021; 121:9644-9673. [PMID: 34184881 PMCID: PMC8361435 DOI: 10.1021/acs.chemrev.1c00140] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/12/2022]
Abstract
In the final steps of energy conservation in aerobic organisms, free energy from electron transfer through the respiratory chain is transduced into a proton electrochemical gradient across a membrane. In mitochondria and many bacteria, reduction of the dioxygen electron acceptor is catalyzed by cytochrome c oxidase (complex IV), which receives electrons from cytochrome bc1 (complex III), via membrane-bound or water-soluble cytochrome c. These complexes function independently, but in many organisms they associate to form supercomplexes. Here, we review the structural features and the functional significance of the nonobligate III2IV1/2 Saccharomyces cerevisiae mitochondrial supercomplex as well as the obligate III2IV2 supercomplex from actinobacteria. The analysis is centered around the Q-cycle of complex III, proton uptake by CytcO, as well as mechanistic and structural solutions to the electronic link between complexes III and IV.
Collapse
Affiliation(s)
- Peter Brzezinski
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Agnes Moe
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics,
The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
27
|
Degli Esposti M, Moya-Beltrán A, Quatrini R, Hederstedt L. Respiratory Heme A-Containing Oxidases Originated in the Ancestors of Iron-Oxidizing Bacteria. Front Microbiol 2021; 12:664216. [PMID: 34211444 PMCID: PMC8239418 DOI: 10.3389/fmicb.2021.664216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Respiration is a major trait shaping the biology of many environments. Cytochrome oxidase containing heme A (COX) is a common terminal oxidase in aerobic bacteria and is the only one in mammalian mitochondria. The synthesis of heme A is catalyzed by heme A synthase (CtaA/Cox15), an enzyme that most likely coevolved with COX. The evolutionary origin of COX in bacteria has remained unknown. Using extensive sequence and phylogenetic analysis, we show that the ancestral type of heme A synthases is present in iron-oxidizing Proteobacteria such as Acidithiobacillus spp. These bacteria also contain a deep branching form of the major COX subunit (COX1) and an ancestral variant of CtaG, a protein that is specifically required for COX biogenesis. Our work thus suggests that the ancestors of extant iron-oxidizers were the first to evolve COX. Consistent with this conclusion, acidophilic iron-oxidizing prokaryotes lived on emerged land around the time for which there is the earliest geochemical evidence of aerobic respiration on earth. Hence, ecological niches of iron oxidation have apparently promoted the evolution of aerobic respiration.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | - Ana Moya-Beltrán
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia & Vida, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
28
|
Zhu G, Zeng H, Zhang S, Juli J, Tai L, Zhang D, Pang X, Zhang Y, Lam SM, Zhu Y, Peng G, Michel H, Sun F. The Unusual Homodimer of a Heme‐Copper Terminal Oxidase Allows Itself to Utilize Two Electron Donors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guoliang Zhu
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Zeng
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Shuangbo Zhang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Jana Juli
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Linhua Tai
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Danyang Zhang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoyun Pang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Yan Zhang
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| | - Sin Man Lam
- LipidALL Technologies Company Limited Changzhou 213022 Jiangsu Province China
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences No.1 West Beichen Road, Chaoyang District Beijing 100101 China
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guohong Peng
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology Max Planck Institute of Biophysics Max-von Laue-Straβe 3 60438 Frankfurt am Main Germany
| | - Fei Sun
- National Key Laboratory of Biomacromolecules CAS Center for Excellence in Biomacromolecules Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
- College of Life Sciences University of Chinese Academy of Sciences Beijing 100049 China
- Center for Biological Imaging Institute of Biophysics Chinese Academy of Sciences 15 Datun Road, Chaoyang District Beijing 100101 China
| |
Collapse
|
29
|
Zhu G, Zeng H, Zhang S, Juli J, Tai L, Zhang D, Pang X, Zhang Y, Lam SM, Zhu Y, Peng G, Michel H, Sun F. The Unusual Homodimer of a Heme-Copper Terminal Oxidase Allows Itself to Utilize Two Electron Donors. Angew Chem Int Ed Engl 2021; 60:13323-13330. [PMID: 33665933 PMCID: PMC8251803 DOI: 10.1002/anie.202016785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 02/03/2023]
Abstract
The heme-copper oxidase superfamily comprises cytochrome c and ubiquinol oxidases. These enzymes catalyze the transfer of electrons from different electron donors onto molecular oxygen. A B-family cytochrome c oxidase from the hyperthermophilic bacterium Aquifex aeolicus was discovered previously to be able to use both cytochrome c and naphthoquinol as electron donors. Its molecular mechanism as well as the evolutionary significance are yet unknown. Here we solved its 3.4 Å resolution electron cryo-microscopic structure and discovered a novel dimeric structure mediated by subunit I (CoxA2) that would be essential for naphthoquinol binding and oxidation. The unique structural features in both proton and oxygen pathways suggest an evolutionary adaptation of this oxidase to its hyperthermophilic environment. Our results add a new conceptual understanding of structural variation of cytochrome c oxidases in different species.
Collapse
Affiliation(s)
- Guoliang Zhu
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Hui Zeng
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Shuangbo Zhang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jana Juli
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Linhua Tai
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Danyang Zhang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaoyun Pang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Yan Zhang
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| | - Sin Man Lam
- LipidALL Technologies Company LimitedChangzhou213022Jiangsu ProvinceChina
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesNo.1 West Beichen Road, Chaoyang DistrictBeijing100101China
| | - Yun Zhu
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Guohong Peng
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Hartmut Michel
- Department of Molecular Membrane BiologyMax Planck Institute of BiophysicsMax-von Laue-Straβe 360438Frankfurt am MainGermany
| | - Fei Sun
- National Key Laboratory of BiomacromoleculesCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Center for Biological ImagingInstitute of BiophysicsChinese Academy of Sciences15 Datun Road, Chaoyang DistrictBeijing100101China
| |
Collapse
|
30
|
Fedotovskaya O, Albertsson I, Nordlund G, Hong S, Gennis RB, Brzezinski P, Ädelroth P. Identification of a cytochrome bc 1-aa 3 supercomplex in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148433. [PMID: 33932366 DOI: 10.1016/j.bbabio.2021.148433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Respiration is carried out by a series of membrane-bound complexes in the inner mitochondrial membrane or in the cytoplasmic membrane of bacteria. Increasing evidence shows that these complexes organize into larger supercomplexes. In this work, we identified a supercomplex composed of cytochrome (cyt.) bc1 and aa3-type cyt. c oxidase in Rhodobacter sphaeroides. We purified the supercomplex using a His-tag on either of these complexes. The results from activity assays, native and denaturing PAGE, size exclusion chromatography, electron microscopy, optical absorption spectroscopy and kinetic studies on the purified samples support the formation and coupled quinol oxidation:O2 reduction activity of the cyt. bc1-aa3 supercomplex. The potential role of the membrane-anchored cyt. cy as a component in supercomplexes was also investigated.
Collapse
Affiliation(s)
- Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ingrid Albertsson
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Gustav Nordlund
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Sangjin Hong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
31
|
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021; 50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heme-copper oxidases (HCO), nitric oxide reductases (NOR), and sulfite reductases (SiR) catalyze the multi-electron and multi-proton reductions of O2, NO, and SO32-, respectively. Each of these reactions is important to drive cellular energy production through respiratory metabolism and HCO, NOR, and SiR evolved to contain heteronuclear active sites containing heme/copper, heme/nonheme iron, and heme-[4Fe-4S] centers, respectively. The complexity of the structures and reactions of these native enzymes, along with their large sizes and/or membrane associations, make it challenging to fully understand the crucial structural features responsible for the catalytic properties of these active sites. In this review, we summarize progress that has been made to better understand these heteronuclear metalloenzymes at the molecular level though study of the native enzymes along with insights gained from biomimetic models comprising either small molecules or proteins. Further understanding the reaction selectivity of these enzymes is discussed through comparisons of their similar heteronuclear active sites, and we offer outlook for further investigations.
Collapse
Affiliation(s)
- Christopher J Reed
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA.
| | - Quan N Lam
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA
| | - Evan N Mirts
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA. and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urban, IL 61801, USA and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
32
|
Kruse F, Nguyen AD, Dragelj J, Heberle J, Hildebrandt P, Mroginski MA, Weidinger IM. A Resonance Raman Marker Band Characterizes the Slow and Fast Form of Cytochrome c Oxidase. J Am Chem Soc 2021; 143:2769-2776. [PMID: 33560128 DOI: 10.1021/jacs.0c10767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cytochrome c oxidase (CcO) in its as-isolated form is known to exist in a slow and fast form, which differ drastically in their ability to bind oxygen and other ligands. While preparation methods have been established that yield either the fast or the slow form of the protein, the underlying structural differences have not been identified yet. Here, we have performed surface enhanced resonance Raman (SERR) spectroscopy of CcO immobilized on electrodes in both forms. SERR spectra obtained in resonance with the heme a3 metal-to-ligand charge transfer (MLCT) transition at 650 nm displayed a sharp vibrational band at 748 or 750 cm-1 when the protein was in its slow or fast form, respectively. DFT calculations identified the band as a mode of the His-419 ligand that is sensitive to the oxygen ligand and the protonation state of Tyr-288 within the binuclear complex. Potential-dependent SERR spectroscopy showed a redox-induced change of this band around 525 mV versus Ag/AgCl exclusively for the fast form, which coincides with the redox potential of the Tyr-O/Tyr-O- transition. Our data points to a peroxide ligand in the resting state of CcO for both forms. The observed frequencies and redox sensitivities of the Raman marker band suggest that a radical Tyr-288 is present in the fast form and a protonated Tyr-288 in the slow form.
Collapse
Affiliation(s)
- Fabian Kruse
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Anh Duc Nguyen
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Jovan Dragelj
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Department of Physics, Experimental Molecular Biophysics, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Department of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Inez M Weidinger
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
33
|
The road to the structure of the mitochondrial respiratory chain supercomplex. Biochem Soc Trans 2021; 48:621-629. [PMID: 32311046 PMCID: PMC7200630 DOI: 10.1042/bst20190930] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/04/2023]
Abstract
The four complexes of the mitochondrial respiratory chain are critical for ATP production in most eukaryotic cells. Structural characterisation of these complexes has been critical for understanding the mechanisms underpinning their function. The three proton-pumping complexes, Complexes I, III and IV associate to form stable supercomplexes or respirasomes, the most abundant form containing 80 subunits in mammals. Multiple functions have been proposed for the supercomplexes, including enhancing the diffusion of electron carriers, providing stability for the complexes and protection against reactive oxygen species. Although high-resolution structures for Complexes III and IV were determined by X-ray crystallography in the 1990s, the size of Complex I and the supercomplexes necessitated advances in sample preparation and the development of cryo-electron microscopy techniques. We now enjoy structures for these beautiful complexes isolated from multiple organisms and in multiple states and together they provide important insights into respiratory chain function and the role of the supercomplex. While we as non-structural biologists use these structures for interpreting our own functional data, we need to remind ourselves that they stand on the shoulders of a large body of previous structural studies, many of which are still appropriate for use in understanding our results. In this mini-review, we discuss the history of respiratory chain structural biology studies leading to the structures of the mammalian supercomplexes and beyond.
Collapse
|
34
|
Siletsky SA, Gennis RB. Time-Resolved Electrometric Study of the F→O Transition in Cytochrome c Oxidase. The Effect of Zn2+ Ions on the Positive Side of the Membrane. BIOCHEMISTRY (MOSCOW) 2021; 86:105-122. [DOI: 10.1134/s0006297921010107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Noodleman L, Han Du WG, McRee D, Chen Y, Goh T, Götz AW. Coupled transport of electrons and protons in a bacterial cytochrome c oxidase-DFT calculated properties compared to structures and spectroscopies. Phys Chem Chem Phys 2021; 22:26652-26668. [PMID: 33231596 DOI: 10.1039/d0cp04848h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After a general introduction to the features and mechanisms of cytochrome c oxidases (CcOs) in mitochondria and aerobic bacteria, we present DFT calculated physical and spectroscopic properties for the catalytic reaction cycle compared with experimental observations in bacterial ba3 type CcO, also with comparisons/contrasts to aa3 type CcOs. The Dinuclear Complex (DNC) is the active catalytic reaction center, containing a heme a3 Fe center and a near lying Cu center (called CuB) where by successive reduction and protonation, molecular O2 is transformed to two H2O molecules, and protons are pumped from an inner region across the membrane to an outer region by transit through the CcO integral membrane protein. Structures, energies and vibrational frequencies for Fe-O and O-O modes are calculated by DFT over the catalytic cycle. The calculated DFT frequencies in the DNC of CcO are compared with measured frequencies from Resonance Raman spectroscopy to clarify the composition, geometry, and electronic structures of different intermediates through the reaction cycle, and to trace reaction pathways. X-ray structures of the resting oxidized state are analyzed with reference to the known experimental reaction chemistry and using DFT calculated structures in fitting observed electron density maps. Our calculations lead to a new proposed reaction pathway for coupling the PR → F → OH (ferryl-oxo → ferric-hydroxo) pathway to proton pumping by a water shift mechanism. Through this arc of the catalytic cycle, major shifts in pKa's of the special tyrosine and a histidine near the upper water pool activate proton transfer. Additional mechanisms for proton pumping are explored, and the role of the CuB+ (cuprous state) in controlling access to the dinuclear reaction site is proposed.
Collapse
Affiliation(s)
- Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
37
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
38
|
Dolder N, von Ballmoos C. Bifunctional DNA Duplexes Permit Efficient Incorporation of pH Probes into Liposomes. Chembiochem 2020; 21:2219-2224. [PMID: 32181556 DOI: 10.1002/cbic.202000146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 11/10/2022]
Abstract
Enzyme-mediated proton transport across biological membranes is critical for many vital cellular processes. pH-sensitive fluorescent dyes are an indispensable tool for investigating the molecular mechanism of proton-translocating enzymes. Here, we present a novel strategy to entrap pH-sensitive probes in the lumen of liposomes that has several advantages over the use of soluble or lipid-coupled probes. In our approach, the pH sensor is linked to a DNA oligomer with a sequence complementary to a second oligomer modified with a lipophilic moiety that anchors the DNA conjugate to the inner and outer leaflets of the lipid bilayer. The use of DNA as a scaffold allows subsequent selective enzymatic removal of the probe in the outer bilayer leaflet. The method shows a high yield of insertion and is compatible with reconstitution of membrane proteins by different methods. The usefulness of the conjugate for time-resolved proton pumping measurements was demonstrated by using two large membrane protein complexes.
Collapse
Affiliation(s)
- Nicolas Dolder
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Christoph von Ballmoos
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
39
|
Zhu X, Aoyama E, Birk AV, Onasanya O, Carr WH, Mourokh L, Minteer SD, Vittadello M. Cytochrome c oxidase oxygen reduction reaction induced by cytochrome c on nickel-coordination surfaces based on graphene oxide in suspension. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148262. [PMID: 32673675 DOI: 10.1016/j.bbabio.2020.148262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The electrochemical and spectroscopic investigation of bacterial electron-transfer proteins stabilized on solid state electrodes has provided an effective approach for functional respiratory enzyme studies. METHODS We assess the biocompatibility of carboxylated graphene oxide (CGO) functionalized with Nickel nitrilotriacetic groups (CGO-NiNTA) ccordinating His-tagged cytochrome c oxidase (CcO) from Rhodobacter sphaeroides. RESULTS Kinetic studies employing UV-visible absorption spectroscopy confirmed that the immobilized CcO oxidized horse-heart cytochrome c (Cyt c) albeit at a slower rate than isolated CcO. The oxygen reduction reaction as catalyzed by immobilized CcO could be clearly distinguished from that arising from CGO-NiNTA in the presence of Cyt c and dithiothreitol (DTT) as a sacrificial reducing agent. Our findings indicate that while the protein content is about 3.7‰ by mass with respect to the support, the contribution to the oxygen consumption activity averaged at 56.3%. CONCLUSIONS The CGO-based support stabilizes the free enzyme which, while capable of Cyt c oxidation, is unable to carry out oxygen consumption in solution on its own under our conditions. The turnover rate for the immobilized CcO was as high as 240 O2 molecules per second per CcO unit. GENERAL SIGNIFICANCE In vitro investigations of electron flow on isolated components of bacterial electron-transfer enzymes immobilized on the surface of CGO in suspension are expected to shed new light on microbial bioenergetic functions, that could ultimately contribute toward the improvement of performance in living organisms.
Collapse
Affiliation(s)
- Xiaoping Zhu
- Department of Chemistry and Environmental Science, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA
| | - Erika Aoyama
- Department of Chemistry, The University of Utah, Salt Lake City, UT 84112, USA
| | - Alexander V Birk
- Department of Chemistry and Environmental Science, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA; Department of Biology, York College of CUNY, Jamaica, NY 11451, USA
| | - Oladapo Onasanya
- Department of Chemistry and Environmental Science, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA
| | - William H Carr
- Department of Biology, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA
| | - Lev Mourokh
- Department of Physics, Queens College of CUNY, Queens, NY 11367, USA; The Graduate Center of CUNY, New York, NY 10016, USA
| | - Shelley D Minteer
- Department of Chemistry, The University of Utah, Salt Lake City, UT 84112, USA
| | - Michele Vittadello
- Department of Chemistry and Environmental Science, Medgar Evers College of the City University of New York (CUNY), Brooklyn, NY 11225, USA; The Graduate Center of CUNY, New York, NY 10016, USA.
| |
Collapse
|
40
|
Reidelbach M, Imhof P. Proton transfer in the D-channel of cytochrome c oxidase modeled by a transition network approach. Biochim Biophys Acta Gen Subj 2020; 1864:129614. [PMID: 32305338 DOI: 10.1016/j.bbagen.2020.129614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Determination of proton uptake pathways in Cytochrome c Oxidase is difficult due to the complexity of the system. The transition networks approach allows sampling of proton transfer pathways without predefined reaction coordinate. METHODS Computation of the proton transfer pathways in a model of the D-channel of cytochrome c oxidase has been performed by a transition network approach that combines discrete, optimisation based and molecular dynamics based sampling. RESULTS The optimal pathway involves an opening of the so-called asparagine gate, hydration of the asparagine region, the formation of a hydrogen-bonded chain, and finally concerted proton hole transport along this chain. The optimal pathway finds the protonation of residue H26 close to the channel entrance favourable for lowering the transition energies of subsequent steps, in particular, opening of the Asn gate and formation of a hydrogen-bonded chain. Residue Y33 plays an important role in shuttling the transferred proton hole. CONCLUSIONS The optimal pathway found by the transition network approach shows the same important characteristics as pathways determined earlier by other methods. The computed barrier and reaction energies are also in good agreement with previous studies. The transition network approach provides an alternative to explore pathways in complex systems. GENERAL SIGNIFICANCE The correct function of the enzyme as oxidase and proton pump depends on the interplay of several redox and proton transport steps. Understanding the proton transport mechanism is therefore key to understanding the protein's function. The complex nature of long- distances proton transfer through a protein requires a non-trivial simulation strategy.
Collapse
Affiliation(s)
- Marco Reidelbach
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14159 Berlin, Germany
| | - Petra Imhof
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14159 Berlin, Germany.
| |
Collapse
|
41
|
Integral caa 3-Cytochrome c Oxidase from Thermus thermophilus: Purification and Crystallization. Methods Mol Biol 2020. [PMID: 31342419 DOI: 10.1007/978-1-4939-9678-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cytochrome c oxidase is a respiratory enzyme catalyzing the energy-conserving reduction of molecular oxygen to water-a fundamental biological process of cell respiration. The first crystal structures of the type A cytochrome c oxidases, bovine heart and Paracoccus denitrificans cytochrome c oxidases, were published in 1995 and contributed immensely to the understanding of the enzyme's mechanism of action. The senior author's research focus was directed toward understanding the structure and function of the type B cytochrome c oxidases, ba3-oxidase and type A2 caa3-oxidase, both from the extreme thermophilic bacterium Thermus thermophilus. While the ba3-oxidase structure was published in 2000 and functional characterization is well-documented in the literature, we recently successfully solved the structure of the caa3-nature made enzyme-substrate complex. This chapter is dedicated to the purification and crystallization process of caa3-cytochrome c oxidase.
Collapse
|
42
|
Björck ML, Vilhjálmsdóttir J, Hartley AM, Meunier B, Näsvik Öjemyr L, Maréchal A, Brzezinski P. Proton-transfer pathways in the mitochondrial S. cerevisiae cytochrome c oxidase. Sci Rep 2019; 9:20207. [PMID: 31882860 PMCID: PMC6934443 DOI: 10.1038/s41598-019-56648-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/16/2019] [Indexed: 02/04/2023] Open
Abstract
In cytochrome c oxidase (CytcO) reduction of O2 to water is linked to uptake of eight protons from the negative side of the membrane: four are substrate protons used to form water and four are pumped across the membrane. In bacterial oxidases, the substrate protons are taken up through the K and the D proton pathways, while the pumped protons are transferred through the D pathway. On the basis of studies with CytcO isolated from bovine heart mitochondria, it was suggested that in mitochondrial CytcOs the pumped protons are transferred though a third proton pathway, the H pathway, rather than through the D pathway. Here, we studied these reactions in S. cerevisiae CytcO, which serves as a model of the mammalian counterpart. We analyzed the effect of mutations in the D (Asn99Asp and Ile67Asn) and H pathways (Ser382Ala and Ser458Ala) and investigated the kinetics of electron and proton transfer during the reaction of the reduced CytcO with O2. No effects were observed with the H pathway variants while in the D pathway variants the functional effects were similar to those observed with the R. sphaeroides CytcO. The data indicate that the S. cerevisiae CytcO uses the D pathway for proton uptake and presumably also for proton pumping.
Collapse
Affiliation(s)
- Markus L Björck
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Jóhanna Vilhjálmsdóttir
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Andrew M Hartley
- Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (12BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| | - Linda Näsvik Öjemyr
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Amandine Maréchal
- Department of Biological Sciences, Birkbeck University of London, Malet Street, London, WC1E 7HX, UK. .,Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
43
|
Buhrke D, Hildebrandt P. Probing Structure and Reaction Dynamics of Proteins Using Time-Resolved Resonance Raman Spectroscopy. Chem Rev 2019; 120:3577-3630. [PMID: 31814387 DOI: 10.1021/acs.chemrev.9b00429] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mechanistic understanding of protein functions requires insight into the structural and reaction dynamics. To elucidate these processes, a variety of experimental approaches are employed. Among them, time-resolved (TR) resonance Raman (RR) is a particularly versatile tool to probe processes of proteins harboring cofactors with electronic transitions in the visible range, such as retinal or heme proteins. TR RR spectroscopy offers the advantage of simultaneously providing molecular structure and kinetic information. The various TR RR spectroscopic methods can cover a wide dynamic range down to the femtosecond time regime and have been employed in monitoring photoinduced reaction cascades, ligand binding and dissociation, electron transfer, enzymatic reactions, and protein un- and refolding. In this account, we review the achievements of TR RR spectroscopy of nearly 50 years of research in this field, which also illustrates how the role of TR RR spectroscopy in molecular life science has changed from the beginning until now. We outline the various methodological approaches and developments and point out current limitations and potential perspectives.
Collapse
Affiliation(s)
- David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17, Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
44
|
Berg J, Liu J, Svahn E, Ferguson-Miller S, Brzezinski P. Structural changes at the surface of cytochrome c oxidase alter the proton-pumping stoichiometry. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148116. [PMID: 31733183 DOI: 10.1016/j.bbabio.2019.148116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/22/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
Data from earlier studies showed that minor structural changes at the surface of cytochrome c oxidase, in one of the proton-input pathways (the D pathway), result in dramatically decreased activity and a lower proton-pumping stoichiometry. To further investigate how changes around the D pathway orifice influence functionality of the enzyme, here we modified the nearby C-terminal loop of subunit I of the Rhodobacter sphaeroides cytochrome c oxidase. Removal of 16 residues from this flexible surface loop resulted in a decrease in the proton-pumping stoichiometry to <50% of that of the wild-type enzyme. Replacement of the protonatable residue Glu552, part of the same loop, by an Ala, resulted in a similar decrease in the proton-pumping stoichiometry without loss of the O2-reduction activity or changes in the proton-uptake kinetics. The data show that minor structural changes at the orifice of the D pathway, at a distance of ~40 Å from the proton gate of cytochrome c oxidase, may alter the proton-pumping stoichiometry of the enzyme.
Collapse
Affiliation(s)
- Johan Berg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States
| | - Emelie Svahn
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, United States.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
45
|
Borisov VB, Siletsky SA. Features of Organization and Mechanism of Catalysis of Two Families of Terminal Oxidases: Heme-Copper and bd-Type. BIOCHEMISTRY (MOSCOW) 2019; 84:1390-1402. [DOI: 10.1134/s0006297919110130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Ghatak A, Bhakta S, Bhunia S, Dey A. Influence of the distal guanidine group on the rate and selectivity of O 2 reduction by iron porphyrin. Chem Sci 2019; 10:9692-9698. [PMID: 32055338 PMCID: PMC6993607 DOI: 10.1039/c9sc02711d] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/28/2019] [Indexed: 12/20/2022] Open
Abstract
The O2 reduction reaction (ORR) catalysed by iron porphyrins with covalently attached pendant guanidine groups is reported. The results show a clear enhancement in the rate and selectivity for the 4e-/4H+ ORR. In situ resonance Raman investigations show that the rate determining step (rds) is O2 binding to ferrous porphyrins in contrast to the case of mononuclear iron porphyrins and heme/Cu analogues where the O-O bond cleavage of a heme peroxide is the rds. The selectivity is further enhanced when an axial imidazole ligand is introduced. Thus, the combination of the axial imidazole ligand and pendant guanidine ligand, analogous to the active site of peroxidases, is determined to be very effective in enabling a facile and selective 4e-/4H+ ORR.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Snehadri Bhakta
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Sarmistha Bhunia
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| | - Abhishek Dey
- School of Chemical Sciences , Indian Association for the Cultivation of Science , 2A & 2B Raja S. C. Mullick Road, Jadavpur , Kolkata , 700032 , India .
| |
Collapse
|
47
|
Han Du WG, Götz AW, Noodleman L. DFT Fe a3-O/O-O Vibrational Frequency Calculations over Catalytic Reaction Cycle States in the Dinuclear Center of Cytochrome c Oxidase. Inorg Chem 2019; 58:13933-13944. [PMID: 31566371 PMCID: PMC6839913 DOI: 10.1021/acs.inorgchem.9b01840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional vibrational frequency calculations have been performed on eight geometry optimized cytochrome c oxidase (CcO) dinuclear center (DNC) reaction cycle intermediates and on the oxymyoglobin (oxyMb) active site. The calculated Fe-O and O-O stretching modes and their frequency shifts along the reaction cycle have been compared with the available resonance Raman (rR) measurements. The calculations support the proposal that in state A[Fea33+-O2-•···CuB+] of CcO, O2 binds with Fea32+ in a similar bent end-on geometry to that in oxyMb. The calculations show that the observed 20 cm-1 shift of the Fea3-O stretching mode from the PR to F state is caused by the protonation of the OH- ligand on CuB2+ (PR[Fea34+═O2-···HO--CuB2+] → F[Fea34+═O2-···H2O-CuB2+]), and that the H2O ligand is still on the CuB2+ site in the rR identified F[Fea34+═O2-···H2O-CuB2+] state. Further, the observed rR band at 356 cm-1 between states PR and F is likely an O-Fea3-porphyrin bending mode. The observed 450 cm-1 low Fea3-O frequency mode for the OH active oxidized state has been reproduced by our calculations on a nearly symmetrically bridged Fea33+-OH-CuB2+ structure with a relatively long Fea3-O distance near 2 Å. Based on Badger's rule, the calculated Fea3-O distances correlate well with the calculated νFe-O-2/3 (νFe-O is the Fea3-O stretching frequency) with correlation coefficient R = 0.973.
Collapse
Affiliation(s)
- Wen-Ge Han Du
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Andreas W. Götz
- San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive MC0505, La Jolla, CA 92093
| | - Louis Noodleman
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
48
|
Capitanio G, Palese LL, Papa F, Papa S. Allosteric Cooperativity in Proton Energy Conversion in A1-Type Cytochrome c Oxidase. J Mol Biol 2019; 432:534-551. [PMID: 31626808 DOI: 10.1016/j.jmb.2019.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/06/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022]
Abstract
Cytochrome c oxidase (CcO), the CuA, heme a, heme a3, CuB enzyme of respiratory chain, converts the free energy released by aerobic cytochrome c oxidation into a membrane electrochemical proton gradient (ΔμH+). ΔμH+ derives from the membrane anisotropic arrangement of dioxygen reduction to two water molecules and transmembrane proton pumping from a negative (N) space to a positive (P) space separated by the membrane. Spectroscopic, potentiometric, and X-ray crystallographic analyses characterize allosteric cooperativity of dioxygen binding and reduction with protonmotive conformational states of CcO. These studies show that allosteric cooperativity stabilizes the favorable conformational state for conversion of redox energy into a transmembrane ΔμH+.
Collapse
Affiliation(s)
- Giuseppe Capitanio
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Luigi Leonardo Palese
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sergio Papa
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari "Aldo Moro", 70124 Bari, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| |
Collapse
|
49
|
Hoang NH, Strogolova V, Mosley JJ, Stuart RA, Hosler J. Hypoxia-inducible gene domain 1 proteins in yeast mitochondria protect against proton leak through complex IV. J Biol Chem 2019; 294:17669-17677. [PMID: 31591265 DOI: 10.1074/jbc.ra119.010317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/26/2019] [Indexed: 01/27/2023] Open
Abstract
Hypoxia-inducible gene domain 1 (HIGD1) proteins are small integral membrane proteins, conserved from bacteria to humans, that associate with oxidative phosphorylation supercomplexes. Using yeast as a model organism, we have shown previously that its two HIGD1 proteins, Rcf1 and Rcf2, are required for the generation and maintenance of a normal membrane potential (ΔΨ) across the inner mitochondrial membrane (IMM). We postulated that the lower ΔΨ observed in the absence of the HIGD1 proteins may be due to decreased proton pumping by complex IV (CIV) or enhanced leak of protons across the IMM. Here we measured the ΔΨ generated by complex III (CIII) to discriminate between these possibilities. First, we found that the decreased ΔΨ observed in the absence of the HIGD1 proteins cannot be due to decreased proton pumping by CIV because CIII, operating alone, also exhibited a decreased ΔΨ when HIGD1 proteins were absent. Because CIII can neither lower its pumping stoichiometry nor transfer protons completely across the IMM, this result indicates that HIGD1 protein ablation enhances proton leak across the IMM. Second, we demonstrate that this proton leak occurs through CIV because ΔΨ generation by CIII is restored when CIV is removed from the cell. Third, the proton leak appeared to take place through an inactive population of CIV that accumulates when HIGD1 proteins are absent. We conclude that HIGD1 proteins in yeast prevent CIV inactivation, likely by preventing the loss of lipids bound within the Cox3 protein of CIV.
Collapse
Affiliation(s)
- Ngoc H Hoang
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Vera Strogolova
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Jaramys J Mosley
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Jonathan Hosler
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
50
|
Abstract
X-ray crystallographic analyses of mitochondrial cytochrome c oxidase (CcO) have been based on its dimeric form. Recent cryo-electron microscopy structures revealed that CcO exists in its monomeric form in the respiratory supercomplex. This study, using amphipol-stabilized CcO, shows that the activity of monomer is higher than that of the dimer. The crystal structure of monomer determined here shows that the local structure of one of the proton transfer pathways differs from that in the dimer. The crystal structure also shows that cardiolipins are located at the interface region in the supercomplex. Taken together, these results suggest that CcO in the monomeric state, dimeric state, and supercomplex state depending on cardiolipins are involved in regulation of respiratory electron transport. Cytochrome c oxidase (CcO), a membrane enzyme in the respiratory chain, catalyzes oxygen reduction by coupling electron and proton transfer through the enzyme with a proton pump across the membrane. In all crystals reported to date, bovine CcO exists as a dimer with the same intermonomer contacts, whereas CcOs and related enzymes from prokaryotes exist as monomers. Recent structural analyses of the mitochondrial respiratory supercomplex revealed that CcO monomer associates with complex I and complex III, indicating that the monomeric state is functionally important. In this study, we prepared monomeric and dimeric bovine CcO, stabilized using amphipol, and showed that the monomer had high activity. In addition, using a newly synthesized detergent, we determined the oxidized and reduced structures of monomer with resolutions of 1.85 and 1.95 Å, respectively. Structural comparison of the monomer and dimer revealed that a hydrogen bond network of water molecules is formed at the entry surface of the proton transfer pathway, termed the K-pathway, in monomeric CcO, whereas this network is altered in dimeric CcO. Based on these results, we propose that the monomer is the activated form, whereas the dimer can be regarded as a physiological standby form in the mitochondrial membrane. We also determined phospholipid structures based on electron density together with the anomalous scattering effect of phosphorus atoms. Two cardiolipins are found at the interface region of the supercomplex. We discuss formation of the monomeric CcO, dimeric CcO, and supercomplex, as well as their role in regulation of CcO activity.
Collapse
|