1
|
Rhys GG, Cross JA, Dawson WM, Thompson HF, Shanmugaratnam S, Savery NJ, Dodding MP, Höcker B, Woolfson DN. De novo designed peptides for cellular delivery and subcellular localisation. Nat Chem Biol 2022; 18:999-1004. [PMID: 35836017 DOI: 10.1038/s41589-022-01076-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Increasingly, it is possible to design peptide and protein assemblies de novo from first principles or computationally. This approach provides new routes to functional synthetic polypeptides, including designs to target and bind proteins of interest. Much of this work has been developed in vitro. Therefore, a challenge is to deliver de novo polypeptides efficiently to sites of action within cells. Here we describe the design, characterisation, intracellular delivery, and subcellular localisation of a de novo synthetic peptide system. This system comprises a dual-function basic peptide, programmed both for cell penetration and target binding, and a complementary acidic peptide that can be fused to proteins of interest and introduced into cells using synthetic DNA. The designs are characterised in vitro using biophysical methods and X-ray crystallography. The utility of the system for delivery into mammalian cells and subcellular targeting is demonstrated by marking organelles and actively engaging functional protein complexes.
Collapse
Affiliation(s)
- Guto G Rhys
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Jessica A Cross
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Harry F Thompson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Nigel J Savery
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Bristol, UK
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK. .,School of Biochemistry, University of Bristol, Bristol, UK. .,BrisSynBio, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Lv L, Ahmed I, Qu X, Ju G, Yang N, Guo Y, Li Z. Effect of the structure and potential allergenicity of glycated tropomyosin, the shrimp allergen. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Liangtao Lv
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Ishfaq Ahmed
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Xin Qu
- Qingdao Municipal Center for Disease Control and Prevention 175 Shandong Road, Shibei District Qingdao Shandong Province 266033 China
| | - Guangxiu Ju
- Qingdao Municipal Center for Disease Control and Prevention 175 Shandong Road, Shibei District Qingdao Shandong Province 266033 China
| | - Ni Yang
- General Surgery Ward 1 Qingdao Eighth People's Hospital 84 Fengshan Road, Licang District Qingdao Shandong Province 266100 China
| | - Yuman Guo
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| | - Zhenxing Li
- Food Safety Laboratory College of Food Science and Engineering Ocean University of China Qingdao 266003 China
| |
Collapse
|
3
|
Ahmed I, Chen H, Li J, Wang B, Li Z, Huang G. Enzymatic crosslinking and food allergenicity: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:5856-5879. [PMID: 34653307 DOI: 10.1111/1541-4337.12855] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Food allergy has become a major global public health concern. In the past decades, enzymatic crosslinking technique has been employed to mitigate the immunoreactivity of food allergens. It is an emerging non-thermal technique that can serve as a great alternative to conventional food processing approaches in developing hypoallergenic food products, owing to their benefits of high specificity and selectivity. Enzymatic crosslinking via tyrosinase (TYR), laccase (LAC), peroxidase (PO), and transglutaminase (TG) modifies the structural and biochemical properties of food allergens that subsequently cause denaturation and masking of the antigenic epitopes. LAC, TYR, and PO catalyze the oxidation of tyrosine side chains to initiate protein crosslinking, while TG initiates isopeptide bonding between lysine and glutamine residues. Enzymatic treatment produces a high molecular weight crosslinked polymer with reduced immunoreactivity and IgE-binding potential. Crosslinked allergens further inhibit mast cell degranulation due to the lower immunostimulatory potential that assists in the equilibration of T-helper (Th)1/Th2 immunobalance. This review provides an updated overview of the studies carried out in the last decade on the potential application of enzymatic crosslinking for mitigating food allergenicity that can be of importance in the context of developing hypoallergenic/non-allergenic food products.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Huan Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Jiale Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| |
Collapse
|
4
|
Lv L, Qu X, Yang N, Ahmed I. The conformational structural change of β-lactoglobulin via acrolein treatment reduced the allergenicity. FOOD CHEMISTRY-X 2021; 10:100120. [PMID: 33981987 PMCID: PMC8085757 DOI: 10.1016/j.fochx.2021.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/28/2022]
Abstract
Acrolein induced structural changes through the cross-linking of BLG. The IgE binding capacity of BLG was reduced upon acrolein treatment. Stimulation with acrolein-treated BLG decreased RBL-2H3 cells degranulation rates. BLG-specific IgE/IgG1, histamine and mMCP-1 levels were reduced in mice model. Structural changes resulted in reduction of BLG allergenicity by lipid peroxidation.
β-lactoglobulin (BLG) is a major allergen of milk. Since lipid peroxidation such as acrolein commonly exists during milk processing, it is necessary to evaluate its influence on BLG structure and potential allergenicity. The structure of acrolein-treated BLG was detected using SDS-PAGE, fluorescence, ultraviolet spectrum (UV), circular dichroism (CD) and LC-MS-MS, and the potential allergenicity was assessed by in vitro and in vivo assays. Results showed that acrolein could cause structural changes by BLG aggregation, which decreased the IgE binding capacity. Further, the release of mediators and cytokines decreased with acrolein treatment in RBL-2H3 cells. Mice showed lower allergenicity by the levels of BLG-specific antibody and the release of histamine and mMCP-1. These results explained that acrolein-induced BLG aggregation could damage the allergic epitopes and decrease the allergenicity of BLG in milk. The study will provide a new aspect to explore the natural phenomenon of allergen changes during food processing.
Collapse
Affiliation(s)
- Liangtao Lv
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.,Third Affiliated Hospital of Shenzhen University, Shenzhen 518020, China
| | - Xin Qu
- Qingdao Municipal Center for Disease Control and Prevention, 175 Shandong Road, Shibei District, Qingdao, Shandong Province 266033, China
| | - Ni Yang
- General Surgery Ward 1, Qingdao Eighth People's Hospital, 84 Fengshan Road, Licang District, Qingdao, Shandong Province 266100, China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Ahmed I, Lin H, Xu L, Li S, Costa J, Mafra I, Chen G, Gao X, Li Z. Immunomodulatory Effect of Laccase/Caffeic Acid and Transglutaminase in Alleviating Shrimp Tropomyosin (Met e 1) Allergenicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7765-7778. [PMID: 32609503 DOI: 10.1021/acs.jafc.0c02366] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work aimed to investigate the effect of enzymatic cross-linking on the allergenic potential of shrimp tropomyosin (TM), Met e 1. The cross-linked TM with laccase (CL), laccase/caffeic acid (CLC and CLC+), and transglutaminase (CTG and CTG+) formed macromolecules and altered the allergen conformation. The IgG/IgE-binding potentials of the cross-linked TM were reduced as confirmed by Western blotting and ELISA. Enzymatic cross-linking improved the gastrointestinal digestibility and induced a lower level of degranulation in RBL-2H3 and KU812 cells. Moreover, cross-linked TM decreased anaphylactic symptoms, as well as reduced the serum levels of IgG1, IgE, histamine, tryptase, and mMCP-1. In spleen cells, CLC+ and CTG+ downregulated the Th2-related cytokines and upregulated IFN-γ and IL-10. These findings revealed that CTG+ has shown more potential than CLC+ in mitigating the allergenicity of TM by influencing the conformational structure, enhancing the digestibility, decreasing the cellular degranulation process, and positively modulating the Th1/Th2 immunobalance.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin 300050, People's Republic of China
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto 4099-002, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto 4099-002, Portugal
| | - Guanzhi Chen
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, People's Republic of China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province 266003, People's Republic of China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, People's Republic of China
| |
Collapse
|
6
|
Lv L, Tian S, Ahmed I, Ramesh Pavase T, Lin H, Xu L, Li Z, Liu F. Effect of laccase-catalyzed cross-linking on the structure and allergenicity of Paralichthys olivaceus parvalbumin mediated by propyl gallate. Food Chem 2019; 297:124972. [DOI: 10.1016/j.foodchem.2019.124972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 06/01/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
|
7
|
Lv L, Lin H, Li Z, Nayak B, Ahmed I, Tian S, Chen G, Lin H, Zhao J. Structural changes of 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) treated shrimp tropomyosin decrease allergenicity. Food Chem 2019; 274:547-557. [DOI: 10.1016/j.foodchem.2018.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
|
8
|
Thomas F, Niitsu A, Oregioni A, Bartlett GJ, Woolfson DN. Conformational Dynamics of Asparagine at Coiled-Coil Interfaces. Biochemistry 2017; 56:6544-6554. [PMID: 29166010 PMCID: PMC5916467 DOI: 10.1021/acs.biochem.7b00848] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/25/2017] [Indexed: 12/19/2022]
Abstract
Coiled coils (CCs) are among the best-understood protein folds. Nonetheless, there are gaps in our knowledge of CCs. Notably, CCs are likely to be structurally more dynamic than often considered. Here, we explore this in an abundant class of CCs, parallel dimers, focusing on polar asparagine (Asn) residues in the hydrophobic interface. It is well documented that such inclusions discriminate between different CC oligomers, which has been rationalized in terms of whether the Asn can make side-chain hydrogen bonds. Analysis of parallel CC dimers in the Protein Data Bank reveals a variety of Asn side-chain conformations, but not all of these make the expected inter-side-chain hydrogen bond. We probe the structure and dynamics of a de novo-designed coiled-coil homodimer, CC-Di, by multidimensional nuclear magnetic resonance spectroscopy, including model-free dynamical analysis and relaxation-dispersion experiments. We find dynamic exchange on the millisecond time scale between Asn conformers with the side chains pointing into and out of the core. We perform molecular dynamics simulations that are consistent with this, revealing that the side chains are highly dynamic, exchanging between hydrogen-bonded-paired conformations in picoseconds to nanoseconds. Combined, our data present a more dynamic view for Asn at CC interfaces. Although inter-side-chain hydrogen bonding states are the most abundant, Asn is not always buried or engaged in such interactions. Because interfacial Asn residues are key design features for modulating CC stability and recognition, these further insights into how they are accommodated within CC structures will aid their predictive modeling, engineering, and design.
Collapse
Affiliation(s)
- Franziska Thomas
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Institute
for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Ai Niitsu
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Alain Oregioni
- MRC
Biomedical NMR Centre, The Francis Crick
Institute, 1 Midland
Road, London NW1 1AT, U.K.
| | - Gail J. Bartlett
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Medical Sciences Building, University
Walk, Bristol BS8 1TD, U.K.
- BrisSynBio, University
of Bristol, Life Sciences
Building, Tyndall Avenue, Bristol BS8 1TQ, U.K.
| |
Collapse
|
9
|
Lv L, Lin H, Li Z, Wang J, Ahmed I, Chen H. Changes of structure and IgE binding capacity of shrimp (Metapenaeus ensis) tropomyosin followed by acrolein treatment. Food Funct 2017; 8:1028-1036. [DOI: 10.1039/c6fo01479h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The changes of structure and IgE binding capacity of shrimp tropomyosin following acrolein treatment are explored at the molecular level.
Collapse
Affiliation(s)
- Liangtao Lv
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | - Hong Lin
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | - Jing Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- P.R. China
| | | |
Collapse
|
10
|
Lv L, Lin H, Li Z, Yuan F, Gao Q, Ma J. Effect of 4-hydroxy-2-nonenal treatment on the IgE binding capacity and structure of shrimp (Metapenaeus ensis) tropomyosin. Food Chem 2016; 212:313-22. [DOI: 10.1016/j.foodchem.2016.05.152] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/08/2016] [Accepted: 05/24/2016] [Indexed: 11/24/2022]
|
11
|
The membrane- and soluble-protein helix-helix interactome: similar geometry via different interactions. Structure 2015; 23:527-541. [PMID: 25703378 DOI: 10.1016/j.str.2015.01.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 12/25/2022]
Abstract
α Helices are a basic unit of protein secondary structure and therefore the interaction between helices is crucial to understanding tertiary and higher-order folds. Comparing subtle variations in the structural and sequence motifs between membrane and soluble proteins sheds light on the different constraints faced by each environment and elucidates the complex puzzle of membrane protein folding. Here, we demonstrate that membrane and water-soluble helix pairs share a small number of similar folds with various interhelical distances. The composition of the residues that pack at the interface between corresponding motifs shows that hydrophobic residues tend to be more enriched in the water-soluble class of structures and small residues in the transmembrane class. The latter group facilitates packing via sidechain- and backbone-mediated hydrogen bonds within the low-dielectric membrane milieu. The helix-helix interactome space, with its associated sequence preferences and accompanying hydrogen-bonding patterns, should be useful for engineering, prediction, and design of protein structure.
Collapse
|
12
|
Negron C, Keating AE. A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit. J Am Chem Soc 2014; 136:16544-56. [PMID: 25337788 PMCID: PMC4277747 DOI: 10.1021/ja507847t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 12/11/2022]
Abstract
Molecular engineering of protein assemblies, including the fabrication of nanostructures and synthetic signaling pathways, relies on the availability of modular parts that can be combined to give different structures and functions. Currently, a limited number of well-characterized protein interaction components are available. Coiled-coil interaction modules have been demonstrated to be useful for biomolecular design, and many parallel homodimers and heterodimers are available in the coiled-coil toolkit. In this work, we sought to design a set of orthogonal antiparallel homodimeric coiled coils using a computational approach. There are very few antiparallel homodimers described in the literature, and none have been measured for cross-reactivity. We tested the ability of the distance-dependent statistical potential DFIRE to predict orientation preferences for coiled-coil dimers of known structure. The DFIRE model was then combined with the CLASSY multistate protein design framework to engineer sets of three orthogonal antiparallel homodimeric coiled coils. Experimental measurements confirmed the successful design of three peptides that preferentially formed antiparallel homodimers that, furthermore, did not interact with one additional previously reported antiparallel homodimer. Two designed peptides that formed higher-order structures suggest how future design protocols could be improved. The successful designs represent a significant expansion of the existing protein-interaction toolbox for molecular engineers.
Collapse
Affiliation(s)
- Christopher Negron
- Program
in Computational and Systems Biology and Departments of Biology and Biological
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 021393, United States
| | - Amy E. Keating
- Program
in Computational and Systems Biology and Departments of Biology and Biological
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 021393, United States
| |
Collapse
|
13
|
Lv L, Lin H, Li Z, Song Y, Lin H, Wang A. Identification of oxidative modification of shrimp (Metapenaeus ensis) tropomyosin induced by malonaldehyde. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2281-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Ngo B, Hu CM, Guo XE, Ngo B, Wei R, Zhu J, Lee WH. Complementary interhelical interactions between three buried Glu-Lys pairs within three heptad repeats are essential for Hec1-Nuf2 heterodimerization and mitotic progression. J Biol Chem 2013; 288:34403-13. [PMID: 24129578 DOI: 10.1074/jbc.m113.490524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hec1 and Nuf2, core components of the NDC80 complex, are essential for kinetochore-microtubule attachment and chromosome segregation. It has been shown that both Hec1 and Nuf2 utilize their coiled-coil domains to form a functional dimer; however, details of the consequential significance and structural requirements to form the dimerization interface have yet to be elucidated. Here, we showed that Hec1 required three contiguous heptad repeats from Leu-324 to Leu-352, but not the entire first coiled-coil domain, to ensure overall stability of the NDC80 complex through direct interaction with Nuf2. Substituting the hydrophobic core residues, Leu-331, Val-338, and Ile-345, of Hec1 with alanine completely eliminated Nuf2 binding and blocked mitotic progression. Moreover, unlike most coiled-coil proteins, where the buried positions are composed of hydrophobic residues, Hec1 possessed an unusual distribution of glutamic acid residues, Glu-334, Glu-341, and Glu-348, buried within the interior dimerization interface, which complement with three Nuf2 lysine residues: Lys-227, Lys-234, and Lys-241. Substituting these corresponding residues with alanine diminished the binding affinity between Hec1 and Nuf2, compromised NDC80 complex formation, and adversely affected mitotic progression. Taken together, these findings demonstrated that three buried glutamic acid-lysine pairs, in concert with hydrophobic interactions of core residues, provide the major specificity and stability requirements for Hec1-Nuf2 dimerization and NDC80 complex formation.
Collapse
Affiliation(s)
- Bryan Ngo
- From the Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697
| | | | | | | | | | | | | |
Collapse
|
15
|
Maheshwari AS, Archunan G. Mutational effect of structural parameters on coiled-coil stability of proteins. PROTEOMICS INSIGHTS 2013; 6:1-6. [PMID: 25288887 PMCID: PMC4147757 DOI: 10.4137/pri.s10988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Understanding the parameters that influence the melting temperature of coiled-coils (CC) and their stability is very important. We have analyzed 45 CC mutants of DNA binding protein, electron transport protein, hydrolase, oxidoreductase, and transcription factors. Many mutants have been observed at Tm = 40 °C–60 °C with ΔS = 9–11 kcal/°C mol, ΔG = −400 to −450 kcal/mol, and Keq = 0.98–1.03. The multiple regression analysis of Tm reveals that influences of thermodynamic parameters are strong (R = 0.97); chemical parameters are moderate (R = 0.63); and the geometrical parameters are negligible (R = 0.19). The combination of all these three parameters exhibits a little higher influence on Tm (R = 0.98). From the analysis, it has been concluded that the thermodynamic parameters alone are very important in stability studies on protein coil mutants. Besides, the derived regression model would have been useful for the reliable prediction of the melting temperature of coil mutants.
Collapse
Affiliation(s)
- Amutha Selvaraj Maheshwari
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India. ; Department of Biotechnology, Anna University-BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Govindaraju Archunan
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
16
|
Steinkruger JD, Bartlett GJ, Woolfson DN, Gellman SH. Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils. J Am Chem Soc 2012; 134:15652-5. [PMID: 22974448 PMCID: PMC3685169 DOI: 10.1021/ja3063088] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.
Collapse
Affiliation(s)
- Jay D. Steinkruger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Bristol, BS8 1TS UK
- School of Biochemistry, University of Bristol, Bristol BS8 1TD UK
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
17
|
Steinkruger JD, Bartlett GJ, Hadley EB, Fay L, Woolfson DN, Gellman SH. The d'--d--d' vertical triad is less discriminating than the a'--a--a' vertical triad in the antiparallel coiled-coil dimer motif. J Am Chem Soc 2012; 134:2626-33. [PMID: 22296518 DOI: 10.1021/ja208855x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elucidating relationships between the amino-acid sequences of proteins and their three-dimensional structures, and uncovering non-covalent interactions that underlie polypeptide folding, are major goals in protein science. One approach toward these goals is to study interactions between selected residues, or among constellations of residues, in small folding motifs. The α-helical coiled coil has served as a platform for such studies because this folding unit is relatively simple in terms of both sequence and structure. Amino acid side chains at the helix-helix interface of a coiled coil participate in so-called "knobs-into-holes" (KIH) packing whereby a side chain (the knob) on one helix inserts into a space (the hole) generated by four side chains on a partner helix. The vast majority of sequence-stability studies on coiled-coil dimers have focused on lateral interactions within these KIH arrangements, for example, between an a position on one helix and an a' position of the partner in a parallel coiled-coil dimer, or between a--d' pairs in an antiparallel dimer. More recently, it has been shown that vertical triads (specifically, a'--a--a' triads) in antiparallel dimers exert a significant impact on pairing preferences. This observation provides impetus for analysis of other complex networks of side-chain interactions at the helix-helix interface. Here, we describe a combination of experimental and bioinformatics studies that show that d'--d--d' triads have much less impact on pairing preference than do a'--a--a' triads in a small, designed antiparallel coiled-coil dimer. However, the influence of the d'--d--d' triad depends on the lateral a'--d interaction. Taken together, these results strengthen the emerging understanding that simple pairwise interactions are not sufficient to describe side-chain interactions and overall stability in antiparallel coiled-coil dimers; higher-order interactions must be considered as well.
Collapse
Affiliation(s)
- Jay D Steinkruger
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ramos J, Lazaridis T. Computational analysis of residue contributions to coiled-coil topology. Protein Sci 2011; 20:1845-55. [PMID: 21858887 PMCID: PMC3267949 DOI: 10.1002/pro.718] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 08/04/2011] [Accepted: 08/09/2011] [Indexed: 11/08/2022]
Abstract
A variety of features are thought to contribute to the oligomeric and topological specificity of coiled coils. In previous work, we examined the determinants of oligomeric state. Here, we examine the energetic basis for the tendency of six coiled-coil peptides to align their α-helices in antiparallel orientation using molecular dynamics simulations with implicit solvation (EEF1.1). We also examine the effect of mutations known to disrupt the topology of these peptides. In agreement with experiment, ARG or LYS at a or d positions were found to stabilize the antiparallel configuration. The modeling suggests that this is not due to a-a' or d-d' repulsions but due to interactions with e' and g' residues. TRP at core positions also favors the antiparallel configuration. Residues that disfavor parallel dimers, such as ILE at d, are better tolerated in, and thus favor the antiparallel configuration. Salt bridge networks were found to be more stabilizing in the antiparallel configuration for geometric reasons: antiparallel helices point amino acid side chains in opposite directions. However, the structure with the largest number of salt bridges was not always the most stable, due to desolvation and configurational entropy contributions. In tetramers, the extent of stabilization of the antiparallel topology by core residues is influenced by the e' residue on a neighboring helix. Residues at b and c positions in some cases also contribute to stabilization of antiparallel tetramers. This work provides useful rules toward the goal of designing coiled coils with a well-defined and predictable three-dimensional structure.
Collapse
Affiliation(s)
| | - Themis Lazaridis
- Department of Chemistry, The City College of CUNY160 Convent Avenue, New York, New York 10031
| |
Collapse
|
19
|
Steinkruger JD, Woolfson DN, Gellman SH. Side-chain pairing preferences in the parallel coiled-coil dimer motif: insight on ion pairing between core and flanking sites. J Am Chem Soc 2010; 132:7586-8. [PMID: 20465308 PMCID: PMC2898205 DOI: 10.1021/ja100080q] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy for rapid evaluation of sequence-stability relationships in the parallel coiled-coil motif is described. The experimental design relies upon thiol-thioester exchange equilibria, an approach that is particularly well suited to examination of heterodimeric systems. Our model system has been benchmarked by demonstrating that it can quantitatively reproduce previously reported trends in interhelical a-a' side-chain pairing preferences at the coiled-coil interface. This new tool has been used to explore the role of Coulombic interactions between a core position on one helix and a flanking position on the other helix (a-g'). This type of interhelical contact has received relatively little attention to date. Our results indicate that such interactions can influence coiled-coil partner preferences.
Collapse
Affiliation(s)
- Jay D. Steinkruger
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 and School of Chemistry, University of Bristol, Bristol, BS8 1TS UK and Department of Biochemistry, University of Bristol, Bristol, BS8 1TD UK
| | - Derek N. Woolfson
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 and School of Chemistry, University of Bristol, Bristol, BS8 1TS UK and Department of Biochemistry, University of Bristol, Bristol, BS8 1TD UK
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 and School of Chemistry, University of Bristol, Bristol, BS8 1TS UK and Department of Biochemistry, University of Bristol, Bristol, BS8 1TD UK
| |
Collapse
|
20
|
A heterospecific leucine zipper tetramer. ACTA ACUST UNITED AC 2008; 15:908-19. [PMID: 18804028 PMCID: PMC7111190 DOI: 10.1016/j.chembiol.2008.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 07/07/2008] [Accepted: 07/10/2008] [Indexed: 11/21/2022]
Abstract
Protein-protein interactions dictate the assembly of the macromolecular complexes essential for functional networks and cellular behavior. Elucidating principles of molecular recognition governing important interfaces such as coiled coils is a challenging goal for structural and systems biology. We report here that two valine-containing mutants of the GCN4 leucine zipper that fold individually as four-stranded coiled coils associate preferentially in mixtures to form an antiparallel, heterotetrameric structure. X-ray crystallographic analysis reveals that the coinciding hydrophobic interfaces of the hetero- and homotetramers differ in detail, explaining their partnering and structural specificity. Equilibrium disulfide exchange and thermal denaturation experiments show that the 50-fold preference for heterospecificity results from a combination of preferential packing and hydrophobicity. The extent of preference is sensitive to the side chains comprising the interface. Thus, heterotypic versus homotypic interaction specificity in coiled coils reflects a delicate balance in complementarity of shape and chemistry of the participating side chains.
Collapse
|
21
|
Abstract
The alpha-helical coiled coil is a structurally simple protein oligomerization or interaction motif consisting of two or more alpha helices twisted into a supercoiled bundle. Coiled coils can differ in their stoichiometry, helix orientation, and axial alignment. Because of the near degeneracy of many of these variants, coiled coils pose a challenge to fold recognition methods for structure prediction. Whereas distinctions between some protein folds can be discriminated on the basis of hydrophobic/polar patterning or secondary structure propensities, the sequence differences that encode important details of coiled-coil structure can be subtle. This is emblematic of a larger problem in the field of protein structure and interaction prediction: that of establishing specificity between closely similar structures. We tested the behavior of different computational models on the problem of recognizing the correct orientation--parallel vs. antiparallel--of pairs of alpha helices that can form a dimeric coiled coil. For each of 131 examples of known structure, we constructed a large number of both parallel and antiparallel structural models and used these to assess the ability of five energy functions to recognize the correct fold. We also developed and tested three sequence-based approaches that make use of varying degrees of implicit structural information. The best structural methods performed similarly to the best sequence methods, correctly categorizing approximately 81% of dimers. Steric compatibility with the fold was important for some coiled coils we investigated. For many examples, the correct orientation was determined by smaller energy differences between parallel and antiparallel structures distributed over many residues and energy components. Prediction methods that used structure but incorporated varying approximations and assumptions showed quite different behaviors when used to investigate energetic contributions to orientation preference. Sequence based methods were sensitive to the choice of residue-pair interactions scored.
Collapse
Affiliation(s)
- James R Apgar
- MIT Department of Chemistry, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
22
|
Diss ML, Kennan AJ. Simultaneous directed assembly of three distinct heterodimeric coiled coils. Org Lett 2008; 10:3797-800. [PMID: 18693746 DOI: 10.1021/ol801461a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe simultaneous formation of three distinct heterodimeric coiled coils from a mixture of six different peptides. The choice among electrostatically viable complexes is governed by alignment of buried core residues, including a fundamentally new interaction that exploits urea-terminated side chains. Buried urea/urea contacts lead to extremely stable dimeric coiled coils, with T(m) values between 63 and 79 degrees C. Core ureas can also form stable complexes with a variety of other polar groups, including guanidines, acids, and amides.
Collapse
Affiliation(s)
- Maria L Diss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | | |
Collapse
|
23
|
Preferred side-chain constellations at antiparallel coiled-coil interfaces. Proc Natl Acad Sci U S A 2008; 105:530-5. [PMID: 18184807 DOI: 10.1073/pnas.0709068105] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reliable predictive rules that relate protein sequence to structure would facilitate postgenome predictive biology and the engineering and de novo design of peptides and proteins. Through a combination of experiment and analysis of the protein data bank (PDB), we have deciphered and rationalized new rules for helix-helix interfaces of a common protein-folding and association motif, the antiparallel dimeric coiled coil. These interfaces are defined by a specific pattern of interactions among largely hydrophobic side chains often referred to as knobs-into-holes (KIH) packing: a knob from one helix inserts into a hole formed by four residues on the partner. Previous work has focused on lateral interactions within the KIH motif, for example, between an a position on one helix and a d' position on the other in an antiparallel coiled coil. We show that vertical interactions within the KIH motif, such as a'-a-a', are energetically important as well. The experimental and database analyses concur regarding preferred vertical combinations, which can be rationalized as leading to favorable side-chain interactions that we call constellations. The findings presented here highlight an unanticipated level of complexity in coiled-coil interactions, and our analysis of a few specific constellations illustrates a general, multipronged approach to addressing this complexity.
Collapse
|
24
|
Tsatskis Y, Kwok SC, Becker E, Gill C, Smith MN, Keates RAB, Hodges RS, Wood JM. Core Residue Replacements Cause Coiled-Coil Orientation Switching in Vitro and in Vivo: Structure−Function Correlations for Osmosensory Transporter ProP. Biochemistry 2007; 47:60-72. [DOI: 10.1021/bi7018173] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yonit Tsatskis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada, and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, P.O. Box 6511, Mail Stop 8101, Aurora, Colorado 80045
| | - Stanley C. Kwok
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada, and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, P.O. Box 6511, Mail Stop 8101, Aurora, Colorado 80045
| | - Elisabeth Becker
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada, and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, P.O. Box 6511, Mail Stop 8101, Aurora, Colorado 80045
| | - Chad Gill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada, and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, P.O. Box 6511, Mail Stop 8101, Aurora, Colorado 80045
| | - Michelle N. Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada, and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, P.O. Box 6511, Mail Stop 8101, Aurora, Colorado 80045
| | - Robert A. B. Keates
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada, and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, P.O. Box 6511, Mail Stop 8101, Aurora, Colorado 80045
| | - Robert S. Hodges
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada, and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, P.O. Box 6511, Mail Stop 8101, Aurora, Colorado 80045
| | - Janet M. Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada, and Department of Biochemistry and Molecular Genetics, University of Colorado Denver, School of Medicine, P.O. Box 6511, Mail Stop 8101, Aurora, Colorado 80045
| |
Collapse
|
25
|
Smith SJ, McCann RO. A C-terminal dimerization motif is required for focal adhesion targeting of Talin1 and the interaction of the Talin1 I/LWEQ module with F-actin. Biochemistry 2007; 46:10886-98. [PMID: 17722883 DOI: 10.1021/bi700637a] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Focal adhesion complexes are plasma membrane-associated multicomponent complexes that are essential for integrin-linked signal transduction as well as cell adhesion and cell motility. The cytoskeletal protein Talin1 links integrin adhesion receptors with the actin cytoskeleton. Talin1 and the other animal and amoebozoan talins are members of the I/LWEQ module superfamily, which also includes fungal Sla2 and animal Hip1/Hip1R. The I/LWEQ module is a conserved C-terminal structural element that is critical for I/LWEQ module protein function. The I/LWEQ module of Talin1 binds to F-actin and targets the protein to focal adhesions in vivo. The I/LWEQ modules of Sla2 and Hip1 are required for the participation of these proteins in endocytosis. In addition to these roles in I/LWEQ module protein function, we have recently shown that the I/LWEQ module also contains a determinant for protein dimerization. Taken together, these results suggest that actin binding, subcellular targeting, and dimerization are associated in I/LWEQ module proteins. In this report we have used alanine-scanning mutagenesis of a putative coiled coil at the C-terminus of the Talin1 I/LWEQ module to show that the amino acids responsible for dimerization are necessary for F-actin binding, the stabilization of actin filaments, the cross-linking of actin filaments, and focal adhesion targeting. Our results suggest that this conserved dimerization motif in the I/LWEQ module plays an essential role in the function of Talin1 as a component of focal adhesions and, by extension, the other I/LWEQ module proteins in other multicomponent assemblies involved in cell adhesion and vesicle trafficking.
Collapse
Affiliation(s)
- Steven J Smith
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 741 South Limestone Street, Lexington, Kentucky 40536-0509, USA
| | | |
Collapse
|
26
|
Hadley EB, Gellman SH. An Antiparallel α-Helical Coiled-Coil Model System for Rapid Assessment of Side-Chain Recognition at the Hydrophobic Interface. J Am Chem Soc 2006; 128:16444-5. [PMID: 17177361 DOI: 10.1021/ja067178r] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both parallel and antiparallel alpha-helical coiled-coil dimers are common among proteins; however, biophysical scrutiny has focused almost entirely on parallel dimers. We describe the development of a model system that enables efficient and systematic analysis of hydrophobic packing between antiparallel alpha-helices. Our findings reveal significant differences in packing preferences between parallel and antiparallel coiled-coils.
Collapse
Affiliation(s)
- Erik B Hadley
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
27
|
Zimenkov Y, Dublin SN, Ni R, Tu RS, Breedveld V, Apkarian RP, Conticello VP. Rational Design of a Reversible pH-Responsive Switch for Peptide Self-Assembly. J Am Chem Soc 2006; 128:6770-1. [PMID: 16719440 DOI: 10.1021/ja0605974] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide TZ1H, based on the heptad sequence of a coiled-coil trimer, undergoes fully reversible, pH-dependent self-assembly into long-aspect-ratio helical fibers. Substitution of isoleucine residues with histidine at the core d-positions of alternate heptads introduces a mechanism by which self-assembly is coupled to the protonation state of the imidazole side chain. Circular dichroism spectroscopy, transmission electron microscopy, and microrheology techniques revealed that the self-assembly of TZ1H coincides with a distinct coil-helix conformational transition that occurs within a narrow pH range near the pKa of the imidazole side chains of the core histidine residues.
Collapse
Affiliation(s)
- Yuri Zimenkov
- Department of Chemistry and The Integrated Microscopy and Microanalytical Facility, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Errington N, Doig AJ. Anticooperativity in a Glu-Lys-Glu salt bridge triplet in an isolated alpha-helical peptide. Biochemistry 2005; 44:10449-56. [PMID: 16060653 PMCID: PMC1560106 DOI: 10.1021/bi0508690] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salt bridges between oppositely charged side chains are well-known to stabilize protein structure, though their contributions vary considerably. Here we study Glu-Lys and Lys-Glu salt bridges, formed when the residues are spaced i, i + 4 surface of an isolated alpha-helix in aqueous solution. Both are stabilizing by -0.60 and -1.02 kcal/mol, respectively, when the interacting residues are fully charged. When the side chains are spaced i, i + 4, i + 8, forming a Glu-Lys-Glu triplet, the second salt bridge provides no additional stabilization to the helix. We attribute this to the inability of the central Lys to form two salt bridges simultaneously. Analysis of these salt bridges in protein structures shows that the Lys-Glu interaction is dominant, with the side chains of the Glu-Lys pair far apart.
Collapse
Affiliation(s)
| | - Andrew J. Doig
- * Corresponding author. Telephone: +44 161-200-4224. Fax: +44 161-236-0409. E-mail:
| |
Collapse
|
29
|
Taylor CM, Keating AE. Orientation and oligomerization specificity of the Bcr coiled-coil oligomerization domain. Biochemistry 2005; 44:16246-56. [PMID: 16331985 PMCID: PMC2526250 DOI: 10.1021/bi051493t] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Bcr oligomerization domain, from the Bcr-Abl oncoprotein, is an attractive therapeutic target for treating leukemias because it is required for cellular transformation. The domain homodimerizes via an antiparallel coiled coil with an adjacent short, helical swap domain. Inspection of the coiled-coil sequence does not reveal obvious determinants of helix-orientation specificity, raising the possibility that the antiparallel orientation preference and/or the dimeric oligomerization state are due to interactions of the swap domains. To better understand how structural specificity is encoded in Bcr, coiled-coil constructs containing either an N- or C-terminal cysteine were synthesized without the swap domain. When cross-linked to adopt exclusively parallel or antiparallel orientations, these showed similar circular dichroism spectra. Both constructs formed coiled-coil dimers, but the antiparallel construct was approximately 16 degrees C more stable than the parallel to thermal denaturation. Equilibrium disulfide-exchange studies confirmed that the isolated coiled-coil homodimer shows a very strong preference for the antiparallel orientation. We conclude that the orientation and oligomerization preferences of Bcr are not caused by the presence of the swap domains, but rather are directly encoded in the coiled-coil sequence. We further explored possible determinants of structural specificity by mutating residues in the d position of the coiled-coil core. Some of the mutations caused a change in orientation specificity, and all of the mutations led to the formation of higher-order oligomers. In the absence of the swap domain, these residues play an important role in disfavoring alternate states and are especially important for encoding dimeric oligomerization specificity.
Collapse
Affiliation(s)
- Christina M. Taylor
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
30
|
Slovic AM, Stayrook SE, North B, Degrado WF. X-ray structure of a water-soluble analog of the membrane protein phospholamban: sequence determinants defining the topology of tetrameric and pentameric coiled coils. J Mol Biol 2005; 348:777-87. [PMID: 15826670 DOI: 10.1016/j.jmb.2005.02.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 02/17/2005] [Accepted: 02/17/2005] [Indexed: 11/18/2022]
Abstract
Phospholamban (PLB) is a pentameric transmembrane protein that regulates the Ca(2+)-dependent ATPase SERCA2a in sarcoplasmic reticulum membranes. We previously described the computational design of a water-soluble variant of phospholamban, WSPLB, which reproduced many of the structural and functional properties of the native membrane-soluble protein. While the full-length WSPLB forms a pentamer in solution, a truncated variant forms very stable tetramers. To obtain insight into the tetramer-pentamer cytoplasmic switch, we solved the crystal structure of the truncated construct, WSPLB 21-52. This peptide has a heptad sequence repeat with Leu residues at a- and Ile at d-positions from residues 31-52. The crystal structure revealed that WSPLB 21-52 adopted an antiparallel tetrameric coiled coil. This topology contrasts with the parallel topology of an analogue of the coiled-coil of GCN4 with the same Leu(a) Ile(d) repeat. Analysis of these structures revealed how the nature of the partially exposed residues at e- and g-positions influence the topology formed by the bundle. We also constructed a model for the pentameric form of PLB using the coiled-coil parameters derived from a single monomer in the tetrameric structure. This model suggests that both buried and interfacial hydrogen bonds are important for stabilizing the parallel pentamer.
Collapse
Affiliation(s)
- Avram M Slovic
- Department of Biochemistry and Molecular Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
31
|
Perez-Romero P, Fuller AO. The C terminus of the B5 receptor for herpes simplex virus contains a functional region important for infection. J Virol 2005; 79:7431-7. [PMID: 15919899 PMCID: PMC1143627 DOI: 10.1128/jvi.79.12.7431-7437.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of a previously uncharacterized human hfl-B5 cDNA confers susceptibility for herpes simplex virus (HSV) to porcine cells and fulfills criteria as an HSV entry receptor (A. Perez, Q.-X. Li, P. Perez-Romero, G. DeLassus, S. R. Lopez, S. Sutter, N. McLaren, and A. Oveta Fuller, J. Virol. 79:7419-7430, 2005). Heptad repeats found in the B5 C terminus are predicted to form an alpha-helix for coiled coil structure. We used mutagenesis and synthetic peptides with wild-type and mutant sequences to examine the function of the heptad repeat motif in HSV binding and entry into porcine cells that express B5 and for infection of naturally susceptible human HEp-2 cells. B5 with point mutations predicted to disrupt the putative C-terminal coiled coil failed to mediate HSV binding and entry into porcine cells. Synthetic peptides that contain the single amino acid changes lose the blocking activity of HSV entry. We concluded that the C terminus of B5 contains a functional region that is important for the B5 receptor to mediate events in HSV entry. Structural evidence that this functional region forms coiled coil structures is under investigation. Blocking of HSV interaction with the C-terminal region of the B5 receptor is a new potential target site to intervene in the virus infection of human cells.
Collapse
Affiliation(s)
- Pilar Perez-Romero
- Department of Microbiology and Immunology, 6736 Medical Sciences II, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
32
|
Errington N, Doig AJ. A Phosphoserine−Lysine Salt Bridge within an α-Helical Peptide, the Strongest α-Helix Side-Chain Interaction Measured to Date†. Biochemistry 2005; 44:7553-8. [PMID: 15895998 DOI: 10.1021/bi050297j] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphorylation is ubiquitous in control of protein activity, yet its effects on protein structure are poorly understood. Here we investigate the effect of serine phosphorylation in the interior of an alpha-helix when a salt bridge is present between the phosphate group and a positively charged side chain (in this case lysine) at i,i + 4 spacing. The stabilization of the helix is considerable and can overcome the intrinsically low preference of phosphoserine for the interior of the helix. The effect is pH dependent, as both the lysine and phosphate groups are titratable, and so calculations are given for several charge combinations. These results, with our previous work, highlight the different, context-dependent effects of phosphorylation in the alpha-helix. The interaction between the phosphate(2)(-) group and the lysine side chain is the strongest yet recorded in helix-coil studies. The results are of interest both in de novo design of peptides and in understanding the structural modes of control by phosphorylation.
Collapse
Affiliation(s)
- Neil Errington
- Faculty of Life Sciences, Jackson's Mill, The University of Manchester, Sackville Street, P.O. Box 88, Manchester M60 1QD, UK
| | | |
Collapse
|
33
|
Pagel K, Seeger K, Seiwert B, Villa A, Mark AE, Berger S, Koksch B. Advanced approaches for the characterization of a de novo designed antiparallel coiled coil peptide. Org Biomol Chem 2005; 3:1189-94. [PMID: 15785806 DOI: 10.1039/b418167k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here an advanced approach for the characterization of the folding pattern of a de novo designed antiparallel coiled coil peptide by high-resolution methods. Incorporation of two fluorescence labels at the C- and N-terminus of the peptide chain as well as modification of two hydrophobic core positions by Phe/[15N,13C]Leu enable the study of the folding characteristics and of distinct amino acid side chain interactions by fluorescence resonance energy transfer (FRET) and NMR spectroscopy. Results of both experiments reveal the antiparallel alignment of the helices and thus prove the design concept. This finding is also supported by molecular dynamics simulations. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in combination with NMR experiments was used for verification of the oligomerization equilibria of the coiled coil peptide.
Collapse
Affiliation(s)
- Kevin Pagel
- Free University Berlin, Department of Chemistry-Organic Chemistry, Takustrasse 3, 14195, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Protein design allows sequence-to-structure relationships in proteins to be examined and, potentially, new protein structures and functions to be made to order. To succeed, however, the protein-design process requires reliable rules that link protein sequence to structure?function. Although our present understanding of coiled-coil folding and assembly is not complete, through numerous bioinformatics and experimental studies there are now sufficient rules to allow confident design attempts of naturally observed and even novel coiled-coil motifs. This review summarizes the current design rules for coiled coils, and describes some of the key successful coiled-coil designs that have been created to date. The designs range from those for relatively straightforward, naturally observed structures-including parallel and antiparallel dimers, trimers and tetramers, all of which have been made as homomers and heteromers-to more exotic structures that expand the repertoire of Nature's coiled-coil structures. Examples in the second bracket include a probe that binds a cancer-associated coiled-coil protein; a tetramer with a right-handed supercoil; sticky-ended coiled coils that self-assemble to form fibers; coiled coils that switch conformational state; a three-component two-stranded coiled coil; and an antiparallel dimer that directs fragment complementation of larger proteins. Some of the more recent examples show an important development in the field; namely, new designs are being created with function as well as structure in mind. This will remain one of the key challenges in coiled-coil design in the next few years. Other challenges that lie ahead include the need to discover more rules for coiled-coil prediction and design, and to implement these in prediction and design algorithms. The considerable success of coiled-coil design so far bodes well for this, however. It is likely that these challenges will be met and surpassed.
Collapse
Affiliation(s)
- Derek N Woolfson
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer BN1 9QG, United Kingdom
| |
Collapse
|
35
|
Chen L, Chen LR, Zhou XE, Wang Y, Kahsai MA, Clark AT, Edmondson SP, Liu ZJ, Rose JP, Wang BC, Meehan EJ, Shriver JW. The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. J Mol Biol 2004; 341:73-91. [PMID: 15312764 DOI: 10.1016/j.jmb.2004.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/19/2004] [Accepted: 05/18/2004] [Indexed: 01/01/2023]
Abstract
Sso10a is a member of a group of DNA-binding proteins thought to be important in chromatin structure and regulation in the hyperthermophilic archaeon Sulfolobus solfataricus. We have determined the structure of Sso10a to 1.47A resolution directly with unlabelled native crystals by a novel approach using sulfur single-wavelength anomalous scattering (SAS) from a chromium X-ray source. The 95 amino acid residue protein contains a winged helix DNA-binding domain with an extended C-terminal alpha-helix that leads to dimerization by forming a two-stranded, antiparallel coiled-coil rod. The winged helix domains are at opposite ends of the extended coiled coil with two putative DNA-recognition helices separated by 55A and rotated by 83 degrees. Formation of stable dimers in solution is demonstrated by both analytical ultracentrifugation and differential scanning calorimetry. With a T0 of 109 degrees C, Sso10a is one of the most stable two-stranded coiled coils known. The coiled coil contains a rare aspartate residue (D69) in the normally hydrophobic d position of the heptad repeat, with two aspartate-lysine (d-g') interhelical ion pairs in the symmetrical dimer. Mutation of D69 to alanine resulted in an increase in thermal stability, indicating that destabilization resulting from the partially buried aspartate residue cannot be offset by ion pair formation. Possible DNA-binding interactions are discussed on the basis of comparisons to other winged helix proteins. The structure of Sso10a provides insight into the structures of the conserved domain represented by COG3432, a group of more than 20 hypothetical transcriptional regulators coded in the genomic sequences of both crenarchaeota and euryarchaeota.
Collapse
Affiliation(s)
- Liqing Chen
- Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schnarr NA, Kennan AJ. Sequential and Specific Exchange of Multiple Coiled-Coil Components. J Am Chem Soc 2003; 125:13046-51. [PMID: 14570476 DOI: 10.1021/ja035666i] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The capacity for sequential and specific exchange of single peptides from coiled-coil heterotrimers is investigated. Dual hydrophobic-hydrophilic interface systems permit iterative cycles of pH-triggered strand exchange that can specifically replace one, two, or even all three initial trimer components. The resultant new complexes are either resistant to or capable of further exchange. Control experiments demonstrate that background exchange among different complexes is negligible. When triggered, however, selective displacement of the same peptide from only one of two distinct heterotrimers is feasible. Previously documented peptidic cross-linking strategies remain operative in these more intricate environments.
Collapse
Affiliation(s)
- Nathan A Schnarr
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
37
|
Gurnon DG, Whitaker JA, Oakley MG. Design and characterization of a homodimeric antiparallel coiled coil. J Am Chem Soc 2003; 125:7518-9. [PMID: 12812483 DOI: 10.1021/ja0357590] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the first successful design of a self-associating antiparallel coiled coil, APH. The simultaneous application of Coulombic and hydrophobic components results in a decided preference for the antiparallel alignment as judged by HPLC, sedimentation equilibrium, and chemical denaturation data. The designed peptide is of comparable stability to naturally occurring leucine zipper peptides and can be expressed in bacteria. These properties of APH suggest potential in vivo protein fusion and biomaterials applications.
Collapse
Affiliation(s)
- Daniel G Gurnon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405-7102, USA
| | | | | |
Collapse
|
38
|
Wei Y, Horng JC, Vendel AC, Raleigh DP, Lumb KJ. Contribution to stability and folding of a buried polar residue at the CARM1 methylation site of the KIX domain of CBP. Biochemistry 2003; 42:7044-9. [PMID: 12795599 DOI: 10.1021/bi0343976] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transcriptional coactivator and acetyltransferase CREB Binding Protein (CBP) is comprised of several autonomously folded and functionally independent domains. The KIX domain mediates interactions between CBP and numerous transcriptional activators. The folded region of KIX has all the structural features of a globular protein, including three alpha-helices, two short 3(10) helices, and a well-packed hydrophobic core. KIX contains a buried cation-pi interaction between the positively charged guanidinium group of Arg 600 and the aromatic ring of Tyr 640. Arg 600 is a site for regulatory methylation by CARM1/PRMT4, which negates the CREB-binding function of the KIX domain. The role of the Arg 600-Tyr 640 buried polar interaction in specifying and stabilizing the structure of KIX was investigated by comparing the folding of wild-type KIX with the single point mutants Y640F and R600M. The Y640F mutant disrupts a hydrogen bond involving the Tyr 640 OH and the backbone of V595 but still allows for the cation-pi interaction while the R600M mutant disrupts the cation-pi interaction. Both wild type KIX and Y640F exhibit properties expected of native like, globular proteins such as a single oligomerization state (monomer), cooperative thermal and urea-induced unfolding transitions, and a well-packed core. In contrast, the R600M mutant has properties reminiscent of a molten globule state, including a tendency to aggregate, noncooperative thermal unfolding transition, and a loosely packed core. Thus, the buried cation-pi interaction is critical for specifying the unique cooperatively folded structure of KIX.
Collapse
Affiliation(s)
- Yu Wei
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA
| | | | | | | | | |
Collapse
|