1
|
Loot C, Millot GA, Richard E, Littner E, Vit C, Lemoine F, Néron B, Cury J, Darracq B, Niault T, Lapaillerie D, Parissi V, Rocha EPC, Mazel D. Integron cassettes integrate into bacterial genomes via widespread non-classical attG sites. Nat Microbiol 2024; 9:228-240. [PMID: 38172619 DOI: 10.1038/s41564-023-01548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/07/2023] [Indexed: 01/05/2024]
Abstract
Integrons are genetic elements involved in bacterial adaptation which capture, shuffle and express genes encoding adaptive functions embedded in cassettes. These events are governed by the integron integrase through site-specific recombination between attC and attI integron sites. Using computational and molecular genetic approaches, here we demonstrate that the integrase also catalyses cassette integration into bacterial genomes outside of its known att sites. Once integrated, these cassettes can be expressed if located near bacterial promoters and can be excised at the integration point or outside, inducing chromosomal modifications in the latter case. Analysis of more than 5 × 105 independent integration events revealed a very large genomic integration landscape. We identified consensus recombination sequences, named attG sites, which differ greatly in sequence and structure from classical att sites. These results unveil an alternative route for dissemination of adaptive functions in bacteria and expand the role of integrons in bacterial evolution.
Collapse
Affiliation(s)
- Céline Loot
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France.
| | - Gael A Millot
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Egill Richard
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Eloi Littner
- Sorbonne Université, Collège Doctoral, Paris, France
- DGA CBRN Defence, Vert-le-Petit, France
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Microbial Evolutionary Genomics, Paris, France
| | - Claire Vit
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Frédéric Lemoine
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Bertrand Néron
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Jean Cury
- Université Paris-Saclay, Inria, Laboratoire de Recherche en Informatique, CNRS UMR 8623, Orsay, France
| | - Baptiste Darracq
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Théophile Niault
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Delphine Lapaillerie
- Université de Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS UMR 5234, Département de Sciences Biologiques et Médicales, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - Vincent Parissi
- Université de Bordeaux, Fundamental Microbiology and Pathogenicity Laboratory, CNRS UMR 5234, Département de Sciences Biologiques et Médicales, Bordeaux, France
- Viral DNA Integration and Chromatin Dynamics Network (DyNAVir), Bordeaux, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Microbial Evolutionary Genomics, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
2
|
Combining Comprehensive Analysis of Off-Site Lambda Phage Integration with a CRISPR-Based Means of Characterizing Downstream Physiology. mBio 2017; 8:mBio.01038-17. [PMID: 28928209 PMCID: PMC5605937 DOI: 10.1128/mbio.01038-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
During its lysogenic life cycle, the phage genome is integrated into the host chromosome by site-specific recombination. In this report, we analyze lambda phage integration into noncanonical sites using next-generation sequencing and show that it generates significant genetic diversity by targeting over 300 unique sites in the host Escherichia coli genome. Moreover, these integration events can have important phenotypic consequences for the host, including changes in cell motility and increased antibiotic resistance. Importantly, the new technologies that we developed to enable this study—sequencing secondary sites using next-generation sequencing and then selecting relevant lysogens using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-based selection—are broadly applicable to other phage-bacterium systems. Bacteriophages play an important role in bacterial evolution through lysogeny, where the phage genome is integrated into the host chromosome. While phage integration generally occurs at a specific site in the host chromosome, it is also known to occur at other, so-called secondary sites. In this study, we developed a new experimental technology to comprehensively study secondary integration sites and discovered that phage can integrate into over 300 unique sites in the host genome, resulting in significant genetic diversity in bacteria. We further developed an assay to examine the phenotypic consequence of such diverse integration events and found that phage integration can cause changes in evolutionarily relevant traits such as bacterial motility and increases in antibiotic resistance. Importantly, our method is readily applicable to other phage-bacterium systems.
Collapse
|
3
|
Gaj T, Sirk SJ, Barbas CF. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng 2013; 111:1-15. [PMID: 23982993 DOI: 10.1002/bit.25096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/20/2022]
Abstract
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, 92037
| | | | | |
Collapse
|
4
|
Sitaras C, Beyde A, Malekazari P, Herrington MB. Light producing reporter plasmids for Escherichia coli K-12 that can be integrated into the chromosome. Plasmid 2011; 65:232-8. [PMID: 21376749 DOI: 10.1016/j.plasmid.2011.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
Abstract
Plasmid vectors using the Photorhabdus luminescenslux operon can be used for real time measurements of promoter activity. We have generated a series of lux vectors that have a conditional origin of replication, different selectable markers and the attP sequence from λ. Single copies of these plasmids can be integrated into the λ attachment site in the Escherichia coli chromosome. We constructed reporter derivatives and compared light production when the plasmids were present in multiple copies and in single copies. We also demonstrated that expression could be induced under the appropriate conditions.
Collapse
Affiliation(s)
- Chris Sitaras
- Biology Department, Concordia University, Montreal, QC H4B1R6, Canada
| | | | | | | |
Collapse
|
5
|
Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 2009; 73:300-9. [PMID: 19487729 DOI: 10.1128/mmbr.00038-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A classical feature of the tyrosine recombinase family of proteins catalyzing site-specific recombination, as exemplified by the phage lambda integrase and the Cre and Flp recombinases, is the ability to recombine substrates sharing very limited DNA sequence identity. Decades of research have established the importance of this short stretch of identity within the core regions of the substrates. Since then, several new enzymes that challenge this paradigm have been discovered and require the role of sequence identity in site-specific recombination to be reconsidered. The integrases of the conjugative transposons such as Tn916, Tn1545, and CTnDOT recombine substrates with heterologous core sequences. The integrase of the mobilizable transposon NBU1 performs recombination more efficiently with certain core mismatches. The integration of CTX phage and capture of gene cassettes by integrons also occur by altered mechanisms. In these systems, recombination occurs between mismatched sequences by a single strand exchange. In this review, we discuss literature that led to the formulation of the current strand-swapping isomerization model for tyrosine recombinases. The review then focuses on recent developments on the recombinases that challenged the paradigm that was derived from the studies of early systems.
Collapse
|
6
|
Doublet B, Golding GR, Mulvey MR, Cloeckaert A. Secondary chromosomal attachment site and tandem integration of the mobilizable Salmonella genomic island 1. PLoS One 2008; 3:e2060. [PMID: 18446190 PMCID: PMC2297512 DOI: 10.1371/journal.pone.0002060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/16/2008] [Indexed: 11/23/2022] Open
Abstract
Background The Salmonella genomic island 1 is an integrative mobilizable element (IME) originally identified in epidemic multidrug-resistant Salmonella enterica serovar Typhimurium (S. Typhimurium) DT104. SGI1 contains a complex integron, which confers various multidrug resistance phenotypes due to its genetic plasticity. Previous studies have shown that SGI1 integrates site-specifically into the S. enterica, Escherichia coli, or Proteus mirabilis chromosome at the 3′ end of thdF gene (attB site). Methodology/Principal Findings Here, we report the transfer of SGI1 to a ΔthdF mutant of S. Typhimurium LT2. In the absence of thdF, the frequency of transconjugant formation was reduced by around thirty times of magnitude. Through DNA sequencing SGI1 was shown to integrate specifically into a secondary attachment site (2ndattB), which is located in the intergenic region between the chromosomal sodB and purR genes. At this 2ndattB site, we found that a significant fraction of SGI1 transconjugants (43% of wild type and 100% of ΔthdF mutant) contained tandem SGI1 arrays. Moreover, in wild type S. Typhimurium LT2 transconjugants, SGI1 integrated into both attachment sites, i.e., thdF and sodB-purR. The formation of SGI1 tandem arrays occurred in both specific attB sites. There was heterogeneity in the size of the SGI1 tandem arrays detected in single transconjugant colonies. Some arrays consisted as far as six SGI1s arranged in tandem. These tandem arrays were shown to persist during serial passages with or without antibiotic selection pressure. Conclusions/Significance The ability of integration into two distinct chromosomal sites and tandem array formation of SGI1 could contribute to its spread and persistence. The existence of a secondary attachment site in the Salmonella chromosome has potential implications for the mobility of SGI1, which may integrate in other attachment sites of other bacterial pathogens that do not possess the 1st or 2nd specific SGI1 attB sites of Salmonella.
Collapse
Affiliation(s)
- Benoît Doublet
- INRA, UR1282, Infectiologie Animale et Santé Publique, Nouzilly, France.
| | | | | | | |
Collapse
|
7
|
Fogg PCM, Gossage SM, Smith DL, Saunders JR, McCarthy AJ, Allison HE. Identification of multiple integration sites for Stx-phage Phi24B in the Escherichia coli genome, description of a novel integrase and evidence for a functional anti-repressor. MICROBIOLOGY (READING, ENGLAND) 2007; 153:4098-4110. [PMID: 18048923 DOI: 10.1099/mic.0.2007/011205-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
The key virulence factor in Shiga-toxigenic Escherichia coli is the expression of Shiga toxin (Stx), which is conferred by Stx-encoding temperate lambdoid phages (Stx-phages). It had been assumed that Stx-phages would behave similarly to lambda phage. However, contrary to the lambda superinfection immunity model, it has been demonstrated that double lysogens can be produced with the Stx-phage Phi24(B). Here, the Phi24(B) integrase gene is identified, and the preferred site of integration defined. Although an E. coli int gene was identified close to the Phi24(B) integration site, it was shown not to be involved in the phage integration event. An additional six potential integration sites were identified in the E. coli genome, and three of these were confirmed experimentally. Two of the other potential sites lie within genes predicted to be essential to E. coli and are therefore unlikely to support phage integration. A Phi24(B) gene, possessing similarity to the well-characterized P22 ant gene, was identified. RT-PCR was used to demonstrate that ant is transcribed in a Phi24(B) E. coli lysogen, and expression of an anti-repressor is the likely explanation for the absence of immunity to superinfection. Demonstration of the ability of Phi24(B) to form multiple lysogens has two potentially serious impacts. First, multiple integrated prophages will drive the evolution of bacterial pathogens as novel Stx-phages emerge following intracellular mutation/recombination events. Second, multiple copies of the stx gene may lead to an increase in toxin production and consequently increased virulence.
Collapse
Affiliation(s)
- Paul C M Fogg
- Microbiology Research Group, Division of Integrative Biology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Sharon M Gossage
- Microbiology Research Group, Division of Integrative Biology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Darren L Smith
- Microbiology Research Group, Division of Integrative Biology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jon R Saunders
- Microbiology Research Group, Division of Integrative Biology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Alan J McCarthy
- Microbiology Research Group, Division of Integrative Biology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Heather E Allison
- Microbiology Research Group, Division of Integrative Biology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
8
|
Serra-Moreno R, Jofre J, Muniesa M. Insertion site occupancy by stx2 bacteriophages depends on the locus availability of the host strain chromosome. J Bacteriol 2007; 189:6645-54. [PMID: 17644594 PMCID: PMC2045183 DOI: 10.1128/jb.00466-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is an emergent pathogen characterized by the expression of Shiga toxins, which are encoded in the genomes of lambdoid phages. These phages are infectious for other members of the Enterobacteriaceae and establish lysogeny when they integrate into the host chromosome. Five insertion sites, used mainly by these prophages, have been described to date. In the present study, the insertion of stx(2) prophages in these sites was analyzed in 168 STEC strains isolated from cattle. Additionally, insertion sites were determined for stx(2) phages which (i) converted diverse laboratory host strains, (ii) coexisted with another stx(2) prophage, and (iii) infected a recombinant host strain lacking the most commonly used insertion site. Results show that depending on the host strain, phages preferentially use one insertion site. For the most part, yehV is occupied in STEC strains while wrbA is preferentially selected by the same stx phages in E. coli laboratory strains. If this primary insertion site is unavailable, then a secondary insertion site is selected. It can be concluded that insertion site occupancy by stx phages depends on the host strain and on the availability of the preferred locus in the host strain.
Collapse
|
9
|
Song B, Shoemaker NB, Gardner JF, Salyers AA. Integration site selection by the Bacteroides conjugative transposon CTnBST. J Bacteriol 2007; 189:6594-601. [PMID: 17616597 PMCID: PMC2045163 DOI: 10.1128/jb.00668-07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A newly discovered Bacteroides conjugative transposon (CTn), CTnBST, integrates more site specifically than two other well-studied CTns, the Bacteroides CTn CTnDOT and the enterococcal CTn Tn916. Moreover, the integrase of CTnBST, IntBST, had the C-terminal 6-amino-acid signature that is associated with the catalytic regions of members of the tyrosine recombinase family, most of which integrate site specifically. Also, in most of these integrases, all of the conserved amino acids are required for integration. In the case of IntBST, however, we found that changing three of the six conserved amino acids in the signature, one of which was the presumed catalytic tyrosine, resulted in a 1,000-fold decrease in integration frequency. Changes in the other amino acids had little or no effect. Thus, although the CTnBST integrase still seems to be a member of the tyrosine recombinase family, it clearly differs to some extent from other members of the family in its catalytic site. We also determined the sequence requirements for CTnBST integration in the 18-bp region where the crossover occurs preferentially during integration. We found that CTnBST integrates in this preferred site about one-half of the time but can also use other sites. A consensus sequence was tentatively derived by comparison of a few secondary sites: AATCTGNNAAAT. We report here that within the consensus region, no single base change affected the frequency of integration. However, 3 bp at one end of the consensus sequence (CTG) proved to be essential for integration into the preferred site. This sequence appeared to be at one end of a 7-bp crossover region, CTGNNAA. The other bases could vary without affecting either integration frequency or specificity. Thus, in contrast to well-studied site-specific recombinases which require homology throughout the crossover region, integration of CTnBST requires homology at one end of the crossover region but not at the other end.
Collapse
Affiliation(s)
- Bo Song
- Department of Microbiology, 601 S. Goodwin Ave., Rm B103, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
10
|
Schmidt JW, Rajeev L, Salyers AA, Gardner JF. NBU1 integrase: evidence for an altered recombination mechanism. Mol Microbiol 2006; 60:152-64. [PMID: 16556227 DOI: 10.1111/j.1365-2958.2006.05073.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
NBU1 is a 10.3 kbp Bacteroides mobilizable transposon. A previous study had identified a 2.7 kbp segment of the excised circular intermediate that was sufficient to mediate integration of the element after transfer. This segment contained an integrase gene, intN1, and a region spanning the ends of the circular form within which integration occurred (attN1). The integrase protein, IntN1, appeared to be a member of the tyrosine recombinase family because it contains the canonical C-terminal RKHRHY [RK(H/K)R(H/W)Y] motif that characterizes members of that family. In this study, we describe an Escherichia coli-based integration assay system that has allowed us to characterize attN1 in detail. We first localized attN1 to a 250 bp region. We then used site-directed mutations to identify directly repeated sequences within attN1 that were required for site-specific integration. The locus of NBU1 site-specific integration in the Bacteroides thetaiotaomicron chromosome, attBT1-1, contains a 14 bp sequence that is identical to a 14 bp sequence that spans the joined ends of the NBU1 attN1 site (common core sequences). The effects of mutations in the common core were different from the expected results if NBU1 integration was similar to lambda integration. In particular single base changes near one end of the common core region, which introduced heterology, actually increased the frequency of integration. By contrast, compensating changes that restored homology in the common core region reduced the integration frequency. The recombination mechanism also differs from the one used by conjugative transposons that have coupling sequences between the sites of strand cleavage and exchange. These results indicate that although NBU1 integrase is considered to be a member of the tyrosine recombinase family, it catalyses an integrative recombination reaction that occurs by a different crossover mechanism.
Collapse
Affiliation(s)
- John W Schmidt
- Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, PA 19104-6142, USA
| | | | | | | |
Collapse
|
11
|
Rutkai E, György A, Dorgai L, Weisberg RA. Role of secondary attachment sites in changing the specificity of site-specific recombination. J Bacteriol 2006; 188:3409-11. [PMID: 16621836 PMCID: PMC1447459 DOI: 10.1128/jb.188.9.3409-3411.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously proposed that lambdoid phages change their insertion specificity by adapting their integrases to sequences found in secondary attachment sites. To test this model, we quantified recombination between partners that carried sequences from secondary attachment sites catalyzed by wild-type and by mutant integrases with altered specificities. The results are consistent with the model, and indicate differential core site usage in excision and integration.
Collapse
Affiliation(s)
- Edit Rutkai
- Department of Molecular Biotechnology, Bay Zoltán Institute for Biotechnology, Szeged, Hungary
| | | | | | | |
Collapse
|
12
|
McLeod SM, Waldor MK. Characterization of XerC- and XerD-dependent CTX phage integration in Vibrio cholerae. Mol Microbiol 2005; 54:935-47. [PMID: 15522078 DOI: 10.1111/j.1365-2958.2004.04309.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CTXphi is a filamentous bacteriophage that encodes cholera toxin and integrates site-specifically into the larger of the two Vibrio cholerae chromosomes. The CTXphi genome lacks an integrase; instead, its integration depends on the chromosome-encoded tyrosine recombinases XerC and XerD. During integration, recombination occurs between regions of homology in CTXphi and the V. cholerae chromosome. Here, we define the elements on the phage genome (attP) and bacterial chromosome (attB) required for CTXphi integration. attB is a short sequence composed of one binding site for XerC and XerD spanning the site of recombination. Together, XerC and XerD bind to two sites within attP. While one XerC/D binding site in attP spans the core recombination region, the other site is approximately 80 bp away. Although integration occurs at the core XerC/D binding site in attP, the second site is required for CTXphi integration, suggesting it performs an architectural role in the integration reaction. In vitro cleavage reactions showed that XerC and XerD are capable of cleaving attB and attP sequences; however, additional cellular processes such as DNA replication or Holliday junction resolution by a host resolvase may contribute to integration in vivo.
Collapse
Affiliation(s)
- Sarah M McLeod
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Howard Hughes Medical Institute, Boston, MA 02111, USA
| | | |
Collapse
|