1
|
Tammara V, Das A. A Self-Consistent Molecular Mechanism of β 2-Microglobulin Aggregation. J Phys Chem B 2024; 128:12425-12442. [PMID: 39656191 DOI: 10.1021/acs.jpcb.4c06611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Despite the consensus on the origin of dialysis-related amyloidosis (DRA) being β2-microglobulin (β2m) aggregation, the debate on the underlying mechanism persists because of the continuous emergence of β2m variant- and pH-dependent contradictory results. By characterizing the native monomeric (initiation) and aggregated fibrillar (termination) states of β2m via a combination of two enhanced sampling approaches, we here propose a mechanism that explains the heterogeneous behavior of wild-type (WT) and pathogenic (V27M and D76N) β2m variants in physiological and disease-pertinent acidic pH environments. It appears that the higher retainment of monomeric native folds at neutral pH (native-like) distinguishes pathogenic β2m mutants from the WT (moderate loss). However, at acidic pH, all three variants behave similarly in producing a substantial amount of partially unfolded states (conformational switch, propensity), though with different extents (WT < V27M < D76N). Whereas at the fibrillar end, all β2m variants display a pH-dependent protofilament separation pathway and a higher protofilament binding affinity (stability) at acidic pH, where the relative order of binding affinity (WT < V27M < D76N) remains consistent with pH modulation. Combining these observations, we conclude that β2m variants possibly shift from native-like aggregation to conformational switch-initiated fibrillation as the pH is altered from neutral to acidic. The combined propensity-stability approach based on the initiation and termination points of β2m aggregation not only assists us in deciphering the mechanism but also emphasizes the protagonistic roles of both terminal points in the overall aggregation process.
Collapse
Affiliation(s)
- Vaishnavi Tammara
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Katina N, Marchenkov V, Lapteva Y, Balobanov V, Ilyina N, Ryabova N, Evdokimov S, Suvorina M, Surin A, Glukhov A. Authentic hSAA related with AA amyloidosis: New method of purification, folding and amyloid polymorphism. Biophys Chem 2024; 313:107293. [PMID: 39004034 DOI: 10.1016/j.bpc.2024.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The secondary amyloidosis of humans is caused by the formation of hSAA fibrils in different organs and tissues. Until now hSAA was thought to have low amyloidogenicity in vitro and the majority of SAA aggregation experiments were done using murine protein or hSAA non-pathogenic isoforms. In this work a novel purification method for recombinant hSAA was introduced, enabling to obtain monomeric protein capable of amyloid aggregation under physiological conditions. The stability and amyloid aggregation of hSAA have been examined using a wide range of biophysical methods. It was shown that the unfolding of monomeric protein occurs through the formation of molten globule-like intermediate state. Polymorphism of hSAA amyloids was discovered to depend on the solution pH. At pH 8.5, rapid protein aggregation occurs, which leads to the formation of twisted short fibrils. Even a slight decrease of the pH to 7.8 results in delayed aggregation with the formation of long straight amyloids composed of laterally associated protofilaments. Limited proteolysis experiments have shown that full-length hSAA is involved in the formation of intermolecular interactions in both amyloid polymorphs. The results obtained, and the experimental approach used in this study can serve as a basis for further research on the mechanism of authentic hSAA amyloid formation.
Collapse
Affiliation(s)
- Natalya Katina
- Branch of the Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, 142290, Russia; Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Victor Marchenkov
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Yulia Lapteva
- Institute for Biological Instrumentation RAS, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Nauki av., 3, Pushchino, 142290, Russia.
| | - Vitalii Balobanov
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Nelly Ilyina
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Natalya Ryabova
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | | | - Mariya Suvorina
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| | - Alexey Surin
- Branch of the Institute of Bioorganic Chemistry RAS, Prospekt Nauki, 6, Pushchino, 142290, Russia; Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia; State Research Center for Applied Microbiology and Biotechnology, Kvartal A, 24, Obolensk, 142279, Russia.
| | - Anatoly Glukhov
- Institute of Protein Research RAS, Institutskaya, 4, Pushchino, 142290, Russia.
| |
Collapse
|
3
|
Saccuzzo EG, Robang AS, Gao Y, Chen B, Lieberman RL, Paravastu AK. Evidence for S 331-G-S-L within the amyloid core of myocilin olfactomedin domain fibrils based on low-resolution 3D solid-state NMR spectra. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.606901. [PMID: 39149386 PMCID: PMC11326258 DOI: 10.1101/2024.08.09.606901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Myocilin-associated glaucoma is a protein-conformational disorder associated with formation of a toxic amyloid-like aggregate. Numerous destabilizing single point variants, distributed across the myocilin olfactomedin β-propeller (OLF, myocilin residues 245-504, 30 kDa) are associated with accelerated disease progression. In vitro, wild type (WT) OLF can be promoted to form thioflavin T (ThT)-positive fibrils under mildly destabilizing (37°C, pH 7.2) conditions. Consistent with the notion that only a small number of residues within a protein are responsible for amyloid formation, 3D 13C-13C solid-state NMR spectra show that OLF fibrils are likely to be composed of only about one third of the overall sequence. Here, we probe the residue composition of fibrils formed de novo from purified full-length OLF. We were able to make sequential assignments consistent with the sequence S331-G-S-L334. This sequence appears once within a previously identified amyloid-prone region (P1, G326AVVYSGSLYFQ) internal to OLF. Since nearly half of the pairs of adjacent residues (di-peptides) in OLF occur only once in the primary structure and almost all the 3-residue sequences (tri-peptides) are unique, remarkably few sequential assignments are necessary to uniquely identify specific regions of the amyloid core. This assignment approach could be applied to other systems to expand our molecular comprehension of how folded proteins undergo fibrillization.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry and Georgia Institute of Technology, Atlanta, GA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Alicia S Robang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yuan Gao
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Bo Chen
- Department of Physics, University of Central Florida, Orlando, FL
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry and Georgia Institute of Technology, Atlanta, GA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Anant K Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
4
|
Novikova OD, Rybinskaya TV, Zelepuga EA, Uversky VN, Kim NY, Chingizova EA, Menchinskaya ES, Khomenko VA, Chistyulin DK, Portnyagina OY. Formation of Amyloid-Like Conformational States of β-Structured Membrane Proteins on the Example of OMPF Porin from the Yersinia pseudotuberculosis Outer Membrane. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1079-1093. [PMID: 38981702 DOI: 10.1134/s0006297924060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/14/2024] [Accepted: 03/31/2024] [Indexed: 07/11/2024]
Abstract
The work presents results of the in vitro and in silico study of formation of amyloid-like structures under harsh denaturing conditions by non-specific OmpF porin of Yersinia pseudotuberculosis (YpOmpF), a membrane protein with β-barrel conformation. It has been shown that in order to obtain amyloid-like porin aggregates, preliminary destabilization of its structure in a buffer solution with acidic pH at elevated temperature followed by long-term incubation at room temperature is necessary. After heating at 95°C in a solution with pH 4.5, significant conformational rearrangements are observed in the porin molecule at the level of tertiary and secondary structure of the protein, which are accompanied by the increase in the content of total β-structure and sharp decrease in the value of characteristic viscosity of the protein solution. Subsequent long-term exposure of the resulting unstable intermediate YpOmpF at room temperature leads to formation of porin aggregates of various shapes and sizes that bind thioflavin T, a specific fluorescent dye for the detection of amyloid-like protein structures. Compared to the initial protein, early intermediates of the amyloidogenic porin pathway, oligomers, have been shown to have increased toxicity to the Neuro-2aCCL-131™ mouse neuroblastoma cells. The results of computer modeling and analysis of the changes in intrinsic fluorescence during protein aggregation suggest that during formation of amyloid-like aggregates, changes in the structure of YpOmpF affect not only the areas with an internally disordered structure corresponding to the external loops of the porin, but also main framework of the molecule, which has a rigid spatial structure inherent to β-barrel.
Collapse
Affiliation(s)
- Olga D Novikova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Tatyana V Rybinskaya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Elena A Zelepuga
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33620, USA
| | - Nataliya Yu Kim
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Ekaterina A Chingizova
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Ekaterina S Menchinskaya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Valentina A Khomenko
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Dmitriy K Chistyulin
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia
| | - Olga Yu Portnyagina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690021, Russia.
| |
Collapse
|
5
|
Saccuzzo EG, Mebrat MD, Scelsi HF, Kim M, Ma MT, Su X, Hill SE, Rheaume E, Li R, Torres MP, Gumbart JC, Van Horn WD, Lieberman RL. Competition between inside-out unfolding and pathogenic aggregation in an amyloid-forming β-propeller. Nat Commun 2024; 15:155. [PMID: 38168102 PMCID: PMC10762032 DOI: 10.1038/s41467-023-44479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression. Aggregation by wild-type OLF (OLFWT) competes with its chemical unfolding, but only below the threshold where OLF loses tertiary structure. Representative moderate (OLFD380A) and severe (OLFI499F) disease variants aggregate differently, with rates comparable to OLFWT in initial stages of unfolding, and variants adopt distinct partially folded structures seen along the OLFWT urea-unfolding pathway. Whether initiated with mutation or chemical perturbation, unfolding propagates outward to the propeller surface. In sum, for this large protein prone to amyloid formation, the requirement for a conformational change to promote amyloid fibrillization leads to direct competition between unfolding and aggregation.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Mubark D Mebrat
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Hailee F Scelsi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Minjoo Kim
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Elisa Rheaume
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
- School of Physics, Georgia Institute of Technology, Atlanta, USA
| | - Wade D Van Horn
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA.
- School of Molecular Sciences, Arizona State University, Tempe, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA.
| |
Collapse
|
6
|
Garfagnini T, Bemporad F, Harries D, Chiti F, Friedler A. Amyloid Aggregation Is Potently Slowed Down by Osmolytes Due to Compaction of Partially Folded State. J Mol Biol 2023; 435:168281. [PMID: 37734431 DOI: 10.1016/j.jmb.2023.168281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/30/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Amyloid aggregation is a key process in amyloidoses and neurodegenerative diseases. Hydrophobicity is one of the major driving forces for this type of aggregation, as an increase in hydrophobicity generally correlates with aggregation susceptibility and rate. However, most experimental systems in vitro and prediction tools in silico neglect the contribution of protective osmolytes present in the cellular environment. Here, we assessed the role of hydrophobic mutations in amyloid aggregation in the presence of osmolytes. To achieve this goal, we used the model protein human muscle acylphosphatase (mAcP) and mutations to leucine that increased its hydrophobicity without affecting its thermodynamic stability. Osmolytes significantly slowed down the aggregation kinetics of the hydrophobic mutants, with an effect larger than that observed on the wild-type protein. The effect increased as the mutation site was closer to the middle of the protein sequence. We propose that the preferential exclusion of osmolytes from mutation-introduced hydrophobic side-chains quenches the aggregation potential of the ensemble of partially unfolded states of the protein by inducing its compaction and inhibiting its self-assembly with other proteins. Our results suggest that including the effect of the cellular environment in experimental setups and predictive softwares, for both mechanistic studies and drug design, is essential in order to obtain a more complete combination of the driving forces of amyloid aggregation.
Collapse
Affiliation(s)
- Tommaso Garfagnini
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 9190401, Israel
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Daniel Harries
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 9190401, Israel; The Fritz Haber Research Center, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 9190401, Israel
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, Jerusalem 9190401, Israel.
| |
Collapse
|
7
|
L P Hosszu L, Sangar D, Batchelor M, Risse E, Hounslow AM, Collinge J, Waltho JP, Bieschke J. Loss of residues 119 - 136, including the first β-strand of human prion protein, generates an aggregation-competent partially "open" form. J Mol Biol 2023:168158. [PMID: 37244570 DOI: 10.1016/j.jmb.2023.168158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
In prion replication, the cellular form of prion protein (PrPC) must undergo a full conformational transition to its disease-associated fibrillar form. Transmembrane forms of PrP have been implicated in this structural conversion. The cooperative unfolding of a structural core in PrPC presents a substantial energy barrier to prion formation, with membrane insertion and detachment of parts of PrP presenting a plausible route to its reduction. Here, we examined the removal of residues 119 - 136 of PrP, a region which includes the first β-strand and a substantial portion of the conserved hydrophobic region of PrP, a region which associates with the ER membrane, on the structure, stability and self-association of the folded domain of PrPC. We see an "open" native-like conformer with increased solvent exposure which fibrilises more readily than the native state. These data suggest a stepwise folding transition, which is initiated by the conformational switch to this "open" form of PrPC.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Emmanuel Risse
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
8
|
Pillai M, Jha SK. Multistep molecular mechanism of amyloid-like aggregation of nucleic acid-binding domain of TDP-43. Proteins 2022; 91:649-664. [PMID: 36530161 DOI: 10.1002/prot.26455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/16/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
TDP-43 protein is associated with many neurodegenerative diseases and has been shown to adopt various oligomeric and fibrillar states. However, a detailed kinetic understanding of the structural transformation of the native form of the protein to the fibrillar state is missing. In this study, we delineate the temporal sequence of structural events during the amyloid-like assembly of the functional nucleic acid-binding domain of TDP-43. We kinetically mapped the aggregation process using multiple probes such as tryptophan and thioflavin T (ThT) fluorescence, circular dichroism (CD), and dynamic light scattering (DLS) targeting different structural events. Our data reveal that aggregation occurs in four distinct steps-very fast, fast, slow, and very slow. The "very fast" change results in partially unfolded forms that undergo conformational conversion, oligomerization and bind to ThT in the "fast step" to form higher order intermediates (HOI). The temporal sequence of the formation of ThT binding sites and conformational conversion depends upon the protein concentration. The HOI further undergoes structural rearrangement to form protofibrils in the "slow" step, which, consequently, assembles in the "very slow" step to form an amyloid-like assembly. The spectroscopic properties of the amyloid-like assembly across the protein concentration remain similar. Additionally, we observe no lag phase across protein concentration for all the probes studied, suggesting that the aggregation process follows a linear polymerization reaction. Overall, our study demonstrates that the amyloid-like assembly forms in multiple steps, which is also supported by the temperature dependence of the kinetics.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Sedov I, Khaibrakhmanova D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int J Mol Sci 2022; 23:13428. [PMID: 36362217 PMCID: PMC9657184 DOI: 10.3390/ijms232113428] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Inhibition of fibril formation is considered a possible treatment strategy for amyloid-related diseases. Understanding the molecular nature of inhibitor action is crucial for the design of drug candidates. In the present review, we describe the common kinetic models of fibril formation and classify known inhibitors by the mechanism of their interactions with the aggregating protein and its oligomers. This mechanism determines the step or steps of the aggregation process that become inhibited and the observed changes in kinetics and equilibrium of fibril formation. The results of numerous studies indicate that possible approaches to antiamyloid inhibitor discovery include the search for the strong binders of protein monomers, cappers blocking the ends of the growing fibril, or the species absorbing on the surface of oligomers preventing nucleation. Strongly binding inhibitors stabilizing the native state can be promising for the structured proteins while designing the drug candidates targeting disordered proteins is challenging.
Collapse
Affiliation(s)
- Igor Sedov
- Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
- Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
| | | |
Collapse
|
10
|
Mehta D, Singh H, Haridas V, Chaudhuri TK. Molecular Insights into the Inhibition of Dialysis-Related β2m Amyloidosis Orchestrated by a Bispidine Peptidomimetic Analogue. Biochemistry 2022; 61:1473-1484. [PMID: 35749234 DOI: 10.1021/acs.biochem.2c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dialysis-related amyloidosis (DRA) is considered an inescapable consequence of renal failure. Upon prolonged hemodialysis, it involves accumulation of toxic β2-microglobulin (β2m) amyloids in bones and joints. Current treatment methods are plagued with high cost, low specificity, and low capacity. Through our in vitro and in cellulo studies, we introduce a peptidomimetic-based approach to help develop future therapeutics against DRA. Our study reports the ability of a nontoxic, core-modified, bispidine peptidomimetic analogue "B(LVI)2" to inhibit acid-induced amyloid fibrillation of β2m (Hβ2m). Using thioflavin-T, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transmission electron microscopy analysis, we demonstrate that B(LVI)2 delays aggregation lag time of Hβ2m amyloid fibrillation and reduces the yield of Hβ2m amyloid fibrils in a dose-dependent manner. Our findings suggest a B(LVI)2-orchestrated alteration in the route of Hβ2m amyloid fibrillation resulting in the formation of noncytotoxic, morphologically distinct amyloid-like species. Circular dichroism data show gradual sequestration of Hβ2m species in a soluble nonamyloidogenic noncytotoxic conformation in the presence of B(LVI)2. Dynamic light scattering measurements indicate incompetence of Hβ2m species in the presence of B(LVI)2 to undergo amyloid-competent intermolecular associations. Overall, our study reports the antifibrillation property of a novel peptidomimetic with the potential to bring a paradigm shift in therapeutic approaches against DRA.
Collapse
Affiliation(s)
- Devanshu Mehta
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
11
|
Lendel C, Solin N. Protein nanofibrils and their use as building blocks of sustainable materials. RSC Adv 2021; 11:39188-39215. [PMID: 35492452 PMCID: PMC9044473 DOI: 10.1039/d1ra06878d] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/25/2021] [Indexed: 12/21/2022] Open
Abstract
The development towards a sustainable society requires a radical change of many of the materials we currently use. Besides the replacement of plastics, derived from petrochemical sources, with renewable alternatives, we will also need functional materials for applications in areas ranging from green energy and environmental remediation to smart foods. Proteins could, with their intriguing ability of self-assembly into various forms, play important roles in all these fields. To achieve that, the code for how to assemble hierarchically ordered structures similar to the protein materials found in nature must be cracked. During the last decade it has been demonstrated that amyloid-like protein nanofibrils (PNFs) could be a steppingstone for this task. PNFs are formed by self-assembly in water from a range of proteins, including plant resources and industrial side streams. The nanofibrils display distinct functional features and can be further assembled into larger structures. PNFs thus provide a framework for creating ordered, functional structures from the atomic level up to the macroscale. This review address how industrial scale protein resources could be transformed into PNFs and further assembled into materials with specific mechanical and functional properties. We describe what is required from a protein to form PNFs and how the structural properties at different length scales determine the material properties. We also discuss potential chemical routes to modify the properties of the fibrils and to assemble them into macroscopic structures.
Collapse
Affiliation(s)
- Christofer Lendel
- Department of Chemistry, KTH Royal Institute of Technology Teknikringen 30 SE-100 44 Stockholm Sweden
| | - Niclas Solin
- Department of Physics, Chemistry, and Biology, Electronic and Photonic Materials, Biomolecular and Organic Electronics, Linköping University Linköping 581 83 Sweden
| |
Collapse
|
12
|
Renawala HK, Chandrababu KB, Topp EM. Fibrillation of Human Calcitonin and Its Analogs: Effects of Phosphorylation and Disulfide Reduction. Biophys J 2020; 120:86-100. [PMID: 33220304 DOI: 10.1016/j.bpj.2020.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/24/2020] [Accepted: 11/10/2020] [Indexed: 11/16/2022] Open
Abstract
Some therapeutic peptides self-assemble in solution to form ordered, insoluble, β-sheet-rich amyloid fibrils. This physical instability can result in reduced potency, cause immunogenic side effects, and limit options for formulation. Understanding the mechanisms of fibrillation is key to developing rational mitigation strategies. Here, amide hydrogen-deuterium exchange with mass spectrometric analysis (HDX-MS) coupled with proteolytic digestion was used to identify the early stage interactions leading to fibrillation of human calcitonin (hCT), a peptide hormone important in calcium metabolism. hCT fibrillation kinetics was sigmoidal, with lag, growth, and plateau phases as shown by thioflavin T and turbidity measurements. HDX-MS of fibrillating hCT (pH 7.4; 25°C) suggested early involvement of the N-terminal (1-11) and central (12-19) fragments in interactions during the lag phase, whereas C-terminal fragments (20-32 and 26-32) showed limited involvement during this period. The residue-level information was used to develop phosphorylated hCT analogs that showed modified fibrillation that depended on phosphorylation site. Phosphorylation in the central region resulted in complete inhibition of fibrillation for the phospho-Thr-13 hCT analog, whereas phosphorylation in the N-terminal and C-terminal regions inhibited but did not prevent fibrillation. Reduction of the Cys1-Cys7 disulfide bond resulted in faster fibrillation with involvement of different hCT residues as indicated by pulsed HDX-MS. Together, the results demonstrate that small structural changes have significant effects on hCT fibrillation and that understanding these effects can inform the rational development of fibrillation-resistant hCT analogs.
Collapse
Affiliation(s)
- Harshil K Renawala
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Karthik B Chandrababu
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana
| | - Elizabeth M Topp
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana; National Institute for Bioprocessing Research and Training, Dublin, Ireland.
| |
Collapse
|
13
|
Uversky VN, Finkelstein AV. Life in Phases: Intra- and Inter- Molecular Phase Transitions in Protein Solutions. Biomolecules 2019; 9:E842. [PMID: 31817975 PMCID: PMC6995567 DOI: 10.3390/biom9120842] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Proteins, these evolutionarily-edited biological polymers, are able to undergo intramolecular and intermolecular phase transitions. Spontaneous intramolecular phase transitions define the folding of globular proteins, whereas binding-induced, intra- and inter- molecular phase transitions play a crucial role in the functionality of many intrinsically-disordered proteins. On the other hand, intermolecular phase transitions are the behind-the-scenes players in a diverse set of macrosystemic phenomena taking place in protein solutions, such as new phase nucleation in bulk, on the interface, and on the impurities, protein crystallization, protein aggregation, the formation of amyloid fibrils, and intermolecular liquid-liquid or liquid-gel phase transitions associated with the biogenesis of membraneless organelles in the cells. This review is dedicated to the systematic analysis of the phase behavior of protein molecules and their ensembles, and provides a description of the major physical principles governing intramolecular and intermolecular phase transitions in protein solutions.
Collapse
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Moscow, Russia
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow, Russia
- Biology Department, Lomonosov Moscow State University, 119192 Moscow, Russia
- Bioltechnogy Department, Lomonosov Moscow State University, 142290 Pushchino, Moscow, Russia
| |
Collapse
|
14
|
Kumar AP, Lee S, Lukman S. Computational and Experimental Approaches to Design Inhibitors of Amylin Aggregation. Curr Drug Targets 2019; 20:1680-1694. [DOI: 10.2174/1389450120666190719164316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023]
Abstract
Amylin is a neuroendocrine peptide hormone secreted by pancreatic ß-cells; however,
amylin is toxic to ß-cells when it is aggregated in type 2 diabetes mellitus (T2DM). It is important to
understand amylin’s structures and aggregation mechanism for the discovery and design of effective
drugs to inhibit amylin aggregation. In this review, we investigated experimental and computational
studies on amylin structures and inhibitors. Our review provides some novel insights into amylin, particularly
for the design of its aggregation inhibitors to treat T2DM. We detailed the potential inhibitors
that have been studied hitherto and highlighted the neglected need to consider different amylin attributes
that depend on the presence/absence of physiologically relevant conditions, such as membranes.
These conditions and the experimental methods can greatly influence the results of studies on amylininhibitor
complexes. Text-mining over 3,000 amylin-related PubMed abstracts suggests the combined
therapeutic potential of amylin with leptin and glucagon-like peptide-1, which are two key hormones
in obesity. The results also suggest that targeting amylin aggregation can contribute to therapeutic efforts
for Alzheimer’s disease (AD). Therefore, we have also reviewed the role of amylin in other conditions
including obesity and AD. Finally, we provided insights for designing inhibitors of different
types (small molecules, proteins, peptides/mimetics, metal ions) to inhibit amylin aggregation.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Visconti L, Malagrinò F, Broggini L, De Luca CMG, Moda F, Gianni S, Ricagno S, Toto A. Investigating the Molecular Basis of the Aggregation Propensity of the Pathological D76N Mutant of Beta-2 Microglobulin: Role of the Denatured State. Int J Mol Sci 2019; 20:E396. [PMID: 30669253 PMCID: PMC6359115 DOI: 10.3390/ijms20020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/23/2022] Open
Abstract
Beta-2 microglobulin (β2m) is a protein responsible for a pathologic condition, known as dialysis-related amyloidosis (DRA), caused by its aggregation and subsequent amyloid formation. A naturally occurring mutation of β2m, D76N, presents a higher amyloidogenic propensity compared to the wild type counterpart. Since the three-dimensional structure of the protein is essentially unaffected by the mutation, the increased aggregation propensity of D76N has been generally ascribed to its lower thermodynamic stability and increased dynamics. In this study we compare the equilibrium unfolding and the aggregation propensity of wild type β2m and D76N variant at different experimental conditions. Our data revealed a surprising effect of the D76N mutation in the residual structure of the denatured state, which appears less compact than that of the wild type protein. A careful investigation of the structural malleability of the denatured state of wild type β2m and D76N pinpoint a clear role of the denatured state in triggering the amyloidogenic propensity of the protein. The experimental results are discussed in the light of the previous work on β2m and its role in disease.
Collapse
Affiliation(s)
- Lorenzo Visconti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Francesca Malagrinò
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Luca Broggini
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Chiara Maria Giulia De Luca
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Divisione di Neurologia 5-Neuropatologia, 20133 Milano, Italy.
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Divisione di Neurologia 5-Neuropatologia, 20133 Milano, Italy.
| | - Stefano Gianni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Stefano Ricagno
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy.
| |
Collapse
|
16
|
Lima AN, de Oliveira RJ, Braz ASK, de Souza Costa MG, Perahia D, Scott LPB. Effects of pH and aggregation in the human prion conversion into scrapie form: a study using molecular dynamics with excited normal modes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 47:583-590. [PMID: 29546436 DOI: 10.1007/s00249-018-1292-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
There are two different prion conformations: (1) the cellular natural (PrPC) and (2) the scrapie (PrPSc), an infectious form that tends to aggregate under specific conditions. PrPC and PrPSc are widely different regarding secondary and tertiary structures. PrPSc contains more and longer β-strands compared to PrPC. The lack of solved PrPSc structures precludes a proper understanding of the mechanisms related to the transition between cellular and scrapie forms, as well as the aggregation process. In order to investigate the conformational transition between PrPC and PrPSc, we applied MDeNM (molecular dynamics with excited normal modes), an enhanced sampling simulation technique that has been recently developed to probe large structural changes. These simulations yielded new structural rearrangements of the cellular prion that would have been difficult to obtain with standard MD simulations. We observed an increase in β-sheet formation under low pH (≤ 4) and upon oligomerization, whose relevance was discussed on the basis of the energy landscape theory for protein folding. The characterization of intermediate structures corresponding to transition states allowed us to propose a conversion model from the cellular to the scrapie prion, which possibly ignites the fibril formation. This model can assist the design of new drugs to prevent neurological disorders related to the prion aggregation mechanism.
Collapse
Affiliation(s)
- Angelica Nakagawa Lima
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Antônio Sérgio Kimus Braz
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil
| | | | - David Perahia
- Laboratorie de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Cachan, France
| | - Luis Paulo Barbour Scott
- Laboratório de Biologia Computacional e Bioinformática, Universidade Federal do ABC, Santo André, SP, Brazil.
| |
Collapse
|
17
|
Loureiro RJS, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN. A tale of two tails: The importance of unstructured termini in the aggregation pathway of β2-microglobulin. Proteins 2017; 85:2045-2057. [DOI: 10.1002/prot.25358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/13/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Rui J. S. Loureiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Diogo Vila-Viçosa
- Centro de Química e Bioquímica; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology; Harvard University; Cambridge Massachusetts
| | - Patricia F. N. Faísca
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
- Departamento de Física; Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
18
|
Robinson PJ, Pringle MA, Woolhead CA, Bulleid NJ. Folding of a single domain protein entering the endoplasmic reticulum precedes disulfide formation. J Biol Chem 2017; 292:6978-6986. [PMID: 28298446 PMCID: PMC5409466 DOI: 10.1074/jbc.m117.780742] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/09/2017] [Indexed: 12/31/2022] Open
Abstract
The relationship between protein synthesis, folding, and disulfide formation within the endoplasmic reticulum (ER) is poorly understood. Previous studies have suggested that pre-existing disulfide links are absolutely required to allow protein folding and, conversely, that protein folding occurs prior to disulfide formation. To address the question of what happens first within the ER, that is, protein folding or disulfide formation, we studied folding events at the early stages of polypeptide chain translocation into the mammalian ER using stalled translation intermediates. Our results demonstrate that polypeptide folding can occur without complete domain translocation. Protein disulfide isomerase (PDI) interacts with these early intermediates, but disulfide formation does not occur unless the entire sequence of the protein domain is translocated. This is the first evidence that folding of the polypeptide chain precedes disulfide formation within a cellular context and highlights key differences between protein folding in the ER and refolding of purified proteins.
Collapse
Affiliation(s)
- Philip J Robinson
- From the Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Marie Anne Pringle
- From the Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Cheryl A Woolhead
- From the Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Neil J Bulleid
- From the Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| |
Collapse
|
19
|
Borotto NB, Zhang Z, Dong J, Burant B, Vachet RW. Increased β-Sheet Dynamics and D-E Loop Repositioning Are Necessary for Cu(II)-Induced Amyloid Formation by β-2-Microglobulin. Biochemistry 2017; 56:1095-1104. [PMID: 28168880 DOI: 10.1021/acs.biochem.6b01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-2-Microglobulin (β2m) forms amyloid fibrils in the joints of patients undergoing dialysis treatment as a result of kidney failure. One of the ways in which β2m can be induced to form amyloid fibrils in vitro is via incubation with stoichiometric amounts of Cu(II). To better understand the structural changes caused by Cu(II) binding that allow β2m to form amyloid fibrils, we compared the effect of Ni(II) and Zn(II) binding, which are two similarly sized divalent metal ions that do not induce β2m amyloid formation. Using hydrogen/deuterium exchange mass spectrometry (HDX/MS) and covalent labeling MS, we find that Ni(II) has little effect on β2m structure, despite binding in the same region of the protein as Cu(II). This observation indicates that subtle differences in the organization of residues around Cu(II) cause distant changes that are necessary for oligomerization and eventual amyloid formation. One key difference that we find is that only Cu(II), not Ni(II) or Zn(II), is able to cause the cis-trans isomerization of Pro32 that is an important conformational switch that initiates β2m amyloid formation. By comparing HDX/MS data from the three metal-β2m complexes, we also discover that increased dynamics in the β-sheet formed by the A, B, D, and E β strands of the protein and repositioning of residues in the D-E loop are necessary aspects of β2m forming an amyloid-competent dimer. Altogether, our results reveal new structural insights into the unique effect of Cu(II) in the metal-induced amyloid formation of β2m.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Zhe Zhang
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Jia Dong
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Brittney Burant
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
20
|
Robinson AC, Majumdar A, Schlessman JL, García-Moreno E B. Charges in Hydrophobic Environments: A Strategy for Identifying Alternative States in Proteins. Biochemistry 2016; 56:212-218. [DOI: 10.1021/acs.biochem.6b00843] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Jamie L. Schlessman
- Chemistry
Department, United States Naval Academy, 572M Holloway Rd MS 9B, Annapolis, Maryland 21402, United States
| | | |
Collapse
|
21
|
Khan JM, Sharma P, Arora K, Kishor N, Kaila P, Guptasarma P. The Achilles’ Heel of “Ultrastable” Hyperthermophile Proteins: Submillimolar Concentrations of SDS Stimulate Rapid Conformational Change, Aggregation, and Amyloid Formation in Proteins Carrying Overall Positive Charge. Biochemistry 2016; 55:3920-36. [DOI: 10.1021/acs.biochem.5b01343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Javed M. Khan
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Prerna Sharma
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Kanika Arora
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Nitin Kishor
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Pallavi Kaila
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| | - Purnananda Guptasarma
- Centre for Protein Science,
Design and Engineering (CPSDE), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge
City, Sector 81, SAS Nagar, Punjab, India 140306
| |
Collapse
|
22
|
pH Induced Conformational Transitions in the Transforming Growth Factor β-Induced Protein (TGFβIp) Associated Corneal Dystrophy Mutants. Sci Rep 2016; 6:23836. [PMID: 27030015 PMCID: PMC4814907 DOI: 10.1038/srep23836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022] Open
Abstract
Most stromal corneal dystrophies are associated with aggregation and deposition of the mutated transforming growth factor-β induced protein (TGFβIp). The 4th_FAS1 domain of TGFβIp harbors ~80% of the mutations that forms amyloidogenic and non-amyloidogenic aggregates. To understand the mechanism of aggregation and the differences between the amyloidogenic and non-amyloidogenic phenotypes, we expressed the 4th_FAS1 domains of TGFβIp carrying the mutations R555W (non-amyloidogenic) and H572R (amyloidogenic) along with the wild-type (WT). R555W was more susceptible to acidic pH compared to H572R and displayed varying chemical stabilities with decreasing pH. Thermal denaturation studies at acidic pH showed that while WT did not undergo any conformational transition, the mutants exhibited a clear pH-dependent irreversible conversion from αβ conformation to β-sheet oligomers. The β-oligomers of both mutants were stable at physiological temperature and pH. Electron microscopy and dynamic light scattering studies showed that β-oligomers of H572R were larger compared to R555W. The β-oligomers of both mutants were cytotoxic to primary human corneal stromal fibroblast (pHCSF) cells. The β-oligomers of both mutants exhibit variations in their morphologies, sizes, thermal and chemical stabilities, aggregation patterns and cytotoxicities.
Collapse
|
23
|
Carrillo-Parramon O, Brancolini G, Corni S. A dynamical coarse-grained model to disclose allosteric control of misfolding β2-microglobulin. RSC Adv 2016. [DOI: 10.1039/c6ra15491c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Development of a novel Coarse-Grained (CG) model to study β2-microglobulin dynamical features related to fibrillation: our one CG bead model is able to indicate propensities in the deformation behavior of the protein via investigation of the protein motion correlations.
Collapse
Affiliation(s)
| | | | - S. Corni
- CNR Institute of Nanoscience
- 41125 Modena
- Italy
| |
Collapse
|
24
|
Protein Misfolding in Lipid-Mimetic Environments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:33-66. [PMID: 26149925 DOI: 10.1007/978-3-319-17344-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among various cellular factors contributing to protein misfolding and subsequent aggregation, membranes occupy a special position due to the two-way relations between the aggregating proteins and cell membranes. On one hand, the unstable, toxic pre-fibrillar aggregates may interact with cell membranes, impairing their functions, altering ion distribution across the membranes, and possibly forming non-specific membrane pores. On the other hand, membranes, too, can modify structures of many proteins and affect the misfolding and aggregation of amyloidogenic proteins. The effects of membranes on protein structure and aggregation can be described in terms of the "membrane field" that takes into account both the negative electrostatic potential of the membrane surface and the local decrease in the dielectric constant. Water-alcohol (or other organic solvent) mixtures at moderately low pH are used as model systems to study the joint action of the local decrease of pH and dielectric constant near the membrane surface on the structure and aggregation of proteins. This chapter describes general mechanisms of structural changes of proteins in such model environments and provides examples of various proteins aggregating in the "membrane field" or in lipid-mimetic environments.
Collapse
|
25
|
Xue WF, Radford SE. An imaging and systems modeling approach to fibril breakage enables prediction of amyloid behavior. Biophys J 2014; 105:2811-9. [PMID: 24359753 DOI: 10.1016/j.bpj.2013.10.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/16/2013] [Accepted: 10/29/2013] [Indexed: 12/01/2022] Open
Abstract
Delineating the nanoscale properties and the dynamic assembly and disassembly behaviors of amyloid fibrils is key for technological applications that use the material properties of amyloid fibrils, as well as for developing treatments of amyloid-associated disease. However, quantitative mechanistic understanding of the complex processes involving these heterogeneous supramolecular systems presents challenges that have yet to be resolved. Here, we develop an approach that is capable of resolving the time dependence of fibril particle concentration, length distribution, and length and position dependence of fibril fragmentation rates using a generic mathematical framework combined with experimental data derived from atomic force microscopy analysis of fibril length distributions. By application to amyloid assembly of β2-microglobulin in vitro under constant mechanical stirring, we present a full description of the fibril fragmentation and growth behavior, and demonstrate the predictive power of the approach in terms of the samples' fibril dimensions, fibril load, and their efficiency to seed the growth of new amyloid fibrils. The approach developed offers opportunities to determine, quantify, and predict the course and the consequences of amyloid assembly.
Collapse
Affiliation(s)
- Wei-Feng Xue
- School of Biosciences, University of Kent, Canterbury, United Kingdom; Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
26
|
Goodchild SC, Sheynis T, Thompson R, Tipping KW, Xue WF, Ranson NA, Beales PA, Hewitt EW, Radford SE. β2-Microglobulin amyloid fibril-induced membrane disruption is enhanced by endosomal lipids and acidic pH. PLoS One 2014; 9:e104492. [PMID: 25100247 PMCID: PMC4123989 DOI: 10.1371/journal.pone.0104492] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/11/2014] [Indexed: 12/28/2022] Open
Abstract
Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of β2-microglobulin (β2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which β2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of β2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that β2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between β2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of β2m amyloid-associated osteoarticular tissue destruction in DRA.
Collapse
Affiliation(s)
- Sophia C. Goodchild
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Tania Sheynis
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Rebecca Thompson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Kevin W. Tipping
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Wei-Feng Xue
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Paul A. Beales
- Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Eric W. Hewitt
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
27
|
Aso Y, Shiraki K, Takagi M. Systematic Analysis of Aggregates from 38 Kinds of Non Disease-Related Proteins: Identifying the Intrinsic Propensity of Polypeptides to Form Amyloid Fibrils. Biosci Biotechnol Biochem 2014; 71:1313-21. [PMID: 17485839 DOI: 10.1271/bbb.60718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to form amyloid fibrils from a wide range of proteins would open up the opportunity to augment studies of the molecular basis of amyloid fibril formation. We investigated 36 different conditions with respect to four model proteins to evaluate their ability to form amyloid fibrils. In a 5% ethanol solution at pH 2 at 57 degrees C, hen egg white lysozyme, bovine beta-lactoglobulin, and bovine trypsinogen formed mature-type fibrils, while only histone H2A formed immature-type fibrils. Under these conditions, 25 of the 38 proteins formed amyloid fibrils. In addition, three additional proteins formed fibrils in a solution containing 5% trifluoroethanol instead of 5% ethanol. In summary, a total 28 proteins formed amyloid fibrils. Under these extreme conditions, chemical fragmentation was observed. Destabilization of the native structure, strengthening of hydrogen bonds, and chemical fragmentation are thought to play important roles in the formation of amyloid fibrils.
Collapse
Affiliation(s)
- Yoshikazu Aso
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | | | | |
Collapse
|
28
|
Leney AC, Pashley CL, Scarff CA, Radford SE, Ashcroft AE. Insights into the role of the beta-2 microglobulin D-strand in amyloid propensity revealed by mass spectrometry. MOLECULAR BIOSYSTEMS 2014; 10:412-20. [PMID: 24336936 PMCID: PMC4006425 DOI: 10.1039/c3mb70420c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/06/2013] [Indexed: 12/11/2022]
Abstract
In vivo beta-2 microglobulin (β2m) forms amyloid fibrils that are associated with the disease dialysis-related amyloidosis. Here, electrospray ionisation-ion mobility spectrometry-mass spectrometry has been used to compare the oligomers formed from wild-type β2m with those formed from a variant of the protein containing a single point mutation in the D strand, H51A, during in vitro fibril assembly. Using the amyloid-binding fluorescent dye, Thioflavin T, to monitor fibrillation kinetics, H51A was shown to exhibit a two-fold increase in the lag-time of fibril formation. Despite this, comparison of the oligomeric species observed during the lag-time of self-aggregation indicated that H51A had a higher population of oligomers, and formed oligomers of higher order, than wild-type β2m. The cross-sectional areas of the oligomers arising from H51A and wild-type protein were indistinguishable, although the H51A oligomers were shown to have a significantly higher kinetic stability on account of their reluctance to undergo sub-unit exchange when mixed with 15N-labelled protein. Together the data reveal a significant effect of His51, and thus that of the D-strand sequence, on amyloid formation. The results also highlight the power of mass spectrometry in probing complex biochemical mechanisms in real-time.
Collapse
Affiliation(s)
- Aneika C. Leney
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Leeds , LS2 9JT , UK . ; ; Fax: +44 (0)113 343 7273 ; Tel: +44 (0)113 343 3170 ; Tel: +44 (0)113 343 7273
| | - Clare L. Pashley
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Leeds , LS2 9JT , UK . ; ; Fax: +44 (0)113 343 7273 ; Tel: +44 (0)113 343 3170 ; Tel: +44 (0)113 343 7273
| | - Charlotte A. Scarff
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Leeds , LS2 9JT , UK . ; ; Fax: +44 (0)113 343 7273 ; Tel: +44 (0)113 343 3170 ; Tel: +44 (0)113 343 7273
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Leeds , LS2 9JT , UK . ; ; Fax: +44 (0)113 343 7273 ; Tel: +44 (0)113 343 3170 ; Tel: +44 (0)113 343 7273
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology , Faculty of Biological Sciences , University of Leeds , Leeds , LS2 9JT , UK . ; ; Fax: +44 (0)113 343 7273 ; Tel: +44 (0)113 343 3170 ; Tel: +44 (0)113 343 7273
| |
Collapse
|
29
|
Foley J, Hill SE, Miti T, Mulaj M, Ciesla M, Robeel R, Persichilli C, Raynes R, Westerheide S, Muschol M. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth. J Chem Phys 2013; 139:121901. [PMID: 24089713 PMCID: PMC3716784 DOI: 10.1063/1.4811343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/03/2013] [Indexed: 11/14/2022] Open
Abstract
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.
Collapse
Affiliation(s)
- Joseph Foley
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Narang D, Sharma PK, Mukhopadhyay S. Dynamics and dimension of an amyloidogenic disordered state of human β2-microglobulin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:767-76. [DOI: 10.1007/s00249-013-0923-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 12/11/2022]
|
31
|
Assessing the effect of loop mutations in the folding space of β2-microglobulin with molecular dynamics simulations. Int J Mol Sci 2013; 14:17256-78. [PMID: 23975166 PMCID: PMC3794727 DOI: 10.3390/ijms140917256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 12/15/2022] Open
Abstract
We use molecular dynamics simulations of a full atomistic Gō model to explore the impact of selected DE-loop mutations (D59P and W60C) on the folding space of protein human β2-microglobulin (Hβ2m), the causing agent of dialysis-related amyloidosis, a conformational disorder characterized by the deposition of insoluble amyloid fibrils in the osteoarticular system. Our simulations replicate the effect of mutations on the thermal stability that is observed in experiments in vitro. Furthermore, they predict the population of a partially folded state, with 60% of native internal free energy, which is akin to a molten globule. In the intermediate state, the solvent accessible surface area increases up to 40 times relative to the native state in 38% of the hydrophobic core residues, indicating that the identified species has aggregation potential. The intermediate state preserves the disulfide bond established between residue Cys25 and residue Cys80, which helps maintain the integrity of the core region, and is characterized by having two unstructured termini. The movements of the termini dominate the essential modes of the intermediate state, and exhibit the largest displacements in the D59P mutant, which is the most aggregation prone variant. PROPKA predictions of pKa suggest that the population of the intermediate state may be enhanced at acidic pH explaining the larger amyloidogenic potential observed in vitro at low pH for the WT protein and mutant forms.
Collapse
|
32
|
Vanderhaegen S, Fislage M, Domanska K, Versées W, Pardon E, Bellotti V, Steyaert J. Structure of an early native-like intermediate of β2-microglobulin amyloidogenesis. Protein Sci 2013; 22:1349-57. [PMID: 23904325 DOI: 10.1002/pro.2321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 11/06/2022]
Abstract
To investigate early intermediates of β2-microglobulin (β2m) amyloidogenesis, we solved the structure of β2m containing the amyloidogenic Pro32Gly mutation by X-ray crystallography. One nanobody (Nb24) that efficiently blocks fibril elongation was used as a chaperone to co-crystallize the Pro32Gly β2m monomer under physiological conditions. The complex of P32G β2m with Nb24 reveals a trans peptide bond at position 32 of this amyloidogenic variant, whereas Pro32 adopts the cis conformation in the wild-type monomer, indicating that the cis to trans isomerization at Pro32 plays a critical role in the early onset of β2m amyloid formation.
Collapse
Affiliation(s)
- Saskia Vanderhaegen
- Structural Biology Research Centre, VIB, Pleinlaan 2, 1050, Brussel, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
| | | | | | | | | | | | | |
Collapse
|
33
|
Rennella E, Cutuil T, Schanda P, Ayala I, Gabel F, Forge V, Corazza A, Esposito G, Brutscher B. Oligomeric States along the Folding Pathways of β2-Microglobulin: Kinetics, Thermodynamics, and Structure. J Mol Biol 2013; 425:2722-36. [DOI: 10.1016/j.jmb.2013.04.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
|
34
|
Woods L, Radford S, Ashcroft A. Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1257-68. [PMID: 23063533 PMCID: PMC3787735 DOI: 10.1016/j.bbapap.2012.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 10/28/2022]
Abstract
Interfacing ion mobility spectrometry to mass spectrometry (IMS-MS) has enabled mass spectrometric analyses to extend into an extra dimension, providing unrivalled separation and structural characterization of lowly populated species in heterogeneous mixtures. One biological system that has benefitted significantly from such advances is that of amyloid formation. Using IMS-MS, progress has been made into identifying transiently populated monomeric and oligomeric species for a number of different amyloid systems and has led to an enhanced understanding of the mechanism by which small molecules modulate amyloid formation. This review highlights recent advances in this field, which have been accelerated by the commercial availability of IMS-MS instruments. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
| | - S.E. Radford
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - A.E. Ashcroft
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| |
Collapse
|
35
|
Mukaiyama A, Nakamura T, Makabe K, Maki K, Goto Y, Kuwajima K. The Molten Globule of β2-Microglobulin Accumulated at pH 4 and Its Role in Protein Folding. J Mol Biol 2013; 425:273-91. [DOI: 10.1016/j.jmb.2012.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 01/06/2023]
|
36
|
Salt Anions Promote the Conversion of HypF-N into Amyloid-Like Oligomers and Modulate the Structure of the Oligomers and the Monomeric Precursor State. J Mol Biol 2012; 424:132-49. [DOI: 10.1016/j.jmb.2012.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 09/11/2012] [Accepted: 09/26/2012] [Indexed: 11/17/2022]
|
37
|
Fukuda M, Takao T. Quantitative analysis of deamidation and isomerization in β2-microglobulin by 18O labeling. Anal Chem 2012; 84:10388-94. [PMID: 23126476 DOI: 10.1021/ac302603b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deamidation of asparagine residues in proteins via the formation of a 5-membered succinimide ring intermediate is a nonenzymatic intramolecular reaction and, in general, occurs most rapidly at an Asn-Gly sequence. A protein containing this sequence would, therefore, be susceptible to modification, and the result would produce a structural alteration in the molecule. An Asn would be replaced with an Asp, resulting in an increase in the overall negative charge on the molecule but also an isomerization to isoAsp. Despite the fact that such a structural replacement could affect the functional properties of a protein, estimating the susceptibility of the Asn-Gly sequence to deamidation/isomerization remains a difficult task. This is especially true for proteins that are subjected to enzymatic digestion during their characterization, since the above transformation could occur spontaneously during this treatment. To address this issue, we applied a stable-isotope (18)O-labeling method combined with nano-LC-MS/MS to examine the susceptibility of two Asn-Gly sites in β2-microglobulin (β2m) to the reaction. The method permits the reaction occurring in a protein to be distinguished from that during enzymatic treatment. When β2m was incubated for 60 days at 37 °C, deamidation at Asn17-Gly and Asn42-Gly with half-lives of 33 and 347 days occurred, respectively. Moreover, a comparison of the deamidated products to synthetic peptides revealed that 44% of the Asp17 and 96% of the Asp42 had been converted into isoAsp forms. Interestingly, such structurally altered β2m showed a specific affinity for divalent Cu(2+) ions, which is thought to be a candidate for initiating fibril formation.
Collapse
Affiliation(s)
- Masafumi Fukuda
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Yamadaoka, Japan
| | | |
Collapse
|
38
|
Hodkinson JP, Radford SE, Ashcroft AE. The role of conformational flexibility in β2-microglobulin amyloid fibril formation at neutral pH. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1783-92. [PMID: 22777780 PMCID: PMC3568905 DOI: 10.1002/rcm.6282] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
RATIONALE Amyloid formation is implicated in a number of human diseases. β(2)-Microglobulin (β(2)m) is the precursor protein in dialysis-related amyloidosis and it has been shown that partial, or more complete, unfolding is key to amyloid fibril formation in this pathology. Here the relationship between conformational flexibility and β(2)m amyloid formation at physiological pH has been investigated. METHODS HDX-ESI-MS was used to study the conformational dynamics of β(2)m. Protein engineering, or the addition of Cu(2+) ions, sodium dodecyl sulphate, trifluoroethanol, heparin, or protein stabilisers, was employed to perturb the conformational dynamics of β(2)m. The fibril-forming propensities of the protein variants and the wild-type protein in the presence of additives, which resulted in >5-fold increase in the EX1 rate of HDX, were investigated further. RESULTS ESI-MS revealed that HDX occurs via a mixed EX1/EX2 mechanism under all conditions. Urea denaturation and tryptophan fluorescence indicated that EX1 exchange occurred from a globally unfolded state in wild-type β(2)m. Although >30-fold increase in the HDX exchange rate was observed both for the protein variants and for the wild-type protein in the presence of specific additives, large increases in exchange rate did not necessarily result in extensive de novo fibril formation. CONCLUSIONS The conformational dynamics measured by the EX1 rate of HDX do not predict the ability of β(2)m to form amyloid fibrils de novo at neutral pH. This suggests that the formation of amyloid fibrils from β(2)m at neutral pH is dependent on the generation of one or more specific aggregation-competent species which facilitate self-assembly.
Collapse
Affiliation(s)
- John P Hodkinson
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT UK
- Correspondence S. E. Radford or A. E. Ashcroft, Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. E-mail: ;
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of LeedsLeeds, LS2 9JT UK
- Correspondence S. E. Radford or A. E. Ashcroft, Astbury Centre for Structural Molecular Biology, Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK. E-mail: ;
| |
Collapse
|
39
|
Abstract
Dialysis-related amyloidosis (DRA) is a clinical syndrome of pain, loss of function and other symptoms due to the deposition of amyloid consisting of β(2)-microglobulin (β(2)m) in the musculoskeletal system. The condition is seen in patients who suffer from chronic kidney disease and are treated with hemodialysis for a long time. Even though β(2)m easily can be manipulated to form amyloid in laboratory experiments under non-physiological conditions the precise mechanisms involved in the formation of β(2)m-amyloid in patients with DRA have been difficult to unravel. The current knowledge which is reviewed here indicates that conformational fluctuations centered around the D-strand, the DE-loop, and around the cis-configured Pro32 peptide bond are involved in β(2)m amyloidosis. Also required are highly increased concentrations of circulating β(2)m and possibly various post-translational modifications mediated by the pro-inflammatory environment in uremic blood, together with the influence of divalent metal ions (specifically Cu(2 +)), uremic toxins, and dialysis-enhanced redox-processes. It seems plausible that domain-swapped β(2)m dimers act as building blocks of β-spine cross-β -sheet fibrils consisting of otherwise globular, roughly natively folded protein. An activated complement system and cellular activation perpetuate these reactions which due to the affinity of β(2)m-amyloid for the collagen of synovial surfaces result in the DRA syndrome.
Collapse
Affiliation(s)
- Dorthe B Corlin
- Department of Clinical Biochemistry and Immunology, Division of Microbiology and Diagnostics, Statens Serum Institut, Bldg. 85/240, Artillerivej 5, 2300, Copenhagen S, Denmark,
| | | |
Collapse
|
40
|
Eichner T, Radford SE. Understanding the complex mechanisms of β2-microglobulin amyloid assembly. FEBS J 2011; 278:3868-83. [PMID: 21595827 PMCID: PMC3229708 DOI: 10.1111/j.1742-4658.2011.08186.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/11/2011] [Accepted: 05/13/2011] [Indexed: 11/30/2022]
Abstract
Several protein misfolding diseases are associated with the conversion of native proteins into ordered protein aggregates known as amyloid. Studies of amyloid assemblies have indicated that non-native proteins are responsible for initiating aggregation in vitro and in vivo. Despite the importance of these species for understanding amyloid disease, the structural and dynamic features of amyloidogenic intermediates and the molecular details of how they aggregate remain elusive. This review focuses on recent advances in developing a molecular description of the folding and aggregation mechanisms of the human amyloidogenic protein β(2)-microglobulin under physiologically relevant conditions. In particular, the structural and dynamic properties of the non-native folding intermediate I(T) and its role in the initiation of fibrillation and the development of dialysis-related amyloidosis are discussed.
Collapse
Affiliation(s)
- Timo Eichner
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
41
|
Woods LA, Platt GW, Hellewell AL, Hewitt EW, Homans SW, Ashcroft AE, Radford SE. Ligand binding to distinct states diverts aggregation of an amyloid-forming protein. Nat Chem Biol 2011; 7:730-9. [PMID: 21873994 PMCID: PMC3182555 DOI: 10.1038/nchembio.635] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 06/30/2011] [Indexed: 11/21/2022]
Abstract
Although small molecules that modulate amyloid formation in vitro have been identified, significant challenges remain in determining precisely how these species act. Here we describe the identification of rifamycin SV as a potent inhibitor of β(2) microglobulin (β(2)m) fibrillogenesis when added during the lag time of assembly or early during fibril elongation. Biochemical experiments demonstrate that the small molecule does not act by a colloidal mechanism. Exploiting the ability of electrospray ionization-ion mobility spectrometry-mass spectrometry (ESI-IMS-MS) to resolve intermediates of amyloid assembly, we show instead that rifamycin SV inhibits β(2)m fibrillation by binding distinct monomeric conformers, disfavoring oligomer formation and diverting the course of assembly to the formation of spherical aggregates. The results demonstrate the power of ESI-IMS-MS to identify specific protein conformers as targets for intervention in fibrillogenesis using small molecules and reveal a mechanism of action in which ligand binding diverts unfolded protein monomers toward alternative assembly pathways.
Collapse
Affiliation(s)
| | | | - Andrew L. Hellewell
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Eric W. Hewitt
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Steve W. Homans
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Alison E. Ashcroft
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
42
|
Garvey M, Griesser SS, Griesser HJ, Thierry B, Nussio MR, Shapter JG, Ecroyd H, Giorgetti S, Bellotti V, Gerrard JA, Carver JA. Enhanced molecular chaperone activity of the small heat-shock protein alphaB-cystallin following covalent immobilization onto a solid-phase support. Biopolymers 2011; 95:376-89. [PMID: 21225714 DOI: 10.1002/bip.21584] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The well-characterized small heat-shock protein, alphaB-crystallin, acts as a molecular chaperone by interacting with unfolding proteins to prevent their aggregation and precipitation. Structural perturbation (e.g., partial unfolding) enhances the in vitro chaperone activity of alphaB-crystallin. Proteins often undergo structural perturbations at the surface of a synthetic material, which may alter their biological activity. This study investigated the activity of alphaB-crystallin when covalently bound to a support surface; alphaB-crystallin was immobilized onto a range of solid material surfaces, and its characteristics and chaperone activity were assessed. Immobilization was achieved via a plasma-deposited thin polymeric interlayer containing aldehyde surface groups and reductive amination, leading to the covalent binding of alphaB-crystallin lysine residues to the surface aldehyde groups via Schiff-base linkages. Immobilized alphaB-crystallin was characterized by X-ray photoelectron spectroscopy, atomic force microscopy, and quartz crystal microgravimetry, which showed that 300 ng cm(-2) (dry mass) of oligomeric alphaB-crystallin was bound to the surface. Immobilized alphaB-crystallin exhibited a significant enhancement (up to 5000-fold, when compared with the equivalent activity of alphaB-crystallin in solution) of its chaperone activity against various proteins undergoing both amorphous and amyloid fibril forms of aggregation. The enhanced molecular chaperone activity of immobilized alphaB-crystallin has potential applications in preventing protein misfolding, including against amyloid disease processes, such as dialysis-related amyloidosis, and for biodiagnostic detection of misfolded proteins.
Collapse
Affiliation(s)
- Megan Garvey
- School of Chemistry and Physics, The University ofAdelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Buell AK, Dhulesia A, Mossuto MF, Cremades N, Kumita JR, Dumoulin M, Welland ME, Knowles TP, Salvatella X, Dobson CM. Population of nonnative states of lysozyme variants drives amyloid fibril formation. J Am Chem Soc 2011; 133:7737-7743. [PMID: 21528861 PMCID: PMC4982536 DOI: 10.1021/ja109620d] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The propensity of protein molecules to self-assemble into highly ordered, fibrillar aggregates lies at the heart of understanding many disorders ranging from Alzheimer's disease to systemic lysozyme amyloidosis. In this paper we use highly accurate kinetic measurements of amyloid fibril growth in combination with spectroscopic tools to quantify the effect of modifications in solution conditions and in the amino acid sequence of human lysozyme on its propensity to form amyloid fibrils under acidic conditions. We elucidate and quantify the correlation between the rate of amyloid growth and the population of nonnative states, and we show that changes in amyloidogenicity are almost entirely due to alterations in the stability of the native state, while other regions of the global free-energy surface remain largely unmodified. These results provide insight into the complex dynamics of a macromolecule on a multidimensional energy landscape and point the way for a better understanding of amyloid diseases.
Collapse
Affiliation(s)
- Alexander K. Buell
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, UK
| | - Anne Dhulesia
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Maria F. Mossuto
- Institute for Research in Biomedicine (IRB), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Nunilo Cremades
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Janet R. Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Mireille Dumoulin
- Centre for Protein Engineering, University of Liège, Sart Tilman, 4000 Liège, Belgium
| | - Mark E. Welland
- Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, UK
| | - Tuomas P.J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB), Baldiri Reixac 10, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
44
|
Ahn M, Kang S, Koo HJ, Lee JH, Lee YS, Paik SR. Nanoporous protein matrix made of amyloid fibrils of β2-microglobulin. Biotechnol Prog 2011; 26:1759-64. [PMID: 20572297 DOI: 10.1002/btpr.466] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amyloid fibrils are considered as novel nanomaterials because of their nanoscale width, a regular constituting structure of cross β-sheet conformation, and considerable mechanical strength. By using an amyloidogenic protein of β(2)-microglobulin (β(2)M) related to dialysis-related amyloidosis, nanoporous protein matrix has been prepared. The β(2) M granules made of around 15 monomers showed an average size of 23.1 nm. They formed worm-like fibrils at pH 7.4 in 20 mM sodium phosphate containing 0.15 M NaCl following vigorous nondirectional shaking incubation, in which they became laterally associated and interwound to generate the porous amyloid fibrillar matrix with an average pore size of 30-50 nm. This nanoporous protein matrix was demonstrated to be selectively disintegrated by reducing agents, such as tris-(2-carboxyethyl) phosphine. High surface area with nanopores on the surface has been suggested to make the matrix of β(2) M amyloid fibrils particularly suitable for applications in the area of nanobiotechnology including drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Minkoo Ahn
- School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul 151-744, Korea
| | | | | | | | | | | |
Collapse
|
45
|
Castillo V, Espargaró A, Gordo V, Vendrell J, Ventura S. Deciphering the role of the thermodynamic and kinetic stabilities of SH3 domains on their aggregation inside bacteria. Proteomics 2011; 10:4172-85. [PMID: 21086517 DOI: 10.1002/pmic.201000260] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The formation of insoluble deposits by globular proteins underlies the onset of many human diseases. Recent studies suggest a relationship between the thermodynamic stability of proteins and their in vivo aggregation. However, it has been argued that, in the cell, the occurrence of irreversible aggregation might shift the system from equilibrium, in such a way that it could be the rate of unfolding and associated kinetic stability instead of the conformational stability that controls protein deposition. This is an important but difficult to decipher question, because kinetic and thermodynamic stabilities appear usually correlated. Here we address this issue by comparing the in vitro folding kinetics and stability features of a set of non-natural SH3 domains with their aggregation properties when expressed in bacteria. In addition, we compare the in vitro stability of the isolated domains with their effective stability in conditions that mimic the cytosolic environment. Overall, the data argue in favor of a thermodynamic rather than a kinetic control of the intracellular aggregation propensities of small globular proteins in which folding and unfolding velocities largely exceed aggregation rates. These results have implications regarding the evolution of proteins.
Collapse
Affiliation(s)
- Virginia Castillo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | | | | | | | |
Collapse
|
46
|
Glycosaminoglycans enhance the fibrillation propensity of the β2-microglobulin cleavage variant--ΔK58-β2m. Biochem Biophys Res Commun 2010; 402:247-51. [PMID: 20939999 DOI: 10.1016/j.bbrc.2010.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/04/2010] [Indexed: 11/23/2022]
Abstract
Dialysis related amyloidosis (DRA) is a serious complication to long-term hemodialysis treatment which causes clinical symptoms such as carpal tunnel syndrome and destructive arthropathies. The disease is characterized by the assembly and deposition of β2-microglobulin (β2m) predominantly in the musculoskeletal system, but the initiating events leading to β2m amyloidogenesis and the molecular mechanisms underlying amyloid fibril formation are still unclear. Glycosaminoglycans (GAGs) and metal ions have been shown to be related to the onset of protein aggregation and to promote de novo fiber formation. In this study, we show that fibrillogenesis of a cleavage variant of β2m, ΔK58-β2m, which can be found in the circulation of hemodialysis patients and is able to fibrillate at near-physiological pH in vitro, is affected by the presence of copper ions and heparan sulfate. It is found that the fibrils generated when heparan sulfate is present have increased length and diameter, and possess enhanced stability and seeding properties. However, when copper ions are present the fibrils are short, thin and less stable, and form at a slower rate. We suggest that heparan sulfate stabilizes the cleaved monomers in the early aggregates, hereby promoting the assembly of these into fibrils, whereas the copper ions appear to have a destabilizing effect on the monomers. This keeps them in a structure forming amorphous aggregates for a longer period of time, leading to the formation of spherical bodies followed by the assembly of fibrils. Hence, the in vivo formation of amyloid fibrils in DRA could be initiated by the generation of ΔK58-β2m which spontaneously aggregate and form fibrils. The fibrillogenesis is enhanced by the involvement of GAGs and/or metal ions, and results in amyloid-like fibrils able to promote the de novo formation of β2m amyloid by a scaffold mechanism.
Collapse
|
47
|
Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG. Magic angle spinning NMR analysis of beta2-microglobulin amyloid fibrils in two distinct morphologies. J Am Chem Soc 2010; 132:10414-23. [PMID: 20662519 PMCID: PMC2919207 DOI: 10.1021/ja102775u] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Beta(2)-microglobulin (beta(2)m) is the major structural component of amyloid fibrils deposited in a condition known as dialysis-related amyloidosis. Despite numerous studies that have elucidated important aspects of the fibril formation process in vitro, and a magic angle spinning (MAS) NMR study of the fibrils formed by a small peptide fragment, structural details of beta(2)m fibrils formed by the full-length 99-residue protein are largely unknown. Here, we present a site-specific MAS NMR analysis of fibrils formed by the full-length beta(2)m protein and compare spectra of fibrils prepared under two different conditions. Specifically, long straight (LS) fibrils are formed at pH 2.5, while a very different morphology denoted as worm-like (WL) fibrils is observed in preparations at pH 3.6. High-resolution MAS NMR spectra have allowed us to obtain (13)C and (15)N resonance assignments for 64 residues of beta(2)m in LS fibrils, including part of the highly mobile N-terminus. Approximately 25 residues did not yield observable signals. Chemical shift analysis of the sequentially assigned residues indicates that these fibrils contain an extensive beta-sheet core organized in a non-native manner, with a trans-P32 conformation. In contrast, WL fibrils exhibit more extensive dynamics and appear to have a smaller beta-sheet core than LS fibrils, although both cores seem to share some common elements. Our results suggest that the distinct macroscopic morphological features observed for the two types of fibrils result from variations in structure and dynamics at the molecular level.
Collapse
Affiliation(s)
- Galia T. Debelouchina
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Geoffrey W. Platt
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Marvin J. Bayro
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Robert G. Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
48
|
Rennella E, Corazza A, Giorgetti S, Fogolari F, Viglino P, Porcari R, Verga L, Stoppini M, Bellotti V, Esposito G. Folding and fibrillogenesis: clues from beta2-microglobulin. J Mol Biol 2010; 401:286-97. [PMID: 20558175 DOI: 10.1016/j.jmb.2010.06.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 11/18/2022]
Abstract
Renal failure impairs the clearance of beta(2)-microglobulin from the serum, with the result that this protein accumulates in joints under the form of amyloid fibrils. While the molecular mechanism leading to deposition of amyloid in vivo is not totally understood, some organic compounds, such as trifluoroethanol (TFE), are commonly used to promote the elongation of amyloid fibrils in vitro. This article gives some insights into the structural properties and the conformational states of beta(2)-microglobulin in the presence of TFE, using both the wild-type protein and the mutant Trp60Gly. The structure of the native state of the protein is rather insensitive to the presence of the alcohol, but the stability of this state is lowered in comparison to some other conformational states. In particular, a native-like folding intermediate is observed in the presence of moderate concentrations of TFE. Instead, at higher concentrations of the alcohol, the population of a disordered native-unlike state is dominant and correlates with the ability to elongate fibrils.
Collapse
Affiliation(s)
- Enrico Rennella
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, I-33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ladner CL, Chen M, Smith DP, Platt GW, Radford SE, Langen R. Stacked sets of parallel, in-register beta-strands of beta2-microglobulin in amyloid fibrils revealed by site-directed spin labeling and chemical labeling. J Biol Chem 2010; 285:17137-47. [PMID: 20335170 PMCID: PMC2878032 DOI: 10.1074/jbc.m110.117234] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/23/2010] [Indexed: 01/08/2023] Open
Abstract
beta(2)-microglobulin (beta(2)m) is a 99-residue protein with an immunoglobulin fold that forms beta-sheet-rich amyloid fibrils in dialysis-related amyloidosis. Here the environment and accessibility of side chains within amyloid fibrils formed in vitro from beta(2)m with a long straight morphology are probed by site-directed spin labeling and accessibility to modification with N-ethyl maleimide using 19 site-specific cysteine variants. Continuous wave electron paramagnetic resonance spectroscopy of these fibrils reveals a core predominantly organized in a parallel, in-register arrangement, by contrast with other beta(2)m aggregates. A continuous array of parallel, in-register beta-strands involving most of the polypeptide sequence is inconsistent with the cryoelectron microscopy structure, which reveals an architecture based on subunit repeats. To reconcile these data, the number of spins in close proximity required to give rise to spin exchange was determined. Systematic studies of a model protein system indicated that juxtaposition of four spin labels is sufficient to generate exchange narrowing. Combined with information about side-chain mobility and accessibility, we propose that the amyloid fibrils of beta(2)m consist of about six beta(2)m monomers organized in stacks with a parallel, in-register array. The results suggest an organization more complex than the accordion-like beta-sandwich structure commonly proposed for amyloid fibrils.
Collapse
Affiliation(s)
- Carol L. Ladner
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Min Chen
- the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - David P. Smith
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Geoffrey W. Platt
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Sheena E. Radford
- From the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Ralf Langen
- the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| |
Collapse
|
50
|
Winkelmann J, Calloni G, Campioni S, Mannini B, Taddei N, Chiti F. Low-level expression of a folding-incompetent protein in Escherichia coli: search for the molecular determinants of protein aggregation in vivo. J Mol Biol 2010; 398:600-13. [PMID: 20346957 DOI: 10.1016/j.jmb.2010.03.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 03/04/2010] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
Abstract
Aggregation of peptides and proteins into insoluble amyloid fibrils or related intracellular inclusions is the hallmark of many degenerative diseases, including Alzheimer's disease, Parkinson's disease, and various forms of amyloidosis. In spite of the considerable progress carried out in vitro in elucidating the molecular determinants of the conversion of purified and isolated proteins into amyloid fibrils, very little is known on factors governing this process in the complex environment of living organisms. Taking advantage of increasing evidence that bacterial inclusion bodies consist of amyloid-like aggregates, we have expressed in Escherichia coli both wild type and 21 single-point mutants of the N-terminal domain of the E. coli protein HypF. All variants were expressed as folding-incompetent units in a controlled manner, at low and comparable levels. Their solubilities were measured by quantifying the protein amount contained in the soluble and insoluble fractions by Western blot analysis. A significant negative correlation was found between the solubility of the variants in E. coli and their intrinsic propensity to form amyloid fibrils, predicted using an algorithm previously validated experimentally in vitro on a number of unfolded peptides and proteins, and considering hydrophobicity, beta-sheet propensity, and charge as major sequence determinants of the aggregation process. These findings show that the physicochemical parameters previously recognized to govern amyloid formation by fully or partially unfolded proteins are largely applicable in vivo and pave the way for the molecular exploration of a process as complex as protein aggregation in living organisms.
Collapse
Affiliation(s)
- Julia Winkelmann
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | |
Collapse
|